
1
Version of November 6, 1996

MASSACHVSETTS INSTITVTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.001|Structure and Interpretation of Computer Programs

Fall Semester, 1996

Problem Set 9

Streams

Issued: Thursday, November 7, 1996

Written solutions due: Friday, November 22, 1996

Tutorial preparation for: week of November 18, 1996

Reading: Finish chapter 4, through the end of section 4.3; review section 3.5; code �le

series.scm, mceval.scm (attached)

Part 1: Tutorial exercises

Prepare the following exercises for oral presentation in tutorial:

Tutorial exercise 1: Do exercise 3.51 from the book. Make sure that you can explain what is

going on|don't just say what the computer prints.

Tutorial exercise 2: Describe the streams produced by the following de�nitions. Assume that

integers is the stream of non-negative integers (starting from 1):

(define A (cons-stream 1 (scale-stream 2 A)))

(define (mul-streams a b)

(cons-stream

(* (stream-car a) (stream-car b))

(mul-streams (stream-cdr a)

(stream-cdr b))))

(define B (cons-stream 1 (mul-stream B integers)))

Tutorial exercise 3: Given a stream s the following procedure returns the stream of all pairs of

elements from s:



6.001, Fall Semester, 1996|Problem Set 9 2

(define (stream-pairs s)

(if (stream-null? s)

the-empty-stream

(stream-append

(stream-map

(lambda (sn) (list (stream-car s) sn))

(stream-cdr s))

(stream-pairs (stream-cdr s)))))

(define (stream-append s1 s2)

(if (stream-null? s1)

s2

(cons-stream (stream-car s1)

(stream-append (stream-cdr s1) s2))))

(a) Suppose that integers is the (�nite) stream 1, 2, 3, 4, 5. What is (stream-pairs s)? (b)

Give the clearest explanation that you can of how stream-pairs works. (c) Suppose that s is

the stream of positive integers. What are the �rst few elements of (stream-pairs s)? Can you

suggest a modi�cation of stream-pairs that would be more appropriate in dealing with in�nite

streams?

Tutorial exercise 4: Do exercise 3.52 from the book. Pay careful attention to how memo-proc

may impact results when side-e�ects (procedures with state) are mixed with streams.

Part 2: Laboratory{adding streams to an evaluator

The �le mceval.scm contains a simple version of the evaluator { one without lazy parameters, or

memoization. We are going to install streams directly into this evaluator, by both modifying eval

and adding some supporting infrastructure. These additions will also require you to think very

carefully about the distinction between evaluator code and code in the M-eval language.

To get used to this evaluator, let's start by experimenting with it. To initialize this evaluator,

evaluate the following expressions in the normal Scheme evaluator:

(define the-global-environment (setup-environment))

(driver-loop)

The �rst expression sets up a global environment with some prede�ned procedures in it. By looking

at the �le mceval.scm, you can see that we are relying on some underlying Scheme procedures as

our basic environment. If you decide to add more inherent Scheme procedures to your global

environment, you should add them to the list of primitive-procedures, and reset the global

environment. The second expression starts up an evaluator loop, so that you can now try evaluating

some simple expressions. Notice, by the way, that if you hit a bug, you will be thrown back into

the underlying Scheme evaluator, and you will have to reinitialize your state to return to this new

evaluator. This means you will need to reset the global environment, restart the driver loop, and

re-evaluate any expressions you had evaluated earlier.



6.001, Fall Semester, 1996|Problem Set 9 3

Exercise 1 Try this evaluator out on some simple expressions. Turn in a transcript of your tests.

To add streams directly into this evaluator, we need to do several things. First, we need to add a

method for handling cons-stream expressions. As noted in the text, such expressions should be

treated as a special form, so you will need to modify the evaluator in the corresponding spot. In

this case, we will use a simpli�ed notion of a \thunk" { we will wrap delayed experessions in a

lambda of no arguments, which is an e�ective and convenient way to remember both the expression

and the environment for later forcing.

The basic idea when evaluating a cons-stream expression, then, is to cons together the value

of the �rst argument with a procedure of no arguments whose body is the second argument to

cons-stream, i.e. evaluating (cons-stream a b) should be equivalent to evaluating

(cons a (lambda () b))

In this way, the second argument to the stream will be delayed, and will not be evaluated as part

of the construction of the stream.

