* QGG : : * QGG
=« | Mathematics for Computer Science [Tl -
B - 6.042/18.062J sy Quick Summary
WELCOME! 1. Fundamental Concepts of Discrete
Prof. Albert R. Meyer Mathematics.
http://theory.lcs.mit.edu/classes/6.042 2. Discrete Mathematical Structures
(like trees or lists)
“Proof, Proofs & More Proofs” : -
3. Discrete Probability Theory.
g IIIEI 0 nm )
<@ Vocabulary =L@ Online Tutor Problems 1
@Om : i :
Quickie: Due Friday, 6pm:
What does “discrete” mean? Part 1.1: Course Registration
(# “discreet™)
Due Monday, 6pm:
Part 1.2: Diagnostic Questionnaire
« DEE . . « DEE . .
“hms  Reading Assignment :L@+ Course Organization
EOm : DOim
Reading: Notes for week 1; .
Week 2 also available » Web site: All course handouts.
(See course Ca|endar) * Problem Sets: Up to 30% of
Email comments on week 1&2 Notes: grade (see course info).
due next Wednesday, 11am




s+ Course Organization
Eﬂﬂ

- Studio-Lecture Style:
mix of mini-lectures &
team problem-solving;
preparation & attendance
required (25% of grade)

07 All rights reserved. Feb.7. 2006

=L Active Lectures
B :

Say “hello” to your
neighbors -- you’ll be
working with them .

® nm T
=L+ Active Lectures
B :

Quickie question:
Where was your neighbor
born?

B Getting started:
+:Pg Pythagorean theorem

lnm
E % A Cool Proof

WY

Rearrange into: (i) a cxc square, and then
(ii) an axa & a bxb square

(Many many proofs: http://ww.cut-the-knot.com)

Meyer, 2007 All rights reserved. Feb_7. 2006

b C
a
a’+b’=c?
Familiar? Yes!
Obvious? No!
'ﬂm:
=g+ A Cool Proof
O :




Copyright © Albert R. Meyer, 2007 All rights reserved.

A Cool Proof

b-a

b-a

L
>
=
>

lec 1W.13

Feb.7. 2006

A False Proof:
Getting Rich By Diagram

gl’ﬁl
1/
/ 1

1]
10 — 11—

lec IW.15

Copyright © Albert R. Meyer, 2007 All rights reserved. Feb.7. 2006

« DEE

l @ Getting Rich
DENE :

The bug:

1 o o
1¥ 4: gre not right triangles!
The top and bottom line of the “rectangle”

is not straight!
10 1

o~

A Cool Proof

BaH -

lec IW.17

Copyright © Albert R. Meyer, 2007 All rights reserved. Feb. 7. 2006

;‘giﬁ A False Proof:
=P8 Getting Rich By Diagram
1
11 > 10
1 0
0 7 — 11—
\ m: Profit
énm:
“m Another False Proof
O :
Theorem:
Every polynomial, ax?+bx+c,
has two roots over C.
Proof (by calculation):
The polynomial ax? +bx + ¢ has roots
—b++/b? —4ac —b-+/b? —4ac
n =T and h :T




Another False proof

BaH -

Counter-examples:

0x2+0x+1 has 0 roots.
0x? +1x+1 has 1 root.

The bug: divide by zero error.
The fix: assume a = 0.

Copyright © Albert R. Meyer, 2007 All rights reserved.

lec 1W.19

“Since | and the Pope are clearly 2,
we conclude that
| and the Pope are 1.
That is, | am the Pope.”
-- Bertrand Russell

2006

« DEE
@+ Another false proof
EE -
Ambiguity when D <0:
x2+ 1 hasroots i, -i.
Which is r;, which is r,?
'ﬂm:
Egﬂ} Consequences of 1=-1
Yo = —Y2  (multiply by %2)
2=1  (add g )

BaH -

[+ ]53]
x| Another false proof

D :

Counter-example:

1x2+ 0x + 0 has 1 root.

Thebug: r=r,
The fix: need hypothesis D = 0 where
D ::=+/b® —4ac
énm: _ 5
g 1=-17
B0 :

The ambiguity causes problems:

Ny O Ny

Moral: “mindless” calculation not safe.

1. Be sure rules are properly applied.
2. Calculation is a risky substitute for

understanding.

Feb. 7, 2006 lec 1W.22

lec 1W.23

Copyright © Albert R. Meyer, 2007 All rights reserved. Feb.7.

Copyright © Albert R. Meyer, 2007 All rights reserved

;4 Consequences of 1= -1

Bertrand Russell (1872 - 1970)

hEtp://www.users. 3 i)

lec 1W.24.

il rights reserved. Feb. 7, 2006




“im In-class Problems

PROBLEMS 1 & 2




« Qi . . Qe ]

5 Mathematics for Computer Science 5
R . “Lm« Team Problem
[s[s 1B MIT 6.042J/18.062J [B0M :

Truth & Proof Surprise
Math vs. Reality
Propositional Logic Problem 1

Copyright © Albert R. Meyer, 2007. Allrights reserved.

« DEE

S Math

[1s]e [11]
(1)) s
47,7, +1

Numbers

T, F  Booleans
Strings ~albert meyer”
f(X):=x*>+2 Functions
Relations a<b

/‘Q‘ Data structures

February 9. 2007

e & Not Math
88 88 ot via

Solar System

lec IE.5

bruary 9. 2007 Copyright © Albert R. Meyer, 2007. All rights reserved: ___February 9. 2007 lec 1F.6




« O
St Not Math: Cogito ergo sum
[s]= [+ |

René Descartes'
MEDITATIONS

on First Philosophy in which the Existence of God and
the Distinction Between Mind and Body are Demonstrated.

(Picture source: Rttp://ww. bEinternet. con/-glynhughes/squashed/descartes.
lec IF.7

« DEE
-:m Only Prime Numbers?
Evidence: p(0) =41 prime
p(1)=43 prime
p(2)=47 prime
p(3)=353 prime
p(20) = 461 prime looking good!
p(39) - 1601 prime enough already!
Cmon :
be . Only Prime Numbers?

Quickie:
Prove that 1681 is not prime.

Proof: 1681 = p(40)
=402+ 40 + 41
=402+2-40+ 1
= (40 + 1)?

« K]
-m Evidence vs. Proof

T

Let p(n) = n?+n+41.
Claim:

¥ n e N. p(n) is a prime number
— =

for all n that are NONNegative integers

lec IF.8

« DEE
@ Only Prime Numbers?
I -

VneN. p(n):=n’+n+41

is a prime number

This is not a coincidence.
The hypothesis must be true. B ut no I

p(40)=1681 is not prime.

lec 1F.10

February 9. 2007

lec IF.11

« DEE
-m Further Extreme Example

Hypothesis:
313- (X’ +y*) =7’
has no solution in positive integers

False. But smallest counterexample

has more than 1000 digits!

lec IF.14




BEH -

mos

%]
P =NP?

+ Overwhelming evidence for #
based on centuries of experience
* Modern cryptography (like RSA)
depends on #
* Nearly all experts believe #
* But mathematically unproven — the
most important open problem in CS

lec IF.15

February 9. 2007

BEH -

Propositional (Boolean) Logic

Examples: 2 42 =4

Non-examples: Wake up!

Proposition is either True or False

True
False

Ix1=4

Where am 1?

lec IF.19

s I « IEE
b Operators i« English to Math
DO : (@M -
A :=AND
“If Greeks are Human, and Humans are
v :=0R Mortal, then Greeks are Mortal.”
— = NOT (G > H)A(H > M) > (G —>M)
—> :== IMPLIES (f...then)
<~ =1FF (if and only if)
s I « IEE
i@ English to Math i@« English to Math
DOim o -
Greeks carry Bronze or Flint swords

Greeks carry Swords or Javelins

G->5v(G-))
disjunction

True even if a Greek carries both

lec 1F.22

(G->B)®(G—->F)

exclusive-or

P & Q means “P or Q but not both”

lec 1F.23




énm:
S
oo :

Parent: If you don’t clean your room,

you can’t watch a DVD.”
\_ﬁf——d

Math vs. English C

.

D

C D »
rt R. Meyer, 2007. Allrights reserved February 9. 2007 lec IF.24

® nm T

s« Math vs. English

(@M - . C
Mathematician:

“If a function is not continuous,

then it 1s not differentiable.”
%r_/

D
- — =D

BEH -

« DEE
S+ Deductions
EOm :
From: P implies Q, Q implies R
Conclude: P implies R
Antecedents
(P—>Q), Q—>R)
P—>R
Conclusion

lec 1F.28

Math vs. English C

.

.
Parent: If you don’t clean your room,

you can’t watch a DVD.”
%K_J

that Is L

C«—D

® nm T

i« Math vs. English

(@M - N C
Mathematician:

“If a function is not continuous,
then it 1s not differentiable.”
\ﬁf_/

D
C — D7 NO!

« OBE
Sound Rules

Definition: A rule is sound if the
conclusion is true whenever all

antecedents are true.

lec 1F.29




BEH -

A Sound Deduction

P->Q, P
Q

Modus ponens

ERE -
~ B

A Sound Deduction

1=-1
Russell is the Pope

® nm T
“L@« An Unsound Deduction

not Smart — not MIT-student  Yes!

Smart — MIT-student No!

« DEE
Sm« An Unsound Deduction
oo -
P—->Q
P—>Q
« DEE
S+ Team Problem
GO -

Problems 2 & 3




g Mathematics for Computer Science

« i

D : MIT 6.042J/18.062J

BaH -

Propositional Logic, 1l

Proof by Cases
Proof by Contradiction

RO Copyright © Alert R, eyer, 2007 Al rghts reserved, lec 2M 1

o]
Proof by Truth Tables
o :

BaH -

— (P v Q) isequivalentto P AQ

éﬂlﬂ :
Bl o
O :
A student is trying to prove that propositions P, Q,
and R are all true. She proceeds as follows.
First, she proves three facts:

* P implies Q

e Q implies R

* R implies P.
Then she concludes,

“Thus P, Q, and R are obviouslyall true."

Proof by Deductions

012,200 Copyright © Albert R. Meyer, 2007. Al rghis reserved. lec 2M.3

« DEE

a0

Sound Rule?
O :

Conclusion true whenever all antecedents true.

P-Q Q>R R—>P PAQAR
___ — T T T T g n
Antecedents Conclusion

lec 2M.5

Ecb 12,200 Copyright © Albert R. Meyer, 2007. Al rights reserved.

Pl Q|-(PvQ) P|1Q|PAQ
T | T @ T F | F .
T|F | F|T F|T F
F| T|E|T T | E =
F| F|T]|F T 17
éﬂlﬂ )
B 5 Proposed Deduction Rule
O :
From: P implies Q, Q implies R, R implies P
Conclude: P, Q, and R are true.
(P—>Q), Q@—R), (R—>P)
PAQAR
°IIIEI
BT Sound Rule?
[EEm :

Conclusion true whenever all antecedents true.

P>Q Q>R RP PAQAR

T|m|m(m(4d|(4|4|4|T0
i EIEIR sl Ere)
HIEIEIEIEI IR

—_—

Antecedents

Copyright © Albert R. Meyer, 2007. Al rights reserved.

-
Conclusion

E2b.12,2007

lec 2M.6




Sound Rule?

Conclusion true whenever all antecedents true.

'n'r|'r|'r|—|‘—|—|—|'U
'r|'r|—|—|'r|"r|—|—|,o

-n—c-n—c‘n‘—c‘n—c;u

Eeb 12,2007

P->Q|Q->R(R>P
T T T
T F T
F T T
F T T
T T =
T E T
T T F
T T T

e —————

Antecedents

Copyright © Albert R. Meyer, 2007. Al rights reserved.

PAQAR

sound?

Tm|m|m|m|m|Tm|n

—
Conclusion

lec 2M.7

Sound Rule?

Conclusion true whenever all antecedents true.

P|QIR P>Q| Q->R|R>P PAQAR | sound?
T(T|T T T T T

T|T|F T E T F OK
T(F|T B T T = OK
??? B T T = OK
FIT|T T T F F OK
F|T|F T F T F OK
FIF|T T T F F OK
F|F|F T T T F

Feb_ 12,2007 Copyright © Albert R. Meyer, 2007. Al rights reserved.

lec 2M.8

Sound Rule?

Conclusion true whenever all antecedents true.

Tm(m(m|m| 4|4 |4|H|O
M EIEI Rl Elre)

AR AR R R o]

P>Q| Q—>RIR>P
T T T
T F T
F T T
F T T
T T F
T F T
T T F
T T T

Copyright © Albert R. Meyer, 2007. Al rights reserved.

PAQAR

sound?

OK

OK

OK

OK

OK

OK

OK

Tim(n|(m|m|m|m

lec 2M.9

Sound Rule?

Conclusion true whenever all antecedents true.

P[Q|R P->Q| Q—>R|R>P PAQAR | sound?
T(T|T T T T T OK
TITI|F T = T F OK
TIF|T F T T F OK
TIFI|F = T T F OK
FIT|T T T F = OK
NI T F T = OK
= ][] T T F = OK
FIF[F T T T F

Feb 12 200 Copyright © Albert R. Meyer, 2007. Al rights reserved.

lec 2M.10

Sound Rule?

Conclusion true whenever all antecedents true.

T|Tm|m(m(AdA[(4|4|4|TO
IR sl sl

||| A|T ||

Ecb 12,200

P>Q| Q>R|R>P
T T T
T F T
F T T
F T T
T T F
T F T
T T F
T T T

Copyright © Albert R. Meyer, 2007. Al rights reserved.

PAQAR

sound?

OK

OK

OK

OK

OK

OK

OK

Tn|m|m|m|n|(n|m

NOT OK!

lec 2M.11

Reasoning by Cases

Quicker proof of
unsoundness than
from truth tables

Ecb 12 200 Copyright © Albert R. Meyer, 2007. Al rights reserved.

lec 2M.12




L]
[12]
2]
%]

[# [na]7
5

Quicker by Cases

P->Q Q—»R, R->P
PAQAR

Case 1: P is true. Now, if antecedents are true,
then Q must be true (because P implies Q).
Then R must be true (because Q implies R).

So the conclusion P A Q A R s true.
This case is OK.

-

lec 2M.13

o s s g
[+ ] d .
B 5 Goldbach Conjecture
O :
Every even integer greater than 2 is the
sum of two primes
Evidence: 4=2+2
6=3+3
8=5+3
20=7? 13+7
[+ ] : )
R C Goldbach Conjecture
DN ] :

The answer is on my desk!
(Proof by Cases)

BaH -

OOk
: Quicker by Cases

P->Q Q>R R->P
PAQAR

Case 2: P is false. To make antecedents true,
R must be false (because R implies P), so

Q must be false (because Q implies R).
This assignment does make the antecedents true,

but the conclusion P A Q A R is (very) false.
This case is not OK.

lec 2M.14

Copyright © Albert R. Meyer, 2007. Al rights reserved. lec 2M.17

Ecb 12,200

o o e s
D .
B 5 Goldbach Conjecture
O :
True for all even numbers with
up to 13 digits! (Fos. p122
It remains an OPEN problem:
no counterexample, no proof.
UNTIL NOW!...
éﬂlﬂ
an- o Team Problem
oo :

Problem 1

lec 2M.18

Ecb 12 200 Copyright © Albert R. Meyer, 2007. Al rights reserved.




e Proof by Contradiction N -
E y - Proof by Contradiction
O - EEI -
Theorem: +/2 is irrational.
Proof (by contradiction):

P } F e Suppose 2 was rational.
* Choose m. n integers without common

prime factors (always possible) such that

P :
2=—
n
» Show that m & n are both even,
a contradiction!
Fev 12,2007 Copyright © Albert R. Meyer, 2007 Al rights reserved lec 2M.19 £ 122007 Copyright © Albert . Meyer, 2007. Al right reserved lec 2M.20
s I « IEE
5 . . 5 - -
EIIP s Proof by Contradiction EIIP - Quickie
DRI - E0m :
Proof (by contradiction): 5 .
If m? is even, then m is even.
m —
M so can assume m = 2| Why'
n 2 2
7 m* =4l
2n=m
2n% =412
2n=m? «__ n2 =22
SO m is even. so n is even.
T Copyright ® Albert R. Meyer, 2007. All rights reserved. lec 2M.21 T Copyright ® Albert R. Meyer, 2007. Allrights reserved. lec 2M.22
« DEE
5
an- o Team Problem
B0 :

Problems 2 & 3

lec 2M.23

Copyright © Albert R. Meyer, 2007. Al rights reserved.

Ecb 12,200



Mathematics for Computer Science
MIT 6.0423/18.062J

Predicate Logic
Quantifiers V,

lec 2W.2

07. All ights reserved.___ February 14, 2007

Predicates
P(x,y) = [x+2=Y]

Xx=1landy=3: P(1,3)is true

Xx=1andy=4: P(1,4)is false
—P(1,4) is true

lec 2W.4

cccccccc © Albert R Meyer. 2007. All rights reserved. February 14, 2007

Quantifiers

x, y range over Domain of Discourse

VXdy. X<y
Domain Truth value
integers 7, True
positive integers Z* True
negative integers Z- False
negative reals R- True

2007. All rights reserved. February 14, 2007

Predicates

Predicates are
Propositions with variables

Example:
P(xyy) =
—

““is defined to be™

X+2=y

lec 2W.3

Copyright © Albert R. Meyer, 2007. Al right d February 14, 2007

Quantifiers

VX For ALL X

Y There EXISTS some y

lec 2W.5

V4 versus IV

—
-
—

For every attack, I have a defense:

against MYDOOM,  use Defender
against 1 LOVEYOQOU, use Norton
against BABLAS,  use Zonealarm ...

lec 2W.7

lec 2W.6

V3 is expensive!

Albert R Meyer, 2007. Allrights reserved. February 14, 2007




Vv

dd € defense Va € attack.
d protects against
I have one defense good

against every attack.

Example: d is MITviruscan,
protects against all viruses

So 3V is better here

dd € defense Va € attack.
d protects against a
I have one defense good

against every attack.
That’s what we want!

i 007. All rights reserved. February 14, 2007 Jec 2W.8

lec 2W.9

an - o Math vs. English

Poet: G AU
— —

“All that glitters is not gold.”

No!: gold glitters like gold

B Math vs. English
Poet:

necessarily
“All that glitters is not gold.”
A

—[VX.G(x) > Au(x)]

(Poetic license)

February 14, 2007 lec 2W.10

lec 2W.11

Math vs. English

Poet: “There is a season for every
purpose under heaven”

3s e Season Vp € Purpose. S is for p

So some season, say Spring, is good for
all Purposes?
NO, Spring is no good for snow shoveling

lec 2W.12

Poetic license again:

Poet: “There is a season for every
purpose under heaven”

3s e Season Vp € Purpose. § is for p

o

Poet’s meaning flips the quantiers

lec 2W.13




Poetic license again:

Poet: “There is a season for every
purpose under heaven”

Vp € Purpose 3s € Season. S is for p
for snow shoveling, Winter is good
for planting, Spring is good
for leaf watching, Fall is good

etc.

Propositional Validity

(A —> B) V. ( B— A)
True no matter what the
truth values of A and B are

t d February 14, 2007 lec 2W.16

Team Problems

Problems
1 &2

% Predicate Calculus Validity
vz [Q(2) A P(2)]
— [VX.Q(X) A VY.P(y)]

True no matter what
* the Domain is,
* or the predicates are.

Jec 2W.17

Not Valid
vz [Q(z) V P(2)]
— [VX.Q(X) V VY.P(y)]

Proof: Give countermodel, where
Vz [Q(2) V P(2)] is true,
but VX.Q(X) V Vy.P(y) is false.
Namely, let domain::= {e, },
Q@)=[z=¢],
P(2):=[z=m].

Predicate Calculus Validity
Vz [Q(2) N\ P(2)]

— [VX.Q(X) A VY.P(Y)]
Proof strategy: We assume

Vz[Q(2) A P(z)]
to prove
VX.Q(X) AVY.P(Y)




"5 Universal Generalization (UG)
A — R(C)
A — VX.R(X)

providing ¢ does not occur in A

lec 2W.20

him Validities
vz [Q(2)AP(2)] — [VX.Q(X) A VY.P(Y)]

Proof: Assume VZ [Q(2)AP(2)].
So Q(z)AP(z) holds for all z in the domain.

Now let ¢ be some domain element. So
Q(c)AP(c) holds, and therefore Q(C) by itself holds.

But ¢ could have been any element of the domain.
So we conclude Vx.Q(X). (by UG)
We conclude Vy.P(y) similarly. Therefore,

VX.Q(X) A VY.P(y) QED.

lec 2W.21

OEoo
I7] W

More Validities
YX[P(X)VA] < [VX.P(X)]VA

providing X does not occur in A

[-VX.P(X)] < [IX.-P(X)]
(version of DeMorgan)

rt R, Meyer. 2007. Allrights reserved February 14, 2007 lec 2W.22

Team Problems

Problems
4 & 3

February 14, 2007 lec 2W.23




Mathematics for Computer Science
MIT 6.042J/18.062)

Sets & Functions

07. All rights reserved. February 16, 2007 lec 2F.1

What is a Set?

