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Mathematics for Computer Science
6.042J/18.062J

WELCOME!
Prof. Albert R. Meyer

http://theory.lcs.mit.edu/classes/6.042

“Proof, Proofs & More Proofs”

lec 1W.2Feb. 7, 2006Copyright © Albert R. Meyer, 2007 All rights reserved.

Quick Summary

1. Fundamental Concepts of Discrete 
Mathematics.

2. Discrete Mathematical Structures

(like trees or lists)

3. Discrete Probability Theory.
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Vocabulary

Quickie:
What does “discrete” mean?

(≠ “discreet”)
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Online Tutor Problems 1

Due Friday, 6pm:
Part 1.1: Course Registration

Due Monday, 6pm:
Part 1.2: Diagnostic Questionnaire
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Reading Assignment

Reading: Notes for week 1;
Week 2 also available
(see course calendar)

Email comments on week 1&2 Notes:
due next Wednesday, 11am
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Course Organization

• Web site: All course handouts.
• Problem Sets: up to 30% of   

grade (see course info).
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• Studio-Lecture Style:
mix of mini-lectures &
team problem-solving;
preparation & attendance
required (25% of grade)

Course Organization
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Active Lectures

Say “hello” to your 
neighbors  -- you’ll be 
working with them .
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Active Lectures

Quickie question:
Where was your neighbor 
born?
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Getting started: 
Pythagorean theorem 

2 2 2a b c+ =
Familiar?
Obvious?

cb

a

Yes!
No!
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A Cool Proof

(Many many proofs: http://www.cut-the-knot.com)

cb

a

Rearrange into: (i)   a c×c square, and then
(ii) an a×a & a b×b square

c c×c c×
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A Cool Proof

c

cc

a b

c

b-
a
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A Cool Proof

cb

a

c c×c c×

b-a

b-a
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A Cool Proof

b
a

a

b

ab-a
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A False Proof:
Getting Rich By Diagram

1110

11

1
1

1
1

1
1

1
1

10
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1
1

Profit!

10

10

11

1
1

1
1

11

A False Proof:
Getting Rich By Diagram
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The bug:
are not right triangles!

The top and bottom line of the “rectangle”
is not straight!

Getting Rich

10 1

1
1 1

1
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Another False Proof
Theorem: 
Every polynomial,
has two roots over C.
Proof (by calculation):  

cbxax ++2

a
acbbr

2
42

1
−+−

=
a

acbbr
2

42

2
−−−

=

The polynomial

and

has roots

2 ,ax bx c+ +
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Another False proof

Counter-examples: 

The bug: divide by zero error.
The fix: assume a ≠ 0.

20 1 1x x+ + has 1 root.
100 2 ++ xx has 0 roots.
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Another false proof

Counter-example:

The bug: r1 = r2
The fix: need hypothesis D ≠ 0 where

1x2 + 0x + 0 has 1 root.

2:: 4D b ac= −
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Another false proof

Ambiguity when  D < 0:
x2 + 1  has roots i, -i.

Which is r1, which is r2?

lec 1W.22Feb. 7, 2006Copyright © Albert R. Meyer, 2007 All rights reserved.

1 = -1 ?

The ambiguity causes problems:

( )21 1 ( 1)( 1) 1 1 1 1= = − − = − − = − = −

Moral: “mindless” calculation not safe.
1. Be sure rules are properly applied.
2. Calculation is a risky substitute for    

understanding. 
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½ = −½ (multiply by ½)
2 = 1          (add      )

Consequences of  1= −1

“Since I and the Pope are clearly 2,   
we conclude that
I and the Pope are 1.
That is, I am the Pope.”

-- Bertrand Russell

2
3
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Consequences of  1= −1

Bertrand Russell (1872 - 1970)
(Picture source: http://www.users.drew.edu/~jlenz/brs.html)



5

lec 1W.25Feb. 7, 2006Copyright © Albert R. Meyer, 2007 All rights reserved.

In-class Problems

PROBLEMS 1 & 2
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Truth & Proof
Math vs. Reality

Propositional Logic
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Team Problem

Surprise
Problem 1

lec 1F.3February 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Math

4, 7, , 1iπ +

2( ) :: 2f x x= +
ba ≤

T, F
”albert meyer”

Sets
Numbers
Booleans
Strings
Functions
Relations
Data structures
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Family

Not Math
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Not Math

Cats
lec 1F.6February 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Not Math

Solar System
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Not Math: Cogito ergo sum

René Descartes'
MEDITATIONS

on First Philosophy in which the Existence of God and
the Distinction Between Mind and Body are Demonstrated.

(Picture source: http://www.btinternet.com/~glynhughes/squashed/descartes.htm)
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Evidence vs. Proof

for all n

Claim:
p(n) is a prime number

Let  p(n) ::=  n2 + n + 41.

that are nonnegative integers
∀ n ∈ .

lec 1F.9February 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Only Prime Numbers?
Evidence: 41)0( =p

43)1( =p

47)2( =p

53)3( =p

461)20( =p

(39) 1601p =

prime

prime

prime

prime

prime     looking good!

prime    enough already!

lec 1F.10February 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Only Prime Numbers?

(40) 1681p = is not prime.

is a prime number
This is not a coincidence.
The hypothesis must be true.

41::)( 2 ++= nnnp .

But no!

∀ n ∈ .

lec 1F.11February 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Only Prime Numbers?

Quickie:
Prove that 1681 is not prime.

Proof: 1681 = p(40)
= 402 + 40 + 41
= 402 + 2⋅40 + 1
= (40 + 1)2

lec 1F.14February 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Further Extreme Example

False. But smallest counterexample

has more than 1000 digits!

has no solution in positive integers

333 )(313 zyx =+⋅
Hypothesis:
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P = NP?
• Overwhelming evidence for  ≠

based on centuries of experience
• Modern cryptography (like RSA) 

depends on  ≠
• Nearly all experts believe  ≠
• But mathematically unproven − the

most important open problem in CS
lec 1F.19February 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Propositional (Boolean) Logic
Proposition is either True or False

422 =+Examples:

Non-examples: Wake up!
Where am I?

True

1 1 4× = False
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Operators
AND::=∧

OR::=∨

NOT::=¬

IMPLIES::=→
IFF::=↔ (if and only if)

(if …then)

lec 1F.21February 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

English to Math

“If Greeks are Human, and Humans are 
Mortal, then Greeks are Mortal.”

(( ) ( )) ( )G H H M G M→ ∧ → → →

lec 1F.22February 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

English to Math

Greeks carry Swords or Javelins

( ) ( )G S G J→ ∨ →

True even if a Greek carries both

disjunction

lec 1F.23February 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

English to Math

Greeks carry Bronze or Flint swords

( ) ( )G B G F→ ⊕ →

P ⊕ Q means “P or Q but not both”

exclusive-or
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Math vs. English

Parent: If you don’t clean your room,   
you can’t watch a DVD.”

D

C

YES!
lec 1F.25February 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Math vs. English

Parent: If you don’t clean your room, 
you can’t watch a DVD.”

D

C

that is

lec 1F.26February 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Math vs. English

Mathematician:
“If a function is not continuous,

then it is not differentiable.”

C

D

lec 1F.27February 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Math vs. English

Mathematician:
“If a function is not continuous,

then it is not differentiable.”

C

D
NO!
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Deductions
From: P implies Q, Q implies R
Conclude: P implies R

( ), ( )P Q Q R
P R

→ →
→

Antecedents

Conclusion

lec 1F.29February 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Sound Rules

Definition: A rule is sound if the 
conclusion is true whenever all
antecedents are true.
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A Sound Deduction

,P Q P
Q

→

Modus ponens

lec 1F.31February 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

A Sound Deduction

1 1
Russell is the Pope

= −

lec 1F.32February 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

An Unsound Deduction

P Q
P Q
→
→

lec 1F.33February 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

An Unsound Deduction

Smart → MIT-student

Yes!not Smart → not MIT-student

No!

lec 1F.34February 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Team Problem

Problems 2 & 3
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Propositional Logic, II

Mathematics for Computer Science
MIT 6.042J/18.062J

Proof by Cases
Proof by Contradiction

Feb. 12, 2007 Copyright © Albert R. Meyer, 2007. All rights reserved. lec 2M.2

Proof by Truth Tables
DeMorgan’s Law

F
T
T
T

¬ ( P ∨ Q)

FF
TF
FT
TT
QP

T

F

F

F
P Q∧

T
F
F
F

¬ ( P ∨ Q) is equivalent to

T

T

F

F
P

T

F

T

F
Q

P Q∧

Feb. 12, 2007 Copyright © Albert R. Meyer, 2007. All rights reserved. lec 2M.3

Proof by Deductions

A student is trying to prove that propositions P, Q, 
and R are all true.  She proceeds as follows. 
First, she proves three facts:

• P implies Q
• Q implies R
• R implies P.

Then she concludes,
``Thus  P, Q, and R are obviously all true.''

Feb. 12, 2007 Copyright © Albert R. Meyer, 2007. All rights reserved. lec 2M.4

Proposed Deduction Rule

From: P implies Q, Q implies R, R implies P
Conclude: P, Q, and R are true.

( ), ( ), ( )P Q Q R R P
P Q R

→ → →
∧ ∧

Feb. 12, 2007 Copyright © Albert R. Meyer, 2007. All rights reserved. lec 2M.5

Sound Rule?

Conclusion true whenever all antecedents true.

P∧Q∧R

1442443
Conclusion

144424443
Antecedents

R P→Q R→P Q→

Antecedents
Feb. 12, 2007 Copyright © Albert R. Meyer, 2007. All rights reserved. lec 2M.6

Sound Rule?
Conclusion true whenever all antecedents true.

P∧Q∧R

1442443
Conclusion

144424443
Antecedents

FFF
TFF
FTF
TTF
FFT
TFT
FTT
TTT

RQP R P→Q R→P Q→
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144424443
Antecedents

Sound Rule?
Conclusion true whenever all antecedents true.

FFF
TFF
FTF
TTF
FFT
TFT
FTT
TTT

RQP

T

TTT
FTT
TFT
FTT
TTF
TTF

FT
TTT

1442443
Conclusion

R P→Q R→P Q→ sound?

F
F
F
F
F
F
F
T

P∧Q∧R

Feb. 12, 2007 Copyright © Albert R. Meyer, 2007. All rights reserved. lec 2M.8

FFF
TFF
FTF
TTF
FFT
TFT
FTT
TTT

RQP

OK
OK
OK
OK
OK
OK

sound?

F
F
F
F
F
F
F
T

T

TTT
FTT
TFT
FTT
TTF
TTF

FT
TTT

Sound Rule?

Conclusion true whenever all antecedents true.

R P→Q R→P Q→ P∧Q∧R

Feb. 12, 2007 Copyright © Albert R. Meyer, 2007. All rights reserved. lec 2M.9

FFF
TFF
FTF
TTF
FFT
TFT
FTT
TTT

RQP

OK
OK
OK
OK
OK
OK
OK

sound?

F
F
F
F
F
F
F
T

T

TTT
FTT
TFT
FTT
TTF
TTF

FT
TTT

Conclusion true whenever all antecedents true.

Sound Rule?

R P→Q R→P Q→ P∧Q∧R

Feb. 12, 2007 Copyright © Albert R. Meyer, 2007. All rights reserved. lec 2M.10

FFF
TFF
FTF
TTF
FFT
TFT
FTT
TTT

RQP

OK
OK
OK
OK
OK
OK
OK

sound?

F
F
F
F
F
F
F
T

T

TTT
FTT
TFT
FTT
TTF
TTF

FT
TTT

Conclusion true whenever all antecedents true.

Sound Rule?

P∧Q∧RR P→Q R→P Q→

Feb. 12, 2007 Copyright © Albert R. Meyer, 2007. All rights reserved. lec 2M.11

FFF
TFF
FTF
TTF
FFT
TFT
FTT
TTT

RQP

NOT OK!
OK
OK
OK
OK
OK
OK
OK

sound?

F
F
F
F
F
F
F
T

T

TTT
FTT
TFT
FTT
TTF
TTF

FT
TTT

Sound Rule?

Conclusion true whenever all antecedents true.

R P→Q R→P Q→ P∧Q∧R

Feb. 12, 2007 Copyright © Albert R. Meyer, 2007. All rights reserved. lec 2M.12

Reasoning by Cases

Quicker proof of 
unsoundness than
from truth tables
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Quicker by Cases

Case 1: P is true.  Now, if antecedents are true,
then Q must be true (because P implies Q).
Then R must be true (because Q implies R).
So the conclusion                        is true.

This case is OK.
P Q R∧ ∧

, ,P Q Q R R P
P Q R

→ → →
∧ ∧

Feb. 12, 2007 Copyright © Albert R. Meyer, 2007. All rights reserved. lec 2M.14

Quicker by Cases

Case 2: P is false.  To make antecedents true,
R must be false (because R implies P), so
Q must be false (because Q implies R).

This assignment does make the antecedents true,
but the conclusion                        is (very) false.

This case is not OK.
P Q R∧ ∧

, ,P Q Q R R P
P Q R

→ → →
∧ ∧

Feb. 12, 2007 Copyright © Albert R. Meyer, 2007. All rights reserved. lec 2M.15

Goldbach Conjecture

Every even integer greater than 2 is the 
sum of two primes.

224 +=
336 +=
358 +=

Evidence:

20 ?=
M

13 7+
Feb. 12, 2007 Copyright © Albert R. Meyer, 2007. All rights reserved. lec 2M.16

Goldbach Conjecture

True for all even numbers with
up to 13 digits!

It remains an OPEN problem:
no counterexample, no proof.

UNTIL NOW!…

(Rosen, p.182)

Feb. 12, 2007 Copyright © Albert R. Meyer, 2007. All rights reserved. lec 2M.17

Goldbach Conjecture

The answer is on my desk!
(Proof by Cases)

Feb. 12, 2007 Copyright © Albert R. Meyer, 2007. All rights reserved. lec 2M.18

Team Problem

Problem 1
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Proof by Contradiction

FP
P
→

Feb. 12, 2007 Copyright © Albert R. Meyer, 2007. All rights reserved. lec 2M.20

Proof by Contradiction

• Suppose was rational.
• Choose m, n integers without common        

prime factors (always possible) such that   

• Show that m & n are both even,
a contradiction!

2

n
m

=2

Theorem: is irrational.2
Proof (by contradiction): 

Feb. 12, 2007 Copyright © Albert R. Meyer, 2007. All rights reserved. lec 2M.21

Proof by Contradiction

lm 2=so can assume
2 24m l=

22 2ln =

so n is even.

n
m

=2

mn =2

222 mn =

so  m is even.

2 22 4n l=

Theorem: is irrational.2
Proof (by contradiction): 

Feb. 12, 2007 Copyright © Albert R. Meyer, 2007. All rights reserved. lec 2M.22

Quickie

Proof assumes that
If m2 is even, then m is even.

Why!

Feb. 12, 2007 Copyright © Albert R. Meyer, 2007. All rights reserved. lec 2M.23

Team Problem

Problems 2 & 3
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Predicate Logic
Quantifiers ∀, ∃

lec 2W.3February 14, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Predicates

Predicates are
Propositions with variables

“is defined to be”

x + 2 = y
Example:

P(x,y) ::=

lec 2W.4February 14, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Predicates

x = 1 and y = 3:  P(1,3) is true

x = 1 and y = 4:  P(1,4) is false
¬P(1,4) is true

[ ]::( , ) 2P x y x y= + =

lec 2W.5February 14, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Quantifiers

For ALL x

There EXISTS some y

∀x
∃y

lec 2W.6February 14, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Quantifiers

x, y range over Domain of Discourse

.x y x y∀ ∃ <

+

Domain  Truth value

positive integers Z+
Trueintegers Z
True

negative integers Z- False
negative reals R- True

lec 2W.7February 14, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

∀∃ versus ∃∀

For every attack, I have a defense:
against MYDOOM,      use Defender
against ILOVEYOU, use Norton
against BABLAS,      use Zonealarm …

∀∃ is expensive!
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∃∀

I have one defense good 
against every attack.
Example: d is MITviruscan,
protects against all viruses

lec 2W.9February 14, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

So ∃∀ is better here

That’s what we want!

I have one defense good 
against every attack.

lec 2W.10February 14, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Poet:

“All that glitters is not gold.”

Math vs. English

G

: gold glitters like gold

. ( ) ( )x x xG Au∀ →¬

Au

No!

lec 2W.11February 14, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Poet:

“All that glitters is not gold.”

Math vs. English

necessarily

∧

(Poetic license)

[ ]. ( ) ( )x xG xAu¬ ∀ →

lec 2W.12February 14, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Math vs. English

Poet: “There is a season for every
purpose under heaven”

PurposeSeas . is foon r ∈∈s p s p∀∃
So some season, say Spring, is good for
all Purposes?
NO, Spring is no good for snow shoveling

lec 2W.13February 14, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Poet: “There is a season for every
purpose under heaven”

Poetic license again:

PurposeSeas . is foon r ∈∈s p s p∀∃

Poet’s meaning flips the quantiers
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Poetic license again:
Poet: “There is a season for every

purpose under heaven”

for snow shoveling, Winter is good
for planting,             Spring is good
for leaf watching,        Fall is good

etc. 

SeasoPu n.rpos  i  fore s  ∈ ∈∃∀p s s p

lec 2W.15February 14, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Team Problems

Problems
1 & 2

lec 2W.16February 14, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Propositional Validity

True no matter what the
truth values of A and B are

( ) ( )A B B A→ ∨ →

lec 2W.17February 14, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Predicate Calculus Validity

True no matter what
• the Domain is,
• or the predicates are.

∀z [Q(z) ∧ P(z)]
→ [∀x.Q(x) ∧ ∀y.P(y)]

lec 2W.18February 14, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Not Valid

Proof:  Give countermodel, where
∀z [Q(z) ∨ P(z)] is true,

but ∀x.Q(x) ∨ ∀y.P(y) is false.
Namely, let domain     {e, π},

Q(z)     [z = e],
P(z)     [z = π].

∀z [Q(z) ∨ P(z)]
→ [∀x.Q(x) ∨ ∀y.P(y)]

::=
::=

::=
lec 2W.19February 14, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Proof strategy:  We assume
∀z [Q(z) ∧ P(z)]
to prove 

∀x.Q(x) ∧∀y.P(y)

∀z [Q(z) ∧ P(z)]
→ [∀x.Q(x) ∧ ∀y.P(y)]

Predicate Calculus Validity
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( )
. ( )

A R c
A x R x

→
→∀

providing c does not occur in A

Universal Generalization (UG)

lec 2W.21February 14, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Proof:  Assume ∀z [Q(z)∧P(z)].
So Q(z)∧P(z) holds for all z in the domain.
Now let c be some domain element. So
Q(c)∧P(c) holds, and therefore Q(c) by itself holds.
But c could have been any element of the domain.
So we conclude ∀x.Q(x).
We conclude ∀y.P(y) similarly. Therefore,

∀x.Q(x) ∧ ∀y.P(y) QED.

Validities
∀z [Q(z)∧P(z)] → [∀x.Q(x) ∧ ∀y.P(y)]

(by UG)

lec 2W.22February 14, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

∀x[P(x)∨A] ↔ [∀x.P(x)]∨A
More Validities

providing x does not occur in A

[¬∀x.P(x)] ↔ [∃x.¬P(x)]
(version of DeMorgan)

lec 2W.23February 14, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Team Problems

Problems
4 & 3
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Sets & Functions

lec 2F.2February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

What is a Set?