Exercise 2 Make whatever changes are appropriate to incorporate cons-stream as a special form

in the evaluator, including whatever supporting procedures are needed. Turn in a listing of your

additions, and an example of using this special form.

Exercise 3 In this implementation of streams, the �rst element is extracted using stream-car,

which you can implement by

(define stream-car car)

You can add this to your system by evaluating the above expression inside of M-eval (Note { be

sure you evaluate it in this evaluator, if you do it instead within the inherent Scheme evaluator you

will not be able to access this de�nition).

Implementing stream-cdr is a bit more work, however, since it needs to deal with the delayed

evaluation. In particular, evaluating a stream-cdr expression should get the value of the cdr of

the argument, then apply this procedure to a list of no arguments to force the evaluation of the

delayed expression.

Again, turn in a listing of what changes you make to the evaluator to implement this, and whatever

supporting procedures you use.

Exercise 4: Test out your modi�cations by writing and evaluating de�nitions for each of the

following:

� ones: the in�nite stream of 1's.

� non-neg-integers: the stream of integers, 1; 2; 3; 4; : : :

� alt-ones: the stream 1;�1; 1;�1; : : :

� zeros: the in�nite stream of 0's. Do this using alt-ones.



6.001, Fall Semester, 1996|Problem Set 9 4

The following procedure will allow you to access the nth element of a stream:

(define (nth-stream n st)

(if (= n 0)

(stream-car st)

(nth-stream (- n 1) (stream-cdr st))))

Evaluate this de�nition in your evaluator and try accessing elements of your stream.

Exercise 5 As noted in the text and in lecture, we can avoid a lot of redundant computation by

memoizing streams. This means that the �rst time an element is accessed, it is evaluated, but in

all future times the value is simply looked up in a local state variable. The procedure:

(define (memo-proc proc)

((lambda (already-run? result)

(lambda ()

(if (not already-run?)

(begin (set! result (proc))

(set! already-run? true)

result)

result)))

false false))

will take as input a lambda expression and return a memoized version of that procedure.

Using your implementation of cons-stream as a guideline, implement a new stream constructor

called cons-stream-memo with the property that the second element of the stream is a memoized

lambda expression. You must be sure to type in and evaluate the de�nition of memo-proc in M-eval

in order to be able to use it. You will note that this memo-proc is di�erent than the version in

section 3.5 of the book: it does not use let. Explain why.

Complete your implementation of cons-stream-memo. You may also need to create a new selector

for stream-cdr. Turn in a listing of your modi�cations. Show examples where you generate some

in�nite streams (as in Exercise 4) and access elements of these streams { you should notice a

di�erence in speed, especially as you move further down stream.

Part 3: Laboratory|Using streams to represent power series

Now we want to explore the use of streams for capturing computational processes. If you want, you

can do this part of the problem set within your modi�ed M-eval evaluator. However, since there

is no debugger there, you may prefer to do this part of the problem set directly in the standard

Scheme evaluator, which has built in stream primitives (without memoization).

We described in lecture a few weeks ago how to represent polynomials as lists of terms. In a similar

way, we can work with power series, such as

ex = 1 + x+
x2

2
+

x3

3 � 2
+

x4

4 � 3 � 2
+ � � �



6.001, Fall Semester, 1996|Problem Set 9 5

cos x = 1�
x2

2
+

x4

4 � 3 � 2
� � � �

sinx = x�
x3

3 � 2
+

x5

5 � 4 � 3 � 2
� � � �

represented as streams of in�nitely many terms. That is, the power series

a0 + a1x+ a2x
2 + a3x

3 + � � �

will be represented as the in�nite stream whose elements are a0; a1; a2; a3; : : :.
1

Why would we want such a method? Well, let's separate the idea of a series representation from

the idea of evaluating a function. For example, suppose we let f(x) = sinx. We can separate the

idea of evaluating f , e.g., f(0) = 0; f(:1) = 0:0998334, from the means we use to compute the value

of f . This is where the series representation is used, as a way of storing information su�cient to

determine values of the function. In particular, by substituting a value for x into the series, and

computing more and more terms in the sum, we get better and better estimates of the value of the

function for that argument. This is shown in the table, where sin 1

10
is considered.