Informally:

A set is a collection of mathematical
objects, with the collection treated as
a single mathematical object.

(This is circular of course:

what’s a collection?)

Some sets
real numbers, R
complex numbers, C
integers, Z
empty set, (%)

set of all subsets of integers, pow(Z)

the poxv)ver set

Copyright © Albert R. Meyer, 2007. All rights reserved. February 16, 2007 lec 2F.3

it © Albert R. Meyer, 2007. Al rights reserved. February 16, 2007 lec 2F.2

Membership

xe A x 1s an element of 4

n/2 € {7, “Albert R.”,n/2, T}
n/3 & {7, “Albert R.”,n/2, T}
14/2 € {7, “Albert R.”,m/2, T}

Copyright © Albert R. Meyer, 2007. All rights reserved. February 16, 2007 lec 2F.5

Some sets

{7, “Albert R.”, w/2,T}

A set with 4 elements: two numbers,
a string, and a Boolean value.
Same as

(“Albert R.”,7,T, 2}

-- order doesn’t matter

pyright © Albert R Meyer, 2007. All ight d February 16, 2007 lec 2F.4

Synonyms for Membership

xe A x is a member of 4
x1isin A4
Examples:

71€7  23¢7Z 7 ¢ pow(R)

yright © Albert R Meyer, 2007. Allrights reserved.____February 16. 2007 lec 2F.6




In or Not In

An element is in or not in a set:
{7, /2, 7} is same as {7, n/2}
(No notion of being in the set

more than once)

lec 2F.7

Defining Sets
The set of elements, x, in 4

such that P(x) is true.

X € A| P(x);

Containment

Ac B Aisasubset of B
A 1s contained in B

Every element of 4 is also an
element of B.

ZER, RCC, {3}C{5,7,3}

gC everyset, AC A

lec 2F.8

lec 2F.9

New sets from old

union:
AUB:={x|(xe A)v(xe B)}
intersection:
ANB:={x|xe Arxe B}
difference:

A-B:={x|(xe A)A(x¢ B)}

2007. All rights reserved. February 16, 2007

lec 2F.11

Defining Sets

The set of even integers:

{neZ| nis even}

lec 2F.10.

power set
pow(A4):={S|S c 4}
pow({a,b}) ={{a,b},{a}.{b}2}

lec 2F.17




Quickie
What is Pow(2)?
Ans: {@}
What 1s Pow(Pow(©2))?
Ans: {{9}, T}

lec

2F.18

Russell’s Paradox

The fallacy: W is not a set!

No set 1s a member of itself, so
W = the collection of all sets,
which is not a set!

lec 2F.20

Russell’s Paradox

Let W :={S eSets|S ¢ S}

so SelW & Se«8

Let S be W and reach a
contradiction:

ht © Albert R. Meyer, 2007. All rights reserved. 16, 2007

February 16,

lec

2F.19

Team Problems

Problems
1 &3

Copyright © Albert R. Meyer, 2007. All right lec 2F.21

Mathematics for Computer Science
MIT 6.042J/18.0623

Functions

f:A—>B

function, f, from set 4 to set B
associates an element, f(a) € B
with an element g € A.
Example: f 1S the string-length
function: f{*‘aabd’)=4

lec 2F.25

lec 2F.26




f: Strings —» N

The domain of f1is the set
of strings.

The codomain of fis the set
of nonegative integers

lec 2F.27

Total functions

f: A—> B istotal iff
every element of 4 is
assigned a B-value by f

ri R, Meyer, 2007. Al righs rescrved. February 16 2007 lec 2F.30

Surjections

f 1 A— B is asurjection
iff every element of B is
f of something

rt R Meyer. 2007. All rights reserved. February 16, 2007 lec 2F.33

domain(g) = all pairs of reals
codomain(g)= all reals
But g is partial:

not defined on pairs (7,r)

February 16, 2007 lec 2F.28

Total functions

exactly 1 arrow out

flo)=e

February 16, 2007 lec 2F.31

Surjection

fle)=o

>1 arrow in

lec 2F.34




Mapping Rule

surjection A—B implies

4| = 1B

07. All rights reserved. February 16, 2007 lec 2F.36

Injections

<1 arrow in

Copyright © Albert R Meyer, 2007. All rights reserved, February 16 2007 lec 2F.38

Injections
f :A— B is an injection

iff every element of B is
f of at most 1 thing

1 © Albert R. Meyer, 2007. Al ights eserved. ___ February 16, 2007 lec 2F.37

Mapping Rule

Injection A—B implies

4| = |B]

yright © Albert R. Meyer, 2007. Al righ . February 16, 2007 lec 2F.40

Bijections

f:A— B 1s a bijection iff
it is all those good things:
total, onto, and 1-1

Copyright © Albert R. Meyer, 2007. All rights reserved. February 16, 2007 lec 2F.42

Bijections

exactly one arrow out  exactly one arrow in

fle)=o

lec 2F.43




Mapping Rule

bijection 4— B 1mplies

4| = |B]

Team Problems

Problem 2
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MIT 6.042J/18.062J

Partial Orders &
Scheduling

Copyright ©_ Albrt R, Meyer 2007 Allrghis ese February 20. 2007 lec3t.

Binary relation R from A to B

domain codomain

a function

Copuright © Al R Meer 2007 Al ights reserved. February 20,2007 lec3t.3

Example

Arithmetic
Expressions values

“evaluates to”
1+2

Sqrt(9)

50710 - 3

Copyright ©_Albert R Meyer 2007 All rights reserved. February 20, 2007 lec3t.

Binary relation R from A4 to B

domain codomain

graph(R)

Copyright © Albert R Meyer 2007 All rights reserved February 20. 2007 lec3t.]

Example

Students Classes

3 “is taking”

Copyright © Albat R Meyer 2007 All ights rserved February 20,2007 lec3t.3

Example
Cities Cities

“direct bus
connection”

ebruary 20. 2007 lec3t.

Copyright ©_ Albert R Meyer 2007 All rights reserved.




“direct bus
Cities connection”

lec3t.

Some Course 6 Prerequisites

18.01 — 6.042 18.03, 8.02 — 6.002
18.01 — 18.02 6.001, 6.002 — 6.004
18.01 — 18.03 6.001, 6.002 — 6.003

8.01 — 8.02 6.004 — 6.033
6.001 — 6.034 6.033 — 6.857
6.042 — 6.046 6.046 — 6.840

February 20,2007 lec3t.

Subject Prerequisites

subject c 1s a direct
prerequisite for subject d

c—d

lec3t.1

Direct Prerequisites

18.01 —» 6.042 — 6.046 — 6.840

bt R Meyce 2007 Al ights reserved. February 20,2007 lec3t.11]

Indirect Prerequisites

K l !

18.01 — 6.04|2 — 6.046 — 6.8,14\10

18.01 is indirect prereq. of 6.840

(— is transitive closure of —)

lec3t.12

"Freshman subjects"
1801

subjects with no prereqs:
d is a Freshman subject iff

<nothing> — d

lec3t.13

d 1s minimal




minimal/ not minimum

minimum» means "smallest"
-- a prereq. for every subject
no minimum in this example

Copyright ©_Albert & Meyer 2007 Al rights eserved. February 20. 2007 lec3t.1

: 6.042

+ 18.01 — 18.02
+ 18.01 — 18.03

- 8.01}-8.02
- [6.001}- 6.034

* 6.042 — 6.046

Constructing a Term Schedule

» 18.03, 8.02 — 6.002
6.001, 6.002 — 6.004
6.001, 6.002 — 6.003
6.004 — 6.033
6.033 — 6.857
6.046 — 6.840

identify minima/ elements

Meyer 2007 All rights reserved

February 20. 2007

lec3t.14

Constructing a Term Schedule

1801

start schedule with them

February 20, 2007

lec3t.17

)@»6.042
« 18.01 — 18.02
. 18.01 — 18.03
- (ot 8.02
j@. 6.034

* 6.042 — 6.046

Constructing a Term Schedule

» 18.03, 8.02 — 6.002

« 6067, 6.002 — 6.004

* 6,00176.002 — 6.003

. 6.004 — 6.033
. 6.033 — 6.857
6.046 — 6.840

remove minimal elements

February 20, 2007

lec3t.1

Constructing a Term Schedule

» 18.03, 8.02 — 6.002

. . 6.002 — 6.004
. . 6.002 — 6.003
) . 6.004 — 6.033
. . 6.033 — 6.857

. 6.046 — 6.840

* 6.042 — 6.

identify new minimal elements

Copyright ©_Albert R Meyer 2007 All ighs reserved.

lec3t.2

18.01

18.02

6.042 18.03

Constructing a Term Schedule

8.02 6.034

schedule them next

Copyright ©_ Albert R Meyer 2007 All rights reserved.

lec3t.2




Constructing a Term Schedule

6.034

continue in this way...

Copyright ©_Albert R Meyer 2007 All righ February 20. 2007

lec3t.2

Antichains

Set of subjects with no prereqs
among them

-- can be taken in any order.

(said to be incomparable)

February 20, 2007

lec3t.24

Complete Term Schedule

February 20. 2007

Some Antichains

[m) oo | .-
|

] \
=2 Ga.--/| @A}

-

-

-

may have other
antichains

Chains

Set of successive prereqs

-- must be taken in order.
(subjects said to be comparable)

eyer 2007 Al rights reserved. lec3t.29

Copyright ©_Albert R Meyer 2007 Al righis reserved February 20, 2007

lec3t.29

Some Chains

6.001

18.02

6.034

lec3t.27

lec3t.23



. Maximum Length Chain

..............

lec3t.2

EEQ Sufficient...
o am]

How many terms to graduate?

* 6 terms are necessary to
complete the curriculum

* and sufficient (if you can take
unlimited subjects per term...)

2007 Al sighis reserved. February 20. 2007 lec3t.2

Parallel Processing Time

min parallel time = max chain size
required # processors
(term load in this case)

< max antichain size

. J
Vv

5 in this case

Copyright © Albat R Meyer 2007 All ights rserved February 20,2007 lec3t.3]

=2 loh G ﬁ e |
February 20, 2007 lec3t.3
« O
But can reduce the term load
(G e |
6.034 |

mwm-

=3

lec3t.33

*
Only 4 Subjects per Term
L@ E 6.001) |

/]/.oh m - 6.034|
@ s

L%

Copyright © Albert R_M; lec3t.34




3 Subjects per Term Possible

| Goy oD Eoo) |

| (803 (8.02) (6:034 |
| @ |
| @429 (c.002 |
| 6840 @5 |

| i) @ |

lec3t.39

. A 3-course term is necessary
* 15 subjects
* max chain size = 6
* size of some block must be
>[15/6]=3.
.. to finish in 6 terms, must
take >3 subjects some term

February 20. 2007

lec3t.3

Parallel Task Scheduling

Theorem: 1If the longest chain has
size t, then the subjects can be
partitioned into

¢ successive antichains,
with all prerequisites of an antichain
in earlier ones.

lec3t.3

Dilworth’s Lemma

Prereq’s among 7 subjects has
*a chain of size > ¢, or
or an antichain of size > [T—I
forall 1 <¢<n.

lec3t.4

Graduate taking only 1 subject/term?
Sure,

a topological sort

lec3t.44

Team Problem

Problem 1

lec3t.49




Partial Orders

lec3t.49

Subject Prerequisites
If subjects ¢, d are mutual prereq’s:
c—d andd — ¢
then no one can graduate!
Comm. on Curricula ensures:

ifc — d, then = (d — ¢)

lec3t.47

Asymmetry

Binary relation, R, on set 4,
is asymmetric iff

aRb implies —(bRa)
forall a,b € A4

lec3t.4:

Transitivity
Binary relation, R, on set 4,
is transitive:

aRb and bRc implies aRc
for all a,b,c € A.

lec3t.4

Strict Partial Orders
Binary relation, R, on set 4,
1s a strict partial order iff
*it is transitive and

easymmetric

lec3t.5

Some Partial Orders

< on the Integers
< on the Reals

c on Sets (subset)
c on Sets (proper subset)

total

lec3t.53




Total Order on 4
Partial Order, R, such that

aRb or bRa
for all a#b €A

lec3t.54

Partial Orders

*y <<x (much less than)
(say, y +2 < x)

—[3<<4]and — [4 << 3]

incomparable

lec3t.53

Representing Partial Orders

The subset relation,
C

on sets is the canonical
example of weak partial order

lec3t.54

(Proper) Subset Relation
{1,2,3,5,10,15,30}

{1,3,5,15} {1,2,5,10}

0}

lec3t.57

Partial Order: divides

a divides b 1ff
ka=b for some keN

lec3t.5§

“m Partial Orde1§:0 divides

15 10

lec3t.5




“m Subsets from Divides
30 >{1,2,3,5,10,15,30}

Divides & Subset

15>1{1,3,5,15}
10 >{1,2,5,10}

same "shape"

3>{1,3}

lec3t.6 Copyright © Albert R Meyer 2007 Al ights reserved February 20,2007 lec3t.6

Team Problems

Problems 2—4

lec3t.64




Induction

February 21, 2007 lec 3w.1

The Induction Rule

O and (from nto n+1),
proves O, 1, 2, 3,....
R(0), VneN.R(n)—R(n1)
vmeN. R(m)

February 21, 2007 lec 3w.3

Example Induction Proof

Let's prove:

14r+r24- =101

February 21, 2007 lec 3w.5

"a Example of Induction
Suppose we have a property (say color)

of the nonnegative integers:
0,1,2,3,4,5, ..

If Ois red, and a number
next toa red number is red,
then a/l numbers are red|

February 21, 2007 lec 3w.2

Like Dominos...

February 21, 2007 lec 3w.4

Proof by Induction
Statements in green form a template
for inductive proofs.

* Proof: (by induction on n)

* The induction hypothesis, An), is:

1+.r+r2+”_+,rn=‘r”+1—1

r—

February 21, 2007 lec 3w.6




‘. Example Induction Proof
Base Case (1= 0):

1+r+r2+-.+r’ =
1

Wait: divide by zero bug! r=
This is only frue for r= 1

Copyright © Albert R. Meyer, 2007. All rights reserved.

February 21, 2007

lec 3w.7

Correction

Theorem: .
Vr #1.

T+r+r>+ 41" =

Induction Hypothesis:
P(N)=Vr#1. 14r+r’+..+r" =

February 21, 2007 lec 3w.8

An Example Proof

* Induction Step: Assume An)
for some 7> 0 and prove

An+1).

An Example Proof

Have P (7) by assumption:
n+l
-1

r—1

VEzL 140412+ 4r" =

So let re& C be any humber = 1.

Then from P (/) we have "
-1

I+r+r’ 4+ tr" =
r—1I

February 21, 2007 lec 3w.10

(D)4l _q
VE#L 14r+r 441" =
r—1
February 21, 2007 lec 3w.9
An Example Proof
addmg r ! to both sides,
. I,.I’1+ _1
T+t r"+r"t = —— 4™
r-1
™ =14+ (r-1)
r-1
P
Tor-1
Februarz 21, 2007 lec 3w.11

“m;.  An Example Proof
That is,

(n+l)+1_1
| G e

n+l

r' —
But since = 1 was arbitrary, we
conclude (by UG), that
VrE#zL 14041+ 4r"" =
which is P(n+1).
*This completes the induction proof.

r(n D+l 1

r-1

February 21, 2007 lec 3w.12




“&  An Aside: Ellipsis
" is an ellipsis. Tt means the

reader is supposed to /nfera

pattern: n

l4+r4+r2 441" =>r

+ Can lead to confusion (n= 0?) '

* Summation notation notation more

precise

February 21, 2007 lec 3w.13

The MIT Stata Center

The Stata Center Plaza

Copyright © Albert R Meyer, 2007. All rights reserved. February 21, 2007 lec 3w.15

February 21, 2007 lec 3w.14

"% The Gehry/Gates Plaza

Goal: tile the squares, except one in the
middle for Blll

(TIXTUPE GOVPXE: NTTT:/ /o X posOOT. X Ofs/TPE0TTa0T /EEX /NN /Be00uNT.00T)

S

2n

The Gehry/Gates Plaza

Gehry specifies L-shaped tiles covering
three squares: ‘

For example, for 8 x 8 plaza might tile for Bill
this way:

February 21, 2007 lec 3w.17

Copyright © Albert R_Meyer, 2007. All rights reserved. February 21, 2007 lec 3w.16

The Gehry/Gates Plaza

Theorem: For any 2" [ 2" plaza, we can
make Bill and Frank happy.

Proof: (by induction on n)
P(n) ::= can tile 2" [ 2" with Bill in middle.

Base case: (n=0)

Fd (notiles needed)

Copyright © Albert R. Meyer, 2007. Al rights reserved. February 21, 2007 lec 3w.18




The Gehry/6Gates Plaza

Induction step: assume can tile 2"[J 27,
prove can handle 2"*! [J 271,

L“ﬁ G|

February 21, 2007 lec 3w.19

The Gehry/Gates Plaza
The fix:

Prove that we can always find
a tiling with Bill in the corner.

February 21,2007 lec 3w.21

The Gehry/Gates Plaza
Method:
Rotate the squares as indicated.

(@) ()

>y

February 21, 2007 lec 3w.23

The Gehry/Gates Plaza

Now what?
> | & & |

2ﬂ+1J

February 21, 2007 lec 3w.20

The Gehry/Gates Plaza

Note: Once have Bill in corner,
can get Bill in middle:

February 21, 2007 lec 3w.22

The Gehry/Gates Plaza

Method: after rotation have:

2 5

February 21, 2007 lec 3w.24




The Gehry/6Gates Plaza
Method: Now group the 4 squares together,
and insert a tile.

Done!
3 | Bill in
L middle

February 21, 2007 lec 3w.25

The Gehry/Gates Plaza

Induction step:
Assume we can get Bill in corner of 2" [] 2",
Prove we can get Bill in corner of 2" [] 201,

2!’1

February 21, 2007 lec 3w.27

The Gehry/Gates Plaza

Theorern For any 2" [ 2" plaza, we can
put Bill in the corner.

Proof: (by induction on n)
P(n) ::= can tile 2" [ 2" with Bill in corner

Base case: (n=0)

F3 (notiles needed)

February 21, 2007 lec 3w.26

The Gehry/Gates Plaza

Method: Rotate the squares as indicated.
after rotation have:

February 21, 2007 lec 3w.29

Method: Rotate the squares as indicated.

y

&y

Copyright © Albert R_Meyer, 2007. All rights reserved. February 21, 2007 lec 3w.28

The Gehry/Gates Plaza

Method: Now group the squares together,
and fill the center with a tile.

Done!

Copyright © Albert R. Meyer, 2007. All rights reserved. February 21, 2007 lec 3w.30




Ingenious Induction Hypotheses

Note 1: To prove
"Bill in middle," we

proved something else:
Bill in corner.”

February 21, 2007 lec 3w.31

Ingenious Induction Hypotheses

Note 2: It may help to

choose a stronger hypothesis
than the desired result
(class problem).

Recursive Procedure

Note 3: The induction proof
of "Bill in corner” implicitly
defines a recursive procedure
for finding corner tilings.

Copyright © Albert R Meyer, 2007. All rights reserved. February 21, 2007 lec 3w.33

Copyright © Albert R. Meyer, 2007. All rights reserved. February 21, 2007 lec 3w.32

T A False Proof
Theorem: All horses are the same color.

Proof: (by induction on n)
Induction hypothesis:
P(n) ::= any set of n horses have the same color
Base case (n=0):
No horses so vacuously true!

A False Proof

(Inductive case)
Assume any n horses have the same color.
Prove that any n+1 horses have the same color.

S555 55

n+1 1

February 21, 2007 lec 3w.35

Copyright © Albert R_Meyer, 2007. All rights reserved. February 21, 2007 lec 3w.34

A False Proof

(Inductive case)
Assume any n horses have the same color.
Prove that any n+1 horses have the same color.

S‘econd set of n horses have the same color
H$H55 $45
| |

I |
First set of n horses have the same color

Copyright © Albert R. Meyer, 2007. All rights reserved. February 21, 2007 lec 3w.36




A False Proof

(Inductive case)
Assume any n horses have the same color.
Prove that any n+1 horses have the same color.

S5588. .55

[ 1
Therefore the set of N+1 have the same color!

Copyright © Albert R. Meyer, 2007. All rights reserved.

February 21, 2007 lec 3w.37

A False Proof

What is wrong? n=1

Proof that P(n) — P(n+1)
is false if n =1, because the two
horse groups do not overlap.

Second set of n=1 horses

S &

[ 1
First set of n=1 horses

A False Proof

Proof that P(n) — P(n+1)
1s false if n =1, because the two
horse groups do not overlap.