Informally: 
A set is a collection of mathematical 
objects, with the collection treated as
a single mathematical object.
(This is circular of course:

what’s a collection?)

lec 2F.3February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Some sets
real numbers,         R
complex numbers, C
integers,                 Z
empty set,             ∅
set of all subsets of integers, pow(Z)
the power set

lec 2F.4February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Some sets

{7, “Albert R.”, π/2, Τ}

A set with 4 elements: two numbers, 
a string, and a Boolean value.
Same as

{“Albert R.”,7,Τ, π/2}

-- order doesn’t matter

lec 2F.5February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Membership

x A∈ x is an element of A

π/2 ∈{7, “Albert R.”,π/2, Τ}

π/3 ∉{7, “Albert R.”,π/2, Τ}

14/2 ∈{7, “Albert R.”,π/2, Τ}

lec 2F.6February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Synonyms for Membership

x A∈ x is a member of A

x is in A

7∈ Z 2/3 ∉ Z Z ∈ pow(R)

Examples:



2

lec 2F.7February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

In or Not In

An element is in or not in a set:
{7, π/2, 7} is same as {7, π/2}

(No notion of being in the set 
more than once)

lec 2F.8February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Containment

A B⊆ A is a subset of B
A is contained in B

Every element of A is also an 
element of B.
Z⊆R,   R⊆C,  {3}⊆{5,7,3}

∅⊆ every set,    A ⊆ A

lec 2F.9February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Defining Sets

){ }(|x A P x∈

The set of elements, x, in A

such that P(x) is true.

lec 2F.10February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Defining Sets

The set of even integers:
{ }|  is evenn n∈ �Z

lec 2F.11February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

New sets from old

:: { | ( ) ( )}A B x x A x B∨= ∈ ∈∪
union:

:: { | }A B x x A x B= ∈ ∈∩ ∧
intersection:

difference:
:: { | ( ) ( )}A B x x A x B∧∈ ∉=−

lec 2F.17February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

( ) :: { |o }p w A S S A= ⊆

{ } { } { } { }{ }pow( , ) , , , ,a b a b a b= ∅

power set
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Quickie

What is Pow(∅)?
Ans: {∅}

What is Pow(Pow(∅))?
Ans: {{∅}, ∅}

lec 2F.19February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Russell’s Paradox

{ }Let :: Sets |W S S S= ∈ ∉

 ↔∈ ∉S W S S
Let S be W and reach a 
contradiction:

 ↔∈ ∉W W W W

so

lec 2F.20February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Russell’s Paradox

The fallacy:  W is not a set!
No set is a member of itself, so 
W = the collection of all sets,    

which is not a set!

lec 2F.21February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Team Problems

Problems
1 & 3

lec 2F.25February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Mathematics for Computer Science
MIT 6.042J/18.062J

Functions

lec 2F.26February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

function, f, from set A to set B
associates an element, 
with an element 
Example: f is the string-length
function:  f(“aabd”) = 4

:f A B→

( )f a B∈
.a A∈
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The domain of f is the set
of strings.
The codomain of f is the set
of nonegative integers

f : Strings → N

lec 2F.28February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

domain(g) = all pairs of reals
codomain(g)= all reals
But g is partial: 

not defined on pairs (r,r)

:g × →R R R

1( , ) ::g x y
x y

=
−

lec 2F.30February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Total functions

is total iff
every element of A is
assigned a B-value by f

:f A B→

lec 2F.31February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

A B

exactly 1 arrow out

Total functions

f( ) =

lec 2F.33February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

is a surjection
iff every element of B is

f of something

:f A B→

Surjections

lec 2F.34February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

A B

f( ) = ≥1 arrow in

Surjection



5

lec 2F.36February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Mapping Rule

surjection A→B implies
|A|  ≥ |B| 

lec 2F.37February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

is an injection
iff every element of B is

f of at most 1 thing

:f A B→

Injections

lec 2F.38February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

A B

≤ 1 arrow in
f( ) =

Injections

lec 2F.40February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Mapping Rule

injection A→B implies
|A|  ≤ |B|

total

lec 2F.42February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

is a bijection iff
it is all those good things:

total, onto, and 1-1

Bijections

:f A B→

lec 2F.43February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

A B

exactly one arrow out exactly one arrow in

Bijections

f( ) =
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Mapping Rule

bijection A→B implies
|A|  = |B| 

lec 2F.46February 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Team Problems

Problem 2
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Mathematics for Computer Science
MIT 6.042J/18.062J

Partial Orders &
Scheduling

lec3t.2February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Binary relation R from A to B

1a

2a

3a

1b

2b

3b

A B
R

domain codomain

graph(R)

lec3t.3February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Binary relation R from A to B

1a

2a

3a

1b

2b

3b

A B
R

domain codomain

maybe not
a function

lec3t.5February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

6.042

6.003

6.012

ClassesStudents

“is taking”

Example 

lec3t.6February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

1+2

Sqrt(9)

50/10 - 3

Example

3

5

2

Arithmetic
Expressions values

“evaluates to”

lec3t.7February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Example 

Boston

Providence

New York

Boston

Providence

New York

Cities Cities

“direct bus 
connection”
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Example 

Boston

Providence

New York

Cities
“direct bus 
connection”

lec3t.9February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Some Course 6 Prerequisites

18.01 → 6.042
18.01 → 18.02
18.01 → 18.03

8.01 → 8.02
6.001 → 6.034
6.042 → 6.046

18.03,   8.02 → 6.002
6.001, 6.002 → 6.004 
6.001, 6.002 → 6.003

6.004 → 6.033
6.033 → 6.857
6.046 → 6.840

lec3t.10February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Subject Prerequisites

subject c is a direct 
prerequisite for subject d

c→d
lec3t.11February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Direct Prerequisites

18.01 → 6.042  → 6.046  → 6.840

lec3t.12February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Indirect Prerequisites

18.01 is indirect prereq. of 6.840

18.01 → 6.042  → 6.046  → 6.840

(→ is transitive closure of→)

lec3t.13February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

"Freshman subjects"
18.01 6.0018.01

d is a Freshman subject iff

<nothing> → d
d is minimal

subjects with no prereqs:
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lec3t.15February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

minimum means "smallest"
-- a prereq. for every subject
no minimum in this example

minimal not minimum

lec3t.16February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

• 18.01 → 6.042
• 18.01 → 18.02
• 18.01 → 18.03
• 8.01 → 8.02
• 6.001 → 6.034
• 6.042 → 6.046

Constructing a Term Schedule

• 18.03,   8.02 → 6.002
• 6.001, 6.002 → 6.004 
• 6.001, 6.002 → 6.003
• 6.004 → 6.033
• 6.033 → 6.857
• 6.046 → 6.840

identify minimal elements

lec3t.17February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

18.01 6.0018.01

Constructing a Term Schedule

start schedule with them
lec3t.18February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

• 18.01 → 6.042
• 18.01 → 18.02
• 18.01 → 18.03
• 8.01 → 8.02
• 6.001 → 6.034
• 6.042 → 6.046

• 18.03,   8.02 → 6.002
• 6.001, 6.002 → 6.004 
• 6.001, 6.002 → 6.003
• 6.004 → 6.033
• 6.033 → 6.857
• 6.046 → 6.840

remove minimal elements

Constructing a Term Schedule

lec3t.20February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

• 6.042
• 18.02
• 18.03
• 8.02
• 6.034
• 6.042 → 6.046

• 18.03,   8.02 → 6.002
• 6.002 → 6.004 
• 6.002 → 6.003
• 6.004 → 6.033
• 6.033 → 6.857
• 6.046 → 6.840

identify new minimal elements

Constructing a Term Schedule

lec3t.21February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

18.02

18.01

18.03

6.001

6.034

8.01

8.026.042

Constructing a Term Schedule

schedule them next



4
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18.02

18.01

6.046

18.03

6.001

6.034

8.01

8.02

6.002

6.042

Constructing a Term Schedule

continue in this way…
lec3t.23February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Complete Term Schedule

18.02

18.01

6.046

6.840

18.03

6.001

6.034

6.003

8.01

8.02

6.002

6.004

6.033

6.857

6.042

lec3t.24February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Antichains

Set of subjects with no prereqs
among them

-- can be taken in any order.
(said to be incomparable)

lec3t.25February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Some Antichains

18.02

18.01

6.046

6.840

18.03

6.001

6.034

6.003

8.01

8.02

6.002

6.004

6.033

6.857

6.042

may have other 
antichains

lec3t.26February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Chains

Set of successive prereqs
-- must be taken in order.

(subjects said to be comparable)

lec3t.27February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Some Chains

18.02

18.01

6.046

6.840

18.03

6.001

6.034

6.003

8.01

8.02

6.002

6.004

6.033

6.857

6.042
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Maximum Length Chain

18.02

18.01

6.046

6.840

18.03

6.001

6.034

6.003

8.01

8.02

6.002

6.004

6.033

6.857

6.042

lec3t.29February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

How many terms to graduate?

• 6 terms are necessary to 
complete the curriculum 

• and sufficient (if you can take 
unlimited subjects per term...)

lec3t.30February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Sufficient…

18.02

18.01

6.046

6.840

18.03

6.001

6.034

6.003

8.01

8.02

6.002

6.004

6.033

6.857

6.042

lec3t.31February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Parallel Processing Time
min parallel time = max chain size

required # processors
(term load in this case)

≤ max antichain size

5 in this case

lec3t.33February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

But can reduce the term load

18.02

18.01

6.046

6.840

18.03

6.001

6.034

6.003

8.01

8.02

6.002

6.004

6.033

6.857

6.042

lec3t.34February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Only 4 Subjects per Term

18.01

6.046

6.840

18.03

6.001

6.034

6.003

8.01

8.02

6.002

6.004

6.033

6.857

6.042

18.02
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lec3t.36February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

6.046

18.01 8.01 6.001

3 Subjects per Term Possible

18.02

6.840

18.03 6.034

6.003

8.02

6.002

6.004

6.042

6.033

6.857
lec3t.38February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

A 3-course term is necessary
• 15 subjects
• max chain size = 6
• size of some block must be

≥ ⎡15/6⎤ = 3.
∴ to finish in 6 terms, must 
take ≥3 subjects some term

lec3t.39February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Parallel Task Scheduling

Theorem: If the longest chain has 
size t, then the subjects can be 
partitioned into

t successive antichains,
with all prerequisites of an antichain
in earlier ones.

lec3t.40February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Dilworth’s Lemma

Prereq’s among n subjects has 
• a chain of size ≥ t, or
•or an antichain of size ≥

for all 1 ≤ t ≤ n.

n
t

⎡ ⎤
⎢ ⎥⎢ ⎥

lec3t.44February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

A Leisurely Schedule

Graduate taking only 1 subject/term?
Sure, 

6.04618.01 8.016.001 18.02

6.840

18.03 6.034

6.003

8.02 6.002

6.004

6.042

6.0336.857

a topological sort
lec3t.45February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Team Problem

Problem 1
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Partial Orders

lec3t.47February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

If subjects c, d are mutual prereq’s:

c → d, and d → c
then no one can graduate!

Comm. on Curricula ensures:
if c → d, then ¬ (d → c)

Subject Prerequisites

lec3t.48February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Asymmetry
Binary relation, R, on set A,
is asymmetric iff

aRb implies ¬(bRa)
for all a,b ∈ A

lec3t.49February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Transitivity
Binary relation, R, on set A,
is transitive:

aRb and bRc implies aRc
for all a,b,c ∈ A.

lec3t.50February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Strict Partial Orders
Binary relation, R, on set A,
is a strict partial order iff
•it is transitive and 
•asymmetric

lec3t.53February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Some Partial Orders
• ≤ on the Integers
• < on the Reals
• ⊆ on Sets  (subset)
• ⊂ on Sets  (proper subset)

⎫⎪
⎬
⎪⎭

total
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lec3t.54February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Total Order on A

Partial Order, R, such that

aRb or  bRa
for all a≠b ∈A

lec3t.55February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Partial Orders
•y << x  (much less than)

(say, y + 2 ≤ x)
¬ [3 << 4] and

incomparable

¬ [4 << 3]

lec3t.56February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Representing Partial Orders

The subset relation,                       
⊆

on sets is the canonical 
example of weak partial order

lec3t.57February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

{1}

(Proper) Subset Relation

{1,2}{1,3} {1,5}

{1,3,5,15} {1,2,5,10}

{1,2,3,5,10,15,30}

lec3t.58February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Partial Order: divides

a divides b iff
ka = b  for some k∈N

lec3t.59February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

1

Partial Order: divides

2

10

3 5

15

30
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Divides & Subset

same "shape"

lec3t.61February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

1 {1}

Subsets from Divides

2 {1,2}
3 {1,3}

5 {1,5}

15 {1,3,5,15}
10 {1,2,5,10}

30 {1,2,3,5,10,15,30}

lec3t.66February 20, 2007Copyright © Albert R. Meyer  2007 All rights reserved.

Team Problems

Problems 2−4
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Induction

lec 3w.2February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

Example of Induction
Suppose we have a property (say color) 
of the nonnegative integers:

0, 1, 2, 3, 4, 5, …
If 0 is red,  and a number
next to a red number is red,
then all numbers are red !

lec 3w.3February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

0 and (from n to n +1),
proves 0, 1, 2, 3,….

R(0),   ∀n∈ .R(n)→R(n+1)
∀m∈ . R(m)

The Induction Rule

lec 3w.4February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

Like Dominos…

lec 3w.5February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

Example Induction Proof

Let’s prove:

lec 3w.6February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

Proof by Induction
Statements in green form a template 
for inductive proofs.
• Proof: (by induction on n)
• The induction hypothesis, P(n), is:
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lec 3w.7February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

Example Induction Proof

Base Case (n = 0):

1 1
1

r
r
−

= =
−

0 1
2 0

? 11
11

rr r r
r

+ −
+ + + + =

−

Wait: divide by zero bug! 
This is only true for r ≠ 1

lec 3w.8February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

Correction

Induction Hypothesis:
1

21.::
1

( 11)P n r rr r r
r

+ −
+ + + + =

−
∀ ≠=   

n
n

1
2 11

1

n
n rr r r

r

+ −
+ + + + =

−

Theorem: ∀

1.∀ ≠r

lec 3w.9February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

An Example Proof
• Induction Step: Assume P(n) 

for some n ≥ 0  and prove 
P(n + 1):

( ) 1
21. 11

1
rr r rr

r

+ −
+ +≠ =∀ + +

−

+1
+1  

n
n

lec 3w.10February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

An Example Proof
Have P (n) by assumption:

So let r ∈ be any number ≠ 1.
Then from P (n)  we have

1
21. 11

1
rr r r

r
r

+ −
+ + + =

−
∀ ≠ +  

n
n

1
2 11

1
rr r r

r

+ −
+ + + + =

−
 

n
n

lec 3w.11February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

An Example Proof

1
111

1

n
n nrr r r

r

+
+−

+ + + = +
−

+1n

adding r n+1 to both sides,

1 1

( ) 1

1 ( 1)
1

1
1

n nr r r
r

r
r

+ +

+

− + −
=

−
−

=
−

+1n

lec 3w.12February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

An Example Proof

( ) 1
21. 11

1
rr r rr

r

+ −
+ +≠ =∀ + +

−

+1
+1  

n
n

( ) 1
2 11

1
rr r r

r

+ −
+ + + + =

−

+1
+1

n
n

That is,

But since r ≠ 1 was arbitrary, we
conclude (by UG), that

which is P (n+1).
•This completes the induction proof.
QED.
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lec 3w.13February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

An Aside: Ellipsis
“…” is an ellipsis.  It means the 
reader is supposed to infer a 
pattern:

• Can lead to confusion (n = 0?)
• Summation notation notation more   

precise

21 nr r r+ + + +
0

n
i

i
r

=

=∑

lec 3w.14February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

The MIT Stata Center

lec 3w.15February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

The Stata Center Plaza

lec 3w.16February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

The Gehry/Gates Plaza
Goal: tile the squares, except one in the 
middle for Bill. 
(Πιχτυρε σουρχε: ηττπ://ωωω.μιχροσοφτ.χομ/πρεσσπασσ/εξεχ/βιλλγ/δεφαυλτ.ασπ)

n2

n2

lec 3w.17February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

The Gehry/Gates Plaza
Gehry specifies L-shaped tiles covering 
three squares:

For example, for 8 x 8 plaza might tile for Bill 
this way:

lec 3w.18February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

The Gehry/Gates Plaza
Theorem: For any 2n � 2n plaza, we can 
make Bill and Frank happy.
Proof: (by induction on n)
P(n) ::= can tile 2n � 2n with Bill in middle.

Base case:  (n=0)

(no tiles needed)
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The Gehry/Gates Plaza

n2

Induction step: assume can tile 2n � 2n,
prove can handle 2n+1 � 2n+1.

12 +n

lec 3w.20February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

The Gehry/Gates Plaza
Now what?

12 +n

n2

lec 3w.21February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

The Gehry/Gates Plaza
The fix:

Prove that we can always find
a tiling with Bill in the corner.

lec 3w.22February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

The Gehry/Gates Plaza
Note: Once have Bill in corner,

can get Bill in middle:

lec 3w.23February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

The Gehry/Gates Plaza
Method: 
Rotate the squares as indicated.

lec 3w.24February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

The Gehry/Gates Plaza
Method: after rotation have:
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The Gehry/Gates Plaza
Method: Now group the 4 squares together,

and insert a tile.

Done!
Bill in
middle

lec 3w.26February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

The Gehry/Gates Plaza
Theorem: For any 2n � 2n plaza, we can 
put Bill in the corner.
Proof: (by induction on n)
P(n) ::= can tile 2n � 2n with Bill in corner

Base case:  (n=0)

(no tiles needed)

lec 3w.27February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

The Gehry/Gates Plaza
Induction step:
Assume we can get Bill in corner of 2n � 2n.
Prove we can get Bill in corner of  2n+1 � 2n+1.

n2

n2

lec 3w.28February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

The Gehry/Gates Plaza
Method: Rotate the squares as indicated.

lec 3w.29February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

The Gehry/Gates Plaza
Method: Rotate the squares as indicated.

after rotation have:

lec 3w.30February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

The Gehry/Gates Plaza
Method: Now group the squares together,

and fill the center with a tile.

Done!
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Ingenious Induction Hypotheses

Note 1: To prove
“Bill in middle,” we

proved something else: 
“Bill in corner.”

lec 3w.32February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

Ingenious Induction Hypotheses

Note 2: It may help to
choose a stronger hypothesis
than the desired result
(class problem).

lec 3w.33February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

Recursive Procedure

Note 3: The induction proof
of “Bill in corner” implicitly
defines a recursive procedure
for finding corner tilings.
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A False Proof
Theorem: All horses are the same color. 
Proof: (by induction on n)
Induction hypothesis:
P(n) ::=   any set of n horses have the same color

Base case (n=0):
No horses so vacuously true!

…

lec 3w.35February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

A False Proof
(Inductive case) 
Assume any n horses have the same color.
Prove that any n+1 horses have the same color.

…
n+1

lec 3w.36February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

A False Proof

…
First set of n horses have the same color

Second set of n horses have the same color

(Inductive case) 
Assume any n horses have the same color.
Prove that any n+1 horses have the same color.
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A False Proof

…
Therefore the set of n+1 have the same color!

(Inductive case) 
Assume any n horses have the same color.
Prove that any n+1 horses have the same color.

lec 3w.38February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

A False Proof

What is wrong?
Proof that P(n) → P(n+1)          
is false if n = 1, because the two 
horse groups do not overlap.

First set of n=1 horses

Second set of n=1 horses

n =1

lec 3w.39February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

A False Proof

(But proof works for all n ≠ 1)

Proof that P(n) →P(n+1)          
is false if n = 1, because the two 
horse groups do not overlap.

lec 3w.40February 21, 2007Copyright © Albert R. Meyer,  2007. All rights reserved.

Team Problems

Problems 
1−3
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Strong Induction
Well Ordering Principle

lec 3f.2February 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Unstacking game

• Start: a stack of boxes
• Move: split any stack into two stacks 

of sizes a,b>0 
• Scoring: ab points
• Keep moving: until stuck
• Overall score:  sum of move scores 

a ba+b

lec 3f.3February 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Analyzing the Stacking Game

Claim: Every way of unstacking
gives the same score.
From stack of size n, what score?
Must be
(n-1)+(n-2)+ +1 =

( - 1)
2

n n

lec 3f.4February 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Analyzing the Stacking Game

Claim: Starting with size n stack,
final score will be 

( - 1)
2

n n

Proof: by Induction with
Claim(n) as hypothesis

lec 3f.5February 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Proving the Claim by Induction

Base case n = 0:
−= 0(0 1)

2

Claim(0) is

score = 0

lec 3f.6February 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Proving the Claim by Induction

Inductive step. assume for
n-stack, and then prove C(n+1):

(n+1)-stack score =
+(
2
1)n n
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Proving the Claim by Induction

Inductive step.
Case n+1 = 1. verify for 1-stack:

score = 0 −= 1(1 1)
2

C(1) is
lec 3f.8February 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Proving the Claim by Induction

Inductive step.

Case n+1 > 1.  So split into an
a-stack and b-stack,

where     a + b = n +1.
(a + b)-stack score = ab +

a-stack score + b-stack score

lec 3f.9February 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Proving the Claim by Induction

by induction:
a-stack score = 

b-stack score =

a a( - 1)
2
−( 1)

2
b b

lec 3f.10February 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Proving the Claim by Induction

total (a + b)-stack score =
− −

+ + =
( 1) ( 1)

2 2
b ba a ab

We’re done!
so C(n+1) is

+ + − +
=

( )(( ) 1) 1( )
2 2

na a b nb

lec 3f.11February 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Proving the Claim by Induction

Wait: we assumed
C(a) and C(b)

where   1 ≤ a, b ≤ n.
But by induction

can only assume C(n)

lec 3f.12February 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Proving the Claim by Induction

the fix:
revise the induction hypothesis to

=

∀ ≤

( ) ::
. ( )m n C

Q
m

n
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Proving the Claim by Induction

Proof goes through fine
using Q(n) instead of C(n).
So it’s OK to assume

C(m) for all m ≤ n
to prove C(n+1).

lec 3f.14February 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Strong Induction

Prove P(0).  Then prove P(n+1)
assuming all of

P(0), P(1), …, P(n)
(instead of just P(n)).

Conclude ∀n.P(n)

lec 3f.17February 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Strong vs. Ordinary

Why use Strong?
-- Convenience:
no need to include
“∀m ≤ n” all over.

lec 3f.18February 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

available stamps:

(Picture source:http://site17585.dellhost.com/lsj/facts/s_events.htm
http://www.frbsf.org/currency/civilwar/stamps/s150.html)

5¢ 3¢
Theorem: 
Can form any amount ≥ 8¢
Prove by strong induction on n.
P(n) ::=  can form (n +8)¢.

Postage by Strong Induction

lec 3f.19February 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Postage by Strong Induction

Base case (n = 0): 

(0 +8)¢:

lec 3f.20February 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Postage by Strong Induction

Inductive Step:
assume (m +8)¢ for 0≤ m ≤ n,
then prove ((n +1) + 8)¢

cases:
n +1= 1, 9¢:

n +1= 2, 10¢:
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case n +1 ≥ 3: let m =n − 2.
now n ≥ m ≥ 0, so
by induction hypothesis have:

(n −2)+8

= (n +1)+8

Postage by Strong Induction

+

3
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Team Problem

Problem 1

lec 3f.23February 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Well Ordering 
Principle

lec 3f.24February 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Well Ordering principle

Every nonempty set of
nonnegative integers

has a 
least element.

Familiar? Now you mention it, Yes.
Obvious? Yes.
Trivial?    Yes. But watch out:

lec 3f.25February 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Well Ordering principle

Every nonempty set of
nonnegative integers

has a 
least element.

NO!

rationals

lec 3f.26February 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Well Ordering principle

Every nonempty set of
nonnegative integers

has a 
least element.

NO!
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proof used Well Ordering

Proof: suppose 2 m
n

=

2
Thm:        is irrational2

…can always find such m, n
without common factors…

why always?
lec 3f.28February 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Proof using Well Ordering

By WOP, ∃ minimum |m| s.t.

2 .m
n

= so 0

0

2
m
n

=

where |m0| is minimum.

lec 3f.29February 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Proof using Well Ordering

0

0

/2
/

m c
n c

=

but if m0, n0 had common 
factor c > 1, then

and                                         
contradicting minimality of |m0|

0 0/m c m<

lec 3f.33February 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Well Ordering Principle Proofs
To prove ``∀n∈ . P(n)’’ using WOP:  

• Define the set of counterexamples
C ::= {n ∈ | ¬P(n)}

• Assume C is not empty.  
• By WOP, have minimum element m0 ∈ C.
• Reach a contradiction (somehow) – usually by 

finding a member of C that is < m0 .
• Conclude no counterexamples exist.  QED

lec 3f.34February 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Team Problem

Problem 2
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Recursive Definitions
Structural Induction

Mathematics for Computer Science
MIT 6.042J/18.062J

lec 4M-2February 26, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Recursive Definitions

Define something in terms of a 
simpler version of the same thing:

• Base case(s) that don’t depend on 
anything else.

• Constructor case(s) that depend on 
simpler cases.

lec 4M-3February 26, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Example Definition: set E

Define set E ⊆ Z, recursively:

• Base case: 0 ∈ E
• Constructor cases:
If n ∈ E, then   

1. n + 2 ∈ E, if n ≥ 0;
2. −n ∈ E,  if n > 0.

lec 4M-4February 26, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

0, (0+2)+2, ((0+2)+2) +2

0,     2,      4,                6, …

all even numbers

−2,   −4,              −6, …

0+2,

1. n ∈ E and n≥0, then n + 2 ∈ E:

2. n ∈ E and n>0, then −n ∈ E

Example Definition: set E

lec 4M-5February 26, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Recursive Definition: Extremal Clause

So, E contains the even integers
No!