Coe�cient xn term sum value

0 1 0 0 0

1 1

10

1

10

1

10
.1

0 1

100
0 1

10
.1

- 1

6

1

1000
- 1

6000

599

6000
.099833333333

0 1

10000
0 599

6000
.099833333333

1

120

1

100000

1

12000000

1198001

12000000
.09983341666

The �rst column shows the terms from the series representation for sine. This is the in�nite series

with which we will be dealing. The second column shows values for the associated powers of 1

10
. The

third column is the product of the �rst two, and represents the next term in the series evaluation.

The fourth column represents the sum of the terms to that point, and the last column is the decimal

approximation to the sum.

With this representation of functions as streams of coe�cients, series operations such as addition

and scaling (multiplying by a constant) are identical to the basic stream operations. We provide

series operations, though, in order to implement a complete power series data abstraction:

1In this representation, all streams are in�nite: a �nite polynomial will be represented as a stream with an in�nite

number of trailing zeroes.



6.001, Fall Semester, 1996|Problem Set 9 6

(define (add-streams s1 s2)

(cond ((stream-null? s1) s2)

((stream-null? s2) s1)

(else

(cons-stream (+ (stream-car s1) (stream-car s2))

(add-streams (stream-cdr s1)

(stream-cdr s2))))))

(define (scale-stream c stream)

(stream-map (lambda (x) (* x c)) stream))

(define add-series add-streams)

(define scale-series scale-stream)

(define (negate-series s)

(scale-series -1 s))

(define (subtract-series s1 s2)

(add-series s1 (negate-series s2)))

You can use the following procedure to examine the series you will generate in this problem set:

(define (show-series s nterms)

(if (= nterms 0)

'done

(begin (write-line (stream-car s))

(show-series (stream-cdr s) (- nterms 1)))))

You can also examine an individual coe�cient (of xn) in a series using series-coeff:

(define (series-coeff s n)

(stream-ref s n))

We also provide two ways to construct series. Coeffs->series takes an list of initial coe�cients

and pads it with zeroes to produce a power series. For example, (coeff->series '(1 3 4))

produces the power series 1 + 3x+ 4x2 + 0x3 + 0x4 + : : : .

(define (coeffs->series list-of-coeffs)

(define zeros (cons-stream 0 zeros))

(define (iter list)

(if (null? list)

zeros

(cons-stream (car list)

(iter (cdr list)))))

(iter list-of-coeffs))

Proc->series takes as argument a procedure p of one numeric argument and returns the series

p(0) + p(1)x+ p(2)x2 + p(3)x3 + � � �



6.001, Fall Semester, 1996|Problem Set 9 7

The de�nition requires the stream non-neg-integers to be the stream of non-negative integers:

0; 1; 2; 3; : : : .

(define (proc->series proc)

(stream-map proc non-neg-integers))

Note: Loading the code for this problem set will change Scheme's basic arithmetic operations +,

-, *, and / so that they will work with rational numbers. For instance, (/ 3 4) will produce 3/4

rather than .75. You'll �nd this useful in doing the exercises below.

Exercise 6: Show how to de�ne the series:

S1 = 1 + x+ x2 + x3 + � � �

S2 = 1 +
x

2
+

x2

3
+

x3

4
+ � � �

Turn in your de�nitions and a couple of coe�cient printouts to demonstrate that they work.

Exercise 7: Multiplying two series is a lot like multiplying two multi-digit numbers, but starting

with the left-most digit, instead of the right-most.

For example:

11111

x 12345

_________

11111

22222

33333

44444

55555

-----------

137165295

Now imagine that there can be an in�nite number of digits, i.e., each of these is a (possibly in�nite)

series. (Remember that because each "digit" is in fact a term in the series, it can become arbitrarily

large, without carrying, as in ordinary multiplication.)

Using this idea, complete the de�nition of the following procedure, which multiplies two series:

(define (mul-series s1 s2)

(cons-stream h E1 i

(add-series h E2 i
h E3 i)))



6.001, Fall Semester, 1996|Problem Set 9 8

To test your procedure, demonstrate that the product of S1 (from Exercise 6) and S1 is the series

1 + 2x+ 3x2 + 4x3 + � � �. What is the coe�cient of x10 in the product of S2 and S2? Turn in your

de�nition of mul-series. (Optional: Give a general formula for the coe�cient of xn in the product

of S2 and S2.)