(But proof works for alln # 1)

Copyright © Albert R Meyer, 2007. All rights reserved. February 21, 2007 lec 3w.39

Copyright © Albert R. Meyer, 2007. All rights reserved. February 21, 2007 lec 3w.38

Team Problems

Problems
1-3

Copyright © Albert R_Meyer, 2007. All rights reserved. February 21, 2007 lec 3w.40




Mathematics for Computer Science
MIT 6.0423/18.062J

Strong Induction
Well Ordering Principle

Copyright © Albert R. Meyer, 2007. All rights reserved. February 23, 2007 lec 3.1

““_ Analyzing the Stacking Game

Claim: Every way of unstacking
gives the same score.

From stack of size n, what score?
Must be

Unstacking game

=)
E BEE
 Start: a stack of boxes a+b a b

* Move: split any stack into two stacks
of sizes a,b>0

» Scoring: ab points
» Keep moving: until stuck
e Overall score: sum of move scores

bert R. Meyer, 2007. All righs reserved. February 23, 2007 lec 3f.2

(-1)+(n-2)+-+1 = 111
2
et . i, 207 Al s s February 23, 2007 lec 313

Copyright © Albert R. Meyer, 2007. All rights reserved. February 23, 2007 lec 3f.5

Hﬂ_ Proving the Claim by Induction

Base case n = 0:
0(0-1)
2

Claim(0) is &

score =0 =

““_ Analyzing the Stacking Game

Claim: Starting with size n stack,
final score will be

n(n-1)
2

Proof: by Induction with
Claim(n) as hypothesis

February 23, 2007 lec 3f.4

Hﬂ_ Proving the Claim by Induction
Inductive step. assume for
n-stack, and then prove C(n+1):

(n+1n

(n+1)-stack score = >

r, 2007. All rights reserved. February 23, 2007 lec 3f.6




Proving the Claim by Induction
Inductive step.
Case n+1 = 1. verify for 1-stack:

score =0 :M

2
c(1)is @B

07. All rights res uary 23, 2007

lec 3f.7

Proving the Claim by Induction
Inductive step.

Case n+1>1. So splitinto an
a-stack and b-stack,
where a+b=n+1.
(a + b)-stack score = ab +
a-stack score + b-stack score

i Ibert R. Meyer, 2007. All rights reserved

February 23, 2007 lec 3.8

Proving the Claim by Induction

by induction: a(a-1)

a-stack score = B
-1

b-stack score = #

lec 3f.9

Proving the Claim by Induction

total (a + b)-stack score =

ab+ a(az— 1) N b(bz— 1) _
(@a+b)(a+b)-1) (n+1)n

2 2
so C(n+1) is I8
We're donel

ebruary 23, lec 3f.10

Proving the Claim by Induction

Wait: we assumed
C(a) and C(b)
where 1 <a,b<n.
But by induction
can only assume C(n)

lec 3f.11

s Proving the Claim by Induction
the fix:
revise the induction hypothesis to

QR(n) =
vm<n. C(m)

I rights reserved. February 23, 2007 lec 3f.12




Proving the Claim by Induction

Proof goes through fine

using ¢Xn) instead of C(n).

So it’'s OK to assume
C(m) forallm <n

to prove C(n+1).

07. All rights reserved. February 23, 2007 lec 3f.13

Strong Induction

Prove P(0). Then prove P(n+1)
assuming all of

P(0), P(1), ..., P(n)
(instead of just P(n)).

Conclude Vn.P(n)

i Ibert R. Meyer, 2007. Al rights reserved. February 23, 2007 lec 3f.14

Strong vs. Ordinary

Why use Strong?
-- Convenience:
no need to include
“Ym < n” all over.

llrightsreserved. ______ February 23 , 2007 lec 3f.17

Postage by Strong Induction

available stamps:

5¢ 3¢

Theoren.
Can form any amount > 8¢

Prove by strong induction on n.
An) ::= can form (/7 +8)¢.

/site17585.dellhost.com/lsjfacts/s_events.him

I rights reserved. February 23, 2007 lec 3.18

Postage by Strong Induction

Base case (7= 0):

07. All rights reserved. February 23, 2007 lec 3f.19

-m. Postage by Strong Induction
Inductive Step:

assume (m+8)¢ for 0O< m< n,

then prove ((n7+1) + 8)¢

n+1=1, 9¢: = ;

n+1= 2, 10¢:

lec 3f.20




case n+1>3:let m=n- 2.
now n> m=>0, so
by inducion hypothesis have:

3
— (n-2)+8 — m

Copyright © Albert R Meyer, 2007. Al righs reserved. February 23, 2007

(n+1)+8

lec 3f.21

Well Ordering
Principle

Copyright © Albert R. Meyer, 2007. All rights reserved. February 23, 2007

lec 3f.23

Team Problem

Problem 1

Copyright © Albert R. Meyer, 2007. Al rights reserved.

February 23, 2007 lec 3f.22

Well Ordering principle

Every nonempty set of
nonnegative rationals
has a
least element.

NO!

Copyright © Albert R. Meyer, 2007. All rghis reserved. February 23, 2007

lec 3f.25

Well Ordering principle

Every nonempty set of
nonnegative integers
has a
least element.

Familiar? Now you mention it, Yes.
Obvious? Yes.
Trivial? Yes. But watch out:

Copyright © Albert R. Meyer, 2007. Al rights reserved. February 23, 2007 lec 3f.24

Well Ordering principle

Every nonempty set of

ReRRegative integers
has a
least element.

NO!

Copyright © Albert R. Meyer, 2007. Al rights reserved. February 23, 2007 lec 3.26




"m /2 proof used Well Ordering

Thm; \/§ is irrational

Proof: suppose V2 = %

...can always find such m, n
without common factors...

why always?

Copyright © Albert R. Meyer, 2007. All rights reserved. February 23, 2007 lec 3f.27

Proof using Well Ordering

but if my, n, had common
factor c > 1, then

\/§= ﬂ’b/C
n/c
and |m/c| <|m|

contradicting minimality of |m,|

Copyright © Albert R. Meyer, 2007. Allrights reserved. February 23, 2007 lec 3f.29

te  Proof using Well Ordering
By WOP, 3 minimum |m| s.t.

m
\E=% S0 2 =—

Ny

where |mg| is minimum.

Copyright © Albert R. Meyer, 2007. All rights reserved. February 23, 2007 lec 3f.28

Well Ordering Principle Proofs

To prove “"VneN. P(n)” using WOP:
Define the set of counterexamples
C ::={n eN| 7P(n)}
» Assume C is not empty.
By WOP, have minimum element m, € C.

* Reach a contradiction (somehow) — usually by
finding a member of C that is <m,.

Conclude no counterexamples exist. QED

Team Problem

Problem 2

lec 3.34

Copyright © Albert R. Meyer, 2007. All rghis reserved. February 23, 2007
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MIT 6.0423/18.062J

Recursive Definitions
Structural Induction

Copyright © Albert R. Meyer, 2007. Al rights reserved. February 26, 2007 lec 4M-1

Example Definition: set E

Define set E < Z, recursively:

 Basecase:0 e E

» Constructor cases:

If n € E, then
I.n+t2ekE ifn>0;
2. -nek, ifn>0.

Copyright © Albert R. Meyer, 2007 All rights reserved. February 26, 2007 lec 4M-3

Recursive Definitions

Define something in terms of a
simpler version of the same thing:

* Base case(s) that don’t depend on
anything else.

* Constructor case(s) that depend on
simpler cases.

Copyright © Albert R. Meyer, 2007. Al righs reserved. February 26, 2007

lec 4M-2

Recursive Definition: Extremal Clause

So, E contains the even integers
Anything Else? No!

*0ekE

eIfn e Eand n>0,thenn+2 € £

o Ifn € Fand n>0, then —n € E
[+ That's Alll |

Extremal Clause

(Implicit part of definition)

Copyright © Albert R Meyer, reserved. February 26, 2007 lec 4M-5

Example Definition: set E

/. n e Eand n>0,thenn +2 € E:

0, 0+2, (0+2)+2, ((0+2)+2)+2
0, 2, 4, 6,

2.n € Eand n>0, then-n € E
_23 _4a _67

all even numbers

Copyright © Albert R. Meyer, 2007._All righs reserved. February 26, 2007

lec 4M-4

Example Definition: set E

So E is exactly:
The Even Integers

lec 4M-6




a8 G Example: Matched Paren Strings, M
Set of strings, M < {),(}*
*Base: L € M,
(the empty string)

* Constructor:

If s, t € M, then
(s)teM

07. Al rights reserved. February 26, 2007 lec 4M-7

Example: Matched Paren Strings, M

Lemma: Every s in M has an
equal number of )’s and (s.

Let £EQ .=
{strings with = number of ) and (}

Lemma (restated): M C EQ

7. Al ighs reserved. ____ February 26,2007 lec 4M-9

Example: Matched Paren Strings, M

Lemma: Every s in M has an
equal number of )’s and (s.

Proof by Structural Induction
on the definition of M

t er, 2007._All rights rescrved. February 26, 2007 lec 4M-8

Structural Induction on M
Constructor step

r = (s)t. Assume: P(s) and P(r)

#)inr = #)ins + #)int +1
#(inr = #(ns + #(n¢ +1

2 =by P(s) =by P()

i R. Meyer, 2007, All rights reserved. February 26. 2007 lec 4M-11

;:my  Structural Induction on M
Proof:
Hypothesis P(S) o= § E EQ
Base case: s =A. P(L)?
0)’sand 0 (’s. OK

February 26,2007 lec 4M-10

Structural Induction on M

by structural induction,
VseM. s € EQ

QED

2007._All righs reerved. February 26. 2007 lec 4M-12




;|  The 18.01 Functions, F18
The set F18 of functions on R:
* Idy , constant functions, and sin x
are in F18.
«if f, g € F18, then
“f+g f-g ¢,  (theconstant )
= the inverse, /1), of £, and
"f °g (the composition of f'and g)
are in F18.

07._All rights reserved. February 26, 2007 lec 4M-13

The 18.01 Functions, F18

Lemma. F18 1s closed under derivative:

if /e F18, then f '€ F18.

(Team problem 2)

7. Al ighs reserved. ____ February 26,2007 lec 4M-15

The 18.01 Functions, F18

Some functions in F18:

x = (D)«
Jx =D ——inverse
cosx =(1—(sinx -sinx))"?
Inx =(en)D
jer, 2007, All rights reserved. February 26, 2007 lec 4M-14

Arithmetic Expressions

Defined recursively as follows:
Base:

« if n€N, then <int, n> € Aexp
 if n€N, then <var, n> € Aexp

et R. Meyer, 2007 Al righis resered. February 26,2007 lec 4M-20

Recursive Data Types

Arithmetic Expressions

February 26,2007 lec 4M-19

Arithmetic Expressions

Constructors:

if e,/ € Aexp, then
1.<sum, e,f > € Aexp
2.<prod, e,f > € Aexp

2007._All righs reerved. February 26. 2007 lec 4M-21




sgl)r <=3,

x4(x5)2 +3x;

Parse tree: S
<sum, <prod,
<Var’ 4>, prod prod

<prod, <var, 5>, <var, 5>> o Dwl [
>l
<prod, <int, 3>, <var, 5>>

var

var var

Recursive Functions on Aexp =< Recursive Functions on Aexp
Recursive def. of si2¢, |¢|, of e Recursive def. of ,d(e)
|<Int,n>| =1 d(<int,n>) =:=0
|<var,n>| =1 d(<var,n>) =0
|<sum, e,f>| = |e| +|f] +1 d(<sum, e,f >) =1+ max{d(e).d(f)}

< >) =
|<prod, e,f>| ::= |e| + || +1 d(<prod,e,f>) =1+ max{d(e),d(f)}

;8 Size versus Depth ;8 Size versus Depth
Lemma: |e| +1 < 24 Constructor case: e = <sum, ¢;, €,>

Proof by Structural Induction

: by ind. hypothesis:
Base case : e = <int, n> (or <var, n>) Y yP .
P le] + 1 < 24l =12

le]+1 =1+1 =2 =20+1= Ddle)

OK!




Size versus Depth

le| +1 = |<sum, e;, e,>] + 1 def. of e
=(le,|[*le,| +1) + 1 def. of size
= (le;FD+(le|+1)

< el 4= Dl induction hyp.

< 2max(d(el),d(ez))+l + 2max(d(el),d(ez))+l
— D(max(d(e)d(e) 11+ = 2d@+1 def. of depth
QED

Copyright © Albert R Meyer, 2007. Al rights reserved. February 26, 2007 lec 4M-28

Team Problems

Problems 1--3

Copyright © Albert R Meyer, 2007._All rights reserved. February 26, 2007

lec 4M-29
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State Machines, I:
Invariants

Copyright © Albert R. Meyer, 2007. All rights reserved. February 28, 2007 lec 4W.1

+ O
State machines

State machine:

Step by step procedure,
possibly responding to input.

« I
State machines

The state graph of a 99-bounded counter:

start state .

States: {0,1,...,99, overfiow}

Transitions: 0<i<99
ORCED
Grertior > —— ot

Copyright © Albert R. Meyer, 2007. Al rights reserved February 26, 2007 lec 4W.3

lec 4W.2

Die Hard

Simon says: On the fountain, there
should be 2 jugs, do you see them?
A 5-gallon and a 3-gallon. Fill one
of the jugs with exactly 4 gallons of
water and place it on the scale and
the timer will stop. You must be
precise; one ounce more or less will
result in detonation. If you're still
alive in 5 minutes, we'll speak.

Copyright © Albert R. Meyer, 2007. Al rights reserved. February 28, 2007

lec 4W.4
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Die Hard

Supplies:
0
0
]
< =

3 Gallon Jug

5 Gallon Jug

lec 4W.6




Die Hard

Transferring water:

b -

3 Gallon Jug 5 Gallon Jug

lec 4W.7

Die Hard

Transferring water:

|| =

3 Gallon Jug 5 Gallon Jug

Copyright © Albert R. Meyer, 2007. All rights reserved. February 28, 2007

lec 4W.8

Die Hard

Simon’s challenge:

Disarm the bomb by putting
precisely 4 gallons of water on
the scale, or it will blow up.

Question: How to do it?

lec 4W.9

Die Hard

Work it out now!

Copyright © Albert R. Meyer, 2007. Al rights reserved. February 28, 2007

lec 4W.10

How to do it

Start with empty jugs: (0,0)
Fill the big jug: (0,5

3 Gallon Jug 5 Gallon Jug

Copyright © Albert R. Meyer, 2007. Al rights reserved. February 28, 2007

lec 4W.11

How to do it

Pour from big to little: (3,2)

B -

3 Gallon Jug 5 Gallon Jug

lec 4W.12




How to do it

Empty the little: (0,2)

L

3 Gallon Jug 5 Gallon Jug

Copyright © Albert R, Meyer, 2007 Al rights reservd February 28,2007 lec 4W.13

How to do it

Pour from big to little: (2,0)

m

3 Gallon Jug 5 Gallon Jug

How to do it

Fill the big jug: (2,5)

- JEI_J

3 Gallon Jug 5 Gallon Jug

Copyright © Albert R. Meyer, 2007. Al ights reserved. February 28, 2007 lec 4W.15

Die Hard once and for all

What if you have a 9 gallon jug instead?

WL

3GallonJug 5 @allon¥ug 9 Gallon Jug

Can you do it? Can you prove it?

Copyright © Albert R. Meyer, 2007. All rights reserved. February 28, 2007 lec 4W.17

Copyright © Albert R. Meyer, 2007. All rights reserved. February 28, 2007 lec 4W.14

How to do it
Pour from big to little: (3,4)
3 Gallon Jug 5 Gallon Jug
Done!!

Copyright © Albert R. Meyer, 2007. All rights reserved. February 28, 2007 lec 4W.16
Die Hard
Work 1t out now!

Copyright © Albert R. Meyer, 2007. All rights reserved. February 28, 2007 lec 4W.18




Die Hard Once & For All

Supplies:
; 3 Gallon Jug
0
]
= 9 Gallon Jug
Water

Copyright © Albert R. Meyer, 2007. All rights reserved. February 28, 2007 lec 4W.19

State machines

Die Hard Transitions:
(b,1) = (b,3) for 1 <3
(b,1) > (9,1) forb<9

1. Fill the little jug:
2. Fill the big jug:

(b,1) > (b,0) for 1 >0
(b,1) > (0,1) forb>0

3. Empty the little jug:
4. Empty the big jug:

Copyright © Albert R. Meyer, 2007. Al rights reserved February 28, 2007 lec 4W.21

State machines

Die hard state machine

State = amount of water in the jug: (b,l)
where 0<b<9and0 <1 <3,

Start State = (0,0)

Copyright © Albert R. Meyer, 2007. All rights reserved. _ Februar ry 28, 2007 lec 4W.20

State Invariants

Die hard once and for all

Invariant:

P(state) ::= “3 divides the number of gallons
in each jug.”

P((b,1))::= (3] b A 3|1

Copyright © Albert R. Meyer, 2007. All rights reserved. February 28, 2007 lec 4W.23

State machines

5. Pour from big jug into little jug (for b > 0):
(i) If no overflow, then (b,I) — (0, b+1),
—_—

b+1<3

(ii) otherwise (b,I) —» (b—(3-1), 3).

6. Pour from little jug into big jug.
Likewise.

Copyright © Albert R. Meyer, 2007. Al rights reserved. February 28, 2007 lec 4W.22

State Invariants

Floyd’s Invariant Method
(just like induction)
1) Base case: Show P(start).
2) Invariant case: Show

if P(a) and (@ —{r ), then P(r).

3) Conclusion: P holds for all reachable
states, including final state (if any).

Copyright © Albert R. Meyer, 2007. Al rights reserved.  Februan ry 28, 2007 lec 4W.24




Die Hard Once & For All

, Corollary: No state
v (4,x) is reachable, so
' Bruce Dies!

=

lec 4W.25

The Diagonal Robot
y It can move diagonally.
2 X X
K| 7
\/\%
1
/l
4 N
0 X X
> X
0 1 2 3

The Diagonal Robot
_ The robot is on a grid.

y
2
1 §
0
> X
0 1 2 3

The Diagonal Robot

Can it reach from (0,0) to (1,0)?
)
1

oA

uuuuuuuuuuuuuu

lec 4W.28

Robot Invariant

NO!

P((x,y)) ::=x+yiseven

IS an invariant:
transition adds =1 to both x and y,
preserving parity of x+y.
Also,P((0, 0)) is true.

lec 4W.29

Robot Invariant

So all positions (x, y) reachable

by robot have x +y even.

Butl+0=1isodd, so
(1,0) is not reachable.

uuuuuuuuuuuuu

lec 4W.30




N 9

13| 7

12

10| 5

3|1

15| 8

14
11

The Fifteen Puzzle
Explained!

--by similar reasoning
(details in Team Problem 1)

lec 4W.31

Team Problems

Problems carried
over to Friday

uuuuuuuuuuuuu

lec 4W.32




9 113|7

= Tots| The Fifteen Puzzle

iy Explained!
Wednesday,
Team Problem 1

Mathematics for Computer Science
MIT 6.0423/18.062J

State Machine
Invariants, cont’d

GCD correctness

The Euclidean Algorithm:
Computing GCD(a, b)

1. x:=a, y:=h.

2. Ify =0, return X & terminate; else

3. (%, Y) = (¥, rem(x,y)
simultaneously;

4. Go to step 2.

GCD correctness

Example: GCD(414,662)

= GCD(662,414)  since rem(414,662) =414
=GCD(414,248)  since rem(662,414) = 248
=GCD(248, 166)  since rem(414,248) = 166
=GCD(166, 82) since rem(248,166) = 82
=GCD(82, 2) since rem(166,82) = 2
=GCD(2, 0) since rem(82,2) = 0

Return value: 2.

GCD correctness

Euclid Algorithm as State Machine:

 States ::= NxN,
* start ::= (a,b),
* state transitions defined by the rule

x,y) — (y, rem(x,y)) for y#0.

March 2, 2007

GCD correctness

The Invariant is
P((xy)) ::= [ged(a,b) = ged(x,y)].

P(start): atstartx=a,y =D, so
P(start) = [ged(a,b) = ged(a,b)]
which holds trivially.




+
GCD correctness

Transitions: (X, y) — (Y, rem(X, Y))

Invariant holds by
Lemma: ged(x, y) = ged(y, rem(X,Y)),
fory # 0.
Proof: X = Qy + rem, SO
any divisor of X, y divides rem;
any divisor of y,rem divides X

ht © Albert R Meyer, 2007. Al

GCD Termination

y decreases at each step &
AS N (another invariant).

Well Ordering implies
reaches minimum & stops.

+
GCD correctness

Conclusion: on termination

X = ged(a,b).

Proof: at termination, y =0, so
x=ged(x, 0) = ged(x, y) = ged(a,b)

the invariant

March 2, 2007

Eulogy by Knuth: http://www.acm.org/pubs/membernet/stories/floyd.pdf
Picture source: http://y stanford.. P e 1 it-117.html
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State Machines:
Derived Variables

Derived Variables

A derived variable, v, is a function
giving a “value” to each state:

v: Q — Values.
If Values = N, we’d say vV was

“nonnegative-integer-valued,” or
“N-valued.”