• 0 ∈ E
• If n ∈ E and n≥0 , then n + 2 ∈ E
• If n ∈ E and n>0, then −n ∈ E

• That’s All!
Extremal Clause
(Implicit part of definition)

Anything Else?

lec 4M-6February 26, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Example Definition: set E

So E is exactly:
The Even Integers
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Example: Matched Paren Strings, M

Set of strings, M ⊆ {),(}*

• Base: λ ∈ M, 
(the empty string)

• Constructor:

If s, t ∈ M, then

(s)t ∈ M
lec 4M-8February 26, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Lemma: Every s in M has an 
equal number of )’s and (’s.

Proof by Structural Induction 
on the definition of M

Example: Matched Paren Strings, M

lec 4M-9February 26, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Lemma: Every s in M has an 
equal number of )’s and (’s.

Example: Matched Paren Strings, M

Let EQ ::= 
{strings with = number of ) and (}

Lemma (restated):    M  ⊆ EQ

lec 4M-10February 26, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Structural Induction on M

Hypothesis P(s) ::=  s ∈ EQ

Base case: s = λ.   P(λ)?
0 )’s and 0 (’s. OK

Proof:

lec 4M-11February 26, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Structural Induction on M
Constructor step

r = (s)t . Assume: P(s) and P(t)     

#)in r =  #)in s   + #)in t    + 1
#(in r =  #(in s   + #(in t    + 1

= by P(s) = by P(t)∴ are =

lec 4M-12February 26, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Structural Induction on M

by structural induction,
∀s∈M. s ∈ EQ

QED
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The 18.01 Functions, F18
The set F18 of  functions on R:
• IdR , constant functions, and sin x

are in F18.
• if  f, g ∈ F18, then

f + g,   f ⋅ g,   ef,      (the constant e)
the inverse, f (-1), of f, and
f ° g (the composition of f and g)

are in F18.

lec 4M-14February 26, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

The 18.01 Functions, F18

Some functions in F18:
−x

cos x
ln x

= (1 – (sin x ⋅ sin x))1/2

= (ex)(-1)

x = (x2)(-1)   ---inverse
= (−1)⋅x

lec 4M-15February 26, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

The 18.01 Functions, F18

Lemma. F18 is closed under derivative:
if f ∈ F18, then f  ∈ F18.

(Team problem 2)

lec 4M-19February 26, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Recursive Data Types
Arithmetic Expressions

lec 4M-20February 26, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Arithmetic Expressions
Defined recursively as follows:
Base:
• if n∈ , then <int, n> ∈ Aexp
• if n∈ , then <var, n> ∈ Aexp

“tagged” data
lec 4M-21February 26, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Arithmetic Expressions

Constructors:
if e,f ∈ Aexp, then 

1.<sum, e,f > ∈ Aexp
2.<prod, e,f > ∈ Aexp
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2
4 5 5( ) 3x x x+

<sum, <prod, 
<var, 4>,
<prod, <var, 5>, <var, 5>>

>,
<prod, <int, 3>, <var, 5>>

>
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sum

prod

5

var

3

intprod

5

var

5

var

prod

4

var

2
4 5 5( ) 3x x x+

Parse tree:
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Recursive Functions on Aexp

|<int, n>| ::= 1
|<var, n>| ::= 1
|<sum, e,f >| ::=  |e| + |f | +1
|<prod, e,f >| ::= |e| + |f | +1

Recursive def. of size, |e|, of e

lec 4M-25February 26, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Recursive Functions on Aexp

d(<int, n>)  ::= 0
d(<var, n>)  ::= 0

d(<sum, e,f >) ::= 1 + max{d(e),d(f)}
d(<prod,e,f >)   ::= 1 + max{d(e),d(f)}

Recursive def. of depth, d(e)

lec 4M-26February 26, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Size versus Depth

Lemma: |e| + 1 ≤ 2d(e)+1

Proof by Structural Induction
Base case : e = <int, n> (or <var, n>)

|e|+1 = 1+1 = 2 = 20+1 =  2d(e)+1

OK!

lec 4M-27February 26, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Size versus Depth

Constructor case: e = <sum, e1, e2>

by ind. hypothesis:
|ei| + 1 ≤ 2d(ei)+1 i=1,2  
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|e| +1 = |<sum, e1, e2>| + 1           def. of e
= (|e1|+|e2| +1) + 1 def. of size
= (|e1|+1)+(|e2|+1)
≤ 2d(e1)+1 + 2d(e2)+1 induction hyp.
≤ 2max(d(e1),d(e2))+1 + 2max(d(e1),d(e2))+1

= 2(max(d(e1),d(e2))+1)+1 = 2d(e)+1 def. of depth
QED

Size versus Depth

lec 4M-29February 26, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Team Problems

Problems 1--3



1

lec 4W.1February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Mathematics for Computer Science
MIT 6.042J/18.062J

State Machines, I:
Invariants

lec 4W.2February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

State machines

State machine:
Step by step procedure, 
possibly responding to input.

lec 4W.3February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

State machines

The state graph of a 99-bounded counter:

States: {0,1,…,99, overflow}
0

start state

1 2 99 overflow

Transitions: i i+1 0 ≤ i < 99

99 overflow

overflowoverflow

lec 4W.4February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Die Hard

Picture source: http://movieweb.com/movie/diehard3/

lec 4W.5February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Die Hard

Simon says: On the fountain, there 
should be 2 jugs, do you see them?  
A 5-gallon and a 3-gallon.  Fill one 
of the jugs with exactly 4 gallons of 
water and place it on the scale and 
the timer will stop.  You must be 
precise; one ounce more or less will 
result in detonation.  If you're still 
alive in 5 minutes, we'll speak.

lec 4W.6February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Die Hard

3 Gallon Jug

5 Gallon Jug

Supplies:

Water
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Die Hard

Transferring water:

3 Gallon Jug 5 Gallon Jug

lec 4W.8February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Die Hard

Transferring water:

3 Gallon Jug 5 Gallon Jug

lec 4W.9February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Die Hard

Simon’s challenge:
Disarm the bomb by putting 
precisely 4 gallons of water on 
the scale, or it will blow up.

Question: How to do it?

lec 4W.10February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Die Hard

Work it out now!

lec 4W.11February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

How to do it

3 Gallon Jug 5 Gallon Jug

Start with empty jugs: (0,0)
Fill the big jug: (0,5)

lec 4W.12February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

How to do it

3 Gallon Jug 5 Gallon Jug

Pour from big to little: (3,2)
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How to do it

3 Gallon Jug 5 Gallon Jug

Empty the little: (0,2)

lec 4W.14February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

How to do it

3 Gallon Jug 5 Gallon Jug

Pour from big to little: (2,0)

lec 4W.15February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

How to do it

3 Gallon Jug 5 Gallon Jug

Fill the big jug: (2,5)

lec 4W.16February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

How to do it

3 Gallon Jug 5 Gallon Jug

Pour from big to little: (3,4)

Done!!

lec 4W.17February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Die Hard once and for all

3 Gallon Jug 5 Gallon Jug

What if you have a 9 gallon jug instead?

9 Gallon Jug

Can you do it?   Can you prove it?
lec 4W.18February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Die Hard

Work it out now!
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Die Hard Once & For All

3 Gallon Jug

9 Gallon Jug

Supplies:

Water
lec 4W.20February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

State machines

Die hard state machine
State  = amount of water in the jug: (b,l)

where  0 ≤ b ≤ 9 and 0 ≤ l ≤ 3. 
Start State = (0,0)

lec 4W.21February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

State machines

Die Hard Transitions:

1. Fill the little jug:  3)3,(),( <→ lforblb

2. Fill the big jug: 9),9(),( <→ bforllb

3. Empty the little jug: 0)0,(),( >→ lforblb

4. Empty the big jug: 0),0(),( >→ bforllb

lec 4W.22February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

State machines

5. Pour from big jug into little jug (for b > 0):
(i) If no overflow, then (b,l) → (0, b+l),

b + l 3 

(ii) otherwise (b,l) → (b− (3− l), 3).

6. Pour from little jug into big jug. 
Likewise.

lec 4W.23February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

State Invariants

P(state) ::= “3 divides the number of gallons
in each jug.”

)|3|3(::)),(( lblbP ∧=

Die hard once and for all
Invariant:

lec 4W.24February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Floyd’s Invariant Method
(just like induction) 

1) Base case: Show P(start).
2) Invariant case: Show

if P(q) and ,  then P(r).
3) Conclusion: P holds for all reachable 

states, including final state (if any).

State Invariants

q r
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Corollary:  No state
(4,x) is reachable, so
Bruce Dies!

Die Hard Once & For All

lec 4W.26February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

The Diagonal Robot
The robot is on a grid.y

0            1             2             3     

2

1

0

x

lec 4W.27February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

The Diagonal Robot

x

y

0            1             2             3     

2

1

0

It can move diagonally.

lec 4W.28February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

The Diagonal Robot
Can it reach from (0,0) to (1,0)?

x

y

0            1             2             3     

2

1

0 GOAL

?

lec 4W.29February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Robot Invariant

P((x, y)) ::= x + y is even
is an invariant:

transition adds ±1 to both x and y,
preserving parity of x+y.
Also,P((0, 0)) is true.

NO!

lec 4W.30February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Robot Invariant

So all positions (x, y) reachable 
by robot have x + y even.

But 1 + 0 = 1 is odd, so
(1,0) is not reachable.



6

lec 4W.31February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

The Fifteen Puzzle
Explained!

--by similar reasoning
(details in Team Problem 1)

lec 4W.32February 28, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Team Problems

Problems carried
over to Friday
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The Fifteen Puzzle
Explained!

Wednesday,
Team Problem 1

lec 4F.2March 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.
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State Machine
Invariants, cont’d

lec 4F.3March 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

GCD correctness

The Euclidean Algorithm:
Computing GCD(a, b)

1. x := a,   y := b. 
2. If y = 0, return x & terminate; else
3. (x, y) := (y, rem(x,y))          

simultaneously;
4. Go to step 2.

lec 4F.4March 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

GCD correctness

Example: GCD(414,662)
= GCD(662, 414)      since rem(414,662) = 414
= GCD(414, 248)      since rem(662,414) = 248
= GCD(248, 166)      since rem(414,248) = 166
= GCD(166, 82)        since rem(248,166) =   82
= GCD(82, 2)            since rem(166,82) =     2
= GCD(2, 0)              since rem(82,2) =     0

Return value: 2.

lec 4F.5March 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

GCD correctness

Euclid Algorithm as State Machine:
• States ::= × ,
• start ::=  (a,b),
• state transitions defined by the rule

(x,y) → (y, rem(x,y))         for  y ≠ 0.

lec 4F.6March 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

GCD correctness

The Invariant is
P((x,y)) ::=   [gcd(a,b) = gcd(x,y)].

P(start): at start x = a , y = b, so
P(start)  ≡ [gcd(a,b) = gcd(a,b)]

which holds trivially.
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GCD correctness

Transitions: (x, y) → (y, rem(x, y))

Invariant holds by
Lemma: gcd(x, y) = gcd(y, rem(x,y)),     

for y ≠ 0.
Proof: x = qy + rem, so
any divisor of x, y divides rem;
any divisor of y,rem divides x

lec 4F.8March 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

GCD correctness

Conclusion: on termination
x = gcd(a,b).

Proof: at termination,  y = 0, so
x = gcd(x, 0) = 

in
gc

va
d( ,

ria
) gcd

nt
( , )x y a b=

the

lec 4F.9March 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

GCD Termination

y decreases at each step &
(another invariant).

Well Ordering implies 
reaches minimum & stops.

y∈N

lec 4F.10March 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Robert W Floyd (1934−2001)

Eulogy by Knuth: http://www.acm.org/pubs/membernet/stories/floyd.pdf
Picture source: http://www.stanford.edu/dept/news/report/news/november7/floydobit-117.html

lec 4F.11March 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.
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State Machines:
Derived Variables

lec 4F.12March 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Derived Variables

A derived variable, v, is a function 
giving a “value” to each state:

v: Q → Values.
If Values = , we’d say v was 

“nonnegative-integer-valued,” or
“ -valued.”
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Derived Variables

Robot on the grid example:
States Q = 2.
Define the sum-value, σ, of a state:

σ(〈x,y〉) ::= x+y
An -valued derived variable.

lec 4F.14March 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Derived Variables

Called “derived” to distinguish 
from actual variables that appear 
in a program.  
For robot     Actual: x, y

Derived: σ

lec 4F.15March 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Derived Variables

Another derived variable:
π ::= σ (mod 2).
π is {0,1}-valued.

lec 4F.16March 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Derived Variables

For GCD, have (actual) 
variables x, y.
Proof of GCD termination:

y is strictly decreasing and
natural number-valued.

lec 4F.17March 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Derived Variables

Termination followed by
Well Ordering Principle:

y must take a least value –
and then the algorithm is stuck. 

lec 4F.18March 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Strictly Decreasing Variable

State

N
16

12

8

4

0
876543210 QQQQQQQQQ

Goes down at
every step
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Weakly Decreasing Variable

State

N
16

12

8

4

0
876543210 QQQQQQQQQ

Down or constant
after each step

lec 4F.20March 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

σ, π for the Diagonal Robot

σ: up & down all over the place –
neither increasing nor decreasing.

π: is constant –
both increasing & decreasing

(weakly)

lec 4F.23March 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Partial-order valued variables

Definitions of increasing/decreasing
variables extend to variables with 
partially ordered values.
If a partial order has no infinite,
decreasing chain (it is well-founded),
then it can serve instead of to

prove termination.

lec 4F.24March 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Team Problems

Wednesday, Problem 2;
and today’s

Problems 1& 2
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Stable Matching

lec 5M.2March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Stable Marriage

A Marriage Problem

1       2       3       4      5

A B C      D E

Boys

Girls

lec 5M.3March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Stable Marriage

Boys Girls
1:  CBEAD A : 35214
2 : ABECD B : 52143
3 : DCBAE C : 43512
4 : ACDBE D : 12345
5 : ABDEC E :  23415

Preferences:

lec 5M.4March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Stable Marriage

1:  CBEAD
2 : ABECD
3 : DCBAE
4 : ACDBE
5 : ABDEC

Try “greedy”
strategy for boys

Preferences

lec 5M.5March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

1:  CBEAD
2 : ABECD
3 : DCBAE
4 : ACDBE
5 : ABDEC

Stable Marriage

Marry Boy 1 with Girl C
(his 1st choice)

C1

Preferences

lec 5M.6March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Stable Marriage

2 : ABE   D
3 : D   BAE
4 : A   DBE
5 : ABDE

Marry Boy 1 with Girl C
(his 1st choice)

C1

Preferences
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Stable Marriage

2 : ABED
3 : DBAE
4 : ADBE
5 : ABDE

Marry Boy 1 with Girl C
(his 1st choice)

C1

Preferences

lec 5M.8March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

2 : ABED
3 : DBAE
4 : ADBE
5 : ABDE

Stable Marriage

Next:
Marry Boy 2 with Girl A:
(best remaining choice)

A2

C1

Preferences

lec 5M.9March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Stable Marriage

Final “boy greedy” marriages

1  C 2  A 3  D

4  B 5  E

lec 5M.10March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Stable Marriage

Trouble!

C1

B4

lec 5M.11March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Stable Marriage

Boy 4 likes Girl C better than his wife.

C1

B4
lec 5M.12March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Stable Marriage
and vice-versa

C1

B4
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Stable Marriage
Rogue Couple

C1

B4
lec 5M.14March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Stable Marriage

Stable Marriage Problem: 
Marry everyone without 

any rogue couples!

lec 5M.15March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Stable Marriage

Let’s Try it!
Unnumbered Class 

Problem
lec 5M.17March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Stable Marriage I.

5 A 2 B 4 C

3 D 1 E

Boy Optimal

lec 5M.18March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Stable Marriage II.

3 A 5 B 4 C

1 D 2 E

All Girls get 1st Choice
lec 5M.19March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Stable Marriage

More than a puzzle:
• College Admissions

(original Gale & Shapley paper, 1962)

• Matching Hospitals & Residents.
• Matching Dance Partners.
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Stable Marriage

lec 5M.21March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Stable Marriage

The Mating Ritual:
day by day

lec 5M.22March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Mating Ritual

Billy Bob
Brad

Angelina

Morning: boy serenades favorite girl

lec 5M.23March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Morning: boy serenades favorite girl
Afternoon: girl rejects all but favorite

Billy Bob
Brad

Angelina

Mating Ritual

lec 5M.24March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Mating Ritual

…
Angelina

Morning: boy serenades favorite girl
Afternoon: girl rejects all but favorite
Evening: rejected boy writes off girl

…
Billy Bob

lec 5M.25March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Mating Ritual

Stop when no girl rejects.
Each girl marries her favorite 
suitor (if any).
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Mating Ritual

• Everyone is married.
• Marriages are stable.
Termination:

there exists a Wedding Day.

Partial Correctness:

lec 5M.27March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Stable Marriage: Termination

total-boy’s-list-length:
strictly decreasing & N-valued.

So ∃ Wedding Day.

lec 5M.30March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Mating Ritual: Girls improve

Lemma: A girl’s favorite tomorrow 
will be at least as desirable as today’s.

…because today’s favorite will
stay until she rejects him for 
someone better.

lec 5M.31March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Mating Ritual: Girls improve

Lemma: A girl’s favorite tomorrow 
will be at least as desirable as today’s.

(favorite(G) is weakly
increasing for each G)

lec 5M.32March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Mating Ritual: Boys Get Worse

Lemma: A boy’s 1st love tomorrow 
will be no more desirable than today’s.

…because boys work straight 
down their lists. 

lec 5M.33March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Mating Algorithm: Boys Get Worse

Lemma: A boy’s 1st love tomorrow 
will be no more desirable than today’s.

(serenading(B) is weakly
decreasing for each B)
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Mating Ritual: Invariant

If G is not on B’s list, then she has 
a better current favorite.
Proof: When G rejected B she
had a better suitor, and
favorite(G) is weakly increasing.

lec 5M.35March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Stable Marriage: Termination

On Wedding Day:
• Each girl has / 1 suitors

(by def of wedding day)
• Each boy is married, or

has no girls on his list

lec 5M.36March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Mating Ritual: Everyone Marries 

Everyone is Married by Wedding Day
Proof: by contradiction.
If B is not married, his list is empty.
By Invariant, all girls have favorites
better than B -- so they do have a favorite.
That is, all girls are married,
so all boys are married.

lec 5M.37March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Mating Ritual: Stable Marriages

Marriages are Stable:
Bob won’t be in rogue couple 
with
case 1: a girl G on his final list, 
since he’s already married to 
the best of them.

lec 5M.38March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Mating Ritual: Stable Marriages

Marriages are Stable:
Bob won’t be in rogue couple 
with
case 2: a girl G not on his final 
list, since by Invariant, G likes 
her spouse better.

lec 5M.39March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Mating Ritual

Girls’ suitors get better, and 
boy’s sweethearts get worse, so 
girls do better?

Who does better, boys or girls?

No!
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Mating Ritual

Mating Ritual is Optimal for 
all Boys at once. Pessimal for all
Girls.

lec 5M.41March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Stable Marriage

Other stable marriages possible? 
- Can be many.

More questions, rich theory:

Can a boy do better by lying? – No!
Can a girl do better by lying? – Yes!

lec 5M.42March 5, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Team Problems

Problems
1−3
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Simple Graphs:
Degrees,

Isomorphism,
Paths

lec 5W.2March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Types of Graphs

Directed Graph

Multi-Graph

Simple
Graph

lec 5W.3March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

vertices, V
undirected edges, E

A Simple Graph

::= {  ,  }

edge

“adjacent ”
lec 5W.4March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Vertex Degree

lec 5W.5March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

degree of a vertex is
# of incident edges

Vertex degree

deg( ) = 2

lec 5W.6March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

degree of a vertex is
# of incident edges

Vertex degree

deg( ) = 4
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Possible Graph?

orphaned edge

Is there a graph with
vertex degrees 2,2,1?

NO! 2

2
1

Impossible Graph

lec 5W.8March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

sum of degrees is
twice # edges

2+2+1 = odd,
so impossible

=
∈
∑2| | deg( )E v

v V

Handshaking Lemma

lec 5W.9March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Proof: Each edge contributes
2 to the sum on the right

=
∈
∑2| | deg( )E v

v V

Handshaking Lemma

sum of degrees is
twice # edges

lec 5W.10March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Sex in America: Men more Promiscuous?

Study claims:
Men average many more 
partners than women.

Graph theory shows
this is nonsense

lec 5W.11March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

M

partners

F

Sex Partner Graph

lec 5W.12March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Counting pairs of partners

∈ ∈
∑ ∑
m M f F

deg(m) d g(fe )= E =

divide by both sides by M

∈∈

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑∑
Fm M f
deg( )deg(m)

=
M

f F
F M

avg-deg( )M avg-deg( )F
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( ) ( )=avg-deg(M) avg-deg(F)
F
M

Averages differ solely by
ratio of females to males.

No big difference
Nothing to do with promiscuity.

Average number of partners

1.035

lec 5W.14March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Isomorphism

lec 5W.15March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

The Graph Abstraction

257

67

99

145

306

122 257

67

99

145306

122

Same graph (different layouts)

lec 5W.16March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

257

67

99

145

306

122 Albert

Christos

Jessica

Sharat

Sonya

Grant

Same graph (different labels)

The Graph Abstraction

lec 5W.17March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

The Graph Abstraction

All that matters
is the connections.
Graphs with the
same connections
are isomorphic.

lec 5W.18March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Isomorphism

G1 isomorphic to G2 means
there is an edge-preserving

vertex matching.
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Are these Isomorphic?

Dog Pig

CatCow Beef Tuna

Corn

Hay

f (Dog)  = Beef
f (Cat)   = Tuna

f (Cow)  = Hay
f (Pig)   = Corn

lec 5W.20March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Edges Preserved?

Dog Pig

CatCow Beef Tuna

Corn

Hay

lec 5W.21March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Dog Pig

CatCow Beef Tuna

Corn

Hay

Edges Preserved? YES!

lec 5W.22March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

NonEdges Preserved?

Dog Pig

CatCow Beef Tuna

Corn

Hay

lec 5W.23March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Dog Pig

CatCow Beef Tuna

Corn

Hay

NonEdges Preserved? YES!

lec 5W.24March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Graph Isomorphism

G1 isomorphic to G2 means
there is an edge-preserving

vertex matching.
∃ bijection f: V1 → V2

u —v in E1 iff f (u)—f (v) in E2
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degree 2 all degree 3

Non-isomorphism

lec 5W.26March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Finding the Mapping?