Inverting a power series

Let S be a power series whose constant term is 1. We'll call such a power series a \unit power

series." Suppose we want to �nd the inverse of S, namely, the power series X such that S �X = 1.

To see how to do this, write S = 1 + SR where SR is the rest of S after the constant term. Then

we want to solve the equation S �X = 1 for S and we can do this as follows:

S �X = 1

(1 + SR) �X = 1

X + SR �X = 1

X = 1� SR �X

In other words, X is the power series whose constant term is 1 and whose rest is given by the

negative of SR times X.

Exercise 8: Use this idea to write a procedure invert-unit-series that computes 1=S for a

unit power series S. To test your procedure, invert the series S1 (from exercise 6) and show that

you get the series 1 � x. (Convince yourself that this is the correct answer.) Turn in a listing of

your procedure. This is a very short procedure, but it is very clever. In fact, to someone looking at

it for the �rst time, it may seem that it can't work|that it must go into an in�nite loop. Write a

few sentences of explanation explaining why the procedure does in fact work, and does not go into

a loop.

Exercise 9: Use your answer from exercise 8 to produce a procedure div-series that divides

two power series. Div-series should work for any two series, provided that the denominator

series begins with a non-zero constant term. (If the denominator has a zero constant term, then

div-series should signal an error.) Turn in a listing of your procedure along with three or four

well-chosen test cases (and demonstrate why the answers given by your division are indeed the

correct answers).

Exercise 10: Now suppose that we want to integrate a series representation. By this, we mean

that we want to perform symbolic integration, thus, for example, given a series

a0 + a1x+ a2x
2 + a3x

3 + � � �

we want to return the integral of the series (except for the constant term)

a0x+
1

2
a1x

2 +
1

3
a2x

3 +
1

4
a3x

4 + � � �



6.001, Fall Semester, 1996|Problem Set 9 9

De�ne a procedure integrate-series-tail that will do this. Note that all you need to do is

transform the series

a0 a1 a2 a3 a4 a5 � � �

into the series

a0
a1

2

a2

3

a3

4

a4

5

a5

6
� � �

Note that this means that the procedure generates the coe�cients of a series starting with the �rst

order coe�cient, not that the zeroth order coe�cient is 0.

Turn in a listing of your procedure and demonstrate that it works by computing integrate-series-tail

of the series S1 from exercise 6. How does this di�er from the series S2?

Exercise 11: Demonstrate that you can generate the series for ex as

(define exp-series

(cons-stream 1 (integrate-series-tail exp-series)))

Explain the reasoning behind this de�nition. Show how to generate the series for sine and cosine,

in a similar way, as a pair of mutually recursive de�nitions. It may help to recall that the integral

Z
sinx = � cosx

and that the integral Z
cos x = sinx

Exercise 12: Louis Reasoner is unhappy with the idea of using integrate-series-tail sep-

arately. \After all," he says, \if we know what the constant term of the integral is supposed to

be, we should just be able to incorporate that into a procedure." Louis consequently writes the

following procedure, using integrate-series-tail:

(define (integrate-series series constant-term)

(cons-stream constant-term (integrate-series-tail series)))

He would prefer to de�ne the exponential series as

(define exp-series

(integrate-series exp-series 1))

Write a two or three sentence clear explanation of why this won't work, while the de�nition in

exercise 11 does work.

Exercise 13: Write a procedure that produces the derivative of a power series. Turn in a

de�nition of your procedure and some examples demonstrating that it works.



6.001, Fall Semester, 1996|Problem Set 9 10

Exercise 14: Generate the power series for tangent, and secant. List the �rst ten or so coe�cients

of each series. Demonstrate that the derivative of the tangent is the square of the secant.

Exercise 15: We can also generate power series for inverse trigonometric functions. For example:

tan�1(x) =

Z
x

0

dz

1 + z2

Use this equation, plus methods that you have already created, to generate a power series for

arctan. Note that 1+ z2 can be viewed as a �nite series. Turn in your de�nition, and a printout of

the �rst few coe�cients of the series.