Derived Variables

Robot on the grid example:
States Q = N2

Define the sum-value, o, of a state:

o({X,y)) =Xty

An N-valued derived variable.

Derived Variables

Called “derived” to distinguish

from actual variables that appear

in a program.

For robot  Actual: X,y
Derived:

March 2, 2007

Derived Variables

Another derived variable:
7 ;= ¢ (mod 2).
mis {0,1}-valued.

Derived Variables

For GCD, have (actual)

variables X, Y.

Proof of GCD termination:
y is strictly decreasing and
natural number-valued.

Derived Variables

Termination followed by
Well Ordering Principle:
y must take a least value —
and then the algorithm is stuck.

Strictly Decreasing Variable

N
16 4

Goes down at
every step

12

o> State
Q Q Q Q Q Q Q Q




Weakly Decreasing Variable

16 Down Or constant

after each step

12

o> State
Q Q Q Q Q Q Q Q

o, 7 for the Diagonal Robot

o: up & down all over the place —
neither increasing nor decreasing.

7: is constant —
both increasing & decreasing
(weakly)

Partial-order valued variables

Definitions of increasing/decreasing
variables extend to variables with
partially ordered values.

If a partial order has no infinite,

decreasing chain (it is well-founded),
then it can serve instead of N to

prove termination.

Team Problems

Wednesday, Problem 2;
and today’s

Problems 1& 2
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Stable Matching

Stable Marriage

S v v13
i

Girls

Stable Marriage
Preferences:

Boys Girls
#1: CBEAD 2 A:35214
2 : ABECD 2B:52143
3: DCBAE 2C: 43512
% 4 : ACDBE 2D:12345
YE: 23415

Stable Marriage

Preferences

#1: cBEAD Try “greedy”

2 : ABECD
strateqy for boys
%3 : DCBAE 9 y
%4 ACDBE

%5 : ABDEC

Copyright © Albert R. Meyer, 2007. Al rights reserved. March 5, 2007 lec 5M.4

Stable Marriage

Marry Boy 1 with Girl C
(his 1%t choice)

Preferences

*1: CBEAD—
2 : ABEZD
3: DZBAE

&4 : ACDBE

5 : ABDEC

Copyright © Albert R. Meyer, 2007._All rights reserved. March 5, 2007

Stable Marriage

Marry Boy 1 with Girl C
(his 1%t choice)

%Z:ABE D
3:D BAE é
#4:A DBE =

1 C

5 : ABDE

Preferences




Stable Marriage

Marry Boy 1 with Girl C

Preferences (his 1t choice)
%2 - ABED

3: DBAE é
#4: ADBE i
*5: ABDE 1 ¢

Stable Marriage

Next:
Preferences Marry Boy 2 with Girl A:
1 %g © (best remaining choice)
~— BED
3: DBAE é
%4 : ADBE =
#5: ABDE 2 A

Stable Marriage
Final “boy greedy” marriages

Stable Marriage

Trouble!
41
1 C
A
g;g |

v9)

Stable Marriage
Boy 4 likes Girl C better than his wife.

&1

Copyright © Albert R. Meyer, 2007._All rights reserved. March 5, 2007 lec 5M.11

Stable Marriage
and vice-versa




Stable Marriage
Rogue Couple

Stable Marriage

Stable Marriage Problem:

Marry everyone without
any rogue couples!

Stable Marriage

Let’s Try it!
Unnumbered Class
Problem

Stable Marriage I.

Boy Optimal

Stable Marriage 11.

All Girls get 1st Choice

Copyright © Albert R. Meyer, 2007. Allrights reserved. ______ Marchs, 2007

Stable Marriage

More than a puzzle:
* College Admissions

(original Gale & Shapley paper, 1962)

» Matching Hospitals & Residents.
» Matching Dance Partners.




Stable Marriage

Mating Ritual

Morning: boy serenades favorite girl

g5

S T oo
¥ g
Billy Bob %

Brad

Angelina

Mating Ritual

Morning: boy serenades favorite girl
Afternoon: girl rejects all but favorite
Evening: rejected boy writes off girl

Copyright © Albert R. Meyer, 2007._All rights reserved. March 5, 2007

lec 5M 24

Stable Marriage

The Mating Ritual:
day by day

Mating Ritual

Morning: boy serenades favorite girl
Afternoon: girl rejects all but favorite

YA

S5 g
% Angelina
Brad

Mating Ritual

Stop when no girl rejects.

Each girl marries her favorite
suitor (if any).

Copyright © Albert R Meyer, 2007._All rights resen

lec 5M.25




Mating Ritual

Partial Correctness:

 Everyone is married.
 Marriages are stable.
Termination:

there exists a Wedding Day.

Mating Ritual: Girls improve

Lemma: A girl’s favorite tomorrow
will be at least as desirable as today’s.

...because today’s favorite will
stay until she rejects him for
someone better.

Stable Marriage: Termination

total-boy’s-list-length:
strictly decreasing & N-valued.

So 3 Wedding Day.

Mating Ritual: Boys Get Worse

Lemma: A boy’s 1st love tomorrow

will be no more desirable than today’s.

...because boys work straight
down their lists.

vvvvvvvvvvv

Mating Ritual: Girls improve

Lemma: A girl’s favorite tomorrow
will be at least as desirable as today’s.

(favorite(G) is weakly
Increasing for each G)

Mating Algorithm: Boys Get Worse

Lemma: A boy’s 1st love tomorrow
will be no more desirable than today’s.

(serenading(B) is weakly
decreasing for each B)




Mating Ritual: Invariant

If G is not on B’s list, then she has
a better current favorite.

Proof: When G rejected B she

had a better suitor, and
favorite(G) is weakly increasing.

szszszszszszszszsz

Stable Marriage: Termination

On Wedding Day:
e Each girl has < 1 suitors

(by def of wedding day)
 Each boy is married, or
has no girls on his list

i rights reserved.

ﬂu_ Mating Ritual: Everyone Marries

Everyone is Married by Wedding Day

Proof: by contradiction.

If B is not married, his list is empty.

By Invariant, all girls have favorites
better than B -- so they do have a favorite.
That is, all girls are married,

so all boys are married.

H“_ Mating Ritual: Stable Marriages

Marriages are Stable:

Bob won’t be in rogue couple
with

case 1: a girl G on his final list,
since he’s already married to
the best of them.

H—_ Mating Ritual: Stable Marriages

Marriages are Stable:

Bob won’t be in rogue couple
with

case 2: a girl G not on his final
list, since by Invariant, G likes
her spouse better.

MMMMMMMMMMM

H“_ Mating Ritual
Who does better, boys or girls?
Girls’ suitors get better, and
boy’s sweethearts get worse, so
irls do better?
: No!




Mating Ritual

Mating Ritual is Optimal for
all Boys at once. Pessimal for all

Girls.

Team Problems

Problems
1-3

Stable Marriage

More questions, rich theory:

Other stable marriages possible?
- Can be many.

Can a boy do better by lying? — No!
Can a girl do better by lying? — Yes!
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Simple Graphs:
Degrees,
Isomorphism,
Paths

A Simple Gr'aph edge

vertices, I/
undirected edges, £

o—0 :={e0}

3 A

‘adjacent"

Vertex degree

degree of a vertex is
# of incident edges

deg(e) =2

vvvvvvvvvvv

Types of Graphs

Directed Graph
<1

Multi-Grdph

Vertex degree

degree of a vertex is
# of /incident edges

deg(c)=4




Impossible Graph

Is there a graph with
vertex degrees 2,2,1?

NO! , <—o/rpt1aned edge
1

2

Handshaking Lemma

sum of degrees is
twice # edges

2|E|= ), deg(v)
vel

Proof: Each edge contributes
2 to the sum on the right

lec 5W.9

Sex Partner Graph

M

partners

vvvvvvvvvvv

Handshaking Lemma

sum of degrees is
twice # edges
2|E|= > deg(v)
velV
2+2+1 = odd,
so impossible

Sex in America: Men more Promiscuous?

Studly claims:
Men average many more
partners than women.

Graph theory shows
this is nonsense

Counting pairs of partners

> deg(m)=E|=D_deg(f)

meM e

divide by both sides by | M|
> deg(m)) (> deg(f) A
— <F

meM LA

M M

avg-geg( )

Vv
avg-deg(M)




'm) Average number of partners

(avg-deg(M)) =(avg-deg("))1.035

Averages differ solely by
ratio of females to males.
No big difference
Nothing to do with promiscuity.

Isomorphism

Same graph (different /ayouts)

257 122
257 122 145 2

9 67 306 145

Same graph (different /abels)

257 122 145 Albert  Grant Sharat
306 67 Christos
Son
99 Jessica

H—_ The Graph Abstraction

All that matters
is the connections.,
Graphs with the
same connections
are /somorphic.

vvvvvvvvvvv

Isomorphism

&, isomorphic to &, means
there is an edge-preserving
vertex matching.




Are these Isomorphic?

Edges Preserved?

at Beef  .Tuna

#(Dog) = BeefF(Coi) = Hay
f(Cat) =Tuna £ (Pig) = Corn

Copyright © Albert R. Meyer, 2007. Al rights reserved.

lec 5W.19

Edges Preserved? YES!

March 7, 2007 lec 5W.21 Copyright © Albert R. Meyer, 2007. Al rights reserved. March 7, 2007 lec 5W.22

NonEdges Preserved? YES! Graph Isomorphism

6, isomorphic to &, means
there is an edge-preserving
vertex matching.

3 bijection f: V,;— V,
u—vin & iff £F()—F(V)in &,




Non-isomorphism

degree 2 all degree 3

Copyright © Albert R. Meyer, 2007. Al rights reserved. March 7, 2007 lec 5W.25

Finding the Mapping?

Not easy --many possible mappings.
Can test for properties
preserved under isomorphism:

# of nodes, # edges,

degree distributions,

length of paths & cycles ...

Paths

Path: sequence of adjacent vertices

Paths

Path: sequence of adjacent vertices

Copyright © Albert R. Meyer, 2007. Al rights reserved. March 7, 2007 lec 5W.28

Paths

Path: sequence of adjacent vertices

Copyright © Albert R Meyer, 2007._All rights reserved. March 7, 2007 lec 5W.30




Paths

Path: sequence of adjacent vertices

Paths

Path: sequence of adjacent vertices

Paths

Path: sequence of adjacent vertices

(e@o0o0e0e)

Simple Paths
S/mp/e Path: all vertices different

(e@e@00)

Simple Paths
S/mp/e Path: (doesn't cross itself)

Copyright © Albert R. Meyer, 2007. Al rights reserved. March 7, 2007 lec 5W.3¢

Connectedness

vertices v, ware connected iff
there is a path starting at vand
ending at w.

A graph is connected iff every
pair of vertices are connected.




‘@i Team Problems

Problems
2314




Simple Graphs:
Connectedness,
Trees

i@ Paths & Simple Paths
Lemma:

The shortest path between
two vertices is simplel

Then path without ¢ -c is shorter:

simd Paths & Simple Paths

Lemma:

The shortest path between
two vertices is simple!

Proof: Suppose path from u to v
crossed itself:

Connected Graphs

A connected graph:
there is a path between
every two vertices.

Connected Components

Every graph consists of
separate connected

pieces (subgraphs) called

connected components

Connected Components

13 12 26 16 66
p E17

>
10 4 8
Infinite corridor

3 connected components

The more connected components,
the more "broken up" the graph is.

) LI E25
East Campus Med Center




Connected Components

The connected component
of vertex v :

{w |v and w are connec'red}

Connected Components

So a graph is connected
iff it has only
1 connected component

Cycles

A cycle is a path that begins
and ends wi’rﬂhﬁ_ﬂame vertex

pa‘fhi V"'b W WAtV

0'50: a...V...b ...w...w...a

Meyer, 2007. Al rights reserved. __March 9, 2007

3y Cycles
A cycle is a path that begins

Simple Cycles

A simple cycleis a cycle that
doesn't cross itself

Trees

A freeis a connected graph
with no cycles.




More Trees

Copyright © Albert R. Meyer, 2007. Al rights reserved. __ March 9, 2007 lec 5F.13

Other Tree Definitions

* A tree is a graph with a vnigue
path between any 2 vertices.

* A tree is a connected graph
with n vertices and n - 1 edges.

* A tree is an edge-minimal
connected graph.

Copyright © Albert R. Meyer, 2007._All rights reserved.___March 9, 2007

lec 5F.14

Be careful with these definitions

Is a tree simply a graph with »
vertices and 7 - 1 edges?

NO:

Copyright © Albert R. Meyer, 2007._All rights reserved. __ March 9, 2007 lec 5F.15

Some trees with five vertices
e—eo o o o

~ L

Copyright © Albert R. Meyer, 2007. Al rights reserved. __ March 9, 2007

lec 5F.16

Some trees with five vertices
e—o o o o

L

Exercise: Prove that all trees with
five vertices are isomorphic to one
of these three.

Copyright © Albert R. Meyer, 2007._All rights reserved. __ March 9, 2007 lec 5F.17

Spanning Trees

A spanning free:. a subgraph
that is a tree on all the
vertices.

Copyright © Albert R. Meyer, 2007._All rights reserved. __ March 9, 2007

lec 5F.19




Spanning Trees

Copyright © Albert R. Meyer, 2007. Al rights reserved. __ March 9, 2007 lec 5W.20

Spanning Trees

a spanning free

Copyright © Albert R. Meyer, 2007. Al rights reserved. __ March 9, 2007 lec 5F 21

Spanning Trees

another spanning tree
(can have many)

Copyright © Albert R. Meyer, 2007._All rights reserved. __ March 9, 2007 lec 5F.22

Spanning Trees

A spanning free:. a subgraph
that is a tree on all the
vertices.

Always exists: find minimum
edge-size, connected subgraph
on all the vertices.

Copyright © Albert R. Meyer, 2007. Al rights reserved. __ March 9, 2007 lec 5F.23

CONNECTEDNESS

An edge is a cut edge if
removing it from the graph
disconnects two vertices.

Copyright © Albert R. Meyer, 2007._All rights reserved. __ March 9, 2007 lec 5F 24

Cut Edges

Copyright © Albert R. Meyer, 2007._All rights reserved. __ March 9, 2007 lec 5F.25




Cut Edges

T

B is a cut edge

Cut Edges

A is nota cut edge

Cut Edges

oD

deleting B gives
two components

ed.  March 9, 2007 lec 5F.27

Cut Edges

Fault-tolerant design:
Ina tree, every edge is a cut
edge (bad)
In a mesh, no edge is a cut edge
(good; 2-connected)
Tradeoff edges for failure
tolerance

Cut Edges and Cycles

Lemma: An edge is a cut
edge /ff it is not traversed
by a simple cycle.

Proof . problem set

k-Connectedness

Def: k-connected iff
need to delete k
edges to disconnect.




“mJ k-Connectedness
Def: k-connected iff
remains connected
when any k-1 edges
are deleted.

Team Problems

Problems
1—3

k-Connectedness
Example:

/(/7 is (n-1)-connected




Flight Gates %

li b
Gr Gph f.lgh‘l'S need gates, but
times overlap.

COIOer how many gates needed?

zzzzzzzzzzzz

Conflicts Among Three

Airline Schedule %{?

Needs gate at same time

time —/——
122 (1 |
145 B |
Flights | 67| |
257 1l |
|

306 |
99

145

Model all Conflicts with a Graph

Color vertices «@’
1= J]

so adjacent vertices have
different colors.

306W67 # colors = # gates needed

99

257 122 145




Coloring the Vertices

257 122 145
assign
g7 9ates:
306 ©257,67
0122145
4 colors 99 :ggé
4 gates

Final Exams

subjects conflict if student
takes both, so

need different time slots.
how short an exam period?

Better coloring

257 122 145

306 67

3 colors 99

Copyright © Albert R. Meyer, 2007. Al rights reserved.

Map Coloring

Model as a Graph

6.042
18.02
assign
times
4 time slots OM 1pm
(best possible)  6.001 ® T 9am
o T Ipm

I rights reserved. March 12, 2007 Tec OV

Four Color Theorem

any planar map is 4-colorable.
1850's: false proof published

(was correct for 5 colors).
1970’s: prf with much computing
1990’s: much improved




Chromatic Number

min #colors for G is
chromatic number, X(é)

lemma:

x(tree) = 2

Simple Cycles

T[] xe.)=
< 26w

Trees are 2-colorable

Pick any vertex as "root.”

if (unique) path from root is
even length: @

odd length: @

Bounded Degree

if all vertex degrees < 4, then

7(6)<k+1

.. by simple recursive
coloring procedure

Complete Graph Kj

W W

x(K)=

Copyright © Albert R. Meyer, 2007. Al rights reserved.

=:2d  Coloring with dhe colors

Induction Hypothesis A(n)::=

if &has nvertices, all degrees < dmax,

then  x(6) < dmax + 1colors

Base Case: works for n=1 vertex

Inductive Step: given n+1 vertex graph

* remove one vertex

* color remaining graph in < dmax +1 colors

* put vertex back. since degree < dmax,
must be one color left over for it.

Copyright © Albert R. Meyer, 2007. Al rights reserved.




Arbitrary Graphs

2-colorable? --easy to check
3-colorable? --hard to check

(even if planar)
find x(6)? --theoretically
no harder than 3-color, but
harder in practice

Team Problems

Problems
1-3
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Bipartite
Matching

Compatible Boys & Girls

camﬁ;zf/b/e

Copyright @ Albert R. Meyer, 2007. All rights reserved. March 14, 2007 lec 6W.1
Compatible Boys & Girls
match each girl to a
unique compatible boy
Copyright © Albert R. Meyer, 2007._All rights reserved. March 14, 2007 lec 6W.3
Compatible Boys & Girls
suppose this edge was missing
Copyright © Albert R. Meyer, 2007._All rights reserved. March 14, 2007 lec 6W.5

opyright © Albert R. Meyer, 2007. All rights reserved. March 14, 2007 lec 6W.2

. .

Compatible Boys & Girls
a matching

opyright © Albert R. Meyer, 2007. Al rights reserved. March 14, 2007 lec 6W.4

ibl

No match possible

opyright © Albert R. Meyer. 2007. Al rights reserved. March 14, 2007 lec 6W.6




Bottleneck condition

© Albert R Meyer, 2007._All rights reserved. March 14, 2007

lec 6W.8

Hall's Theorem

Conversely, if there are
no bottlenecks, then

there is a perfect match

lec 6W.10

<@ Hall's Theorem
Assume no bottlenecks.

Lemma: If S is a set of girls and
|SI=IN(S)I.

and no bottlenecks

between S and N (S)

lec 6W.12

Bottleneck Lemma

bottleneck. not enough boys for
some seft of girls.

N(S)::= {b|b adjacent toans e S},
|S1>IN(S)|

If there is a bottleneck,
then no match is possible.

7._All rights reserved. March 14, 2007 lec 6W.9

& Hall's Theorem
Assume no bottlenecks.

Lemma: If S is a set of girls and
|S|=IN(S).

then there are no
bottlenecks within S

(obviously)

7._All rights reserved. March 14, 2007 lec 6W.11

Bottleneck TC S ?

TOUS
would be a bottleneck” &

March 14, 2007 lec 6W.13




Hall's Theorem

no bottlenecks implies
perfect match

lec 6W.14

Hall's Theorem

by induction match
(S. N(S)). and
(S,N(S))

separately.

lec 6W.16

Hall's Theorem

proof by induction on # girls.
case: proper subset, S,
of girls with

151=IN(S)|
By Lemma no bottlenecks in
bipartite graph (S, N(S)),

andnonein (3 N (5))

March 14, 2007 lec 6W.15

"8y How to verify no bottlenecks?

Every girl likes > d boys, and
every boy likes < d girls,
implies no bottlenecks.
proof. any set S of girls with e
incident edges:
d|S| <e < d|N(S)|
|S1<IN(S)|
(no bottleneck)

lec 6W.18

Hall's Theorem

case: |S| < [N(S)| always.

match 1st girl with a boy.

remaining girls & boys won't

have any bottlenecks, so

by induction can match them
QED

March 14, 2007 lec 6W.17

Team Problem

Problems
1-3

March 14, 2007 lec 6W.19
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Directed Graphs;
Communication
Networks

ccccccccccc

Digraphs
O :
paths are directed:

Vo, Vi, Yy

where v,—v,,; for all i

L

BEH -

g Digraphs

oo
a set, V. of vertices

aset, EC VxV

of directededges.
(vw) € E notation: v—w

MMMMMMMMMMMM

v is connected fow by a
positive length path

VO V1 V2 n-1
« DEE

ERE Positive Path Relation

Om -

« DEE

“Lgye Path Relation: Connectedness
oo -

v is connected tow:

there is a path
V—---—W

(length O path from v to v)

lec 6F.4

uuuuuuuuuuu

« DEE .
oM Directed Cycles
oo :
Vo i e Vi1 Vo




énm:
BB G
EOH -
Formally, a Digraph, D, is
exactly the same as a binary
relation on the vertices.

irreflexive: .