Not easy --many possible mappings.
Can test for properties
preserved under isomorphism:

# of nodes, # edges, 
degree distributions,
length of paths & cycles …

lec 5W.27March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Connectedness

lec 5W.28March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Paths 
Path: sequence of adjacent vertices

( )

lec 5W.29March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Path: sequence of adjacent vertices

( )

Paths 

lec 5W.30March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Path: sequence of adjacent vertices

( )

Paths 
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Path: sequence of adjacent vertices

( )

Paths 

lec 5W.32March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Path: sequence of adjacent vertices

( )

Paths

lec 5W.33March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Path: sequence of adjacent vertices

( )

Paths

lec 5W.34March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Simple Paths

Simple Path: all vertices different

( )

lec 5W.35March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Simple Paths

Simple Path: (doesn’t cross itself)

( )

lec 5W.36March 7, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Connectedness

vertices v, w are connected iff
there is a path starting at v and 
ending at w.
A graph is connected iff every
pair of vertices are connected.
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Team Problems

Problems
2,3,1,4
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Simple Graphs:
Connectedness

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.1

Connectedness,
Trees

Paths & Simple Paths

Lemma:
The shortest path between 
two vertices is simple!
P f S  th f   t  

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.2

Proof: Suppose path from u to v
crossed itself:

u v
c

Paths & Simple Paths

Lemma:
The shortest path between 
two vertices is simple!

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.3

Then path without c ···c is shorter:

u v
c

Connected Graphs

A connected graph:
there is a path between 

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.4

every two vertices.

Connected Components

Every graph consists of 
separate connected

i  ( b h ) ll d 

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.5

pieces (subgraphs) called 
connected components

Connected Components

East Campus
E25
Med Center

E17

4
Infinite corridor

13

10

12 26

8

16 66

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.6

3 connected components

The more connected components, 
the more “broken up" the graph is.
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Connected Components

The connected component
of vertex v :

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.7

{ }|  and  are connectedw v w

Connected Components

So a graph is connected
iff  it has only

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.8

ff  t has only
1 connected component

a

Cycles
A cycle is a path that begins
and ends with same vertex 

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.9

w

path: v ···b ···w ···w ···a ···v
b

also: a ···v ···b ···w ···w ···a

a

Cycles
A cycle is a path that begins
and ends with same vertex 

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.10

w
b

also: a ···w ···w ···b ···v ···a

Simple Cycles
A simple cycle is a cycle that
doesn’t cross itself

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.11

path: v ···w ···v

w

also: w ···v ···w

Trees

A tree is a connected graph
with no cycles.

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.12
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More Trees

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.13

Other Tree Definitions

• A tree is a graph with a unique 
path between any 2 vertices.

• A tree is a connected graph 
i h i  d 1 d

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.14

with n vertices and n – 1 edges.
• A tree is an edge-minimal 

connected graph.

Be careful with these definitions

Is a tree simply a graph with n  
vertices and n – 1 edges?

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.15

vertices and n 1 edges?
NO:

Some trees with five vertices

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.16

Some trees with five vertices

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.17

Exercise: Prove that all trees with 
five vertices are isomorphic to one 
of these three.

Spanning Trees

A spanning tree: a subgraph 
that is a tree on all the 
vertices

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.19

vertices.
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Spanning Trees

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5W.20

Spanning Trees

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.21

a spanning tree

Spanning Trees

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.22

another spanning tree
(can have many)

Spanning Trees

A spanning tree: a subgraph 
that is a tree on all the 
vertices

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.23

vertices.
Always exists: find minimum
edge-size, connected subgraph 
on all the vertices.

CONNECTEDNESS

An edge is a cut edge if 
removing it from the graph 

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.24

removing it from the graph 
disconnects two vertices.

Cut Edges

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.25
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Cut Edges

B

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.26

B is a cut edge

Cut Edges

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.27

deleting B gives
two components

Cut Edges

A

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.28

A is not a cut edge

Cut Edges and Cycles

Lemma: An edge is a cut 
edge iff it is not traversed 

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.29

by a simple cycle.
Proof : problem set

Cut Edges

Fault-tolerant design:
In a tree, every edge is a cut 
edge (bad)
In a mesh, no edge is a cut edge 

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.30

m , g u g
(good; 2-connected)
Tradeoff edges for failure 
tolerance

k-Connectedness

Def: k-connected iff
need to delete k

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.31

edges to disconnect.
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k-Connectedness

Def: k-connected iff
remains connected 

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.32

when any k-1 edges 
are deleted.

k-Connectedness

Example: 

K
March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.33

nK is (n-1)-connected

Team Problems

Problems 

March 9, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 5F.34

1−3



1

lec 6M.1March 12, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Graph
Coloring

lec 6M.2March 12, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Flight Gates

flights need gates, but 
times overlap. 
how many gates needed?

lec 6M.3March 12, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Airline Schedule

122
145
67

257
306

99

Flights

time

lec 6M.4March 12, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Conflicts Among Three

99

145

306

Needs gate at same time

lec 6M.5March 12, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Model all Conflicts with a Graph

257

67

99

145

306

122

lec 6M.6March 12, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

so adjacent vertices have 
different colors.
# colors = # gates needed

Color vertices
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lec 6M.7March 12, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Coloring the Vertices

257, 67
122,145
99
306

4 colors
4 gates

assign
gates:

257

67

99

145

306

122

lec 6M.8March 12, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Better coloring

3 colors
3 gates

257

67

99

145

306

122

lec 6M.9March 12, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Final Exams

subjects conflict if student 
takes both, so
need different time slots.
how short an exam period?

lec 6M.10March 12, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Model as a Graph

6.042

6.001

18.02

3.091

8.02

M 9am
M 1pm
T 9am
T 1pm

assign
times:

4 time slots
(best possible)

lec 6M.12March 12, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Map Coloring

lec 6M.14March 12, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Four Color Theorem

any planar map is 4-colorable.
1850’s: false proof published

(was correct for 5 colors).
1970’s: prf with much computing
1990’s: much improved 
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lec 6M.15March 12, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Chromatic Number

min #colors for G is

chromatic number, χ(G)
lemma:

χ(tree) = 2
lec 6M.16March 12, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Pick any vertex as “root.”
if (unique) path from root is
even length:        
odd length:

Trees are 2-colorable

root

lec 6M.17March 12, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Simple Cycles

even(C 2) =χ

odd(C 3) =χ

lec 6M.18March 12, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Complete Graph K5

n n(K ) =χ

lec 6M.20March 12, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Bounded Degree

if all vertex degrees ≤ k, then

(G) k +1χ ≤

… by simple recursive
coloring procedure

lec 6M.21March 12, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Coloring with dmax colors
Induction Hypothesis  P(n) ::=
if G has n vertices, all degrees ≤ dmax,
then      χ(G) ≤ dmax + 1 colors
Base Case: works for n =1 vertex
Inductive Step: given n +1 vertex graph
* remove one vertex
* color remaining graph in ≤ dmax +1 colors
* put vertex back.  since degree ≤ dmax, 

must be one color left over for it.
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lec 6M.23March 12, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Arbitrary Graphs

2-colorable?  --easy to check
3-colorable?  --hard to check

(even if planar)
find --theoretically

no harder than 3-color, but 
harder in practice

(G)?χ

lec 5F.24March 10, 2006Copyright © Albert R. Meyer, 2006.  All rights reserved.

Team Problems

Problems
1−3



1

lec 6W.1March 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Bipartite
Matching

Mathematics for Computer Science
MIT 6.042J/18.062J

lec 6W.2March 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Compatible Boys & Girls

G B

compatible

lec 6W.3March 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Compatible Boys & Girls

G B

match each girl to a
unique compatible boy

lec 6W.4March 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Compatible Boys & Girls

G B

a matching

lec 6W.5March 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Compatible Boys & Girls

G B

suppose this edge was missing
lec 6W.6March 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

No match possible

G B
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lec 6W.8March 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Bottleneck condition

G B

S
N(S)

|S|=3 |N(S)|=2
lec 6W.9March 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Bottleneck Lemma

If there is a bottleneck, 
then no match is possible.

bottleneck: not enough boys for
some set of girls.

{ }N(S) ::= b|b adjacent to an s S ,

|S|>|N(S)|

∈

lec 6W.10March 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Conversely, if there are 
no bottlenecks, then
there is a perfect match 

Hall’s Theorem

lec 6W.11March 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Hall’s Theorem
Assume no bottlenecks.

Lemma: If S is a set of girls and

|S|=|N(S)|,

then there are no 
bottlenecks within S

(obviously)

lec 6W.12March 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Hall’s Theorem
Assume no bottlenecks.

Lemma: If S is a set of girls and

|S|=|N(S)|,
and no bottlenecks
between      ands N (S )

lec 6W.13March 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

N (S )Bottleneck          ?⊆T s

S N(S)

T

T S∪
would be a bottleneck

s

X
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lec 6W.14March 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

no bottlenecks implies
perfect match

Hall’s Theorem

lec 6W.15March 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Hall’s Theorem

proof by induction on # girls.
case: proper subset, S,
of girls with

|S|=|N(S)|
By Lemma no bottlenecks in
bipartite graph (S, N(S)),
and none in (S , N (S ) )

lec 6W.16March 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Hall’s Theorem

by induction match
(S, N(S)), and

separately.
(S , N (S ) )

lec 6W.17March 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Hall’s Theorem

case:  |S| < |N(S)| always.
match 1st girl with a boy.
remaining girls & boys won’t 
have any bottlenecks, so
by induction can match them

QED 

lec 6W.18March 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

How to verify no bottlenecks?
Every girl likes ≥ d boys, and
every boy likes ≤ d girls,
implies no bottlenecks.

proof: any set S of girls with e 
incident edges:

d|S| ≤ e
|S|≤|N(S)|

(no bottleneck)

≤ d|N(S)|

lec 6W.19March 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Team Problem

Problems
1−3
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lec 6F.1March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Mathematics for Computer Science
MIT 6.042J/18.062J

Directed Graphs;
Communication

Networks

lec 6F.2March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Digraphs

a set, V, of vertices
a set, E ⊆ V×V
of directed edges.
(v,w) ∈ E    notation: v→w

lec 6F.3March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Digraphs

paths are directed:
v0, v1,…, vn

where vi→vi+1 for all i
…

v0 v1 v2 vn-1 vn

lec 6F.4March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Path Relation: Connectedness

v is connected to w:
there is a path

v→⋅⋅⋅→w
(length 0 path from v to v)

lec 6F.5March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Positive Path Relation

v is connected to w by a 
positive length path

lec 6F.6March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Directed Cycles

…
v0 v1 v2 vn-1 v0

v0

vi

vi+1
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lec 6F.7March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Formally, a Digraph, D, is
exactly the same as a binary 
relation on the vertices.

reflexive: 

asymmetric:

Digraphs

ir

lec 6F.8March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Directed Acyclic Graph’s

DAG’s represent strict partial orders:

•The positive path relation of a DAG
is a strict p.o.

•Every partial order is the positive path
relation of a DAG.

lec 6F.9March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

In particular,

Permutation Networks

Communication Networks

lec 6F.10March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Digraphs with
n designated input vertices
with outdegree 1 

Permutation Networks

lec 6F.11March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

and with
n designated output vertices
with indegree 1

Permutation Networks

lec 6F.12March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

and for every input and 
output, there is a path

switches

Permutation Networks
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lec 6F.13March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

diameter: largest input-output
distance

size:        # switches, # edges
switch degrees:   j×k

j  k

Network Measures

lec 6F.14March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Permutation Routing Problems

A routing problem is a bijection, 
π:{1,…n}→ {1,…n}

(called a permutation)

lec 6F.15March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

A solution to a routing
problem is a set of n paths
from input k to input π(k)
for k=1,…,n.

Permutation Routing Problems

lec 6F.16March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Solutions commonly select
shortest paths between
input k and output π(k).
(but sometimes shortest
paths are not best)

Permutation Problem Solutions

lec 6F.17March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Quality of a solution:
latency: max path length
congestion: max #paths    

through one switch

(also average latency, congestion)

Permutation Problem Solutions

lec 6F.18March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Problem difficulty measured
by best solution it allows:
problem-latency: smallest
latency of any solution
problem-congestion: smallest
congestion of any solution

Difficulty of a Problem,π
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lec 6F.19March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Network quality measured
by its hardest problem:
max-latency: largest
problem-latency
max-congestion: largest
problem-congestion

Quality of A Network

lec 6F.20March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Finding max-congestion can be 
tricky. To prove max-con ≤ k:
show how, given any problem, 
π, to route packets for π
with congestion ≤ k.

Quality of A Network

lec 6F.21March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Finding max-congestion can be 
tricky. To prove max-con ≥ k:
must find problem, π, and 
show that every routing
for π has congestion ≥ k.

Quality of A Network

lec 6F.22March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

A Good, Unreasonable Network

unique paths from in to out

Good,

lec 6F.23March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

A Good, Unreasonable Network

diameter = latency = 3
lec 6F.24March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

A Good, Unreasonable Network

max-congestion = 1
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lec 6F.25March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

A Good, Unreasonable Network

# switches = 2n
lec 6F.26March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

A Good, Unreasonable Network

switch-degree: 1×n, n×1

lec 6F.27March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

A Good, Unreasonable Network

#edges: n(n+2)
lec 6F.28March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

A Good, Unreasonable Network

Can be modified to use
bounded switches
(Class Problem 2).
Good in all ways
but ≈ n2 switches

lec 6F.29March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Benés Network

lec 6F.30March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

A Great Network

Benés Network, Bn
handles

N ::= 2n

inputs and outputs
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lec 6F.31March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Benés Net is small:
latency         ≈ 2 log N
#switches    ≈ N log N
switch sizes  = 1×2, 2×1
and max-congestion = 1

Benés Network

lec 6F.32March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Benés Network

Recursive Data Type
Base case: B1

N = 2

⎫
⎬
⎭

21 out-switches
⎧
⎨
⎩

21 in-switches

lec 6F.33March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Benés Network
Constructor step: Bn+1

Bn

Bn

⎧
⎨
⎩
⎧
⎨
⎩

2n

2n

⎫
⎪
⎬
⎪
⎭

2n+1

lec 6F.34March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

⎫
⎪
⎬
⎪
⎭

2n+1

Benés Network

Bn

Bn

diam Bn+1

lec 6F.35March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Benés Network
diam Bn+1 = 2+ diam Bn

Bn

Bn

lec 6F.36March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Benés Network

Bn

Bn

size Bn+1 = 
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lec 6F.37March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Benés Network

Bn

Bn

size Bn+1 = 2 size Bn + 2·2n+1

lec 6F.38March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Benés Network

Bn

Bn

for congestion 1:

lec 6F.39March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Benés Network

Bn

Bn

k+2n

k

for congestion 1: route to opposite halves 

lec 6F.40March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Benés Network

Bn

Bn

for congestion 1: route to opposite halves 

π(k)

π(j)

lec 6F.41March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Benés Solution to π
Find 2-coloring for

1 1+2n

2 2+2n

2n 2n+2n

π-1(1) π-1(1+2n)

π-1(2) π-1(2+2n)

lec 6F.42March 16, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Team Problems

Problems 
1−3



1

lec 7m.1March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Mathematics for Computer Science
MIT 6.042J/18.062J

Planar Graphs

lec 7m.2March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Planar Graphs

lec 7m.3March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Planar Graphs

A graph is planar if there
is a way to draw it in the 
plane without edges crossing.

lec 7m.4March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Four Continuous Faces

IV III
II

4 Connected Regions

lec 7m.5March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

a

b

c
d

Region Boundaries

lec 7m.6March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

a

b

c
d

Region Boundaries

abca
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lec 7m.7March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

a

b

c
d

Region Boundaries

abda

abca

lec 7m.8March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

a

b

c
d

Region Boundaries

acda

abca

abda

lec 7m.9March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

a

b

c
d

Region Boundaries

acda

abda
bcdb

abca

lec 7m.10March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Region Boundaries: Bridge

lec 7m.11March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

a

d

b
c

g

f

e

Region Boundaries: Bridge

abcda efge

abcefgecda
lec 7m.12March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Region Boundaries: Dongle
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lec 7m.13March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

r
t

s

u

y x

w
v

Region Boundaries: Dongle

rstur

lec 7m.14March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

r
t

s

u

y x

w
v

Region Boundaries: Dongle

lec 7m.15March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

r
t

s

u

y x

w
v

Region Boundaries: Dongle

stvxyxvwvturs

rstur

lec 7m.16March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Planar Embedding

A planar embedding is a 
graph along with its face 
boundaries: cycles

(same graph may have
different embeddings)

lec 7m.17March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Same graph, different embeddings

length 5 faces length 7 face

lec 7m.18March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Recursive Def: Planar Embeddings

Base: a graph consisting of a 
single vertex, v, 

along with face: length 0 cycle 
from v to v,

is a PE.
v

graph faces
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lec 7m.19March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Two constructor cases:
1) Add edge across a face 

(splits face in two)
2)Add bridge between 

components (merges 2 
outer faces)

Adding an edge to an embedding

lec 7m.20March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

a

z

y b

x

w

awxbyza

Constructor: Split a Face

→ awxba, abyza

lec 7m.21March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

axyza

y

x

z
a

u
t

b

v
w

Constructor: Add a Bridge

lec 7m.22March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

axyza

y

x

z
a

u
t

b

v
w

Constructor: Add a Bridge

btuvwb

lec 7m.23March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

axyza, btuvwb

y

x

z
a

u
t

b

v
w

Constructor: Add a Bridge

→ axyzabtuvwba
lec 7m.24March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Euler's Formula

If a planar embedding has 
v vertices, e  edges, 
and f  faces, then

v –e +f = 2
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lec 7m.25March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Euler's Formula

• Proof by structural 
induction on embeddings:

• base case: 1 vertex

v = 1, f = 1, e = 0
1−0+1 = 2

lec 7m.26March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Adding an edge to a drawing

Constructor case (split face):
• v stays the same
• e increases by 1
• f increases by 1
so v –e + f stays the same

lec 7m.27March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Adding an edge to a drawing

Constructor case (add bridge): 
• v = v1 + v2

• e = e1 + e2 + 1
• f = f1 + f2 – 1

(v1 + v2)- (e1 + e2 + 1)+ (f1 + f2 – 1)

= 2 + 2 – 2 = 2
lec 7m.28March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Euler's Formula

Corollary:
There are at most
5 regular polyhedra

(proof in Notes)

lec 7m.29March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Planar Properties

• each edge appears twice on faces
• face length ≥ 3         (for v ≥ 3)

so          3f ≤ 2e
combining with Euler:

e ≤ 3v-6

lec 7m.30March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Planar Properties

• each edge appears twice on faces
• face length ≥ 3         (for v ≥ 3)
• can draw edges in any order
(proofs by structural induction)
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lec 7m.31March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Planar Properties: Corollaries

•K5 and K3,3 not planar
•∃ vertex of degree ≤ 5
•subgraphs are planar
•6-colorable

lec 7m.32March 19, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Team Problems

Problems
1−3



1

lec 7W.1March 21, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Intro to 
Number Theory:
Divisibility, GCD’s

Mathematics for Computer Science
MIT 6.042J/18.062J

lec 7W.2March 21, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Arithmetic Assumptions

Algebraic rules for +, -, ×:
a (b+c) = ab + ac,  ab = ba,
(ab)c = a (bc),  a –a =0,
a + 0 = a,  a+1 > a, ….
We take these for granted!

lec 7W.3March 21, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Divisibility

a “divides” b      (a|b): 
b = ak for some k

5|15 because 15 = 3⋅5
n|0   because 0  = n⋅0

lec 7W.4March 21, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Simple Divisibility Facts

a|b implies a|bc
a|b and b|c implies a|c

a|b iff ac|bc
for c ≠ 0

lec 7W.5March 21, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Common Divisors, GCD

c is a common divisor of a
and b means c|a and c|b.
gcd(a,b) ::= the greatest
common divisor of a and b.

lec 7W.6March 21, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

GCD with a prime

If p is prime, and p does
not divide a, then

gcd(p,a) = 1.
Pf:  The only divisors of
p are 1 & p.
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lec 7W.7March 21, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Divisibility of a Sum

A common divisor of two
terms divides their sum.
pf: say c|x and c|y, so
x=k’c, y=k’’c.  Then
x+y = k’c+k’’c = c(k’+k’’).

k
lec 7W.8March 21, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Divisibility of Linear Comb.
A common divisor of a & b
divides any integer linear
combination of a & b.
integer lin. comb.: sa + tb
proof: divisor of a & b
divides both sa and tb.

lec 7W.11March 21, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

The Division Theorem
For b > 0 and any a, there are 
unique numbers
q ::= quotient(a,b),
r ::= remainder(a,b),  such that

a =qb + r and   0 ≤ r < b.
Take this for granted too!

lec 7W.12March 21, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Corollary
The remainder of a divided
by b is an integer linear
combination of a & b:

a = qb +r,   so
r = (-q)⋅b + 1⋅a

lec 7W.13March 21, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

GCD is a linear combination

Theorem: gcd(a,b) is the 
smallest positive linear 
combination of a and b.

spc(a,b)

lec 7W.14March 21, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

1st show: gcd(a,b) ≤ spc(a,b)

proof: Common divisor of a, b
divides lin. comb. of a & b, so

gcd(a,b) | spc(a,b).
In particular,

gcd(a,b) ≤ spc(a,b).
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2nd: spc(a,b) ≤ gcd(a,b)

Enough to show that 
spc(a,b) is a common 
divisor of a & b.just a.

lec 7W.16March 21, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Lemma: spc(a,b)|a
Pf: Remainder of a divided by 
spc(a,b), is a linear comb. of
a & b. Since remainder <
divisor, and divisor is
smallest positive,
remainder must be 0.
That is, spc(a,b) divides a.

lec 7W.17March 21, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Prime Divisibility
Lemma: p prime and p|a·b

implies p|a or p|b.
pf: say ¬(p|a).  so gcd(p,a)=1.
so,       sa +  tp = 1

(sa)b + (tp)b = b
|p |p so |p

QED
lec 7W.18March 21, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Prime Divisibility

Cor :If p is prime, and
p|a1·a2···am

then p|ai for some i.
pf: By induction on m.

lec 7W.19March 21, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Finding s and t

Given a,b, how to find
s,t so that sa+tb=gcd(a,b)?

Method: apply Euclidean
algorithm, finding
coefficients as you go.

lec 7W.20March 21, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Finding s and t
Example: a = 899, b=493
899 = 1·493 + 406   
493 = 1·406 + 87        

406 = 4·87 + 58        

87   = 1·58 + 29          

58   = 2·29 + 0               done, gcd = 29
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Finding s and t
Example: a = 899, b=493
899 = 1·493 + 406    so 406 = 1·899 + -1·493
493 = 1·406 + 87        so 87 = 493 – 1·406

= -1·899 + 2·493
406 = 4·87 + 58         so 58 = 406 - 4·87

= 5·899 + -9·493
87   = 1·58 + 29          so 29 = 87 – 1·58

= -6·899 + 11·493
58   = 2·29 + 0            done, gcd = 29

lec 7W.22March 21, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Finding s and t
Example: a = 899, b=493
899 = 1·493 + 406    so 406 = 1·899 + -1·493
493 = 1·406 + 87        so 87 = 493 – 1·406

= -1·899 + 2·493
406 = 4·87 + 58        so  58 = 406 - 4·87

= 5·899 + -9·493
87   = 1·58 + 29           so  29 = 87 – 58

= -6·899 + 11·493
58   = 2·29 + 0            done, gcd = 29

s = -6,  t = 11the Pulverizer

lec 7W.23March 21, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Finding s > 0 and t

gcd(899,493) = -6·899 + 11·493
get positive coeff. for 899?:

(-6+493k)·899 + (11-899k)·493
= -6·899 + 11·493

so use k=1:  487·899 + -888·493
= gcd(899,493)

lec 7W.24March 21, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Generalized Die Hard

Did it with buckets:
3 gal. & 5 gal.
3 gal. & 9 gal.

