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My concerns '67-'72:
(1) Was speedup ``real'' -- any sets with 

speedup not explicitly constructed (by 
diagonalization) to have it?

(2) Was there any ``real'' problem that was 
definitely not in P?

(3) How to defend a complexity theory  
which treated all finite problems
as trivial?
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Larrys' thesis provided definitive 
answers to all these questions.
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A neat, but overlooked, 
result from Larry's thesis.
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Language L has
IO-speedup

if, when M accepts L, then
∃ M' accepting L, and

M' is very fast at ∞‘ly many 
inputs where M is slow,
(same time on other inputs)



Pretty much all the 
problems known to be 
complete for the usual time 
and space bounded 
complexity classes have 
corresponding IO-speedup.
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Cor: Let SF :=
{star-free reg. exps R

| L(R) = ∅} 
SF has
222…n-IO-speedup
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Definition: Let M be a program, 
x an input word, f(n) a time fcn.
Say “M(x) is slow” if
on input x,

M takes > f(|x|) steps.
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Definition: Let M be a program, 
x an input word, f(n) a time fcn.
Say “M(x) is very fast” if
on input x,

M takes O(|x|) steps
(that is, linear time)
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Definition: Let D ⊆ Σ* be decidable.
D has f-IO-speedup if, 
whenever L(M) = D,
there is M' with L(M) = D, and
for infinitely many x,
M‘(x) is very fast while M(x) is slow
(M’ takes same time as M at other x.)
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Thm [Blum, McCreight-Meyer] 
Let Df :=

{M | M rejects input “M”
or takes > f(|M|) steps}

Then Df has f-IO-speedup.
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That is, M ∈ Df iff
M rejects "M "

or is slow on it.
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Pf:  Suppose Df = L(M0).  So
M0 accepts "M " iff
M rejects "M " or is slow on it.

So, letting M be M0,
M0 accepts “M0,”

but slowly.
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Cool Trick: let M0,n be same 
as M0 but padded with n
useless instructions.
So M0,n behaves exactly like 
M0, just bigger.
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So M0,n accepts "M0,n” slowly,
so   M0 accepts "M0,n” slowly.

Define M0' to accept "M0,n”
very fast for all n,
otherwise, same as M0.

M0’ speeds up M0.
QED
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Lemma [Meyer/Stockmeyer]  
IO-speedup inherits up 
“efficient invertible“ reducibility.
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r is "good" if it is 1-1, linear-bounded, 
"easy to compute," and the same for 
r -1.
If A has f-IO-speedup,
and x ∈ A iff r(x) ∈ B,
then B has (ε⋅f )-IOspeedup
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The story behind the SF result

My Background from Harvard ’62-‘67:
Recursion theory from Rogers & P. Fischer

·m, arithmetic hierarchy
Complexity thy: Rabin, Hartmanis-Stearns, Blum

Speedup, compression, IO and AE
Finite Automata: S. Even, Ginsburg

Krohn-Rhodes on star-free events
Automata & Logic: Wang, Buchi

WS1S just another notation for FA’s
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Efficient reducibility:
McCreight's thesis, CMU '68
Circuit complexity:

Winograd, Ehrenfeucht
Cook & Karp '72

Polytime ·:
NP as ∃ polysize x
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With this background, not surprising that 
I should propose a polytime
analog of the arithmetic hierarchy.

But I wanted to show it was useful for 
classifying problems.

Suggested to Larry that he fit reg.exp. 
equivalence into the hierarchy. 
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Larry came back (next day?) and said 
reg.exp. equiv NOT IN the hierarchy!  
He showed me how to reduce every 
poly-class to reg.exp. equiv.

I pointed out that all he was using 
about poly-classes was they were in 
polyspace.  He had shown reg.exp. 
equiv. was poly-space hard!
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Driving home I started thinking ``why 
polynomial?'‘

Realized the crux was a linear size 
expression for set of all length n 
strings.
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I knew how to get a nondeterministic FA 
to recognize all strings differing from
the sequence of all consecutive n-bit 
strings.  So with complement and a 
“smoothing” operation to turn one long 
string into all long strings, I could get a 
linear size expression for length 2n

strings, and could iterate the construction 
to get super-exponential lower bounds on
reg-exps with complement & smoothing.
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And the equiv. prob for these 
expressions was easy to reduce to 
the decidable logical theory WS1S, 
so it too had super-exponential 
lower bound.

WOW!

May 21, 2005
Copyright A.R. Meyer 2005, all rights reserved S.24



I called Mike Fischer (around midnight) to tell 
him what I'd figured out  (and to make sure I 
wasn't kidding myself).  Next day(?) I 
explained it to Larry and suggested he work 
on getting rid of the ad hoc ``smoothing''
operation.  Later he got rid of ``star'' too.

We were off and running.
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