Digraphs

ccccccccccc

n designated output vertices
with indegree 1

aaaaaaaaaaa

Communication Networks
RN
In particular,
Permutation Networks
anm .
= Permutation Networks
EEm :
and with

éﬂm*
an
@om -
DAG's represent strict partial orders:

Directed Acyclic Graph's

*The positive path relation of a DAG
is a strict p.o.

*Every partial order is the positive path
relation of a DAG.

lec 6F.11

« DEE

Al ¢

Permutation Networks

Digraphs with
n designated input vertices
with outdegree 1

lec 6F.10

« DEE
Al ¢
LN -
and for every input and

output, there is a path
II > (amzn o :II

switches

Permutation Networks

lec 6F.12




BEH -

A routing problem is a bijection,

« i

Permutation Routing Problems

w:{1,.n}— {1,..n}
(called a permutation)

« DEE

- Network Measures

[s]= [ |
diameter: largest input-output

distance
size: # switches, # edges
switch degrees: jxk
ek

« DEE
Shps Permutation Routing Problems
[s]= [ |

A solution to a routing
problem is a set of n paths

from input k to input (k)
for k=1,..n.

« DEE
shpe Permutation Problem Solutions
0o :

Solutions commonly select
shortest paths between
input k and output (k).
(but sometimes shortest
paths are not best)

« DEE
e s Permutation Problem Solutions

Bl
Quality of a solution:.
latency: max path length
congestion: max #paths
through one switch

(also average latency, congestion)

rch 16, 2007

« DEE
ohpe Difficulty of a Problem, T

GO
Problem difficulty measured

by best solution it allows:
problem-latency: smallest

latency of any solution
problem-congestion: smallest

congestion of any solution




Quality of A Network

Network quality measured
by its hardest problem:
max-latency: /argest
problem-latency
max-congestion: /argest
problem-congestion

lec 6F.19

énm:
Al ¢
RN
Finding max-congestion can be
tricky. To prove max-con 2 k:

must find problem, ™, and

show that every routing
for = has congestion > k.

Quality of A Network

lec 6F.21

« DEE
E m.| A 6ood, Unreasonable Network
EEm :
[— rO— ]
O—
L »O— L]
diameter = latency = 3

Quality of A Network

Finding max-congestion can be
tricky. To prove max-con < k:
show how, given any problem,
T, to route packets for w

with congestion < k.

MMMMMMMMMMM lec 6F.20

2 A Good, Unreasonable Network

1—
unique paths from in to out

MMMMMMMMMM

lec 6F.22

opyright © Albert R. Meyer. 2007. All ights reserved.

« DEE
A Good, Unreasonable Network

max-congestion = 1

lec 6F.24

Ibert R. Meyer, 2007. Al righs reserved. March 16,2007




???;,@

A Good, Unreasonable Network

BEH -

rO— L]

1—

Ibert R. Meyer, 2007. Al rights reserved. March 16, 2007

A Good, Unreasonable Network

BEH -

switch-degree: 1xn, nx1

I rights reserved. March 16,2007

A Good, Unreasonable Network

[1a]7

mz

O0— rO—0]
1—

—3O—]
#edges: n(n+2)

« DEE

=Lhs| A Good, Unreasonable Network
O :

Can be modified to use
bounded switches
(Class Problem 2).

Good in all ways
but =~ n?switches

« DEE

Benés Network

éiE A Great Network

Benés Network, B,
handles

N = 2"
inputs and outputs




« EE ,
Benés Network

i
Benés Net is small:
latency ~ 2 log N
#switches =~ NlogN

switch sizes = 1x2, 2x1
and max-congestion = 1

Iﬂ

Recursive Data Type
Base case: B

E iXO
2! in-switches { 2! out-switches

Benés Network

"

BEH -

‘EEE Benés Network

2
=8 Constructor step: B,.,

4 \
2n { Bn
.............................................. >2n+1
o J

éiE Benés Network

EIE - O
“H diam B,,, = 2+ diam B,

B
B
O

N=2
« DEE ,
Ba o Benés Network

EIE - O
Sl Jiam B..

lo %0 )
B,
............................................. ~ 2n+l
B,
J

EEE Benés Network

% _______________ %




Copyright © Albert R.

s DI , ¢ DEE P
e Benés Network E : .'. Benes Network
00m - - - 00m - .
a
B, B,
B, B,
.............................................. O “eesssssssscesessssssateatesatsasascasenannasi
size Bn+1 =2 size B + 2 2n+1 for congestion 1
s DI . L IIIEI Y ’
B Benés Network E 3 Benés Network
[Eam : . O : R
; ; (k)
B, B,
k+2n ()
B, B,
.............................................. o T PP PP
for congestion 1: route to opposite halves for congestion 1: route to opposite halves

Meyer. 2007. All ighs reserve

- S Team Problems

e Benés Solution to BRE
* Find 2-coloring for =RE

O-@ (O-0) Problems

@@ w1(2) wi(2+2")
: OO 1-3
© Albert R. Meyer, 2007. Al rights reserved. March 16, 2007 lec 6F.42

lec 6F.41

aaaaaaaaaaa
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Planar Graphs

Planar Graphs

A graph is planar if there
is a way to draw it in the

plane without edges crossing.

Region Boundaries

Planar Graphs

Four Continuous Faces

Iv

i

4 Connected Regions

Region Boundaries




Region Boundaries

Region Boundaries

Region Boundaries

Region Boundaries: Bridge

March 19, 2007

Region Boundaries: Dongle

=




Region Boundgries: Dongle

Region Boundaries: Dongle

Region Boundaries: Dongle

stvxyxvwvturs

rstur

Planar Embedding

A planar embedding is a
graph along with its face
boundaries: cycles

(same graph may have

different embeddings)

Same graph, different embeddings

length 5 faces length 7 face

March 19, 2007

Recursive Def: Planar Embeddings

Base: a graph consisting of a
single vertex, v,

along with face: length O cycle
from v to v,

is a PE.

ve °
graph faces




Adding an edge to an embedding

Two constructor cases:
1) Add edge across a face
(splits face in two)

2)Add bridge between
components (merges 2
outer faces)

Constructor: Add a Bridge

Constructor: Split a Face

w
a

y b

awxbyza — awxba, abyza

Z

X e Y
axyza tuvwb

u
b
w
v
Constructor: Add a Bridge
Z u
Yy a b
w
1% v

March 19, 2007

Euler's Formula

If a planar embedding has
v vertices, e edges,
and 7 faces, then

v-e+f=2




Euler's Formula

* Proof by structural
induction on embeddings:

*base case: 1 vertex

v=1 7F=1¢e=0
1-0+1=2 &

B. Adding an edge to a drawing
Constructor case (add bridge):
VIV +V,

ceze te,+1

F=fify-1

(Vi +V,)- (eg + e+ 1)+ @’fz -1)

=2+2-2=2

Adding an edge to a drawing

Constructor case (split face):
* v stays the same

- e increases by 1

* f increases by 1

so v-e+ fstays the same

&

Euler's Formula

Corollary:
There are at most
5 regular polyhedra

(proof in Notes)

Planar Properties
- each edge appears twice on faces
* face length > 3 (forv > 3)
so 3f <2e
combining with Euler:
e < 3v-6

March 19, 2007

Planar Properties

- each edge appears twice on faces
- face length > 3 (forv > 3)

* can draw edges in any order
(proofs by structural induction)




Planar Properties: Corollaries
* K5 and Kj; 3 not planar
*J vertex of degree <5

- subgraphs are planar
» 6-colorable

Team Problems
Problems
1-3
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Intro to
Number Theory:
Divisibility, 6CD's

Divisibility
a “divides" b  (a|b):

b =ak for some k
5|15 because 15 = 3.5

n|0 because O = n-0

;) Arithmetic Assumptions
Algebraic rules for +, -, x:
a (b+c) = ab +ac, ab = ba,
(ab)c = a (bc), a -a =0,
a+0=aqa, a+tl>aq, ...

We take these for granted!

Common Divisors, 6CD

cis a common divisor of a
and b means c|a and c|b.

gcd(a,b) ::= the greatest
common divisor of a and b.

Simple Divisibility Facts
al b implies al bc
alband b|cimplies al ¢
al b iff aclbc
forc=0

;. G6CD with a prime

If pis prime, and p does

not divide a, then
gcd(p,a) = 1.

Pf: The only divisors of

parel&p.




s Divisibility of a Sum

A common divisor of two
terms divides their sum.
pfisay c|x and cly, so
x=K'c, y=k"c. Then

x+y = Ke+k'e = c(k'+k").
k

March 21, 2007 lec 7W.7

a: Divisibility of Linear Comb.
A common divisor of a & b
divides any integer linear
combination of a & b.
integer lin. comb.: sa + tb
proof: divisor of a & b
divides both sa and tb.

07. All rights reserved. March 21, 2007 lec 7W.8

%@ The Division Theorem

For b >0 and any a, there are

unigue numbers

q ::= quotient(a,b),

r ::= remainder(a,b), such that
a=gb+r and 0<r<b.

Take this for granted too!

March 21, 2007 lec 7W.11

©m; Corollary

The remainder of a divided
by b is an integer linear
combination of a & b:

a=gb+r, so
r=(-q)b+1la

GCD is a linear combination

Theorem: gcd(a,b) is the

smallest positive linear
combination of a and b.

spc(a,b)

lec 7W.13

1st show: gcd(a,b) < spc(a,b)

proof. Common divisor of a, b
divides lin. comb. of a & b, so

gcd(a,b) | spc(a,b).
In particular,
gcd(a,b) < spc(a,b).

lec 7W.14




2nd: spc(a,b) < gcd(a, b)

Enough to show that
spc(a,b) is a common
divisor of justa.

lec 7W.15

“m  Prime Divisibility
Lemma: p prime and pla-b
implies pla or p|b.
pf- say —(pla). so gcd(p,a)=1.
So, sa + 1'p =1
s o=
pl pl sopl

QED

lec

7W.17

Finding s and t

Given a,b, how to find
s,t so that sa+tb=gcd(a,b)?

Method: apply Euclidean
algorithm, finding
coefficients as you go.

Lemma: spc(a,b)|a

Pf: Remainder of a divided by

spc(a,b), is a linear comb. of
a & b. Since remainder <
divisor, and divisor is
smallest positive,
remainder must be O.

That is, spc(a,b) divides a.

hits res:

lec 7W.16

Prime Divisibility

cor:If p is prime, and

pla;aya,
then p|a; for some i.
pf- By induction on m.

lec 7W.18

& Finding s and t

Example: a = 899, b=493

899 = 1-493 + 406

493 = 1-406 + 87

406 = 4-87 + 58

87 =158+29

done, gcd = 29

58 =229+0

lec 7W.19

lec 7W.20




Finding s and t

Example: a = 899, b=493
899 = 1493 + 406 so 406 = 1-899 + -1-493
493 = 1-406 + 87 so 87 = 493 - 1-406

=-1-899 + 2:493
406 = 487 + 58 so 58 = 406 - 4-87

= 5-899 + -9-493
87 =158+29 s029=87-158

=-6-899 + 11-493
58 =229+0 done, gcd = 29

Copyright © Albert R. Meyer, 2007. All rights reserved. March 21, 2007 lec 7W.21

Finding s > O and t

gcd(899,493) = -6-899 + 11-493
get positive coeff. for 899?:
(-6+493k)-899 + (11-899k)-493
= -6-899 + 11493
so use k=1: 487-899 + -888-493
= gcd(899,493)

Copyright © Albert R. Meyer, 2007. Al rights reserved. March 21, 2007 lec 7W.23

Finding s and t

Example: a = 899, b=493
899 = 1493 + 406 so 406 = 1-899 + -1-493
493 = 1406 + 87 so 87 = 493 - 1-406

=-1-899 + 2:493
406 = 4-87 + 58 so 58 = 406 - 4-87

=5-899 + -9-493
87 =158+29 so 29=87-58

=-6-899 + 11-493
58 =229+0 done, gcd = 29

s=-6, t=11

the Pulverizer

Copyright © Albert R. Meyer, 2007. All rights reserved. March 21, 2007 lec 7W.22

“m: Generalized Die Hard
Can getany linear combination
of a, b in a Die Hard bucket
(if there's room for it).
Namely, say O < sa +tb < b.
Get sa +tb into the b gal.
bucket as follows:

March 21, 2007 lec 7W.26

Generalized Die Hard
Did it with buckets:
3 gal. & 5 gal.
3 gal. & 9 gal.
Now a gal. and b gal.?

Copyright © Albert R. Meyer, 2007. Al rights reserved. March 21, 2007 lec 7W.24

“m: Generalized Die Hard
assume s >0. do s times:
- fill bucket a, pour into b
-- if b fills, empty it.
total poured = sa
O < amount left < b

# times b emptied must be -t

March 21, 2007 lec 7W.27




Generalized Die Hard Team Problems

In fact, no need to count:
- fill bucket a, pour into b PF‘OblZmS
-- if b fills, empty it.
until desired amount isinb ! 1— 3

Il rights reserved. March 21, 2007 lec 7W.28 Copyright © Albert R. Meyer, 2007. Al rights reserved. March 21, 2007 lec 7W.35
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B-Color Theorem;
Benés Network

EEE Planar Graphs

- deg(v) <5 for some v
* K5 is not planar

» subgraphs are planar
* two new facts:

5-Color Theorem

Planar Graphs

are b-Colorable

éiE Planar Graphs
LN :

Copyright © Albert R. Meyer, 2007. Allrights reserved.

Planar Graphs
DR -
ém.u Planar Graphs
LN :

& incident e




EEE Planar Graphs
DR -

* then can connect
any two of its
adjacent vertices, e,
and stay planar:

« KB

Be - Planar Graphs
0 DI

& incident e

[+ [a]7

B Planar Graphs
0 DI

« KB

an - Planar Graphs
DO - [ e .

EEE Planar Graphs
EOH -
éEE Planar Graphs
EEH :

* merging adjacent
vertices in a planar
graph leaves a
planar graph




Planar Graphs

Planar Graphs

Copyright © Albert R. Meyer, 2007. All rights reserved. March 23, 2007 lec TE.15

Planar Graphs

Copyright © Albert R. Meyer, 2007. Al rghts reserved. March 23,2007 leo 7F.17

Copyright © Albert R. Meyer 2007 All ighs reserved: ___ March 23, 2007 lec 7F.14
Copyright © Albert R. Meyer, 2007. All rights reserved. March 23. 2007 lec 7F.16
lec 7F.18

Copyright © Albert R. Meyer, 2007. Allrights reserved.

March 23, 2007

Planar Graphs

Copyright © Albert R. Meyer, 2007. Allrights reserved. March 23. 2007 lec TE.19




« DEE

Ene Planar Graphs

s[e 1]
« DEE
B £ 5-Color Theorem
O :

case 1. vertex of deg <4.

remove vertex, v,
5-color remainder, then

enough colors left
to color v. OK

By induction on # vertices:

« DEE
e 5-Color Theorem
LN -
remove v
[ ]
[
[
[ J [

Planar Graphs
EEE 5-Color Theorem
RN
case 2: vertex v of deg =b.

lec 7F.24

EEE 5-Color Theorem
EEm :
remaining 5 not all adjacent
[
[ J
[ J
[

else would have K5




éEE 5-Color Theorem
RN

pick 2 not adjacent

< TF.26

add edge (still planar)

éEE 5-Color Theorem
RN

merge (still planar)

EEE 5-Color Theorem
RN

merge (still planar)
[ ]

[ }
e
o )
® nm T
ERon 5-Color Theorem
EOE :
now 5-color
( ]
[ )
( ] [ ]

rt R. Meyer, 2007. Allrights reserved. March 23, 2007 lec 7F-30

[ J
...
Iy .
« DEE
BRs 5-Color Theorem
RN
merge (still planar)
[ ]
[ J
o ‘e
« DEE
ERon 5-Color Theorem
EEm :
now unmerge
[
[ ]
[ J
[ [




T 5-Color Theorem

BEH -

only 4 colors adjacent fo v, so OK

a0 Team Problems

Pr'oblems
1-3

7
5

"

Benés Network

sSee
http://theory.csail.mit.edu/classes/6.042/spring07/slidesé f pdf
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Prime Factorization
Congruences

Copyright © Albert R. Meyer, 2007. Al rights reserved. April 2, 2007 lec 8M.1

Prime Divisibility

Lemma: If p is prime, and
p | ab,
then pla or pl|b.

pf- in earlier lecture. follows from

gcd(p.a)= xa+yp

Il rights reserved. April 2, 2007 lec 8M.3

Prime Divisibility

cor : If p is prime, and
pl aloazoooam
then pla, for somei.

pf- By induction on m.

All rights reserved. April 2, 2007 lec 8M.4

Unique Prime Factorization

Fundamental Theorem of Arithmetic
Every integer > 1 factors
uniguely into a weakly
increasing sequence of
primes.

lec 8M.5

Unique Prime Factorization

Fundamental Theorem of Arithmetic
Example:

61394323221 =
3-3-3-7-11-11-37-37-37-53

April 2, 2007 lec 8M.6

;8 Unique Prime Factorization
pf- suppose not. choose smallest n>1:
N=PrP2"Pk = 9192""qm
P1<Pa<<Ppxg
41<9,<<qy,
can assume qq < pq
soqy=p;alli

lec 8M.7




;8 Unique Prime Factorization
Pf N=P1rP2Pk = 91929
now p,|n, so by Cor., pslq;.
so p;= q; withi >l

SO P2'Pk = 91'92""9i-1°Gis1" "G

“—— and q; = p,
<n

contradiction!

Copyright © Albert R. Meyer, 2007._All rights reserved. April 2, 2007 lec 8M.8

Unique Prime Factorization

Cor:ifn-= p1 Pz pk'
and m|n, then

m = p,p, P,

Il rights reserved. April 2, 2007 lec 8M.9

Team Problem

Problem 1

B ;: a. Congruences

Def: a = b (mod n) iff n|(a - b).

Lemma: If a = b (mod n), then
a+c = b+c (mod n).

pfs nl| (a - b) implies

n| ((a+c) - (b+c))

Congruences

Lemma:

If a= b (modn), then
a-c = b-.c (mod n).

April 2, 2007 lec 8M.13

Congruences

Lemma:

a = rem(a,n) (mod n)

important: keeps (mod n)
calculations in the range

O to n-1

lec 8M.14




Congruences

E_I‘_!C._Il'or': a=b (mod n) iff
rem(a,n) = rem(b,n)
cor: a = a (mod n).
Ifa=b &b =c(modn),
then a = ¢ (mod n)

Copyright © Albert R. Meyer, 2007._All rights reserved. April 2, 2007 lec 8M.15

“m: Relatively prime cancellation
If gcd(k,n)=1, then have k'
k-k' = 1 (mod n).
k' is an /nverse mod n of k
prisk+tn=1
justletk'=s.

Congruences

So = (mod ) a lot like =.

main diff: can't cancel
4-2 =12 (mod 6)
4 Z 1 (mod 6)

No general cancellation

Il rights reserved. April 2, 2007 lec 8M.16

Fermat's Little Theorem

If pis prime & k not a multiple of p,
can cancel k. So
k, 2k, .., (p-1k
are all different (mod p).
So their remainders on division
by p are all different (mod p).

April 2, 2007 lec 8M.19

Relatively prime cancellation

cor.

If i-k = j-k (mod n),
and gcd(k,n) = 1,
then i = j (mod n)

Fermat's Little Theorem

This means that
rem(k, p), rem(2K, p).....rem((p-1)k, p)
must be a permutation of

1[ 2[ = (p_l)




:m: Fermat's Little Theorem

so 1-:2-+(p-1) =
rem(k,p)-rem(2k,p)--rem((p-1)k,p)
(k)-(2k) - ((p-1)k)  (mod p)
(k)12 - (p-1)  (mod p)

SO

1 = kr-!(mod p)

Team Problems

Problems
2—4
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Euler's Theorem
RSA encryption

“m The interval from O to n

[0.n) == {0.1,..,n-1}
[0,n] ::={0.1,..,.n}

‘m: Inverses mod 7

Thm. If k is relatively prime
to n, there is an inverse k

k-k=1 (mod n)
Cor.
OK to cancel (mod n)

April 4, 2007

Be ¢ Calculating ¢

If p prime, everything from
1 o p-1is rel. prime to p, so

o(p)=p-1

% Euler ¢ function

d(n) ::= # ke [0,n)s.t.
k rel. prime to n
o(7) =6 123456
®(12) = 4
12,3,45,6,7,89,0,11

April 4, 2007

% Euler ¢ function

»(49)?
0123456,789,.,1314,5,...21,.
every 7th number is divisible by 7

so, $(49) = 49-7




Calculating ¢

For [0,pk) every pth element is
not rel. prime to pk:

0.1,..p-1p...2p,..(pK2)p,..pk-1

(1/p)pk elements
not rel. prime to p*

Calculating ¢

For1,2,.p-1p...2p,..p*-1,pk
every pth is not rel. prime to p*

o(pk) = pk - pk!