Now a gal. and b gal.?

lec 7W.26March 21, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Can getany linear combination
of a, b in a Die Hard bucket
(if there’s room for it).
Namely, say 0 ≤ sa +tb < b.
Get sa +tb into the b gal.
bucket as follows:

Generalized Die Hard

lec 7W.27March 21, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

assume s > 0.  do s  times:
• fill bucket a, pour into b

-- if b fills, empty it.
total poured = sa
0 ≤ amount left ≤ b
# times b emptied must be -t

Generalized Die Hard
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In fact, no need to count:
• fill bucket a, pour into b

-- if b fills, empty it.
until desired amount is in b !

Generalized Die Hard

lec 7W.35March 21, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Team Problems

Problems
1−3
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5-Color Theorem;
Benés Network

lec 7F.2March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Planar Graphs
are 5-Colorable

5-Color Theorem

lec 7F.3March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

• deg(v) ≤ 5 for some v
• K5 is not planar
• subgraphs are planar
• two new facts:

Planar Graphs

lec 7F.4March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Planar Graphs

lec 7F.5March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Planar Graphs

delete
lec 7F.6March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Planar Graphs

& incident edges



2
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Planar Graphs

& incident edges
lec 7F.8March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Planar Graphs

• then can connect
any two of its
adjacent vertices,   , 
and stay planar:

lec 7F.9March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Planar Graphs

lec 7F.10March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Planar Graphs

lec 7F.11March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Planar Graphs

lec 7F.13March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Planar Graphs

• merging adjacent
vertices in a planar
graph leaves a
planar graph
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Planar Graphs

lec 7F.15March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Planar Graphs

lec 7F.16March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Planar Graphs

lec 7F.17March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Planar Graphs

lec 7F.18March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Planar Graphs

lec 7F.19March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Planar Graphs
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Planar Graphs

lec 7F.21March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Planar Graphs

lec 7F.22March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

5-Color Theorem

By induction on # vertices:
case 1: vertex of deg ≤ 4.

remove vertex, v,
5-color remainder, then
enough colors left
to color  v.   OK

lec 7F.23March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

5-Color Theorem

case 2: vertex v of deg = 5.

v

lec 7F.24March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

5-Color Theorem

remove v

lec 7F.25March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

5-Color Theorem

remaining 5 not all adjacent

else would have K5
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5-Color Theorem

pick 2 not adjacent

add edge (still planar)
lec 7F.27March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

5-Color Theorem

merge (still planar)

lec 7F.28March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

5-Color Theorem

merge (still planar)

lec 7F.29March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

5-Color Theorem

merge (still planar)

lec 7F.30March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

5-Color Theorem

now 5-color

lec 7F.31March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

5-Color Theorem

now unmerge
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5-Color Theorem

now unmerge, restore v

only 4 colors adjacent to v, so OK
lec 7F.48March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Benés Network
see
http://theory.csail.mit.edu/classes/6.042/spring07/slides6f.pdf

lec 7F.61March 23, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Team Problems

Problems 
1−3
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Prime Factorization
Congruences
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lec 8M.3April 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Prime Divisibility

Lemma: If p is prime, and
p | a·b,

then    p|a or p|b.
pf:  in earlier lecture.  follows from

gcd(p,a)= xa+yp

lec 8M.4April 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Prime Divisibility

Cor : If p is prime, and
p| a1·a2···am

then    p|ai for some i.

pf: By induction on m.

lec 8M.5April 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Unique Prime Factorization

Fundamental Theorem of Arithmetic

Every integer > 1 factors 
uniquely into a weakly 
increasing sequence of 
primes.

lec 8M.6April 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Unique Prime Factorization

Fundamental Theorem of Arithmetic
Example:
61394323221 =
3·3·3·7·11·11·37·37·37·53

lec 8M.7April 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Unique Prime Factorization
pf: suppose not.  choose smallest n >1:

n = p1·p2···pk  = q1·q2···qm
p1≤p2≤···≤pk

q1≤q2≤···≤qm

can assume q1 < p1
so q1 ≠ pi  all i
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Unique Prime Factorization

pf:   n = p1·p2···pk  = q1·q2···qm

now p1|n, so by Cor.,  p1|qi .
so p1 = qi with i >1.
so    p2···pk  = q1·q2···qi-1·qi+1···qm

and q1 ≠ p2<n
contradiction!

lec 8M.9April 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Unique Prime Factorization

Cor : if n = p1·p2···pk ,
and m|n, then

1 2 ji i im = p ·p ···p

lec 8M.10April 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Team Problem

Problem 1

lec 8M.11April 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Congruences
Def: a ≡ b (mod n) iff n|(a - b).
Lemma: If a ≡ b (mod n), then    

a+c ≡ b+c (mod n).

pf: n| (a - b) implies
n| ((a+c) – (b+c))

lec 8M.13April 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Congruences

Lemma:
If   a ≡ b (mod n), then   

a·c ≡ b·c (mod n).

lec 8M.14April 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Congruences

Lemma:
a ≡ rem(a,n)   (mod n)

important: keeps (mod n) 
calculations in the range

0 to n-1
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Congruences
Cor : a ≡ b (mod n)  iff

rem(a,n) = rem(b,n)
Cor : a ≡ a (mod n). 
If a ≡ b & b ≡ c (mod n),

then a ≡ c (mod n)

lec 8M.16April 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

No general cancellation

So ≡ (mod n)  a lot like =.
main diff: can’t cancel

4·2 ≡ 1·2 (mod 6)
4 ≡ 1 (mod 6)

Congruences

lec 8M.17April 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Relatively prime cancellation

If gcd(k,n)=1, then have k’
k·k’ ≡ 1 (mod n).

k’ is an inverse mod n of k
pf: sk + tn = 1.
just let k’ = s .

lec 8M.18April 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Relatively prime cancellation

Cor:
If i·k ≡ j·k (mod n),
and gcd(k,n) = 1,
then i ≡ j (mod n)

lec 8M.19April 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Fermat’s Little Theorem

If p is prime & k not a multiple of p,
can cancel k.   So

k, 2k,  …, (p-1)k
are all different (mod p). 
So their remainders on division
by p are all different (mod p).

lec 8M.20April 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Fermat’s Little Theorem

This means that
rem(k, p), rem(2k, p),…,rem((p-1)k, p)
must be a permutation of

1, 2, ···, (p-1)



4

lec 8M.21April 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Fermat’s Little Theorem
so 1·2···(p-1) =
rem(k,p)·rem(2k,p)···rem((p-1)k,p)
≡ (k)·(2k) ··· ((p-1)k)    (mod p)
≡ (kp-1)·1·2 ··· (p-1)       (mod p)
so

1 ≡ kp-1 (mod p)

lec 8M.22April 2, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved.

Team Problems

Problems
2−4
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lec 8W.1April 4, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Euler’s Theorem
RSA encryption

Mathematics for Computer Science
MIT 6.042J/18.062J

lec 8W.2April 4, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Inverses mod n

Thm. If k is relatively prime
to n, there is an inverse k’

k⋅k’ ≡ 1 (mod n)
Cor.

OK to cancel (mod n)

lec 8W.3April 4, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

The interval from 0 to n

[0,n) ::= {0,1,…,n-1}
[0,n] ::= {0,1,…,n}

lec 8W.4April 4, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Euler φ function

φ(n) ::=  # k ∈ [0,n) s.t.
k rel. prime to n

φ(7)  = 6
φ(12) = 4

1,2,3,4,5,6,7,8,9,10,11

1,2,3,4,5,6

lec 8W.5April 4, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Calculating φ

If p prime, everything from
1 to p-1 is rel. prime to p, so

φ(p) = p – 1

lec 8W.6April 4, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Euler φ function

φ(49)?
0,1,2,3,4,5,6,7,8,9,…,13,14,15,…,21,…

so, φ(49) = 49-7
every 7th number is divisible by 7
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Calculating φ

For [0,pk) every pth element is 
not rel. prime to pk:

0,1,...,p-1,p,...,2p,...,(pk-2)p,...,pk-1

(1/p)pk elements
not rel. prime to pk

lec 8W.8April 4, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

φ(pk) = pk –(1/p)pk

Calculating φ

– pk-1        

lec 8W.9April 4, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Calculating φ

φ(pk) = pk – pk-1

For 1,2,...,p-1,p,...,2p,...,pk-1,pk

every pth is not rel. prime to pk

lec 8W.10April 4, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Calculating φ
Lemma :
For a,b relatively prime,

φ(a⋅b) = φ(a)⋅φ(b)  

pf: Pset 7 now;
another way in 3 weeks

lec 8W.11April 4, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Euler’s Theorem

For k relatively prime to n,
kφ(n)  ≡ 1 (mod n)

Fermat Thm a special case.
Euler proof essentially
same as Fermat:

lec 8W.12April 4, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Proof of Euler’s Thm
For k relatively prime to n, let
r ::= φ(n) and

k1,…,kr
the integers in [0,n) relatively
prime to n. Then
rem(k1k,n), rem(k2k,n),…, rem(krk,n)
is a permutation of k1,…,kr.
pf: cancel k (mod n).
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Proof of Euler’s Thm

So
k1···kr = rem(k1k,n) ··· rem(krk,n)

≡ k1k ··· krk (mod n)
= kr·k1 ··· kr (mod n)

But OK to cancel k1,···,kr, so
1 ≡ kr (mod n).

lec 8W.14April 4, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

RSA Public Key Encryption

lec 8W.15April 4, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Beforehand

• receiver generates primes p,q
• n ::= pq
• selects e rel. prime to (p-1)(q-1)
• (e, n) ::= public key, publishes it
• finds d , inverse mod (p-1)(q-1) of e 
• d is secret key, keeps hidden

lec 8W.16April 4, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Receiver’s abilities
• find two large primes p, q

- ok because: lots of primes
- fast test for primality

• find e rel. prime to (p-1)(q-1)
- ok: lots of rel. prime nums
- gcd easy to compute

• find inverse of e
- easy using Pulverizer or Euler

lec 8W.17April 4, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

RSA

• Encoding message m:
send m’ ::= rem(me, n)

• Decoding m’: 
receiver computes

rem((m’)d, n ) = m

lec 8W.18April 4, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Why does this work?

…explained in
Team Problem



4

lec 8W.19April 4, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Why is it secure?

• easy to break if can factor n
(find d  same way receiver did)

• conversely, from d can factor n
• but factoring appears hard
• has withstood 25 years of attacks

lec 8W.20April 4, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Team Problems

Problems
1&2
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Sums &
Money
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April 6,  2007 lec 8F.2Copyright © Albert R. Meyer,  2007.  All rights reserved.

C. F. Gauss

Picture source: http://www-groups.dcs.st-and.ac.uk/~history/PictDisplay/Gauss.html

April 6,  2007 lec 8F.3Copyright © Albert R. Meyer,  2007.  All rights reserved.

Sum for Children

89  + 102 + 115 + 128 + 141 +
154   +             ··· +
193   +             ··· +
232  +             ··· + 
323  +             ··· +
414   +             ··· + 453 + 466 

April 6,  2007 lec 8F.4Copyright © Albert R. Meyer,  2007.  All rights reserved.

Sum for Children

Nine-year old Gauss saw
30 numbers, each 13 greater 

than the previous one.
(So the story goes.)

April 6,  2007 lec 8F.5Copyright © Albert R. Meyer,  2007.  All rights reserved.

Sum for Children

1st  + 30th = 89 + 466          = 555
2nd + 29th =

(1st+13) + (30th−13)     = 555
3rd + 28th =

(2nd+13) + (29th−13)     = 555

April 6,  2007 lec 8F.6Copyright © Albert R. Meyer,  2007.  All rights reserved.

average term

Sum for Children
Sum of kth term and (31−k)th term
is invariant!  15 pairs of terms, so
Total = 555 ⋅ 15

= (1st + last) ⋅ (# terms/2) 
= (1st + last)/2 ⋅ (# terms)
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April 6,  2007 lec 8F.7Copyright © Albert R. Meyer,  2007.  All rights reserved.

Sum for Children

Example:

1 + 2 + ⋅⋅⋅ + (n−1) + n =
(1 + n)n

2

April 6,  2007 lec 8F.8Copyright © Albert R. Meyer,  2007.  All rights reserved.

Geometric Series
2 n-1 n

nG 1+ x + x + +x::= +x
2 3 n n+1

nxG x +x +x + +x + x=

April 6,  2007 lec 8F.9Copyright © Albert R. Meyer,  2007.  All rights reserved.

Geometric Series
2 n-1 n

nG 1+ x + x + +x::= +x
2 3 n n+1

nxG x +x +x + +x + x=

Gn−xGn=1 − xn+1

April 6,  2007 lec 8F.10Copyright © Albert R. Meyer,  2007.  All rights reserved.

Geometric Series
2 n-1 n

nG 1+ x + x + +x::= +x
2 3 n n+1

nxG x +x +x + +x + x=

Gn−xGn=1 − xn+1

n+1

n
1-xG =
1-x

April 6,  2007 lec 8F.11Copyright © Albert R. Meyer,  2007.  All rights reserved.

Geometric Series

2 n-1 n i

i=0
1 + x +x + +x + =x + x

∞
∑

Consider infinite sum (series)

n+1

n
1-xG =
1-x

April 6,  2007 lec 8F.12Copyright © Albert R. Meyer,  2007.  All rights reserved.

Infinite Geometric Series

n+1
n

nn

1-lim x 1limG
1-x 1-

=
x

=→∞

→∞

n+1

n
1-xG =
1-x
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April 6,  2007 lec 8F.13Copyright © Albert R. Meyer,  2007.  All rights reserved.

Infinite Geometric Series

for |x| < 1

∞
∑ i

i=0

1x =
1-x

April 6,  2007 lec 8F.14Copyright © Albert R. Meyer,  2007.  All rights reserved.

Team Problem

Problem 1

April 6,  2007 lec 8F.15Copyright © Albert R. Meyer,  2007.  All rights reserved.

The future value of $$

I will pay you $100 in 1 year,
if you will pay me $X now.

April 6,  2007 lec 8F.16Copyright © Albert R. Meyer,  2007.  All rights reserved.

My bank will pay me 3% interest.
define bankrate

b ::= 1.03
-- bank increases my $ by this 

factor in 1 year.

The future value of $$

April 6,  2007 lec 8F.17Copyright © Albert R. Meyer,  2007.  All rights reserved.

If I deposit your $X now,
I will have $b⋅X in 1 year.
So I won’t lose money as long as

b⋅X ≥ 100.
X  ≥ $100/1.03 ≈ $97.09

The future value of $$

April 6,  2007 lec 8F.18Copyright © Albert R. Meyer,  2007.  All rights reserved.

• $1 in 1 year is worth $0.9709 now.
• $r last year is worth $1 today,

where r ::= 1/b.
• So $n paid in 2 years is worth

$nr paid in 1 year, and is worth
$nr2 today.

The future value of $$
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$n paid k years from now
is worth $n·rk today

where r ::= 1/bankrate.

The future value of $$

April 6,  2007 lec 8F.20Copyright © Albert R. Meyer,  2007.  All rights reserved.

Annuities
I pay you $100/year for 10 years,
if you will pay me $Y now.
I can’t lose if you pay me
100r + 100r2 + 100r3 + ⋅⋅⋅ + 100r10

= 100r(1+ r + ⋅⋅⋅ + r9)
= 100r(1−r10)/(1−r) = $853.02

April 6,  2007 lec 8F.21Copyright © Albert R. Meyer,  2007.  All rights reserved.

Annuities
I pay you $100/year for 10 years,
if you will pay me $853.02.
QUICKIE: If bankrates unexpectedly 
increase in the next few years,

A.You come out ahead
B. The deal stays fair
C. I come out ahead

April 6,  2007 lec 8F.22Copyright © Albert R. Meyer,  2007.  All rights reserved.

Manipulating Sums
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑

n+1n
i

i=0

d d 1-xx =
dx dx 1-x

n+1n n
i-1 i

i=0 i=1

1 d 1-xix = ix =
x dx 1-x

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ ∑

April 6,  2007 lec 8F.23Copyright © Albert R. Meyer,  2007.  All rights reserved.

Manipulating Sums

n+1 n+2n
i-1

2
i=1

x-(n+1)x +nxix =
(1-x)∑

April 6,  2007 lec 8F.24Copyright © Albert R. Meyer,  2007.  All rights reserved.

Team Problems

Problems
2&3
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April 9, 2006 lec 9M.1Copyright © Albert R. Meyer, 2007.  All rights reserved.

Harmonic Series, 
Integral Method 

Mathematics for Computer Science
MIT 6.042J/18.062J

April 9, 2006 lec 9M.2Copyright © Albert R. Meyer, 2007.  All rights reserved.

Book Stacking

table

April 9, 2006 lec 9M.3Copyright © Albert R. Meyer, 2007.  All rights reserved.

Book Stacking

How far out?

?
overhang

April 9, 2006 lec 9M.4Copyright © Albert R. Meyer, 2007.  All rights reserved.

book center
of mass

One book

Book Stacking

April 9, 2006 lec 9M.5Copyright © Albert R. Meyer, 2007.  All rights reserved.

One book

Book Stacking

book center
of mass

April 9, 2006 lec 9M.6Copyright © Albert R. Meyer, 2007.  All rights reserved.

Book Stacking 

1
2

One book
book center
of mass
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April 9, 2006 lec 9M.7Copyright © Albert R. Meyer, 2007.  All rights reserved.

n books

1
2

n

April 9, 2006 lec 9M.8Copyright © Albert R. Meyer, 2007.  All rights reserved.

n books

center
of mass

1
2

n

April 9, 2006 lec 9M.9Copyright © Albert R. Meyer, 2007.  All rights reserved.

n books

need 
center of mass 

over table

1
2

n

April 9, 2006 lec 9M.10Copyright © Albert R. Meyer, 2007.  All rights reserved.

n books

center of mass 
of the whole stack

1
2

n

April 9, 2006 lec 9M.11Copyright © Albert R. Meyer, 2007.  All rights reserved.

n+1 books

center of mass 
of all n+1 books
at table edge

center of mass of 
top n books at 
edge of book n+1

∆overhang

1
2

n
n+1

April 9, 2006 lec 9M.12Copyright © Albert R. Meyer, 2007.  All rights reserved.

Δoverhang ::=
horizontal distance from
n-book to (n+1)-book
centers of mass
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April 9, 2006 lec 9M.13Copyright © Albert R. Meyer, 2007.  All rights reserved.

Δ = =
1 12

n +1 2(n +1)

Δ overhang

1

n

1/2

}

Δ

April 9, 2006 lec 9M.16Copyright © Albert R. Meyer, 2007.  All rights reserved.

n+1 books

center of mass 
of all n+1 books

center of mass of 
top n books

1
2

n
n+1

1/2(n+1)

April 9, 2006 lec 9M.17Copyright © Albert R. Meyer, 2007.  All rights reserved.

Bn ::= overhang of n books
B1 = 1/2
Bn+1 =  Bn + 

Bn =   

1
2(n +1)

Book stacking summary

⎛ ⎞
⎜ ⎟
⎝ ⎠

1 1 1 11+ + + +
2 2 3 n

April 9, 2006 lec 9M.18Copyright © Albert R. Meyer, 2007.  All rights reserved.

n
1 1 1H ::=1+ + + +
2 3 n

nth Harmonic number
Bn = Hn/2

April 9, 2006 lec 9M.19Copyright © Albert R. Meyer, 2007.  All rights reserved.

1
x+1

0    1     2    3    4    5     6    7    8 

1

1
2
1
3

1
2

1 1
3

Estimate Hn:
Integral Method

April 9, 2006 lec 9M.20Copyright © Albert R. Meyer, 2007.  All rights reserved.

≤∫
n

0

1 1 1 1 dx 1 + + + ... +
x +1 2 3 n

≤∫
n+1

n
1

1 dx    H
x

≤ nln(n +1)    H
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April 9, 2006 lec 9M.21Copyright © Albert R. Meyer, 2007.  All rights reserved.

Book stacking

Now Hn → ∞ as n → ∞, so
overhang can be as big desired

April 9, 2006 lec 9M.22Copyright © Albert R. Meyer, 2007.  All rights reserved.

Book stacking

for overhang 3, need  Bn ≥ 3
Hn ≥ 6

integral bound: ln (n+1) ≥ 6
so can do with n ≥ ⎡e6−1⎤ = 403 books
actually calculate Hn:

227 books are enough.

April 9, 2006 lec 9M.24Copyright © Albert R. Meyer, 2007.  All rights reserved.

Crossing a Desert

Gas
depot

truck

How big a desert can the truck cross?
April 9, 2006 lec 9M.25Copyright © Albert R. Meyer, 2007.  All rights reserved.

1 Tank of Gas

D1::= max distance on 1 tank = 1

1 tank

April 9, 2006 lec 9M.26Copyright © Albert R. Meyer, 2007.  All rights reserved.

Dn ::=
max distance into the
desert using n tanks 
of gas from the depot

April 9, 2006 lec 9M.27Copyright © Albert R. Meyer, 2007.  All rights reserved.

x

1 −2x

1−2x

1−2x

n

1−x

n+1 Tanks of Gas
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April 9, 2006 lec 9M.28Copyright © Albert R. Meyer, 2007.  All rights reserved.

x
(1−2x)n 
+ (1−x)

So have:
grow depot at x
to be n tanks;
continue from
x with n tank
method.

n+1 Tanks of Gas

April 9, 2006 lec 9M.29Copyright © Albert R. Meyer, 2007.  All rights reserved.

Set (1−2x)n + (1−x) = n.
Then using n tank strategy
from position x, gives

Dn+1 = Dn + x

depot at x

April 9, 2006 lec 9M.30Copyright © Albert R. Meyer, 2007.  All rights reserved.

(1−2x)n + (1−x) = n
1

2n+1x = 

Dn+1 = Dn + 1
2n+1

April 9, 2006 lec 9M.31Copyright © Albert R. Meyer, 2007.  All rights reserved.

n
1 1 1D =1+ + + +
3 5 2n -1

≤∫
n

n
0

1  dx    D
2(x +1) -1

≤ n
ln(2n +1)    D

2

Can cross any desert!