Copyright © Albert R. Meyer, 2007. All rights reserved. April 4, 2007 lec 8W.9

Calculating ¢

(I)(Pk) - pk - pk-l

Fermat Thm a special case.
Euler proof essentially
same as Fermat:

.8 Calculating ¢
Lemma
For a,b relatively prime,

¢(a-b) = ¢(a)-o(b)

pf. Pset 7 now;
another way in 3 weeks

Al rights reserved. April 4, 2007

lec 8W.10

Proof of Euler's Thm

L#or k relatively prime fo n, let
r = ¢(n) and
Ky, K.

the integers in [O,n) relatively
prime to n. Then

rem(k;k,n), rem(k,k,n),..., rem(k.k,n)

is a permutation of k;,... K.
pf- cancel k (mod n).

April 4, 2007 lec 8W.12




Proof of Euler's Thm

So
ke, = r'em(k k,n) - rem(k.k,n)
k k (mod n)
= k'“ k1 k,, (mod n)
But OK tfo cancel k;, - k., so
1 =k (mod n).

Copyright © Albert R. Meyer, 2007. All rights reserved. April 4, 2007 lec 8W.13

Beforehand

receiver generates primes p,q

n::= pq

selects e rel. prime to (p-1)(g-1)
(e, n) ::i= public key, publishes it
finds d , inverse mod (p-1)(gq-1) of e
d is secretf key, keeps hidden

Copyright © Albert R. Meyer, 2007. All rights reserved. April 4, 2007 lec 8W.15

Il rights reserved. April 4, 2007 lec 8W.14

* Encoding message m:
send m' ::= rem(me, n)
- Decoding m":
receiver computes
rem((m)d,n) = m

2, Receiver's abilities
+ find two large primes p, q
- ok because: lots of primes
- fast test for primality
- find e rel. prime to (p-1)(q-1)
- ok: lots of rel. prime nums
- gcd easy to compute
- find inverse of e
- easy using Pulverizer or Euler

eyer, 2007. All rights reserved. April 4, 2007 lec 8W.16

ht © Albert R. Meyer, 2007. Al rights reserved. April 4, 2007 lec 8W.17

Why does this work?

..explained in
Team Problem

April 4, 2007 lec 8W.18




Why is it secure?

+ easy to break /£ can factor n
(find d same way receiver did)
- conversely, from d can factor n
* but factoring appears hard

* has withstood 25 years of attacks

lec 8W.19

Team Problems

Problems
142

lec 8W.20
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Sums &
Money

Mathematics for Computer Science

C. F. Gauss

Sum for Children

89 +102 + 115+ 128 + 141 +

Sum for Children

Nine-year old Gauss saw

30 numbers, each 13 greater
than the previous one.

(So the story goes.)

lec 8F .4

154 + +
193 + +
232 + +
323 + +
414 + -+ 453 + 466
Sum for Children
1st + 30th = 89 + 466 = 555
2nd 4 2Qth -
(1st+13) + (30th-13) =555
3rd 4 28th =
= 555

(2nd+13) + (29th-13)

Sum for Children

Sum of kt term and (31-k)™ term
is invariant! 15 pairs of terms, so
Total = 555 - 15
= (15t + last) - (# terms/2)
= (15t + last)/2 - (# terms)
A\l bl

average term




Sum for Children Geometric Series

Example: G, = lex+x%+ oo +x" 4 X"
XG =  x+xP+x3+ o #xX"+X
1+2+..+(n-1)+n = "
(1+n)n
2

n+1

Copyright © Albert R. Meyer, 2007. All rights reserved. April 6, 2007 lec 8F.7 Copyright © Albert R Meyer, 2007. All rights reserved. April 6, 2007 lec 8F.8

Geometric Series Geometric Series

= 1+ x+ X2+ +x" 1+

n Gn:
xGn: +XP X+ o +X" 4+ xM xGn: +XP X+ o X"+ XM

G6,—x6,=1 — xml G6,—x6,=1 — xn+l

n n

G = l+x+x+[- +x"1+

Copyright @ Albert R. Meyer,_2007._All rights reserved April 62007 lec 8F.9 Copyright © Albert R Meyer, 2007, All rights reserved. April 62007 lec 8F.10

Geometric Series Infinite Geometric Series

1-x™ 1-x™
G =—— G =——"2
" 1-x "o 1-x

Consider /nfinite sum (series) . 1-lim,__x™ 1
lim Gn = == =
n—oo 1 -X 1 -X

(0.0]
1+ x+x2+---+x"'1+x"+---=ZXi
i=0

Copyright © Albert R. Meyer, 2007. All rights reserved. April 6. 2007 lec 8F.11 Copyright © Albert R Meyer, 2007. All rights reserved. April 6. 2007 lec 8F.12




nfinite Geometric Series

for |x| < 1

lec 8F.13

The future value of $$

I will pay you $100 in 1 year
if you will pay me $X now.

’

lec 8F.15

The future value of $$

If I deposit your $X now,
I will have $b-X in 1 year.
So I won't lose money as long as

b-X = 100.
X > $100/1.03 = $97.09

lec 8F.17

Team Problem

Problem 1

pril 6,_2007 lec 8F.14

The future value of $$

My bank will pay me 3% interest.
define bankrate
b =103

-- bank increases my $ by this
factor in 1 year.

07._All rights reserved April 62007 lec 8F 16

::% The future value of $$

+ $1in1year is worth $0.9709 now.

* $r last year is worth $1 today,
where r ::= 1/b.

* So $n  paid in 2 years is worth

$nr paid in 1 year, and is worth

$nr? today.

Il rights reserved. April 6, 2007 lec 8F.18




The future value of $$

$n paid k years from now
is worth $n-rk today
where r :

:= 1/bankrate.

April 6,_2007 lec 8F.19

Annuities
I pay you $100/year for 10 years,
if you will pay me $853.02,
If bankrates unexpectedly

increase in the next few years,

A.You come out ahead

B. The deal stays fair

C.I come out ahead

Copyright © Albert R. Meyer, 2007. Al rights reserved. April 62007 lec 8F.21

Manipulating Sums

n+1 n+2

o X-(n+#1)X" +nx
2 =Ty

Ibert R. Meyer, 2007. All rights reserved. April 6, 2007 lec 8F.23

£t Annuities
I pay you $100/year for 10 years,
if you will pay me $Y now.
I can't Jose if you pay me
100r + 100r2 + 100r3 + ---
= 100r(1+ r + - + r?)
= 100r(1-r19)/(1-r) = $853.02

+100r!0

lec 8F.20

Manipulating Sums

dx(z"(; j dx( 11_->><<n+1)

lec 8F.22

Team Problems

Problems
243

lec 8F.24
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Harmonic Series,
Integral Method

April 9,2006 lec 9M.1

Book Stacking

Book Stacking

How far out?

overhang

19,2006 lec 9M.3

Book Stacking

book center
of mass

One book

19,2006 lec 9M5

table
liL 9, 2006 lec 9M.2
Book Stacking
One book book center
of mass
| |
il9,2006 lec 9M.4
Book Stacking
book center
One book CiEess

il 9, 2006

lec 9M.6




n books

n books

l center
' of mass
liL 9, 2006 lec 9M.8
n books
1

center of mas
of the whole stack

19,2006 lec 9M.10

n

lec 9M.7

n books

need
center of mass ﬁ[:{;ggzzzziij
over table .7 |
19,2006 lec 9M.9
n+1 books

center of mass
of all n+1 books
at table edge

} center of mass of

‘ top n books at

edge of book n+1

[~
Aoverhang

lec 9M.11

Aoverhang ::i=

horizontal distance from
n-book to (n+1)-book
centers of mass

AAAAAAAAA lec 9M.12




A overhang

Lo

“n+l - 2(n+1)

lec 9M.13

center of mass
of all n+1 books

n+1 books

‘- { center of mass of
\ n \ top n books

n+1 y

-
1/2(n+1)

li 9. 2006 lec 9M.16

Book stacking summary

B, ::= overhang of n books
Bl = 1/2

: 1
Bn+1 - Bn + 2(”"'1)
1 11 1
B, = E(1+§+§+---+Hj

n*h Harmonic number

B, = H,/2

Estimate H,;:
Integral Method

1
x+1

= ol

lec 9M.19

dx < 1+1+1+. +—
2 3 n
n+11
—dx < H,
T X

April 9,2006 lec 9M.20




Book stacking

Now H, > © as n — =, so
overhang can be as big desired

lec 9M 21

Book stacking

for overhang 3, need B, >3
H,>6
In (n+1) > 6
so can do with n>[et-1]=
actually calculate H,:
227 books are enough.

How big a desert can the truck cross?

April 9,2006 lec 9M.24

April 9,2006 lec 9M.22

1 Tank of Gas
1 tank—

Dn =
max distance into the

desert using n tanks
of gas from the depot

lec 9M.26

D;::= max distance on 1 tank = 1

© Albert R Meyer, 2007. Al rights reserved. April 9,2006 lec 9M.25

lec 9M.27




n+1 Tanks of Gas

N

+ (1-x)

grow depot at x
to be n tanks;
continue from
x with n tank

method.

.t R, Meyer, 2007. Al rights reserved, April 92006 lec 9M.28

X—>
So have: ﬁizjxm

| (1-2x)n+ (1-x) = n
= 1
2n+1

Dn+1 = Dn +

2n+1

April 9,2006 lec 9M.30

depot at x

_____________

Then using n tank strategy
from position x, gives

Dn+1: Dn + X

April 9,2006 lec 9M.29

Team Problems

Problems
1-3

lec 9M .32

In(2n+1) -
2

Can cross any desert!

April 9,2006 lec 9M.31
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Stirling's formula,
Asymptotics

April 11, 2007 lec 9W.1

Closed form for nl
Factorial defines a product:

nl = 1x2x3x..-x(n-1)xn :Hi
i=1
Turn product into a sum taking logs:
In(n!) = In(1-2:3 - (n - 1)n)
= Inn1+ln2+--'+ln(n-1)+ln(n)

=Z|n(i)

lec SW.2

timd  Integral Method
InTegraI method to bound Zlm

::2; LG n®o \ =TT

In 4
In3

In 2

Inn

n2 nl n

lec SW.3

Integral Method on In(n!)

}In(x) dx < IZn)l In(i) < }In (x+1)dx

lec OW.4

Integral Method on In(nl)

Reminder:

Ilnxdxlen[gj

April 11, 2007 lec SW.5

Integral Method on In(nl!)

f In(x) dx < z In(i) < f In (x+1)dx
n ln(n/e) +1 <X ln(u) < (n+1) In((n+1)/e) +1

0 guess: gln(i)z(méjln(g)

April 11, 2007 lec SW.6




il y Integral Method

S0~

exponentiating:

nl~+n/e (2)

Stirling's Formula

A tighter approximation:

- (]

U Asymptotic Equivalence

pef. f(n) ~ g(n)
iff f(n) _
o g(n)

April 11,2007

“wi Little Oh: o)

Asymptotically smaller

Def. f(n) = olg(n))

i lim f(n )-O

= g(n)

Asymptotic Equivalence ~
Example: (n? + n) ~ n?
because

. 2
hmn—)oo n_—i; = hm[ + %]

= lim[1 + £]
= 1—|—lim%
=14+0=1

" m. Little Oh: of-)

n? = o(n?)
because

2

c n
hmn—>oo n3
1




m: Big Oh: O(-)
Asymptotic Order of Growth:

f(n) = O(g(n))

lir:"\fftR (%) < ©

a technicality -- ignore now

The Oh's

Lemma:

If f =o(g)or f ~ g,then f = O(g)
lim=0 orlim=1— lim<wx

April 11,2007 lec 9W.18

Big Oh: O(-)

Equivalent definition:

f(n) = O(g(n))

Ac,ng> 0 Vn > ng. |f(n)| < c-g(n)

Big Oh: O(-)

3n? = O(n?)
because

. 2
hmn—>oo 3n~

= 3<

Il rights reserved.

The Oh's

If f =o(g), then g= O(f)

|imf:o S lim2 -
g f
Big Oh: O()
f(x) = O(g(x))
2 blue stays cg(x )
below red
log from here on "oy
scale :
3
i

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn




Team Problems

Problems
142

lec 9W.23

Lemma:

lllllllllll lec 9W.25

Little Oh: o(-)

Lemma:|X® = o(xP) fora<b

2 - and b-a>0

lec OW.24

Lemma: In x = o(x%) for § > 0.
2

: Z
Proof: 102 <Z oo let Z = +/XE

April 11, 2007 lec 9W.28

Lemma: In x = o(x®) for 6> 0.

Proof: l <y

lec OW.26

TRl Little Oh: of)

Other proofs:
L'Hopital's Rule,
McLaurin Series
(see a Calculus text)

lec 9W.30




Theta: ©O()
Same Order of Growth:

f(n) = ©(g(n))
f(n)=0(g(n)) and g(n)=0O(f(n))

April 11, 2007 lec 9W.31

Big Oh Mistakes

- n
False Lemma: Zi =0(n)
i=1

Of course really:
n

Zize(nz)

Big Oh Mistakes

f = O(g) defines a relation "= O(")"
Don't write 0O(g) = f.
Otherwise: x = O(x), so O(x) = x.
But 2x = O(x), so

2x = O(x) = x,
therefore  2x = x.

Nonsense!

.| Big Oh Mistakes .
False Lemma: ) i=0(n)

false proof: =

0=0(1),1=0(1),2=0(),..
Soeachi=0(1). So

n

>i=0(1)+0(1)+---+O(1)

'@ Team Problems

Problems
344

=n- O(1) = O(n)
= =
:
right © Albert Meyer, 2007 All rights reserved. April 11,2007

lec 9W.3:
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Counting

Copyright © Albert R. Meyer, 2007. Al rightsreserved. April 13, 2007

Countingin Algorithms

* How many comparisons are
needed to sort n numbers?

* How many multiplications
to compute d" ?

Copyright © Albert R. Meyer, 2007. All rights reserved. April 13, 2007

Counting in Gambling

A pair of Jacksis

what fraction of poker hands?
(probability of apair of Jacks)

Copyright © Albert R. Meyer, 2007. Al rights reserved. April 13, 2007 lecoF.2

Sum Rule

Countingin Games

ﬁ » How many different configurations
for a Rubik’s cube?

i« How many different chess positions
after n moves?

é « How many weighings to find the
one counterfeit among 12 coins?

Copyright © Albert R. Meyer, 2007. Al rights reserved. Apil 13, 2007 lec OF.4|

If sets A and B are disjoint, then
AV B|=|Al+[B]

Copyright © Albert R. Meyer, 2007. Al righis resarved. April 13, 2007

The Sum Rule

¢ Class has 43 women, 54 men so
total enrollment = 43 + 54 = 97

* 26 lower case letters, 26 upper
case letters, and 10 digits, so

total characters = 26+26+10 = 62

Copyright © Albert R. Meyer, 2007. Al righis reserve. April 13, 2007 lec 97




@ TheProduct Rule
If there are 4 boysand 3
girls, there are possible

4x3=12

married couples.

Copyright © Albert R. Meyer, 2007. Al rightsreserved. April 13, 2007

Product Rule: Counting Strings

The number of length-4 strings
from aphabet B ::={0,1}

= |BxBxBxB|
=2:2-2-2=24

Copyright © Albert R. Meyer, 2007. All rights reserved. April 13, 2007

Example: Counting Passwor ds

* between 6 & 8 characterslong

o starts with aletter

* case sensitive

» other characters: digits or letters

Copyright © Albert R. Meyer, 2007. Al righis resarved. April 13, 2007

Product Rule
If JA|=mand |T| = n, then
|A x T| =mn.

A={ab,c d}, T={12 3}
AxT={ (al), (a2), (a3),
(b,1), (b,2), (b,3),
(c,1), (c,2), (c,3),
(d,1),(d,2),(d,3) }

Copyright © Albert R. Meyer, 2007. Al rightsreserved.

Product Rule: Counting Strings

The number of length-n strings
from an alphabet of sizemis

ne

Counting Passwords
L:={aba ,zABA ,Z}
D:={0,12 ,9}

P, ::=length n passwords




Bt Counting Passwords
L:={a,ba ,z,ABA ,Z}
D:={0,14 ,9}

LX(LUGD;X(LUD)X(LUD)X(LU D)x(LuD)
5

= Lx(LuD)

Copyright © Albert R. Meyer, 2007. Al rightsreserved.

Bt Counting Passwor ds
L:={a,ba ,z,ABA ,Z}

D:={0,1A ,9}
P, ::=length n passwords
=Lx(LUD)"

Copyright © Albert R. Meyer, 2007. Al rightsreserved. April 13, 2007

: Counting Passwords

Lx(LuD)"”|=|L-jLuD[”

. Counting Passwords
Pl =[R[+|R|+|R|

=52.62° +52-62° +52-62’
=186125210680448

~19-10"

Copyright © Albert R. Meyer, 2007. Al righis reserved. April 13, 2007 lecor8)

T Counting Passwor ds

The set of Passwords:
P=PUBR UR

T Mapping Rule: Bijections

If fisabijection from A to B,
then |A| = |B|

lec OF.21




Size of the Power Set

How many subsets of finite set A?
H(A) = the power set of A
= the set of al subsets of A
for A={a b, c},
H(A) ={J, {4}, {b},{c},
{ab}, {ac}, {bc}, {abc} }

Copyright © Albert R. Meyer, 2007. Al rightsreserved. Apiil 13, 2007 lecOF.22

= Counting Doughnut Selections
five kinds of doughnuts

select a dozen:
Q0 @mo  QOPORO QO QO

chocolate  |emonfilled sugar glazed  plan

A .= adll selections of a
dozen doughnuts

Copyright © Albert R. Meyer, 2007. All rights reserved. April 13, 2007 |ec OF.24

S Bijection: H (A) and Binary Strings
A {ay @85 8,8, .. &)
subset: {a, a5, d, .. ,a}
stringg 1 0 1 10 ... 1
abijection, so
|p-pi t+bi+n§:\ryF strings| = [H(A)|

2/7

Bijection from A to B

c chocolate, lemon, s sugar, ¢ glazed, = plain

maps to

0°10 10°10°10

ights reserved. Apiil 13, 2

Copyright © Albert R. Meyer, 2007. Al ri 007 lec 926

me Bit Stringswith four 1's
B::= 16-bit words with four 1's, e.g.

0011000000100100
00 1 1 0000001 001 0O

@ . QOpOpo Q0 Qo

chocolate  |gmon-filled sugar glazed  plain

Copyright © Albert R. Meyer, 2007. Al rights reserved. Apil 13, 2007 lecoF.25)

Team Problems

Problems
1.3
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Generalized
Counting Rules

lec 10W.1

Pigeonhole Principle

If more pigeons

than pigeonholes,

Jec 10W.3

Pigeonhole Principle

Mapping Rule:
If d injection A to B, then |A| < |B|.

If |A]>|B|, then
no injection from A to B.

07 Al rights reserved. April 18, 2007 lec 10W.2

Pigeonhole Principle

then some hole must have
> two pigeons!

Set of 5 cards:
must have > 2

with the same suit.

5 Card Draw
Scards G pEm mEE cmm o
(pigeons) FZi Fi A A B
AN\ S
4 suits | | I | | | |
(holes) o v S ¢




10 Card Draw

10 cards: how many have
the same suit?

7. Al rights reserved. April 18, 2007 lec 10W.7

10 Card Draw

# cards with same suit > 3

{g—‘ =3 cards with same suit

“ceiling,” means round up

1L © Albert R. Meyer. 2007. All right d April 18,2007 lec 10W.9

10 Card Draw

- -
LILIEIE] &
o vy & ¢

Cannot have < 3 cards in every hole.

lec 10W.8

Generalized Pigeonhole Principle
If N pigeons and h holes,
then some hole has at least

n :
— | pigeons.

lec 10W.10

Colored Graph Claim

A 6-node complete graph with edges
colored red or blue,
has either a red triangle or a blue triangle.

‘m:s Colored Graph Claim: proof
Vertex of degree 5 has >

3 red or 3 blue incident edges.

lec 10W.12




& Proof
Say 3 red edges; if 2 of 3 endpoints are

connected by red edge,
then a red triangle is formed.

(©)

7. Al rights reserved. April 18, 2007 lec 10W.13

B Generalized Product Rule

How many sequences of 5 students in 6.042?

S::=6.042 students, |S| _101
.......... l Sequen(}eg,o.fs{;lolsr) NO!

We want

‘sequences in S’with no repeats.‘

Copyright © Albert R Meyer. 2007. Al rights 4 April 18, 2007 lec 10W.15

Pr oof

Otherwise, all 3 endponts are
connected by blue edges

a blue triangle

lec 10W. 14

2% Generalized Product Rule
sequences in S with no repeats.
101 choices for 1%t student,
100 choices for 2nd student,
99 choices for 3rd student,
98 choices for 4th student,
97 choices for Sth student

|
50 101-100-99-98-97 = 101!
9!

lec 10W.16

"% Generalized Product Rule

Q a set of length-k sequences. If there are:

N, possible 1% elements in sequences,
n, possible 2" elements for each first entry,
n, possible 3™ elements for each 15t & 21,

Q|:n1.n2.r]3...nk

then,

Copyright © Albert R. Meyer, 2007. Al rights reserved. April 18, 2007 lec 10W.17

Division Rule

if function from A to B is k-to-1,

then
A=k[B

(generalizes the Bijection Rule)

lec 10W.20




Division Rule

#6.042 students =

#6.042 students' fingers
10

lec 10W.21

Counting Subsets

How many size 4 subsets of {1,2,...,13}?
Let A::= permutations of {1,2,...,13}

B::= size 4 subsets
map a;a,az;a,as...a;pa;; to

{aj.a).a5,8,)

Counting Subsets
a,a,a32,;35... 4, a,3 also maps to
{a1,8;,83, 8,

as does

a,3,a,a,a;:a,... 4
pdyd3zdypdizdy) 5 4!'9!-t0-1
4! 91

lec 10W.22

Jec 10W.23

Counting Subsets

Number of m element subsets

of an n element set is

ny n!
m) mi(n—m)!

Counting Subsets

131=|A|=419!/B|
So number of 4 element subsets is
13 13!
4] 491

lec 10W.24

Team Problems

Problems
1-3

lec 10W.26




Sum Rule
If sets A and B are disjoint, then
AV B[=|A +|B|
A B

What if A and B are not disjoint?

Copyright © Albert R. Me; yer, 2007. All rights reserve. April 18, 2007 lec 10W.27

Inclusion-Exclusion (2 Sets)

11: ANB

‘BN A

Copyright © Albert R. Meyer, 2007. Al rights reserved. April 18,2007 lec 10W.29

Inclusion-Exclusion (2 Sets)

For two arbitrary sets A and B
|AUB|=|A|+|B|-| AnB|

A B

lec 10W.28

Team Problem

Problem 4

Copyright © Albert R. Meyer, 2007. Al rights reserved. April 18, 2007 lec 10W.34

Inclusion-Exclusion (3 Sets)

JAuBuUC|=|A +|B|+|C|
—-|AnB|-|AnC|-|BNnC|
+]AnBn C|

lec 10W.32




Sum Rule
|A U B|=|A]+|B]

A B

for disjoint sets A, B

Inclusion-Exclusion

Sum Rule
|AUB|=?
A B

What if not disjoint?

|AUB|=|A[+|B[-[ANB]

A B

What if not disjoint?

Mathematics for Computer Science
MIT 6.0427/18.062F

Tricks with Counting
& Matching

Inclusion-Exclusion (3 Sets)
|AuBUC| =
|Al+IB|+|C|
- |AnB| - |ANC] - |BNC]|
+ |ANBNC|

A

The Magic Trick

- Students choose 5 cards
* Chiyoun reveals 4 of them
- Jessica announces 5t card




The Magic Trick

Let's do it!

Chiyoun's Choices

* Decide the order of the 4
cards: 4| = 24 orderings

-- but 48 cards remain
- Decide which 4 cards to list

Match hands with 4-Card lists

NEEEENES
+ —9
t;"-__ °

list must come x
from hand

5-card hands
(no order)

I3

¥iiw w | 4-card lists
s | (ordered)
. -

Which one to pick?

Match hands with 4-Card lists

§’< deg{ijxm =120
e
deg=52-4- %

Bl

Match hands with 4-Card lists

4-card lists
(ordered)

q FICEE
5-card hands {13 4%

* Ba4

v

(no order) * 2%
* LX)

4 ?
H
ol Jj ‘3.'[r
ICFER FEEED
FEEry E
1 ¥ i

kL
HEBE X2
a%a
T

: Ei' : L
e
EE 5:‘: How can we ensure

consistency?

Match hands with 4-Card lists

The graph is
degree-constrained

so there is a match that

Jessica and Chiyoun can use

—even works for bigger decks




A Memorable Matching?

[52j =2,598,960 hands to
5 match to lists

How will Jessica & Chiyoun
learn them?

Magic Trick Revealed (IT)

How does Jessica figure out
the value of the hidden card?

Aha! Look at the order
of the other 3 cards!

Magic Trick Revealed (T)

Among 5 cards chosen:

at least 2 have the same suit
(Pigeonhole Principle)

Chiyoun lists one of them 15

Aha! The first card has the
same suit as the hidden card/

~—

Magic Trick Revealed (IT)

Possible orders for the
remaining 3 cards:

{ SML, SLM, MSL, MLS,LSM,LMS }

Magic Trick Revealed (II)
Fix ordering of the deck
Ad < 28 < 3 < < Koo <
Ae <24 <3¢ < <Ko
AV <29 <3v<  <Kv<
Ad <24 <38 < <Ko

Magic Trick Revealed (IT)

Wait! Only have 6 lists of the
remaining 3 cards, but
12 possible hidden cards
of the known suit!

Of two cards with the same suit,

choosing which to reveal can give 1

more bit of information!
Aha!




"5 Clockwise Distance

The smaller clockwise distance
between 2 card values is at most 6:

Reveal the
other card

same suit

o E"é" o R
First: | §8,| Hidden: | &g
g n 4

Offset = 1 = SML: D ]

Magic Trick Revealed (Finally)

 The first card determines the
hidden suit (4 v ¢ &) .

- Hidden value (A ... K)
= first-card value + offset (< 6).

+ Offset given by order of
remaining 3 cards:
SML=1,SLM =2, MSL = 3,
MLS = 4,LSM =5,LMS = 6.

i@y  Trick can't work with 4 cards hands
so at least

270,225
132,600

hands map to the same list
- Jessica can't tell whichl!

Trick can't work with 4-card hands

Students

Chiyoun can
can pick i reveal
(52}270,725 521135 600
4 491 T
possible 4-card ipossible 3-card

hands ilists

Team Problems

Problem 1
(&2 & 3)




Mathematics for Computer Science

Binomial Theorem,
Combinatorial Proof

Expression for c ?

(1+X) =
Co+CX+CX%+...

Expression for c ?

(1+X)

= (1+X)(1 + X)(1+X)(1 + X)...(1 + X)
the X coeff, ¢, is humber of
terms where exactly X's were

selected.
C

Polynomials Express
Choices & Outcomes

({.3®)(b+1)=
s - O ""afn +§

Products of Sum = Sums of Products

Expression for c ?
(1+X)
=1+ X)A+X)(1+X)(1+X)..1+X)
multiplying gives 27 product terms:
11.-.1 + X11X--- X1 + IXX---IX1 +--4 XX- - X

a ferm corresponds to selecting 1 or X
from each of the factors.

+ DO
1w

g2 The Binomial Formula

(1+X) =

(o) (e xelopeenel Je el




« IO
The Binomial Formula i8°d The Binomial Formula

oom -

(1+X)0 = 1 (X+Y)" =
(1+X)t = 1+1X n\.. n n-1 N\ aun-2
(1+X)? = 1+2X+1X? (O]y +[1jxy +[2)X -

(1+X)? = 1+3X + 32+ 1X3 N .
n- n
(IeX) = 1+ 4X+ 6X2+ 4X3+ 1X4 "'{k)x Y +...+[n]X

The Binomial Formula . nomials

What is the coefficient of
EMSTY

- - in the expansion of
=2 XY E+M+S+T+Y)p?

o]

Multinomials ' B Applying the BOOKKEEPER rule

What is the coefficient of What is the coefficient of
EMS TY EMS TY

in the expansion of in the expansion of
(E+M+S+T+Y) ? (E+M+S+T+Y) ?
The number of ways to
rearrange the letters in

the word
SYSTEMS




gedd  Multinomial Coefficients

oom -

7 . 7!
1,1,3,1,1)

cedd  Multinomial Coefficients

oom -

What is the coefficient of
BA N
in the expansion of
(B+A+N) ?
The number of ways to
rearrange the letters in

the word
BANANA

c=d  Multinomial Coefficients

oo -

What is the coefficient of
xrixf"zxré Xr'k
in the expansuon of

(X X+ Xzt A X ) ?

n
N5, 0

“1010301 1

oeg8  Multinomial Coefficients

oom -

n n!

nG...h ) nel.nl

cedd  Multinomial Coefficients

oom -

What is the coefficient of
BA N
in the expansion of
(B+A+N) ?

6
1,3,2

Multinomial Coefficients
Binomial a special case:
n n
lk,n-k




zagd The Multinomial Formula T More next week

oom -

about how

(><1+X2+"'+ X, )n polynomials

-y n XXX encode counting
£ P 1) £ questions!

N f
n=n

+ DNEE
ia] e

g8 5 Pascal's Identity A Proof
n n-1 n-1 Consider subsets of {1,...,n}

= +
k k k -1 # size k subsets =

# size k subsets that contain a

Algebraic Proof : routine, using 2 Gl K SIS e

(” e N _n(n-l)l_rl["-lj
k}”km»ky‘mk4ym-mfk k-1

Proof 1. Proof

Consider subsets of {1, ..., n} Consider subsets of {1, ..., n}

q n-1 n-1 q n-1 n-1

= ar = +
k k k-1 k k k-1
—— — —




Proof

Consider subsets of {1, ..., n}
n h-1) (n-1

k) |k ) lk-1
— R

nol withal

Proof

Consider subsets of { ...,

2
n 2n

n
o | n

n
n-i

# sizo — _—
sizei # sizei # sizen-i
subsets subsets subsets




.

#sizei # size n-i
subsets subsets

So LHS = # size n subsets

of { ... }
by the Sum Rule

Team Problems

Problems
1-4

Proof

Therefore
LHS = # size n subsets = RHS
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Generating Functions
for Recurrences

* A mature boy/girl| rabbit pair

The Rabbit Population | i

w,::= # newborn pairs after n months
r.:i= # reproducing pairs after n months

r‘1 = 1
r‘n = r‘n-1 + Wn-l
W, = Pn1 SO

= +
r'n r'n-l r'n—Z

The Rabbit Population § /

reproduces every month.

* Rabbits mature after one month.

w,::= # newborn pairs after n months
rn::= # reproducing pairs after n months
+ Start with a newborn pair: wg=1

r‘o:O

Generating Funchon for Rabbits

————————

R(X) = r‘o+r'1X+r'2X2'+r'3X3+
-XR(X) =-roX-rix2-r,x3 --
-x2R(x) = i—roxz}r1x3—---

The Rabbit Population |

r'n - r'n—l + r'n-Z

It was Fibonacci who
was studying rabbit
population growth

Generating Function for Rabbits

————————

R(x) = ro*ryX+r,x? .+r'3x3+
-XR(X) =-rox-rix@:- r'2x3'
"XZR(X) = "r'oxz"'r'lx3 "~

0 0




@ Generating Function for Rabbits
R(X)::: ro+riX

-XR(x) =-rgx

-X2R(x) =

R(x)-xR(x)-x?R(x) =
r'o+r'1X'r'ox =X

Closed Form for r,

i

R(x) =

1—x— 22
T

(1 —azx)(1 - Bx)
o, B are 1/roots of 1-x-x2

92007 by Albert R. Meyer. All righs reserved. April 27.2007.

Generating Function for Rabbits

R(z) = z

1 — 2 — 22

Now find closed form
forr,:

Al rights reserved. April 27, 2007.

@ Closed Form for r,
from quadratic formula:

1+5
2

1-+5
2

o =

Closed Form for r,

i
R(x) =
e ~ 50
a
C 1-—azx T 1— [z
S

rn = ac't + b3"

Closed Form for r,

:13 = a(l1 — Bx) +b(1 — ax)

x=1/B: 1/B = b(1-a/B)
b=1/(B-a)
likewise a=1/(a-B)




Closed Form for r,

rn = aa’ + b3"
_ 1 (14+5\"
-7 (757)
1 (1—+5)\"
5 (=27)

Towers of Hanoi

e

Post #1 Post #2 Post #3

Move ,(n)::= Move, 5(n-1);
big disk 1—2;
Move; ,(n-1)

Closed Form for r,

S {((1 + \/g)/Q)”J
" V5
(1.61)" = o(rp)

o((1.62)")

n

Hanoi Generating Function

S(X):i= St Sxb SpxE+ Sox3e-.
-2XS(X)=1-25%-28; X% -25,X3- - -
-x/(1-X)= -1x- 1-x2,

0 0 0

Towers of Hanoi

1:=# steps by Move,; ,(n)
Sn - an-l + 1
Sp=0

“x: Hanoi Generating Function
S(x) =s5,=0

-2x5(x)

-x/(1-x)

A

$(®) = 4 -5 = 20)




x| Hanoi Generating Function

S@) = a i 29
__a n b

1—=x 1—2x

2 Hanoi Generating Function

1 1
S(z) = _
@) =15 "1-2

“.m Hanoi Generating Function

;n=a(1—2:c)+b(1—m)

forx=1: 1=a(-1), so
a=-1
x=1/2: 1/2=b(1/2), so
b=1

"%, Team Problems

Problems
1&2
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Introduction to
Probability Theory

EEE Counting in Probability

52
Ou‘rcomes:[ J5—car'd handsf
Sk

5
Event{ ;|- **; * | hands w/2Jacks.

Pr{2J} ::= [4] SJ ~0.04

“ml  Counting in Probability
What is the
probability of getting

exactly two jacks
in a poker hand?

[5)

"% Probability: 1st Idea
* set of basic
experimental outcomes,
* subset of outcomes considered a
noteworthy event,
* probability{event}
__# outcomes in event
"~ # possible outcomes

“a  The Monty Hall Game

Applied Probability:
Let's Make A Deal
(1970's TV Game Show)

Copyright ©2007, Albert R Meyer. All rights April 30,2007

A

Mon’ry Hall Webpages

http://www.letsmakeadeal.com

Copyright ©2007, Albert R Meyer. Al rights April 30, 2007




Analyzing Monty Hall

Marilyn Vos Savant explained Game
in magazine -- bombarded by letters
(even from PhD's) debating:

1) sticking & switching equally good
2) switching better

Analyzing Monty Hall

Determine the outcomes.
-- a tree of possible
steps can help

Monty Hall SW%TCH Strategy
. L
3

SWITCH
Wins: 6

Lose: 6

frEE g7 g7

Monty Hall STICK Strategy

STICK
Win by sticking Lose: 6
iff
Lose by switching. | Wins: 6

Analyzing Monty Hall
Sticking and Switching have
same # winning outcomes.

False conclusion:

Contestant has same i
probability of winning:| 2

Analyzing Monty Hall

What's wrong?
Let's look at the outcome
tree more carefully.




. Monty Hall SWITCH Strategy
nie L 1/18

1239 | 1/18
w 1/9

Probability: 2nd Idea

Outcomes may have
differing probabilities!
Not always uniform.

Monty Hall SWITCH Strategy

Simplify tree by 172 Y%

symmetry no

Win
2/3
Contestant Carol opens 1st

picks goat  possible door

1/1 yes

ight ©2007 Albert

Finding Probability
Intuition is important but dangerous.
Stick with 4-part method:

1. Identify outcomes (tree helps)
2. Identify event (winning)

3. Assign outcome probabilities
4. Compute event probabilities

Probability Spaces
1) Sample space, S, whose
elements are called outcomes.
2)Probability function,
Pr: P(S)—[0,1]
(a) Pr{S} =1,
(b) the Sum Rule:

(Disjoint) Sum Rule
If A, A, are disjoint,
Pr{A; UA,}
— PF{A]} + Pr{ﬂz}




Sum Rule (Infinite)

For pairwise disjoint Ay,Ay,...

Pr{AgUA;U---} =

Pr{Ag}+ Pr{A}+---

Inclusion-Exclusion

Pr{A J B}
= Pr{A} 4+ Pr{B}
— Pr{A N 3B}

The Union Bound

Pr{A U B!}

< PriA}+ Pr{B}

Team Problems
Problems
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Conditional Probability
& Independence

Copyright ©2007, Albert R. Meyer. All righs reserved

May 2, 2007 lec12W 1

Conditional Probability: Dice

Pr

Pr{one | odd)} =1/3 y,,
s 1/6
Pr{not one | odd} =2/3 13
1/2

Pr{not one | not odd} =1/1

Rolled odd Rolled 1

Copyright ©2007, Albert R. Meyer. Al rights reserved May 2, 2007

Product Rule
Pr{ANB} =
Pr{A | B}Pr{B}

Copyright ©2007, Albert R. Meyer. All rights reserved May 2, 2007 lec12W5

Conditional Probability: Dice

Pr{die rolled 1} = 1/|{1,2,3,4,5,6}|
= 1/6.
"Knowledge" changes probabilities:
Pr{die rolled 1 knowing
that die rolled odd number}
=1/|{1,3,5}|
=1/3.

Copyright ©2007, Albert R. Meyer. All rights reserved May 2, 2007 e

Conditional Probability

Pr{A | B} is the prob.
of event A, given that
event B has occurred

Pr{A | B}:= %{;}B}

Conditional Probability: Monty Hall

Pr{prize at 1 | Goat at 2} = 1/2
Really!




'*“_ Conditional Probability: Monty Hall

Pr{prize at 1 | Goat at 2} = 1/2

Outcomes: Really!
(Prize Door, Picked Door, Carol door)

[Goat at 2] =
{1,1,2),11,3),(1,2,3),(1,3,2)
(3,3.1),(3,3,2).(3.1,2),(3,2,1)}

'*“_ Conditional Probability: Monty Hall

Pr{prize at 1 | Goat at 2} =1/2

Really!  Outcomes:
(Prize Door, Picked Door, Carol door)

[Goat at 2] =
{11,2),(1,1,3),(1,2,3),(1,3,2)
(3,3,1),(3,3,2),(3.1,2),(3,2,1)}

"F_ Conditional Probability: Monty Hall

Pr{prize at 1 | Carol opens 2} = 1/2

Outcomes:
(Prize Door, Picked Door, Carol door)

[Carol opens 2] =
{1,1,2),(1,3,2),
(3I312)l(31112)}

"F_ Conditional Probability: Monty Hall

Pr{prize at 1| Carol opens 2} = 1/2

Outcomes:
(Prize Door, Picked Door, Carol door)

[Carol opens 2] =
{11,2),1,3,2),
(3,3,2).(3.1,2)}

Conditional Probability: Monty Hall

This suggests the contestant may as
well stick, since the probability is 1/2
given what he knows when he chooses.
But wait: contestant knows more than
door opened by Carol -- also knows:
which door he chose himself!

& Conditional Probability: Monty Hall

Pr{prize at 1 | picked 1 &
Carol opens 2} = 1/3

[picked 1 & Carol opens 2] =
{(1,1,2),(3,1,2)}




nf“_ Conditional Probability: Monty Hall

Pr{prize at 1| picked 1 &
Carol opens 2} = 1/3

[picked 1 & Carol opens 2] =
{(1.1,2),(31,2)}

—_— ——
Pr=1/18 Pr=1/9

1/18 1
T/1811/9 — 3

Law of Total Probability

S
=y i
> SO
Bi \B:/ B

Be Law of Total Probability
A = (BinA)U(B,nA)YU(B;NA)

Pr{A} |= Pr{B,nA}+Pr{B,nA}
+ Pr{B:nA}
= Pr{A|B;}-Pr{B,} +
P"'{A|Bz}‘Pr‘{Bz} a
Pr{A|Bs}-Pr{B}

Team Problems

":‘.'Problems

142

Definitions of Independence

Definition 1:
Events A and B are independent iff
Pr{A} = Pr{A | B}.
Definition 2:
Events A and B are independent iff
Pr{A} - Pr{B} = Pr{A N B}.

Definitions of Independence

Equivalent:

Pr{A} = Pr{A | B} iff

Pr{ANB}
Pr{B}

Pr{A} - Pr{B} = Pr{A N B}.

Pr{A} = iff




T4 Definitions of Independence

Note: need Pr{B} z O for Def. 1.
Def. 2 works even if O:

Pr{A}-Pr{B} = Pr{ANB}

The Birthday “Paradox”

Puzzle: n students in a room.
Probability that two have the
same birthday (month, day)
for n=2, 10, 23, 30, 107?

The Birthday “Paradox”

"'-'"So with 10 students have
10/365 ~ 1/30 chance 2 have
same b'day?

Not really, it's more like 1/10.

* With 30 students, maybe
3-(30/365) ~ 1/3 chance?

No, it's more than 2 to 1!

The Birthday “Paradox”

Let's stop guessing and figure it
out. Let's assume 6.042
students are equally likely to
have each of 365 possible
birthdays.