April 9, 2006 lec 9M.32Copyright © Albert R. Meyer, 2007.  All rights reserved.

Team Problems

Problems 
1−3
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lec 9W.1April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

Stirling’s formula,
Asymptotics

Mathematics for Computer Science
MIT 6.042J/18.062J

lec 9W.2April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

Closed form for n!
Factorial defines a product:

∏
n

i=1
n!  ::=  1×2×3× ×(n -1) ×n  = i

Turn product into a sum taking logs:

ln(n!) =  ln(1·2·3 ··· (n – 1)·n)
=  ln 1 + ln 2 + ··· + ln(n – 1) + ln(n)
=∑

n

i=1
ln(i)

lec 9W.3April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

Integral Method

Integral method to bound ∑
n

i=1
ln i

…ln 2 ln 3 ln 4ln 5
ln
n-1

ln n
ln 2
ln 3
ln 4
ln 5

ln n

2 31 4 5 n–2 n–1 n

ln (x+1)
ln (x)

lec 9W.4April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

Integral Method on ln(n!)

∫ ln(x) dx ≤ ∑ ln(i) ≤ ∫ ln (x+1)dx
i=1

nn n

1 0

lec 9W.5April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

⎛ ⎞
⎜ ⎟
⎝ ⎠∫
xlnxdx = xln
e

Reminder:
Integral Method on ln(n!)

lec 9W.6April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

⎛ ⎞ ⎛ ⎞≈ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑
n

i=1

1 nln(i) n + ln 
2 eso guess:

n ln(n/e) +1 ≤ ∑ ln(i) ≤ (n+1) ln((n+1)/e) +1

Integral Method on ln(n!)

∫ ln(x) dx ≤ ∑ ln(i) ≤ ∫ ln (x+1)dx
i=1

nn n

1 0
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lec 9W.7April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

exponentiating:

⎛ ⎞≈ ⎜ ⎟
⎝ ⎠

nnn! n/e 
e

Integral Method

⎛ ⎞ ⎛ ⎞≈ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑
n

i=1

1 nln(i) n + ln 
2 e

lec 9W.8April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

⎛ ⎞
⎜ ⎟
⎝ ⎠

nnn! 2πn
e

~

A tighter approximation:

Stirling’s Formula

lec 9W.9April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

Asymptotic Equivalence

→∞n

f(n)lim
g(n)

=1

Def.   f(n) ~ g(n)
iff

lec 9W.10April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

Asymptotic Equivalence ~

because
Example: (n2 + n) ∼ n2

= 1 + 0 = 1

limn→∞ n2+n
n2 = lim[n

2

n2 +
n
n2 ]

= lim[1 + 1
n
]

= 1 + lim 1
n

lec 9W.14April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

Little Oh

Asymptotically smaller :
Def. f(n) = o(g(n))
iff

→∞n

f(n)lim
g(n)

= 0

Little Oh:   o(·)

lec 9W.15April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

Little Oh:   o(·)

because
limn→∞ n2

n3 =

n2 = o(n3)

limn→∞
1
n = 0
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lec 9W.16April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

Big Oh

Asymptotic Order of Growth:

f(n) = O(g(n))

→∞

⎛ ⎞
⎜ ⎟
⎝ ⎠n

f(n)limsup
g(n)

< ∞

a technicality -- ignore now

Big Oh:   O(·)

lec 9W.17April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

3n2 = O(n2)
because

= 3 < ∞

Big Oh:   O(·)

limn→∞ 3n2

n2

lec 9W.18April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

The Oh’s

If f = o(g) or f ~ g, then f = O(g)

lim = 0 or lim = 1 → lim < ∞

Lemma:

lec 9W.20April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

The Oh’s

If  f = o(g), then  g ≠ O(f)

→ lim = ∞g
flim = 0f

g

lec 9W.21April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

Equivalent definition:

f(n) = O(g(n))

∃c,n0 ≥ 0 ∀n ≥ n0. |f(n)| ≤ c·g(n)

Big Oh:   O(·)

L7-2.22October 16, 2003Copyright © Albert Meyer, 2003. All rights reserved.

f(x) = O(g(x))

f(x)

c·g(x)

ln c

↑
log
scale
↓

blue stays 
below red
from here on

no

Big Oh:   O(·)
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Team Problems

Problems
1&2

lec 9W.24April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

Lemma: xa = o(xb) for a < b
Proof: a

b b-a
x 1=
x x

and  b - a > 0

so as x → ∞, →b-a
1 0

x

Little Oh:   o(·)

lec 9W.25April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

Lemma:

ln x = o(xδ)
for δ > 0.

Little Oh:   o(·)

lec 9W.26April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

Lemma: ln x  = o(xδ) for δ > 0.

≤
1 y
y
≤∫ ∫

z z

1 1

1 dy ydy
y

≤
2z -1lnz
2

Proof: for y ≥ 1

Little Oh:   o(·)

lec 9W.28April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

Lemma: ln x  = o(xδ) for δ > 0.

, so let εz ::= x

≤
εεlnx x

2 2
≤

ε
δxlnx =o(x )

ε
for δ > ε.

Proof:  ≤
2zlnz

2

Little Oh:   o(·)

lec 9W.30April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

Other proofs:
L’Hopital’s Rule,
McLaurin Series
(see a Calculus text)

Little Oh:   o(·)
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lec 9W.31April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

Theta:  Θ(·)

f(n) = Θ(g(n))

f(n)=O(g(n)) and g(n)=O(f(n))

Same Order of Growth:

lec 9W.33April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

Big Oh Mistakes

f = O(g) defines a relation “= O(·)”
Don’t write O(g) = f.
Otherwise: x = O(x), so O(x) = x.
But 2x = O(x), so

2x = O(x) = x,
therefore      2x = x.

Nonsense!

lec 9W.35April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

Big Oh Mistakes

False Lemma: ∑
n

i=1
i = O(n)

Of course really:

∑
n

2

i=1
i = θ(n )

lec 9W.36April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

Big Oh Mistakes

∑
n

i=1
i = O(n)

false proof:
0 = O(1), 1 = O(1), 2 = O(1),…

So each i = O(1). So 

∑
n

i=1
i =O(1) +O(1) + +O(1)
= n· O(1) = O(n).

False Lemma: 

lec 9W.37April 11,  2007Copyright © Albert Meyer, 2007 All rights reserved.

Team Problems

Problems 
3&4
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Counting

lec 9F.2April 13, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Counting in Gambling

A pair of Jacks is

what fraction of poker hands?
(probability of a pair of Jacks)

lec 9F.3April 13, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Counting in Algorithms

• How many multiplications 
to compute dn ?

• How many comparisons are 
needed to sort n numbers?

lec 9F.4April 13, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Counting in Games

• How many different configurations
for a Rubik’s cube?

• How many weighings to find the 
one counterfeit among 12 coins?

• How many different chess positions 
after n moves?

lec 9F.6April 13, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Sum Rule

If sets A and B are disjoint, then 
|A ∪ B| = |A| + |B|

A B

lec 9F.7April 13, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

The Sum Rule

• Class has 43 women, 54 men so
total enrollment = 43 + 54 = 97

• 26 lower case letters, 26 upper 
case letters, and 10 digits, so
total characters = 26+26+10 = 62
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lec 9F.8April 13, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

If there are 4 boys and 3
girls, there are possible

married couples.

The Product Rule

4 13 2× =

lec 9F.9April 13, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Product Rule
If |A| = m and |T| = n, then

|A × T| = mn.

A = {a, b, c, d}, T = {1, 2, 3}
A × T = { (a,1), (a,2), (a,3),

(b,1), (b,2), (b,3),
(c,1), (c,2), (c,3),
(d,1), (d,2), (d,3) }

lec 9F.10April 13, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Product Rule: Counting Strings

The number of length-4 strings
from alphabet  B ::= {0,1}

= |B × B × B × B| 
= 2 · 2 · 2 · 2 = 24

lec 9F.11April 13, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Product Rule: Counting Strings

The number of length-n strings
from an alphabet of size m is

mn.

lec 9F.12April 13, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Example: Counting Passwords

• between 6 & 8 characters long
• starts with a letter
• case sensitive
• other characters: digits or letters

lec 9F.13April 13, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Counting Passwords

{ }
{ }

:: , , , , , , ,

:: 0,1, ,9

L a b z A B Z

D

=

=

… …

…

:: length  passwordsnP n=
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lec 9F.14April 13, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Counting Passwords

{ }
{ }

:: , , , , , , ,

:: 0,1, ,9

L a b z A B Z

D

=

=

… …

…

( ) ( ) ( ) ( ) ( )× ∪ × ∪ × ∪ × ∪ × ∪L L D L D L D L D L D

( )5L L D= × ∪

P6 =

lec 9F.15April 13, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Counting Passwords

{ }
{ }

:: , , , , , , ,

:: 0,1, ,9

L a b z A B Z

D

=

=

… …

…

:: length  passwordsnP n=

( ) 1nL L D −= × ∪

lec 9F.16April 13, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Counting Passwords

( ) 11 nnL L D L L D −−× ∪ = ⋅ ∪

( ) 1

152 62

n

n

L L D
−

−

= ⋅ +

= ⋅

lec 9F.17April 13, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Counting Passwords

6 7 8P P P P= ∪ ∪

The set of Passwords:

lec 9F.18April 13, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Counting Passwords

6 7 8P P P P= + +
5 6 752 62 52 62 52 62= ⋅ + ⋅ + ⋅

14

186125210680448
19 10

=

≈ ⋅

lec 9F.21April 13, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Mapping Rule: Bijections

If f is a bijection from A to B,

then |A| = |B|

A B
� �f
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lec 9F.22April 13, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Size of the Power Set

How many subsets of finite set A? 
P(A) = the power set of A

= the set of all subsets of A
for A = {a, b, c}, 
P(A) = {∅, {a}, {b}, {c}, 

{a,b}, {a,c}, {b,c}, {a,b,c} }

lec 9F.23April 13, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Bijection: P (A) and Binary Strings

A:        {a1, a2, a3, a4, a5, … , an}

string: 1    0   1   1  0   … 1

subset: {a1,      a3, a4,      … , an}

a bijection, so
|n-bit binary strings| = |P (A)|� � � �� � � ��

2n

lec 9F.24April 13, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Counting Doughnut Selections

five kinds of doughnuts
select a dozen:
� � � �

chocolate glazed plainsugarlemon-filled

00 000000 00 00��� ��

A ::= all selections of a
dozen doughnuts

(none)

lec 9F.25April 13, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Bit Strings with four 1’s

B::= 16-bit words with four 1’s, e.g.

� � � �
chocolate glazed plainsugarlemon-filled

00 000000 00 00��� ��

00    1          1   000000 1  00 1  00
0011000000100100

lec 9F.26April 13, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Bijection from A to B

c chocolate, l lemon, s sugar, g glazed, p plain

maps to

0c10l10s10g10p

A B=
lec 9F.27April 13, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Problems
1− 3

Team Problems
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Generalized
Counting Rules

lec 10W.2April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Pigeonhole Principle

Mapping Rule:
If ∃ injection A to B, then |A| ≤ |B|.

If  |A| > |B| , then
no injection from A to B.

lec 10W.3April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Pigeonhole Principle

If more pigeons

than pigeonholes,

lec 10W.4April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Pigeonhole Principle

then some hole must have 
≥ two pigeons!

lec 10W.5April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Example: 5 Card Draw

Set of 5 cards:
must have ≥ 2
with the same suit.

lec 10W.6April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

5 Card Draw

♠ ♥ ♣ ♦

5 cards
(pigeons)

4 suits
(holes)
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lec 10W.7April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

10 Card Draw

10 cards: how many have 
the same suit?

lec 10W.8April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

10 Card Draw

Cannot have < 3 cards in every hole.

♠ ♥ ♣ ♦

lec 10W.9April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

10 Card Draw

# cards with same suit ≥ 3
10
4

3⎡ ⎤ =⎢ ⎥⎢ ⎥
cards with same suit 

“ceiling,” means round up

lec 10W.10April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Generalized Pigeonhole Principle

If n pigeons and h holes,
then some hole has at least

n
h
⎡ ⎤
⎢ ⎥⎢ ⎥

pigeons.

lec 10W.11April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Colored Graph Claim

A 6-node complete graph with edges
colored red or blue,
has either a red triangle or a blue triangle.

lec 10W.12April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Vertex of degree 5 has ≥
3 red or 3 blue incident edges.

Colored Graph Claim: proof
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lec 10W.13April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Proof
Say 3 red edges;

then a red triangle is formed.

if 2 of 3 endpoints are
connected by red edge, 

lec 10W.14April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Proof
Otherwise, all 3 endponts are
connected by blue edges

A

a blue triangle

lec 10W.15April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Generalized Product Rule

How many sequences of 5 students in 6.042?

:: 6.042 students,        101S S= =
5sequences of 5 101 ?= NO!

5witsequ h noences in  rep .eatsS
We want

lec 10W.16April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Generalized Product Rule
5witsequ h noences in  rep .eatsS

101 choices for 1st student,
100 choices for 2nd student,
99 choices for 3rd student,
98 choices for 4th student,
97 choices for 5th student

101! so 101 100 99 98 97
96!

⋅ ⋅ ⋅ ⋅ =

lec 10W.17April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Generalized Product Rule
Q a set of length-k sequences.  If there are:
n1 possible 1st elements in sequences,
n2 possible 2nd elements for each first entry,
n3 possible 3rd elements for each 1st & 2nd,
#
then, 1 2 3 kQ n n n n= ⋅ ⋅

lec 10W.20April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Division Rule

if function from A to B is k-to-1,
then

(generalizes the Bijection Rule)

A k B=
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lec 10W.21April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Division Rule

#6.042 students =

#6.042 students' fingers
10

lec 10W.22April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Counting Subsets

How many size 4 subsets of {1,2,…,13}?
Let A::= permutations of {1,2,…,13}

B::= size 4 subsets
map     a1 a2 a3 a4 a5… a12 a13 to

{a1,a2 ,a3 , a4}

lec 10W.23April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Counting Subsets

a2 a4 a3 a1 a5 … a12 a13 also maps to
{a1,a2 ,a3, a4}

as does
a2 a4 a3 a1 a13 a12 … a5

4! 9!
4!⋅9!-to-1

lec 10W.24April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Counting Subsets

1 9! ! !3 4A B= =

So number of 4 element subsets is

13!
4!9!

13
::

4
⎛ ⎞
⎜ ⎟
⎝ ⎠

=

lec 10W.25April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Counting Subsets

Number of m element subsets
of an n element set is

!::
!( )!

n n
m m n m
⎛ ⎞

=⎜ ⎟ −⎝ ⎠

lec 10W.26April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Problems 
1−3

Team Problems



5

lec 10W.27April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Sum Rule
If sets A and B are disjoint, then 

|A ∪ B| = |A| + |B|
A B

What if A and B are not disjoint?
lec 10W.28April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Inclusion-Exclusion (2 Sets)
For two arbitrary sets A and B

|||||||| BABABA ∩−+=∪

A B

lec 10W.29April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Inclusion-Exclusion (2 Sets)

I : A B∩ II : B A∩

III : A B∩

lec 10W.32April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Inclusion-Exclusion (3 Sets)

A B

C

|A ∪ B ∪ C| = |A| + |B| + |C|
– |A ∩ B| – |A ∩ C| – |B ∩ C|
+ |A ∩ B ∩ C|

lec 10W.34April 18, 2007Copyright © Albert R. Meyer, 2007. All  rights reserved.

Problem 4

Team Problem
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lec 10F.1Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 20, 2007.

Sum Rule

|A ∪ B| = |A| + |B|
A B

for disjoint sets A, B 
lec 10F.2Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 20, 2007.

A B

What if not disjoint?

Sum Rule

|A ∪ B| = ?

lec 10F.3Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 20, 2007.

Inclusion-Exclusion

∪ ∩|A B| =|A|+|B|-|A B|
A B

What if not disjoint?
lec 10F.7Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 20, 2007.

Inclusion-Exclusion (3 Sets)
|A∪B∪C| =

|A|+|B|+|C|
– |A∩B| – |A∩C| – |B∩C|
+ |A∩B∩C|

A B

C

lec 10F.10Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 20, 2007.
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Tricks with Counting 
& Matching

lec 10F.11Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 20, 2007.

The Magic Trick

• Students choose 5 cards 
• Chiyoun reveals 4 of them
• Jessica announces 5th card



2

lec 10F.12Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 20, 2007.

Let’s do it!

The Magic Trick

lec 10F.13Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 20, 2007.

Chiyoun’s Choices

• Decide the order of the 4 
cards: 4! = 24 orderings

-- but 48 cards remain
• Decide which 4 cards to list

lec 10F.14Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 20, 2007.

Match hands with 4-Card lists

list must come
from hand

?
5-card hands 
(no order)

4-card lists
(ordered)

Which one to pick?

lec 10F.15Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 20, 2007.

4-card lists
(ordered)?

How can we ensure 
consistency?

Match hands with 4-Card lists

5-card hands 
(no order)

lec 10F.21Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 20, 2007.

⎛ ⎞
⎜ ⎟
⎝ ⎠

5
deg = ×4! =

4
120

deg =52-4 = 48

Match hands with 4-Card lists

lec 10F.22Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 20, 2007.

The graph is
degree-constrained

so there is a match that 
Jessica and Chiyoun can use
−even works for bigger decks

Match hands with 4-Card lists
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lec 10F.23Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 20, 2007.

A Memorable Matching?

⎛ ⎞
⎜ ⎟
⎝ ⎠

52
=2,598

5
,960 hands to

match to lists

How will Jessica & Chiyoun
learn them?

lec 10F.24Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 20, 2007.

Magic Trick Revealed (I)

Among 5 cards chosen:
at least 2 have the same suit

(Pigeonhole Principle)
Chiyoun lists one of them 1st

Aha!  The first card has the 
same suit as the hidden card!
Aha!  The first card has the 
same suit as the hidden card!

lec 10F.25Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 20, 2007.

Magic Trick Revealed (II)

Aha!  Look at the order 
of the other 3 cards!

Aha!  Look at the order 
of the other 3 cards!

How does Jessica figure out 
the value of the hidden card?

lec 10F.26Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 20, 2007.

Magic Trick Revealed (II)

Fix ordering of the deck
A♣ < 2♣ < 3♣ < … < K♣ <
A♦ < 2♦ < 3♦ < … < K♦ <
A♥ < 2♥ < 3♥ < … < K♥ <
A♠ < 2♠ < 3♠ < … < K♠

lec 10F.27Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 20, 2007.

Magic Trick Revealed (II)

Possible orders for the
remaining 3 cards:

{ SML, SLM, MSL, MLS, LSM, LMS }

lec 10F.28Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 20, 2007.

Magic Trick Revealed (II)

Of two cards with the same suit, 
choosing which to reveal can give 1
more bit of information!

Aha! 

Of two cards with the same suit, 
choosing which to reveal can give 1
more bit of information!

Aha! 

Wait! Only have 6 lists of the
remaining 3 cards, but
12 possible hidden cards
of the known suit!
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lec 10F.29Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 20, 2007.

Clockwise Distance

58

AQ

67

K

2J

310

49

The smaller clockwise distance
between 2 card values is at most 6:

7

6
Hide card
with smaller 
offset.

Reveal the 
other card

lec 10F.30Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 20, 2007.

Magic Trick Revealed (Finally)

• Offset given by order of        
remaining 3 cards:                

SML = 1, SLM = 2, MSL = 3,
MLS = 4, LSM = 5, LMS = 6.

• The first card determines the 
hidden suit (♠ ♥ ♦ ♣) .

• Hidden value (A … K)
= first-card value + offset (≤ 6).

lec 10F.31Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 20, 2007.

Example

Hidden:First:

Offset = 1

same suit

= SML:

lec 10F.32Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 20, 2007.

Trick can’t work with 4-card hands

52! =132,600
49!

Chiyoun can 
reveal

⎛ ⎞
⎜ ⎟
⎝ ⎠

52
=270,725

4

Students 
can pick 

possible 4-card 
hands

possible 3-card
lists

lec 10F.33Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 20, 2007.

Trick can’t work with 4 cards hands

hands map to the same list
– Jessica can’t tell which!

so at least
⎡ ⎤
⎢ ⎥⎢ ⎥132,6
270,225

00
=3

lec 10F.35Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 20, 2007.

Team Problems

Problem 1

(& 2 & 3)
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lec 11M.2Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.
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Binomial Theorem,
Combinatorial Proof

lec 11M.3Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

Polynomials Express 
Choices & Outcomes

( + + ) +( ) =
++ + + +

Products of Sum = Sums of Products

lec 11M.4Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

Expression for ck?

2
0

n
n2

n

1

(1+X) =
c +c X +c X +... +c X

lec 11M.5Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

n(1 + X)
= (1 + X)(1 + X)(1 + X)(1 + X)...(1 + X)

n times

multiplying gives 2n product terms:
11 1 + X11X X1 + 1XX 1X1 + + XX X

a term corresponds to selecting 1 or X
from each of the n factors.

Expression for ck?

lec 11M.6Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

n(1 + X)
= (1 + X)(1 + X)(1 + X)(1 + X)...(1 + X)

n times

the Xk coeff, ck,  is number of 
terms where exactly k X’s were 
selected. 

Expression for ck?

⎛ ⎞
⎜ ⎟
⎝ ⎠

kc
k
n

=
lec 11M.7Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

The Binomial Formula

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

2 nk+ X + X + ... + X + ... + X0 1 2
n

k
n n n n

n

binomial coefficients

binomial 
expression=n(1 + X)
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lec 11M.8Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

The Binomial Formula

(1+X)1  =

(1+X)0 =

(1+X)2 =

(1+X)3 =

1

1 + 1X

1 + 2X + 1X2

1 + 3X + 3X2 + 1X3

(1+X)4 = 1 + 4X + 6X2 + 4X3 + 1X4

lec 11M.9Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

The Binomial Formula

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

n n-1 2 n-2

k n-k n

n n n
Y + XY + X Y +0 1 2

n n
... + X Y + ... + Xk n

=n(X + Y)

lec 11M.10Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑ -

=0

n
k k

k

n n(X + Y) X Y
k
n

=

The Binomial Formula

lec 11M.11Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

What is the coefficient of 
EMSTY

in the expansion of
(E + M + S + T + Y)5 ?

5!

Multinomials

lec 11M.12Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

What is the coefficient of 
EMS3TY

in the expansion of
(E + M + S + T + Y)7 ?

Multinomials

The number of ways to 
rearrange the letters in 
the word

SYSTEMS
lec 11M.13Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

What is the coefficient of 
EMS3TY

in the expansion of
(E + M + S + T + Y)7 ?

Applying the BOOKKEEPER rule

7!
1! 1! 3! 1! 1!
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lec 11M.14Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

Multinomial Coefficients

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

7!::=
1! 1! 3! 1! 1!