The Birthday “Paradox”

Choose 2 students at random.
Pr{2 students have same b'day}

1
365

The Birthday “Paradox”

Pr{2 students b'days differ}

L
365




'*“_ The Birthday “Paradox”
Choose another 2 students
independently of first two.
Pr{neither pair has same birthday}
= Pr{lst pair's b'days differ and
2nd pair's b'days differ}
= Pr{1st pair's b'days differ} x
Pr{2nd pair's b'days differ}

The Birthday “Paradox”

Pr{both pairs' b'days differ}

2

The Birthday “Paradox”

Choose another 253 pairs of students
independently of first pairs.

Pr{no pair has same birthday}

) 365) 2

The Birthday “Paradox”

But with n = 23 students,
have (23

2
of students.

j= 253 pairs

The Birthday “Paradox”

.So, with 23 students
Pr{no pair has same b'day}

ot
2

The Birthday “Paradox”

-Wi’rh 140 students
Pr{no pair has same b'day}

140 9730
) (I_Lj( ) (LL)
365 365




The Birthday “Paradox”

With 140 students

Pr{no pair has same b'day}
%)

14k ) ()

365 1

<
~ 300,000,000,000

lec 12w 37

The Birthday “Paradox”

In fact, in a term with 6.042
enrollment of 140, we found

17 pairs with same birthday
(and 2 triples)

The Birthday “Paradox”

Wait! Whether one pair of
students has the same birthday is
not independent of other pairs:

if (Joy, Tim) have same b'day, and
(Tim, Mike) do too, then
Pr{(Joy,Mike) same b'day} = 1.

The Birthday “Paradox”

..and when #students <« # b'days
(for example, 23 <« 365), our
bound is tight, because pairs
w/same b'day not likely to overlap.

®al  The Birthday “"Paradox”

But this dependence actually
makes same b'day pairs more
likely, so our value for

Pr{no matches}
is a valid ypper bound.

Team Problems

P o b I ems

344
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Introduction to
Random Variables

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.1

Guess the Bigger Number

Try it out!

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.3

Guess the Bigger Number

Team 1:

- Write different integers between O
and 7 on two pieces of paper
- Show to Team 2 face down
Team 2:
- Expose one paper and look at number
- Either stick or switch to other number

Team 2 wins if ends with larger number

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.2

Strategy for Team 2

Choose papers with equal probability.
If exposed number is "small” then
switch; otherwise stick.
"small" means ¢ threshold Z.
Z is random integer, 0<Z < 7.

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.4

i Analysis of Team 2 Strategy

Case (low ¢ Z < high):

Team 2 wins in this case, so
Pr{Team 2 wins} = 1

and Pr{this case} > 7

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.5

e Analysis of Team 2 Strategy

Case (high < Z):
Team 2 will switch, so
wins iff low card gets exposed.

Pr{Team 2 wins} = >

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.6




B Analysis of Team 2 Strategy

Case (Z < low):
Team 2 will stick, so
wins iff high card gets exposed.

Pr{Team 2 wins} = >

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.7

Analysis of Team 2 Strategy
So 1/7 of time, sure win.
Rest of time, 50/50 win, so
Pr{Team 2 wins} 2

11+61_4>1
7 7 2 772

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.8

Analysis of Team 2 Strategy

Does not matter
what Team 1 doesl!

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.9

Team Problem

Problem 1

How can Team 1 guarantee
Pr{Team 2 wins} < -

whatever Team 2 does?

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F 11

Random Variables

Informally: an RV is a number
produced by a random process:

* number of larger card

* number of smaller card
* number of exposed card
* threshold variable Z

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F 12

What is a Random Variable?

Formally,

R:o =R

Sampl'e space (usu:"ally)

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.13




Intro to Random Variables

Example: Flip three fair coins.
C ::= number of heads (Count).
o {1 if all Match,

O otherwise.

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.14

Intro to Random Variables
Specify events using values of variables.
* [C = 1] is the event "exactly 1 head”

Pr{C=1}=3/8
‘Pr{C>1}=7/8
* Pr{C-M > 0} = Pr{M>0 and C>0}
= Pr{all heads} = 1/8

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.15

Independent Variables
Random variables R,S

are independent iff
[R=a], [S=Db]
are independent events
for all numbers a, b.

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F .16

Independent Variables

Alternative version 1: R,S independent iff
Pr{fR=a| S=b} = Pr{R =a}.
Alternative version 2:

Pr{fR=aand S=b}=

Pr{R = a} - Pr{S = b}.

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.17

Independent Variables

Tell me:
Are Cand M
independent?

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F 18

n; Independent Variables
H, ::= indicator for Head on coin 1
H, ::= indicator for Head on coin 2
Pu=H,®H, (mod 2 sum).

any 2 of them are independent:
Pr{P=0 | H,=a} = 1/2 = Pr{P=0}, etc.

any 2 one,

so the 3 fogether are not really

independent.

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F 19




Independent Variables
Pairwise Independence:
Pr{A;=q;and Aj=a;} =
Pr{A=a} - Pr{A;=a;}
Mutual Independence:
Pr{A;=a; and A,=a, and - A,=q,} =
Pr{A;=a;} - Pr{A,=a,}*"Pr{A,=a,}.

alli#j.

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.20

Independent Variables

k-wise Independence:

any k of the variables are
mutually independent

(so 2-wise = pairwise)

May 4, 2007 Albert R. Meyer, copyright 2007

lec 12F.21

Independent Variables

Pairwise Independence sufficient
for major applications (in later
lecture).

Good to know, since pairwise holds
in important cases where mutual
does not.

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.22

Team Problems

Problems
24&3

May 4, 2007 Albert R. Meyer, copyright 2007

lec 12F.30
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Binomial Distribution
& Sampling

Independent Variables
Random variables R,S
are independent iff
[R=a], [S=b]
are independent events
for all numbers a, b.

Mutually Independent RV's

Mutual Independence of
random vars A; A, ..., A,

Pr{A;=a; and A,=a, and ... A,=a,} =
Pr{A;=a;} - Pr{A,=a,}"Pr{A,=qa,}.

What is a Random Variable?

Formally,
R:5 =+ R
Samplia space (USL::h”y)

Independent Variables

Alternative version:
Pr{R=aand S = b} =
Pr{R = a} - Pr{S = b}.

Independent Variables

k-wise Independence:

any k of the variables are
mutually independent

(2-wise = pairwise)




Independent Variables

Pairwise Independence
sufficient for major
applications (in later lecture)
which is useful since pairwise
holds in important cases where
mutual does not.

Indicator Variables

Indicator variable for event A:
_ {1 if A occurs,

710 ifA occurs.

Density & Distribution

The Probability Density Function
of random variable R,

PDF,(a) ::= Pr{R=a}
Cumulative Distribution Function of R,

CDFy(a) ::= Pr{R < a}

Distributions

Example:
H; ::= indicator for a head on
the ith coin flip.
Coin may be brased.

pr{H=1}=p=#1/2

Binomial Distribution

Hyp::= # heads in n mutually
independent flips of a p-biased
coin.

Hn,p = H1+H2+"'+Hn

Probability space: the 2"
sequences of n H's and T's.

pp{Q} = p#H’s inQ. (l-p) #T's

cmac Binomial Distribution

pr{k Heads} =
(#k head seqs)
- pr{seq with k H's}

POF, (k)= (Upku )y




Polling & Sampling

Eshmm‘e % contaminated fish in
Charles River? _,

Procedure: catch n fish, test each,
use %contaminated in catch as

estimate of Y%contaminated in
whole river

Tosses ~
p ::= fraction contaminated in river
Fish tested: coin toss with bias p.
Catching n fish: tossing n coins

A ::= fraction contaminated
in the sample of 100

Sampling Questions ’

Catch 100 fish; what is

probability that estimate
is within 10% of actual%?

B Polling using Binomial PDF

= #"heads"/100
within 10% of p?
Pr{|A - p|< 0.1} =
PP{|H100'P- IOOPIS 10}

Polling using Binomial PDF

How do we bound this probability
when we don't know p?

Lemma: Pr'{IHn,p - 100p| <10}
is min for p = 1/2

'*“_ Compute the exact probability
Pr{lA-p|<0.1} >
Pr{‘Hloo 12~ 50‘ = 10}

100
. z( jz > 0.96

h=40

ight © 2007, Albert R. Meyer, Allrights reserved




Confidence

We can be 96 % confident
that our estimated fraction
is with 0.1 of the actual
fraction of contaminated
fish in the whole river.

H—_ Sample size for better estimate

Suppose we want an estimate
of the fraction that will be

4% (& 0.04) accurate

for 95% of the time?

Similar calculation implies need
to sample 589 fish.

"‘__ Confidence — not Probable Reality

Now suppose we sample 589 fish
and discover 47 are contaminated.
So we estimate p is 47/589.

It's fempting to say
“fheprobability that _----""

-

p=47/5891 0.04
is-aft least 95%"  TT--_
--Technically not correct!

Confidence

The possible outcomes of our
sampling procedure is a random
variable. We can say that

“the probability that our sample
fraction will be within + 0.04 of
the true fraction is at least 95%"

Confidence

p is the actual fraction of
bad fish in the river.

p is unknown,
but not a random variablel!

Confidence

For simplicity we say that

p = 47/589+ 0.04 at the
95% confidence level




Binomial Approximation

Numerical approximations
for PDF,;_ (oc n),
CDFH (oc n),

in Notes 13

Distribution of Heads

Binomial Approximation

Messy formulas, but easy to
compute.

Exact answers for n more than a
few 1000 are impossible to
compute

(requires arithmetic on million-
digit numbers)

Ibert R_Meyer. Al rights reserved
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Team Problems

Problems
142

May 9, 2007 lec 13w.1

. ) e
Carnival Dice m .0
() L J

Choose a nhumber from 1 to 6,
then roll 3 fair dice:
win $1 if any die matches num
lose $1 if no match. Example:
choose number 2, roll 2,4,2,
win $1

May 9, 2007 lec 13w.4

Mathematics for Computer Science
MIT 6.0427/18.062F

Great
Expectations

May 9, 2007 lec 13w.2

. , S
Carnival Dice m \

Clearly NOT fair:
pr{win} = 1-(5/6)3< 0.43 < 1/2

May 9, 2007 lec 13w.6

. . e
Carnival Dice m .0
() @

Is this a fair game?

May 9, 2007 lec 13w.5

Choose a humber from 1 to 6,

then roll 3 fair dice:

win $1 for each match

lose $1 if no match. Example:
choose number 2, roll 2,4,2,

win $2

May 9, 2007 lec 13w.7.




Carnival Dice, II

Is this now a fair game?

May 9, 2007 lec 13w.8

Carnival Dice, II

/N
~——
w
=

Pr{0 matches} =

Pr{1 match} = (?)( )
Pr{2 matches} = (3)

7NN
[o)\[S2 <) (&2 B[S}
N—— ——

N
N

A~ N -7 N

Pr{3 matches} = (3)

Carnival Dice, IT

Average win:
(53-—1)+3-52-1+3-5-2+3
63

17
= —57g & 8 cents
NOT fairl

May 9, 2007 lec 13w.10

Carnival Dice, IT

You can “"expect” to lose 8 cents
per play.

Notice that you never actually
lose 8 cents on any single play.
Rather, this is what you expect
to lose on average.

,, Expectation
The expected value of
a random variable D is:
the average value of D
--with values weighted by
their probabilities.

May 9, 2007 lec 13w.13

i rights reserved. May 9, 2007 lec 13w.12

Expectation

expected value also called
mean value,
mean, or expectation

May 9, 2007 lec 13w.14




5, Expectation
The expected value of
a random variable D is:

E [D] :::Zv -Pr{D =v}

May 9, 2007 lec 13w.15

Sum or Integral?

Pr{D =v}:=

May 9, 2007 lec 13w.17.

Mean Time to Failure

Biased coin with pr{Head} = p.
Flip until a Head comes up.
Expected #flips?

May 9, 2007 lec 13w.19

Sum or Integral?

In the most general probability spaces,
the sum would have to be an integral.
We can get away with sums because
we assume the sample space is
countable:

S = {wg,w1,---,Wn,y---}

May 9, 2007 lec 13w.16

Expectation

So
ED]:=) v-Pr{D=v}
= ) D(w)-Pr{w}
wes

May 9,2007 lec 13w.18

Mean Time to Failure

pr{lst Head on flip 1} =p,
pr{lst Head on flip 2} = (1-p)p,
pr{lst Head on flip 3} = (1-p)?p,

pr{lst Head on flip n} = (1-p)*!p.

May 9, 2007 lec 13w.20




Mean Time to Failure
E [# flips till 1st Head]

Mean Time to Failure
E [# flips till 1st Head]

1
P ((1 1 —p))Z)

]
P

5

Mean Time to Failure &4 ,3

application: Space station Mir
say had 1/150,000 chance of
exploding in any given hour.
After how may hours did

we expect it to explode?
150,000 hours ~ 17 years

May 9, 2007

Team Problems

Problems
3-5

May 9, 2007
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Deviation from
the Mean

Don't expect the Expectation!

Toss 101 fair coins.
E[#Heads] = 50.5

Don't expect the Expectation!

Pr{exactly 50.5 Heads}= Q
Pr{exactly 50 Heads} < 1/13
Pr{50.5 +1 Heads} <«1/7

Don't expect the Expectation!

Toss 1001 fair coins.
E[#Heads] = 500.5
Pr{#H = 500} <1/39
Pr{#H = 500.5+1} < 1/19

smaller

Within a % of the mean?

of 1001
Toss 1001 fair coins......

= Pr{#H = 500 + 10}
~ 0.49
not so bad

. R. Meyer, 2007._All rights reserved. 14,2007

co Giving Meaning to the "Mean”

Let p ::= E[R]

* What is Pr{R far from p}?
Pr{IR -u|>x}

- R's average deviation?

E[ IR-ul 12




Two Dice with Same Mean
Fair Die /ﬁ":’,
* E[Dl] =35 N 4
Loaded Die throwing only 1 & 6:
- E[D,] = (1+6)/2 = 3.5 also!

Two Dice with Same Mean
deviation from the mean
T

I 1
Fair 1.5 on average
Prd =} LTl L L9
Loaded 2.5
— 0

Dice have Different Deviations

Fair Die:
E[ |D1—H| ] =15
Loaded Die:

E[ID;—nl] = 25

' Giving Meaning to the “"Mean”
The mean alone is not a good
predictor of R's behavior. We
generally need more about its
distribution, especially probable
deviation from its mean.

Example: IQ
IQ measure was constructed so
that

average IQ = 100.
What fraction of the people
can possibly have an IQ > 300?

IQ Higher than 300?

Fraction f with IQ 2 300
adds 2 300f fo average,
so 100 = avg IQ > 300f:

f < 100/300 =1/3




IQ Higher than 300?

At most 1/3 of people
have IQ > 300

Pr{IQ > 300} < %

IQ Higher than x?

Besides mean = 100,

we used only one fact about the
distribution of IQ:

IQ is always nonnegative

IQ Higher than x?
In general,

Pr{IQ > x} < -0V

2K Markov Bound
If R is nonnegative, then

Pr{R > x} < E[R]
X

for x> 0.

Markov Bound

*Weak
-Obvious
*Useful anyway

IQ 2 300, again
Suppose we are given that IQ
is always > 40?

Get a better bound on fraction
f with IQ 2 300, by considering
IQ—40

since this is now > 0.




IQ 2> 300, again

f contributes 300f to the
average of IQ—40, so
60 = E[IQ—40] > 300f

f<60/300=1/5

Better bound from Markov by
shifting R to have O as minimum

Chebyshev Bound

Var[R]

Pr{|R-p[=x} < 2

Variance and Standard Deviation

0, :=+/Var[R]

PDF,

Q{M77TIs

Improving the Markov Bound
Pr{|R-p| > x}
= Pr{(R-p)? > x?}

by Markov:
< FIR- K]
............. NG

ed.  May 14, 2007

Variance of an Indicator

I an indicator with E[T]=p:
Var[I]:=E | (I — p)z}

—E|1?—2p +p2}

Standard Deviation

2

Pr{|R-p|> x}s%

R probably not many o's from
furtherthan 0 Pre¢l

20 Pr <1/4
30 Pr <1/9
40 Pr <1/16

Il rights reserved. _May 14, 2007




Calculating Variance

Var [aR + b] = a? Var [R]
Var [R] = E [RZ} _E2[R]

Calculating Variance

(simple proofs applying linearity
of expectation to the def of variance)

Var[Ri +Ry+--- 4+ Rnl =
Var [R{] + Var [Ry] + - - - + Var [Ry]

providing R;,R;,..,R, are
pairwise independent

Calculating Variance

Pairwise Independent Additivity

similar proof using linearity of
expectation & def of variance

Team Problems

Problems
1-5




Problems
1&2

Copyright ©2007, Albert R. Meyer. All rights reserved May 16,2007 lec 14W1
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Deviation of
Repeated Trials

Copyright ©2007, Albert R. Meyer. All rights reserved May 16,2007 lec 14W 2

Jacob D. Bernoulli (1659 - 1705)

Even the stupidest man —by some instinct of
nature per se and by no previous instruction
(this is truly amazing) —knows for sure that
the more observations ...that are taken, the
less the danger will be of straying from the

mark.
---Ars Conjectandi (The Art of Guessing), 1713*

*taken fror stead \& Snell,
hty

tp: dartmouth _aids/books ¢ /_book/book html
Introduction to Probability, American Mathematical Society, p. 310.

Copyright ©2007, Albert R Meyer_ Al rights reserved May 16,2007 lec 14w 3}

Repeated Trials

Random variable R with mean n
n independent observations of R

R1,"', Rn

Jacob D. Bernoulli (1659 - 1705)

It certainly remains to be inquired whether
after the number of observations has been
increased, the probability...of obtaining the
true ratio...finally exceeds any given
degree of certainty; or whether the problem
has, so to speak, its own asymptote---that
is, whether some degree of certainty is
given which one can never exceed.

Copyright ©2007, Albert R_Meyer. All rights reserved May 16, 2007 lec 14w 4]

Copyright ©2007, Albert R_Meyer._All rights reserved May 16, 2007 lec14W5 ]

Repeated Trials

take average:
o Ry+--+Ry
Ap =12
close to " true ratio’ with prob. ?
PriAn —ul <xj?

ascloseas x>0

Copyright ©2007, Albert R_Meyer._All rights reserved May 16, 2007 lec 14W6 |




Repeated Trials
PriAn —ul <xj

Even " stupidest man' knows this prob.
gets bigger as n gets bigger

—but how big?
Does it "exceed... any given degree of
certainty"?

That is, does it approach 1?

Weak Law of Large Numbers

lim Pr{A -y < x}=1

N—a0
YES

lim Pr{|A, -y >x}=0

N—>c0

Copyright ©2007, Albert R_Meyer_All rights reserved May 16, 2007 lec 14W.8

Jacob D. Bernoulli (1659 - 1705)

Therefore, this is the problem which |
now set forth and make known after |
have pondered over it for twenty years.
Both its novelty and its very great
usefulness, coupled with its just as
great difficulty, can exceed in

weight and value all the remaining
chapters of this thesis.

ight ©2007, Albert R_Meyer. All rights reserved May 16,2007 lec 14w ol

Weak Law of Large Numbers

lim Pr{A, -y > x}=0

N—o0

Will be an easy Corollary of Chebyshev
and properties of variance.

Jacob D. Bernoulli (1659 - 1705)

Copyright ©2007, Albert R_Meyer. All rights reserved May 16, 2007 lec 14w 10|

ight ©2007, Albert R_Meyer._ Al rights reserved May 16, 2007 lec 14W.11]

Repeated Trials

Ri+..-+R
EMM=E[1+n+'q
_ ERyI+ -+ E[Ry]
- n
_ =




Repeated Trials
by Chebyshev:

Pr{A, -1 > x} <———=

so need only show
Var[A,]— O

ight ©2007 Albert R Meyer. All rights reserved May 16,2007 lec 14W 13

Var'[A,‘]

Al . Repeated Trials
Var [An]

Repeated Trials

what is Var[A,] ?
let o2 ::= Var[R]

Copyright ©2007, Albert R. Meyer. All rights reserved May 16,2007 lec 14W 14

Analysis of the Proof

proof only used
* Ry,..,R, have same finite mean, pn
+ and finite variance, c?2
+ and variances add:
Var [R; + - - - + Rp]
= Var[Rq] + --- + Var [R]
which follows from pairwise independence

=Var[(Ry + -+ Rp) /n]
— (Var[Ry] + - - - 4 Var [Rn]) /n?
_n_GZ_G_Z
IR QED
[S—p—]
—0as n—

Pairwise Independent Sampling

Let R;,...,R, be pairwise independent
random vars with the same finite
mean, u, and variance, c2. Let

An = (Ry+ -+ Rp)/n. Then

Pri{lAn —ul > x} < % (g)z

‘i Pairwise Independent Sampling
The punchline:

we how know how big a sample is

needed to estimate the mean of

any™* random variable to within

any™ desired folerance and to

any* degree of confidence.

* Var[rand. var] < o, tolerance > O,
confidence < 100%




Problems
344

Copyright ©2007, Albert R. Meyer. All rights reserved May 16,2007 lec 14W 19
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