7
1, 1, 3, 1, 1

lec 11M.15Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

Multinomial Coefficients

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠ 1 2 k1 2 k

n!::=, , r!r !...r !
n

r r ...,r

≠= k1 20 if r +r +... +r n

lec 11M.16Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

What is the coefficient of 
BA3N2

in the expansion of
(B + A + N)6 ?

The number of ways to 
rearrange the letters in 
the word

BANANA

Multinomial Coefficients

lec 11M.17Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

What is the coefficient of 
BA3N2

in the expansion of
(B + A + N)6 ?

⎛ ⎞
⎜ ⎟
⎝ ⎠

6
1,3,2

Multinomial Coefficients

lec 11M.18Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

What is the coefficient of 

in the expansion of
(X1+X2+X3+…+Xk)n ?

k31 2 rrr r
1 2 3 kX X X ...X

⎛ ⎞
⎜ ⎟
⎝ ⎠1 2 3 k

n
r,r ,r ,...,r

Multinomial Coefficients

lec 11M.19Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

Multinomial Coefficients

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

n n
k k, n -k

Binomial a special case:
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lec 11M.20Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

The Multinomial Formula

( )
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∑

∑
i

k

, ,
r=n

k31 2

1 2 k

n
1 2

rrr r
1 2 3 k

r r ...,r 1 2 k, ,

X +X +...+ X
n

= X X X ...Xr r ...,r

lec 11M.21Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

More next week 
about how 
polynomials 

encode counting 
questions!

lec 11M.23Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

Pascal’s Identity

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

n n -1 n -1
= +

k k k -1
Algebraic Proof : routine, using

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

n n -1n! n(n -1)! n::= = =
k k -1k!(n -k)! k(k -1)!(n -k)! k

lec 11M.24Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

Combinatorial Proof

Consider subsets of {1,…,n}

# size k subsets =
# size k subsets that contain a 1
+ # size k subsets that do not contain a 1

lec 11M.25Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

Combinatorial Proof

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

# size k
subsets

n n -1 n -1
= +

k k k -1

Consider subsets of {1,…,n}

lec 11M.26Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

Combinatorial Proof

Consider subsets of {1,…,n}

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

# size k # siz 

no 1

e k
 subsets subsets:

with 

n n -1 n -1
= +

k k k -1
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lec 11M.27Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

Combinatorial Proof

Consider subsets of {1,…,n}

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

# size k # size k # size k
 subsets subsets: subsets:

w

 

no 1 with a 1ith 

n n -1 n -1
= +

k k k -1

lec 11M.28Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

Combinatorial Proof

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑

2n

i=0

n 2n
=

i n

lec 11M.29Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

Combinatorial Proof

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑

# size n

2n

i=0

 
  subsets

n 2n
=

i n

Consider subsets of {1,…,n,1,….,n}

lec 11M.30Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

Combinatorial Proof

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑

∑

2n

i=0

n

i=0

n

i
=

n n
=

i n - i

LHS

lec 11M.31Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

Combinatorial Proof

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑
n

i=0

# size i
 sr ubsetsed

=
n n
i n - i

LHS

lec 11M.32Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

Combinatorial Proof

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑
n

i=0

# size i # size n-i
 subsets  subsere bl kd c tsa

=
n n
i

HS

n - i

L
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lec 11M.33Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

Combinatorial Proof

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑
n

i=0

# size i # size n-i
 subsetsred bla  subsetck s

n n
i n - i

So LHS = # size n subsets
of  {1,…,n,1,….,n}
by the Sum Rule 

lec 11M.34Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

Combinatorial Proof

Therefore
LHS = # size n subsets = RHS

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑

2n

i=0

n 2n
=

i n

lec 11M.35Copyright © 2007 by Albert R. Meyer.  All rights reserved.  April 23, 2006.

Team Problems

Problems
1−4
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Generating Functions

Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 27, 2007. lec 11F.1

for Recurrences

The Rabbit Population

• A mature boy/girl rabbit pair 
reproduces  every month.

• Rabbits mature after one month.

Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 27, 2007. lec 11F.2

wn::= # newborn pairs after n months
rn::= # reproducing pairs after n months
• Start with a newborn pair:   w0 = 1

r0 = 0

The Rabbit Population

wn::= # newborn pairs after n months
rn::= # reproducing pairs after n  months

r1 = 1

Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 27, 2007. lec 11F.3

1

rn = rn-1 + wn-1

wn = rn-1   so
rn = rn-1 + rn-2

The Rabbit Population

rn = rn-1 + rn-2

Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 27, 2007. lec 11F.4

It was Fibonacci who
was studying rabbit
population growth

Generating Function for Rabbits

R(x)::= r0+r1x+r2x2 +r3x3+
-xR(x)  = -r0x-r1x2 -r2x3 -
x2R(x)  =      r x2 r x3

Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 27, 2007. lec 11F.5

-x2R(x)  =      -r0x2-r1x3-
0

R(x)::= r0+r1x+r2x2 +r3x3+
-xR(x)  = -r0x-r1x2 -r2x3 -
x2R(x) =       r x2 r x3  

Generating Function for Rabbits

Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 27, 2007. lec 11F.6

-x2R(x) =       -r0x2-r1x3  -
0 0      
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R(x)::= r0+r1x
-xR(x)  = -r0x
x2R(x) =       

Generating Function for Rabbits

Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 27, 2007. lec 11F.7

-x2R(x) =       

R(x)-xR(x)-x2R(x) =
r0+r1x-r0x = x

Generating Function for Rabbits

R(x) =
x

1− x− x2

Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 27, 2007. lec 11F.8

Now find closed form
for rn:

R(x) =
x

1− x− x2

Closed Form for rn

x

Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 27, 2007. lec 11F.9

α, β are 1/roots of 1-x-x2

=
x

(1 − αx)(1 − βx)

Closed Form for rn

R(x) =
x

(1− αx)(1− βx)

=
a

+
b

Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 27, 2007. lec 11F.10

rn = aαn+ bβn
so

=
1− αx

+
1− βx

Closed Form for rn

from quadratic formula:

α=
1+

√
5

2

Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 27, 2007. lec 11F.11

2

β =
1−

√
5

2

Closed Form for rn

x= a(1− βx) + b(1− αx)

x=1/β :    1/β = b(1-α/β)

Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 27, 2007. lec 11F.12

/β /β ( /β)
b = 1/(β-α)

likewise     a = 1/(α-β)
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Closed Form for rn

rn = aαn+ bβn

=
1√

Ã
1+

√
5

2

!n

Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 27, 2007. lec 11F.13

√
5

Ã
2

!

− 1√
5

Ã
1−

√
5

2

!n

Closed Form for rn

rn =

$
((1+

√
5)/2)n√
5

%
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(1.61)n = o(rn)

rn = o((1.62)n)

Towers of Hanoi

Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 27, 2007. lec 11F.15

Post #1 Post #2 Post #3

Move1,2(n)::= Move1,3(n-1);
big disk 1→2;
Move3,2(n-1)

sn::=# steps by Move1,2(n)

sn = 2sn 1 + 1

Towers of Hanoi

Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 27, 2007. lec 11F.16

sn  2sn-1  1
s0 = 0

S(x)::= s0+  s1x+ s2x2 + s3x3+
-2xS(x)= -2s0x-2s1x2 -2s2x3-
-x/(1-x)=   -1·x - 1·x2  - 1·x3-

Hanoi Generating Function

Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 27, 2007. lec 11F.17

x/(1 x)=   1 x 1 x 1 x

0 0 0     

S(x)     = s0 = 0
-2xS(x)
-x/(1-x)

Hanoi Generating Function

Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 27, 2007. lec 11F.18

-x/(1-x)
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Hanoi Generating Function

Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 27, 2007. lec 11F.19

for x = 1:       1 = a(-1), so

Hanoi Generating Function

Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 27, 2007. lec 11F.20

a = -1
x = 1/2: 1/2 = (1/2), so

b = 1

Hanoi Generating Function

Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 27, 2007. lec 11F.21

so    sn = 2n - 1

Team Problems

Problems

Copyright © 2007 by Albert R. Meyer.  All rights reserved. April 27, 2007. lec 11F.22
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Introduction to
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Probability Theory

Counting in Probability

What is the
probability of getting

tl t j k

Copyright © 2007, Albert R. Meyer.  All rights 
d

April 30, 2007 lec 12M.2

exactly two jacks
in a poker hand?

Outcomes: 5-card hands
52
5

⎛ ⎞
⎜ ⎟
⎝ ⎠

4 52 4⎛ ⎞ ⎛ ⎞

Counting in Probability

Copyright © 2007, Albert R. Meyer.  All rights 
d

April 30, 2007 lec 12M.3

Event: hands w/2Jacks.

Pr{2J} ::= 

4 52 4
2 3

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

i
4 48
2 3

52
5

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

i
≈ 0.04

• set of basic
experimental outcomes,

• subset of outcomes considered a

Probability: 1st Idea

Copyright © 2007, Albert R. Meyer.  All rights 
d

April 30, 2007 lec 12M.4

noteworthy event,
• probability{event}

::=
# outcomes in event

# possible outcomes

The Monty Hall Game

Applied Probability:
Let’s Make A Deal

Copyright © 2007, Albert R. Meyer.  All rights 
d

April 30, 2007 lec 12M.5

(1970’s TV Game Show)

Monty Hall Webpages

Copyright © 2007, Albert R. Meyer.  All rights 
d
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http://www.letsmakeadeal.com
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Analyzing Monty Hall

Marilyn Vos Savant explained Game
in magazine -- bombarded by letters
(even from PhD’s) debating:

Copyright © 2007, Albert R. Meyer.  All rights 
d

April 30, 2007 lec 12M.9

g
1) sticking & switching equally good
2) switching better 

Determine the outcomes.
-- a tree of possible   

Analyzing Monty Hall

Copyright © 2007, Albert R. Meyer.  All rights 
d

April 30, 2007 lec 12M.10

a tree of possible   
steps can help

1

1

2 2
1

3
2

2
3
3
2

3

3
1

L 
L
W
W

W
L

SWITCH
Wins: 6

Monty Hall SWITCH Strategy

Copyright © 2007, Albert R. Meyer.  All rights 
d

April 30, 2007 lec 12M.11

Prize
location

Door
Picked

Door
Opened

3

2
1

3

3

2

3
1

2
1

1

L
W

W
W
L
L

Lose: 6

Monty Hall STICK Strategy

Win by sticking
iff

STICK
Lose: 6

Copyright © 2007, Albert R. Meyer.  All rights 
d
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iff
Lose by switching. Wins: 6

Sticking and Switching have 
same # winning outcomes.

F l  l i

Analyzing Monty Hall

Copyright © 2007, Albert R. Meyer.  All rights 
d

April 30, 2007 lec 12M.13

False conclusion:
Contestant has same
probability of winning:

1
2

What’s wrong?
Let’s look at the outcome 

Analyzing Monty Hall

Copyright © 2007, Albert R. Meyer.  All rights 
d
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Let s look at the outcome 
tree more carefully.
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1

1

2 2

1

3

2

2

3

3

2

3

1

1/3

1/3

1/3

1/3

1/3

1/3
1/3

1/2
1/2

1/2

1

1/18

1/18

1/9
1/9

1/9
1/18

W: 6/9  = 2/3

L: 6/18 = 1/3

Monty Hall SWITCH Strategy

1

1

L 

L 

L 
W 
W 
W 

Copyright © 2007, Albert R. Meyer.  All rights 
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1/3

Prize
location

Door
Picked

Door
Opened

3

2

1

3

3

2

3

1

2

1

1

1/3
1/3

1/3

1/3

1/2

1/2

1/2

1/18
1/9

1/9
1/9
1/18

1/18

L: 6/18 = 1/3
1

1

1

L 

L 

L 

W 
W 
W 

Probability: 2nd Idea

Outcomes may have
diff i  b biliti !

Copyright © 2007, Albert R. Meyer.  All rights 
d

April 30, 2007 lec 12M.18

differing probabilities!
Not always uniform.

Lose 
1/6

Lose 
1/6

Simplify tree by
symmetry

1/2

1/2

yes

no
no

1/3

Monty Hall SWITCH Strategy

Copyright © 2007, Albert R. Meyer.  All rights 
d
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1/6

Win
2/3

1/1 yes

Carol opens 1st 
possible door

Contestant
picks goat

2/3
yes

Finding Probability

Intuition is important but dangerous.
Stick with 4-part method:
1. Identify outcomes (tree helps)

Copyright © 2007, Albert R. Meyer.  All rights 
d

April 30, 2007 lec 12M.21

2. Identify event (winning)
3. Assign outcome probabilities
4. Compute event probabilities

Probability Spaces
1) Sample space, S, whose 

elements are called outcomes.
2)Probability function, 

Copyright © 2007, Albert R. Meyer.  All rights 
d

April 30, 2007 lec 12M.22

Pr: P(S)→[0,1]
(a) Pr{S} = 1,
(b) the Sum Rule:

(Disjoint) Sum Rule

If A1, A2 are disjoint,
P {A ∪A }

Copyright © 2007, Albert R. Meyer.  All rights 
d

April 30, 2007 lec 12M.23

Pr {A1 ∪A2}
= Pr {A1}+ Pr {A2}
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Sum Rule (Infinite)

For pairwise disjoint A0,A1,…

Copyright © 2007, Albert R. Meyer.  All rights 
d

April 30, 2007 lec 12M.24

Inclusion-Exclusion

Pr {A ∪B}
= Pr {A}+ Pr {B}

Copyright © 2007, Albert R. Meyer.  All rights 
d

April 30, 2007 lec 12M.27

= Pr {A}+ Pr {B}
− Pr {A ∩B}

The Union Bound

Pr {A ∪B}

Copyright © 2007, Albert R. Meyer.  All rights 
d

April 30, 2007 lec 12M.28

6 Pr {A}+ Pr {B}
Problems

Team Problems

Copyright © 2007, Albert R. Meyer.  All rights 
d

April 30, 2007 lec 12M.31

1−4
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Conditional Probability

Mathematics for Computer Science
MIT 6.042J/18.062J

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.1

y
& Independence

Conditional Probability: Dice

Pr{die rolled 1} = 1/|{1,2,3,4,5,6}|
= 1/6.

“Knowledge” changes probabilities:
P {di  ll d 1 k i

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.2

Pr{die rolled 1 knowing
that die rolled odd number}

= 1/|{1,3,5}|
= 1/3.

{1 2 3 4 5 6}

{1,3,5}Yes
1/2

2/3

1/3
{1}

{3,5}

Yes

No

Pr{one | odd)} =

Pr{not one | odd} =

Conditional Probability: Dice
Pr
1/6

1/3

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.3

{1,2,3,4,5,6}

Rolled odd

{2,4,6}No
1/2

2/3

Rolled 1

{2,4,6}
No

1/1Pr{not one | not odd} =

Pr{not one | odd} 

1/2

Conditional Probability

Pr {A | B} is the prob.
of  event A, given that 
event B has occurred

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.4

Pr {A | B} ::= Pr{A∩B}
Pr{B}

event B has occurred

Product Rule

Pr {A ∩ B} =

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.5

Pr {A | B}Pr {B}

Conditional Probability: Monty Hall

Pr{prize at 1 | Goat at 2} = 1/2
Really!

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.6
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Conditional Probability: Monty Hall

Pr{prize at 1 | Goat at 2} = 1/2
Outcomes:

(Prize Door, Picked Door, Carol door)
Really!

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.7

[Goat at 2] =
{(1,1,2),(1,1,3),(1,2,3),(1,3,2)
(3,3,1),(3,3,2),(3,1,2),(3,2,1)}

Conditional Probability: Monty Hall

Pr{prize at 1 | Goat at 2} = 1/2
Outcomes:

(Prize Door, Picked Door, Carol door)
Really!

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.8

[Goat at 2] =
{(1,1,2),(1,1,3),(1,2,3),(1,3,2)
(3,3,1),(3,3,2),(3,1,2),(3,2,1)}

Pr{prize at 1 | Carol opens 2} = 1/2

Outcomes:
(Prize Door, Picked Door, Carol door)
l   

Conditional Probability: Monty Hall

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.9

[Carol opens 2] =
{(1,1,2),(1,3,2),
(3,3,2),(3,1,2)}

Pr{prize at 1 | Carol opens 2} = 1/2

Outcomes:
(Prize Door, Picked Door, Carol door)
l   

Conditional Probability: Monty Hall

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.10

[Carol opens 2] =
{(1,1,2),(1,3,2),
(3,3,2),(3,1,2)}

This suggests the contestant may as
well stick, since the probability is 1/2
given what he knows when he chooses.
B t it t t t k th  

Conditional Probability: Monty Hall

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.11

But wait: contestant knows more than 
door opened by Carol -- also knows: 
which door he chose himself!

Pr{prize at 1 | picked 1 &
Carol opens 2} = 1/3

[picked 1 & Carol opens 2] =

Conditional Probability: Monty Hall

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.12

[p p ]
{(1,1,2),(3,1,2)}
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Pr{prize at 1 | picked 1 &
Carol opens 2} = 1/3

[picked 1 & Carol opens 2] =

Conditional Probability: Monty Hall

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.13

[p p ]
{(1,1,2),(3,1,2)}

1/18Pr= Pr=1/9
1/18

1/18+1/9
= 1
3

S
A

Law of Total Probability

B2∩A

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.14

B1 B3B2

Law of Total Probability

A = (B1∩A)∪(B2∩A)∪(B3∩A)

Pr{A}  = Pr{B1∩A}+Pr{B2∩A}
 P {B A}

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.15

+ Pr{B3∩A}
= Pr{A|B1 }⋅Pr{B1} +

Pr{A|B2}⋅Pr{B2} +
Pr{A|B3}⋅Pr{B3}

Team Problems

Problems

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.17

1 & 2

Definitions of Independence

Definition 1:

Events A and B are independent iff
Pr{A} = Pr{A | B}.

D fi iti  2

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.19

Definition 2:

Events A and B are independent iff
Pr{A} ⋅ Pr{B} = Pr{A ∩ B}.

Equivalent:
Pr{A} = Pr{A | B}        iff

P {A}                        iff 

Definitions of Independence

Pr{A B}∩

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.20

Pr{A} =                       iff 

Pr{A} ⋅ Pr{B} = Pr{A ∩ B}.

{ }
Pr{B}
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Definitions of Independence

Note: need Pr{B} ≠ 0 for Def. 1.
Def. 2 works even if 0:

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.21

D f.  wor s n f 

Pr{A}⋅Pr{B} = Pr{A∩B}

The Birthday “Paradox”

Puzzle: n students in a room.
Probability that two have the

 bi hd  ( h  d )

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.22

same birthday (month, day)
for n = 2, 10, 23, 30, 107?

The Birthday “Paradox”

• So with 10 students have 
10/365 ≈ 1/30 chance 2 have 
same b’day?
Not really, it’s more like 1/10.

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.23

Not really, t s more l ke / 0.
• With 30 students, maybe 

3·(30/365) ≈ 1/3 chance?
No, it’s more than 2 to 1!

The Birthday “Paradox”

Let’s stop guessing and figure it 
out.  Let’s assume 6.042 
students are equally likely to 

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.24

students are equally likely to 
have each of 365 possible 
birthdays.

The Birthday “Paradox”

Choose 2 students at random.
Pr{2 students have same b’day}

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.25

= 1
365

The Birthday “Paradox”

Pr{2 students b’days differ}

11

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.26

= 11 -
365
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The Birthday “Paradox”

Choose another 2 students 
independently of first two.

Pr{neither pair has same birthday}
= Pr{1st pair’s b’days differ and

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.31

= Pr{1st pair s b days differ and
2nd pair’s  b’days differ}

= Pr{1st pair’s b’days differ} ×
Pr{2nd pair’s b’days differ}

The Birthday “Paradox”

Pr{both pairs’ b’days differ}

⎛ ⎞
21

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.32

⎛ ⎞
⎜ ⎟
⎝ ⎠

= 11 -
365

The Birthday “Paradox”

Choose another 253 pairs of students 
independently of first pairs.

Pr{no pair has same birthday}

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.33

⎛ ⎞ ≈⎜ ⎟
⎝ ⎠

2531 1= 1 -
365 2

The Birthday “Paradox”

But with n = 23 students, 
have

253  pairs
⎛ ⎞
⎜ ⎟
23

=

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.34

253  pairs

of students.

⎜ ⎟
⎝ ⎠2

The Birthday “Paradox”

So, with 23 students
Pr{no pair has same b’day}

1

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.35

≈
1
2

The Birthday “Paradox”

( )⎛ ⎞ ⎛ ⎞
140 97301 1

With 140 students
Pr{no pair has same b’day}

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.36

( )⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

973021 11- = 1-
365 365

≈
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The Birthday “Paradox”

⎛ ⎞
⎛ ⎞⎜ ⎟⎛ ⎞

9730365 97301

With 140 students
Pr{no pair has same b’day}

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.37

⎛ ⎞⎜ ⎟
⎝ ⎠ ⎜ ⎟

⎝ ⎠⎛ ⎞ ≤⎜ ⎟
⎝ ⎠

365 9730-365 3651= 1- e
365
≤

1
300,000,000,000

The Birthday “Paradox”

In fact, in a term with 6.042 
enrollment of 140, we found

 h  hd

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.38

17 pairs with same birthday
(and 2 triples)

The Birthday “Paradox”

Wait! Whether one pair of
students has the same birthday is 
not independent of other pairs:

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.41

if (Joy, Tim) have same b’day, and 
(Tim, Mike) do too, then

Pr{(Joy,Mike) same b’day} = 1.

The Birthday “Paradox”

But this dependence actually 
makes same b’day pairs more
likely  so our value for

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.42

likely, so our value for
Pr{no matches}

is a valid upper bound.

The Birthday “Paradox”

…and when #students << # b’days
(for example, 23  << 365), our 
b d i  ti ht  b  i  

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.43

bound is tight, because pairs 
w/same b’day not likely to overlap.

Team Problems

Problems

Copyright © 2007, Albert R. Meyer.  All rights reserved May 2, 2007 lec 12W.62

3 & 4
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Introduction to 
Random Variables

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.2

Guess the Bigger Number
Team 1:

– Write different integers between 0 
and 7 on two pieces of paper

– Show to Team 2 face down
Team 2:

– Expose one paper and look at number
– Either stick or switch to other number

Team 2 wins if ends with larger number

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.3

Guess the Bigger Number

Try it out!

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.4

Strategy for Team 2

Choose papers with equal probability.
If exposed number is “small” then
switch; otherwise stick.

“small” means ≤ threshold Z.
Z is random integer, 0 ≤ Z < 7.

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.5

Analysis of Team 2 Strategy

Case (low ≤ Z < high): 
Team 2 wins in this case, so
Pr{Team 2 wins} = 1
and Pr{this case} ≥

1
7

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.6

Analysis of Team 2 Strategy

Case (high ≤ Z):
Team 2 will switch, so
wins iff low card gets exposed.

Pr{Team 2 wins} = 1
2
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May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.7

Analysis of Team 2 Strategy

Case (Z < low):
Team 2 will stick, so
wins iff high card gets exposed.
Pr{Team 2 wins} = 1

2

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.8

Analysis of Team 2 Strategy

So 1/7 of time, sure win.
Rest of time, 50/50 win, so
Pr{Team 2 wins} ≥
1

7
· 1+

6

7
·
1

2
=
4

7
>
1

2

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.9

Analysis of Team 2 Strategy

Does not matter 
what Team 1 does!!

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.11

Team Problem

Problem 1
How can Team 1 guarantee

Pr{Team 2 wins} ≤
whatever Team 2 does?

4

7

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.12

Random Variables

Informally: an RV is a number 
produced by a random process:

• number of larger card
• number of smaller card
• number of exposed card
• threshold variable Z

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.13

What is a Random Variable?

Formally,

Sample space (usually)

R : S→ R
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Intro to Random Variables

Example: Flip three fair coins.
C ::= number of heads (Count).

⎧⎪= ⎨
⎪⎩

1 if all atch,
::

0 otherwis
M

e.
M

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.15

Intro to Random Variables
Specify events using values of variables.

• [C = 1] is the event “exactly 1 head”
Pr{C = 1} = 3/8

• Pr{C ≥ 1} = 7/8
• Pr{C·M > 0} = Pr{M>0 and C>0}

= Pr{all heads} = 1/8

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.16

Independent Variables
Random variables R,S

are independent iff
[R = a], [S = b]

are independent events
for all numbers a, b.

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.17

Independent Variables

Alternative version 1: R,S independent iff
Pr{R = a | S = b}  =  Pr{R = a}.

Alternative version 2:
Pr{R = a and S = b} =
Pr{R = a} · Pr{S = b}.

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.18

Independent Variables

Tell me:
Are C and M
independent?

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.19

Independent Variables
H1 ::= indicator for Head on coin 1
H2 ::= indicator for Head on coin 2
P ::= H1 ⊕ H1 (mod 2 sum).

any 2 of them are independent:
Pr{P=0 | H2=a} = 1/2 = Pr{P=0}, etc.

But any 2 determine the 3rd one,
so the 3 together are not really 
independent.
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Independent Variables
Pairwise Independence:

Pr{Ai=ai and Aj=aj} =
Pr{Ai=ai} · Pr{Aj=aj}      all i ≠ j.

Mutual Independence:
Pr{A1=a1 and A2=a2 and ··· An=an} =

Pr{A1=a1}·Pr{A2=a2}···Pr{An=an}.

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.21

Independent Variables

k-wise Independence: 
any k of the variables are 
mutually independent
(so 2-wise = pairwise)

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.22

Independent Variables

Pairwise Independence sufficient 
for major applications (in later 
lecture).

Good to know, since pairwise holds 
in important cases where mutual 
does not.

May 4, 2007 Albert R. Meyer, copyright 2007 lec 12F.30

Team Problems

Problems
2&3
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Binomial Distribution

Copyright © 2007, Albert R. Meyer.  All rights reserved May 7, 2007 lec 13M.1

& Sampling

What is a Random Variable?

Formally,

R : S→ R

Copyright © 2007, Albert R. Meyer.  All rights reserved May 7, 2007 lec 13M.2

Sample space (usually)

R : S→ R

Independent Variables
Random variables R,S

are independent iff
[R = a], [S = b]

Copyright © 2007, Albert R. Meyer.  All rights reserved May 7, 2007 lec 13M.3

[ ], [ ]
are independent events
for all numbers a, b.

Independent Variables

Alternative version:
Pr{R = a and S = b} =

Copyright © 2007, Albert R. Meyer.  All rights reserved May 7, 2007 lec 13M.4

Pr{R = a} · Pr{S = b}.

Mutually Independent RV’s

Mutual Independence of
random vars A1,A2, …, An:
Pr{A1=a1 and A2=a2 and  A =a } =

Copyright © 2007, Albert R. Meyer.  All rights reserved May 7, 2007 lec 13M.5

Pr{A1=a1 and A2=a2 and … An=an} =
Pr{A1=a1}·Pr{A2=a2}···Pr{An=an}.

Independent Variables

k-wise Independence: 
any k of the variables are 

t ll  i d d t
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mutually independent
(2-wise = pairwise)
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Independent Variables

Pairwise Independence 
sufficient for major 
applications (in later lecture) 

Copyright © 2007, Albert R. Meyer.  All rights reserved May 7, 2007 lec 13M.7

which is useful since pairwise 
holds in important cases where 
mutual does not.

Density & Distribution

The Probability Density Function
of random variable R, 

PDFR(a) ::= Pr{R=a}

Copyright © 2007, Albert R. Meyer.  All rights reserved May 7, 2007 lec 13M.8

R( ) { }
Cumulative Distribution Function of R, 

CDFR(a) ::= Pr{R ≤ a}

Indicator variable for event A:
⎧⎪1 if  occursA

Indicator Variables

Copyright © 2007, Albert R. Meyer.  All rights reserved May 7, 2007 lec 13M.11

⎧⎪
⎨
⎪⎩

A

1 if  occurs,
 ::=   

0   if occurs.
A

I
A 

Distributions

Example:
Hi ::= indicator for a head on

the ith coin flip.
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Coin may be biased:
pr{Hi = 1} = p ≠ 1/2

Binomial Distribution

Hn,p::= # heads in n mutually 
independent flips of a p-biased 
coin.
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Hn,p = H1+H2+···+Hn

Probability space: the 2n

sequences of n H’s and T’s.
pr{Q} ::= p#H’s in Q · (1-p) #T’s

Binomial Distribution

pr{k Heads} =
(#k head seqs)
· pr{seq with k H’s}

Copyright © 2007, Albert R. Meyer.  All rights reserved May 7, 2007 lec 13M.16

p { q }

⎛ ⎞
⎜ ⎟
⎝ ⎠

n,p

k n-k
HPDF ( ) = (1

k
- p)

n
k p
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Estimate % contaminated fish in
Charles River?

Polling & Sampling

??

Copyright © 2007, Albert R. Meyer.  All rights reserved May 7, 2007 lec 13M.18

Procedure: catch n fish, test each, 
use %contaminated in catch as 
estimate of  %contaminated in 
whole river

Sampling Questions

Catch 100 fish; what is
probability that estimate

Copyright © 2007, Albert R. Meyer.  All rights reserved May 7, 2007 lec 13M.19

probability that estimate
is within 10% of actual%?

Model as Coin 
Tosses

p ::= fraction contaminated in river
Fish tested: coin toss with bias p.
Catching n fish:  tossing n coins

Copyright © 2007, Albert R. Meyer.  All rights reserved May 7, 2007 lec 13M.20

A ::= fraction contaminated      
in the sample of 100

Polling using Binomial PDF

A = #”heads”/100    
within 10% of p?
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p
Pr{|A - p|≤ 0.1} =
Pr{|H100,p – 100p|≤ 10}

How do we bound this probability  
when we don’t know p?

L P {|H 100 |≤10}

Polling using Binomial PDF
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Lemma: Pr{|Hn,p – 100p|≤10}
is min for p = 1/2

Compute the exact probability

≤ ≥

≤100 1/2

Pr{| | 0.1}
Pr{

A - p
H - 50 10}
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≤100,1/2Pr{ H 50 10}

−

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
≥∑

60
100

h 40

100
2

h
0.96
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We can be 96% confident
that our estimated fraction 
is ith 0 1 f th  t l  

Confidence
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is with 0.1 of the actual  
fraction of contaminated 
fish in the whole river.

Sample size for better estimate 

Suppose we want an estimate 
of the fraction that will be  
4% (± 0.04) accurate

Copyright © 2007, Albert R. Meyer.  All rights reserved May 7, 2007 lec 13M.25

for 95% of the time?
Similar calculation implies need 
to sample 589 fish.

Confidence
Now suppose we sample 589 fish 
and discover 47 are contaminated.
So we estimate p is 47/589.
It’s tempting to say

− not Probable Reality
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p g y
“the probability that

p = 47/589± 0.04
is at least 95%”
--Technically not correct!

p is the actual fraction of 
bad fish in the river.

p is unknown

Confidence
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p is unknown,
but not a random variable!

Confidence

The possible outcomes of our
sampling procedure is a random 
variable.  We can say that

Copyright © 2007, Albert R. Meyer.  All rights reserved May 7, 2007 lec 13M.28

y
“the probability that our sample 
fraction will be within ± 0.04 of 
the true fraction is at least 95%”

Confidence

For simplicity we say that
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p = 47/589± 0.04 at the
95% confidence level
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Binomial Approximation

Numerical approximations
for PDFHn p

(α n),

Copyright © 2007, Albert R. Meyer.  All rights reserved May 7, 2007 lec 13M.30

Hn,p
CDFHn,p

(α n),
in Notes 13.

Distribution of Heads

Pr{H k}

1 2πpqn

pq
n
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Pr{Hn,p=k}

k = 0 npn

Messy formulas, but easy to 
compute.

Exact answers for n more than a 

Binomial Approximation
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few 1000 are impossible to 
compute

(requires arithmetic on million-
digit numbers)

Team Problems

Problems
1&2

Copyright © 2007, Albert R. Meyer.  All rights reserved May 7, 2007 lec 13M.35

1&2
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Team Problems

Problems
1&2

lec 13w.2May 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Mathematics for Computer Science
MIT 6.042J/18.062J

Great 
Expectations

lec 13w.4May 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Carnival Dice

Choose a number from 1 to 6,
then roll 3 fair dice:
win $1 if any die matches num
lose $1 if no match.  Example: 

choose number 2, roll 2,4,2,
win $1

lec 13w.5May 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Carnival Dice

Is this a fair game?

lec 13w.6May 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Carnival Dice

Clearly NOT fair:
pr{win} = 1-(5/6)3 < 0.43 < 1/2

lec 13w.7May 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Carnival Dice, II

Choose a number from 1 to 6,
then roll 3 fair dice:
win $1 for each match
lose $1 if no match.  Example: 

choose number 2, roll 2,4,2,
win $2
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Carnival Dice, II

Is this now a fair game?

lec 13w.10May 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Carnival Dice, II
win

Pr {0 matches} =
³
5
6

´3
−1

Pr {1 match} =
¡3
1

¢ ³
1
6

´ ³
5
6

´2
1

Pr {2 matches} =
¡3
2

¢ ³
1
6

´2 ³
5
6

´
2

Pr {3 matches} =
¡3
3

¢ ³
1
6

´3
3

lec 13w.11May 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Carnival Dice, II

Average win:³
53·−1

´
+3·52·1+3·5·2+3

63

= − 17
216 ≈ −8 cents
NOT fair!

lec 13w.12May 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

You can “expect” to lose 8 cents 
per play.
Notice that you never actually 
lose 8 cents on any single play.  
Rather, this is what you expect 
to lose on average.

Carnival Dice, II

lec 13w.13May 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Expectation
The expected value of 
a random variable D is:
the average value of D
--with values weighted by 
their probabilities.

lec 13w.14May 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Expectation

expected value also called
mean value, 
mean, or expectation
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Expectation
The expected value of 
a random variable D is:

E [D] ::=
X
v

v · Pr {D = v}

lec 13w.16May 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Sum or Integral?

In the most general probability spaces,
the sum would have to be an integral.
We can get away with sums because
we assume the sample space is
countable:

lec 13w.17May 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Sum or Integral?

Pr {D = v} ::=X
D(ω)=v

Pr {ω}

lec 13w.18May 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Expectation

E [D] ::=
X
v

v · Pr {D = v}
So

=
X
ω∈S

D(ω) · Pr {ω}

lec 13w.19May 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Mean Time to Failure

Biased coin with pr{Head} = p.
Flip until a Head comes up.
Expected #flips?

lec 13w.20May 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Mean Time to Failure

pr{1st Head on flip 1}  = p,
pr{1st Head on flip 2} = (1-p)p,
pr{1st Head on flip 3} = (1-p)2p,

pr{1st Head on flip n} = (1-p)n-1p.
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Mean Time to Failure
E [# flips till 1st Head]

=

∞X
1

n · (1− p)n−1p

= p

⎛⎝ ∞X
0

(n+ 1) · (1− p)n

⎞⎠
lec 13w.22May 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Mean Time to Failure
E [# flips till 1st Head]

= p

µ
1

(1− (1− p))2

¶

=
1

p

lec 13w.23May 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Mean Time to Failure

application: Space station Mir
say had 1/150,000 chance of
exploding in any given hour.
After how may hours did
we expect it to explode?

150,000 hours ≈ 17 years

lec 13w.24May 9, 2007Copyright © Albert R. Meyer, 2007. All rights reserved.

Team Problems

Problems
3−5
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Deviation from

Mathematics for Computer Science
MIT 6.042J/18.062J

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.1

the Mean

Don’t expect the Expectation!

Toss 101 fair coins.
E[#H d ]  50 5

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.2

E[#Heads] = 50.5

Pr{exactly 50.5 Heads} = ?
Pr{exactly 50 Heads} < 1/13

= 0

Don’t expect the Expectation!

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.3

Pr{50.5 ±1 Heads}    < 1/7

Toss 1001 fair coins.
E[#Heads]             = 500.5

Don’t expect the Expectation!

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.4

Pr{#H = 500}         < 1/39
Pr{#H = 500.5±1 } < 1/19

smaller

Toss 1001 fair coins.
Pr{#H = 500 ± 1%}

of 1001
Within a % of the mean?

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.5

= Pr{#H = 500 ± 10}
≈ 0.49

not so bad

Giving Meaning to the “Mean”
Let μ ::= E[R]
• What is  Pr{R far from μ}?1442443

Pr{|R  μ| > x}

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.6

• R’s average deviation ?

E[ |R − µ| ] ?

Pr{|R - μ| > x}
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Two Dice with Same Mean

Fair Die
• E[D1] = 3.5

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.8

Loaded Die throwing only 1 & 6:
• E[D2] = (1+6)/2 = 3.5 also!

{   }

Fair
1

0

Two Dice with Same Mean

1.5  on average

deviation from the mean

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.9

Pr{D = i}

i:  0  1  2  3  4  5  6  7

Loaded
1

0

0

2.5

Fair Die:
E[ |D1 − μ| ] =  1.5

Dice have Different Deviations

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.10

Loaded Die: 
E[ |D2 − μ| ] =  2.5

Giving Meaning to the “Mean”
The mean alone is not a good 
predictor of R’s behavior.  We 
generally need more about its 

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.11

generally need more about its 
distribution, especially probable 
deviation from its mean.

Example: IQ
IQ measure was constructed so 
that

average IQ = 100.

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.15

average IQ  100.
What fraction of the people 
can possibly have an IQ ≥ 300?

IQ Higher than 300?

Fraction f with IQ ≥ 300
adds ≥ 300f to average,
so 100 = avg IQ ≥ 300f:

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.16

so 100 = avg IQ ≥ 300f:
f ≤ 100/300 = 1/3
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At most 1/3 of people
have IQ ≥ 300

IQ Higher than 300?

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.17

≥ ≤Pr{IQ } E[IQ]300
300

In general,
IQ Higher than x?

≤≥
100IQ xPr{ }

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.18

≤≥IQ xPr{ }
x

IQ Higher than x?

Besides mean = 100,
we used only one fact about the 
di t ib ti f IQ

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.19

distribution of IQ:
IQ is always nonnegative

Markov Bound

If R is nonnegative, then

[ ]
≤≥

E R
RP { }

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.20

for x > 0.

[ ]
≤≥R xPr{ }

x

•Weak
•Obvious

Markov Bound

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.22

Obvious
•Useful anyway

Suppose we are given that IQ 
is always ≥ 40?
Get a better bound on fraction 
f h Q  300  b  d

IQ ≥ 300, again

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.25

f with IQ ≥ 300, by considering
IQ−40

since this is now ≥ 0.
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f contributes 300f to the 
average of IQ−40, so

60 = E[IQ−40] ≥ 300f

IQ ≥ 300, again

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.26

[ Q ]
f ≤ 60/300 = 1/5

Better bound from Markov by
shifting R to have 0 as minimum

Pr{|R−µ| ≥ x}
= Pr{(R−µ)2 ≥ x2}

 k

Improving the Markov Bound

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.27

≤ 2

2(R - µ)[ ]
x

E
by Markov:

variance of R

Chebyshev Bound

≥ ≤
Var[R]Pr{|R-μ| x}

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.28

≥ ≤ 2Pr{|R μ| x}
x

Variance of an Indicator

Var [I] ::=E
h
(I− p)2

i
E
h
I2 2 2

i
I an indicator with E[I]=p:

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.29

=E
h
I2 − 2p+ p2

i
=E

h
I2
i
− 2p+ p2

=p− 2p+ p2 = p(1− p).

Variance

Rσ ::= Var[R]
and Standard Deviation

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.30

{
σμ

PDFR

’  

σ
≥ ≤

2

2Pr{|R -μ| x}
x

Standard Deviation

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.32

R probably not many σ’s from μ: 
further than σ Pr ≤ 1

2σ Pr  ≤ 1/4
3σ Pr  ≤ 1/9
4σ Pr  ≤ 1/16
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Calculating Variance

Var [R] E
h
R2
i

E2 [R]

Var [aR+ b] = a2 Var [R]

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.34

Var [R] = E
h
R2
i
− E2 [R]

(simple proofs applying linearity
of expectation to the def of variance)

Calculating Variance

Var [R1 + R2 + · · · + Rn] =

Var [R1] + Var [R2] + · · ·+ Var [Rn]

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.36

providing R1,R2,…,Rn are
pairwise independent

Calculating Variance

Pairwise Independent Additivity

similar proof using linearity of 
i  & d f f i

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.37

expectation & def of variance

Team Problems

Problems

May 14, 2007Copyright © Albert R. Meyer, 2007.  All rights reserved. lec 14M.38

1−5
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Team Problems

Problems
1&2

lec 14W.1 Copyright © 2007, Albert R. Meyer.  All rights reserved May 16, 2007 lec 14W.2

Mathematics for Computer Science
MIT 6.042J/18.062J

Deviation of
Repeated Trials

Copyright © 2007, Albert R. Meyer.  All rights reserved May 16, 2007

Even the stupidest man −by some instinct of 
nature per se and by no previous instruction 
(this is truly amazing) −knows for sure that 
the more observations ...that are taken, the 
less the danger will be of straying from the 
mark.
---Ars Conjectandi (The Art of Guessing), 1713*

*taken from Grinstead \& Snell,
http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/book.html
Introduction to Probability, American Mathematical Society, p. 310.

Jacob D. Bernoulli (1659 – 1705)

lec 14W.3 Copyright © 2007, Albert R. Meyer.  All rights reserved May 16, 2007

It certainly remains to be inquired whether 
after the number of observations has been 
increased, the probability…of obtaining the 
true ratio…finally exceeds any given 
degree of certainty; or whether the problem 
has, so to speak, its own asymptote---that 
is, whether some degree of certainty is 
given which one can never exceed.

Jacob D. Bernoulli (1659 – 1705)

lec 14W.4

Copyright © 2007, Albert R. Meyer.  All rights reserved May 16, 2007

Random variable R with mean μ
n independent observations of R

R1, , Rn

Repeated Trials

lec 14W.5 Copyright © 2007, Albert R. Meyer.  All rights reserved May 16, 2007

take average:

An ::=
R1+···+Rn

n

lec 14W.6

close to `true ratio’ with prob. ?

Pr {|An − μ| 6 x}

Repeated Trials

as close as x > 0
?
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Copyright © 2007, Albert R. Meyer.  All rights reserved May 16, 2007

Pr {|An − μ| 6 x}
Repeated Trials

Even `stupidest man’ knows this prob.
gets bigger as n gets bigger

−but how big?
Does it “exceed… any given degree of 
certainty”?
That is, does it approach 1?

Copyright © 2007, Albert R. Meyer.  All rights reserved May 16, 2007

?≤
→∞

nlim Pr{ A -μ x} = 1
n

Weak Law of Large Numbers

lec 14W.8

→∞
nlim Pr{ A -μ > x} = 0

n
?

YES

Copyright © 2007, Albert R. Meyer.  All rights reserved May 16, 2007

Therefore, this is the problem which I 
now set forth and make known after I 
have pondered over it for twenty years.  
Both its novelty and its very great 
usefulness, coupled with its just as 
great difficulty, can exceed in
weight and value all the remaining 
chapters of this thesis.

lec 14W.9

Jacob D. Bernoulli (1659 – 1705)

Copyright © 2007, Albert R. Meyer.  All rights reserved May 16, 2007

Jacob D. Bernoulli (1659 – 1705)

lec 14W.10

Copyright © 2007, Albert R. Meyer.  All rights reserved May 16, 2007

Weak Law of Large Numbers

lec 14W.11

Will be an easy Corollary of Chebyshev
and properties of variance.

→∞
nlim Pr{ A -μ > x} = 0

n

Copyright © 2007, Albert R. Meyer.  All rights reserved May 16, 2007

E [An] = E
·
R1 + · · ·+ Rn

n

¸
=

E [R1] + · · ·+ E [Rn]
n

=
nμ

n
= μ

Repeated Trials

lec 14W.12
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Copyright © 2007, Albert R. Meyer.  All rights reserved May 16, 2007

by Chebyshev:

lec 14W.13

Repeated Trials

[ ]
≤ n

n 2

Var A
Pr{ A -μ > x}

x
so need only show

Var[An]→ 0
Copyright © 2007, Albert R. Meyer.  All rights reserved May 16, 2007

Repeated Trials

what is Var[An] ?

lec 14W.14

let σ2 ::= Var[R]

Copyright © 2007, Albert R. Meyer.  All rights reserved May 16, 2007

Var [An]
= Var [(R1 + · · ·+ Rn) /n]
= (Var [R1] + · · ·+ Var [Rn]) /n2

= nσ2

n2
= σ2

n

Repeated Trials

lec 14W.15

→0 as n→∞
QED

Copyright © 2007, Albert R. Meyer.  All rights reserved May 16, 2007

Analysis of the Proof
proof only used
• R1,…,Rn have same finite mean, μ
• and finite variance, σ2

• and variances add: 
Var [R1 + · · · + Rn]
= Var [R1] + · · ·+ Var [Rn]

which follows from pairwise independence
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Pairwise Independent Sampling

Let R1,…,Rn be pairwise independent
random vars with the same finite 
mean, μ, and variance, σ2.  Let

ThenAn ::= (R1 + · · ·+ Rn) /n.

Pr {|An − μ| > x} 6 1

n

³σ
x

´2
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Pairwise Independent Sampling
The punchline:
we now know how big a sample is
needed to estimate the mean of
any* random variable to within
any* desired tolerance and to
any* degree of confidence.

* Var[rand. var] < ∞, tolerance > 0,
confidence < 100%
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Team Problems

Problems
3&4

lec 14W.19
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