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Abstract 

Bloom, B. and A.R. Meyer, Experimenting with process equivalence, Theoretical Computer 

Science 101 (1992) 223-237. 

Distinctions between concurrent processes based on observable outcomes of computational 

experiments are examined. The equivalence determined by a general class of experiments involving 
duplication of processes can be characterized by a notion of ready simulation resembling, but 

strictly coarser than, Milner’s bisimulation equivalence. 

1. Introduction 

In the “interleaving” approach to concurrent process theory, the operational 

behavior of a process is completely captured by a synchrmization tree, a rooted, 

unordered tree whose edges are labelled with symbols denoting basic actions or 

events, which is generally infinite and nondeterministic [14, 17, 10, 12, 3, 5, 9, 4, 

11,221. Milner’s CCS [ 17, 191, Hoare’s CSP [ 14, 151 and Hennessy’s algebraic theory 

of processes [12] are notable theories of this kind. 

The concept of an internal “hidden” or r-action is another important aspect and 

point of contrast among these theories. However, in this paper we restrict ourselves 

to the technically simpler case without internal r-actions. We expect many of our 

results to generalize to the case with internal actions, but we have not investigated 

this as yet. 

These interleaving theories further agree that synchronization trees are an over- 

specification of process behavior-certain distinct trees must be regarded as 

equivalent processes. The main theoretical difference among the theories is in which 

trees are identified. 
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In CSP [15], two processes are identified if they are equivalent with respect to a 

limited class of “button-pushing” experiments. A process is thought of as a black 

box, with one button for each action it can take. The experimenter presses buttons 

on the box. If the process can actually take that action, the machine will change 

state; if it cannot, the button does not allow itself to be pressed. Two processes are 

identified if they can perform the same sequences of actions followed by the same 

set of failures. An independent notion of experimental equivalence is defined by De 

Nicola and Hennessy [lo] considering both necessary and possible success of certain 

interactive experiments on processes. In our setting without hidden moves, De 

Nicola-Hennessy experimental equivalence and the CSP failure-experiment 

equivalence coincide [12] (see also [2] for an extensive algebraic analysis of a variety 

of testing scenarios). 

CCS is based on a finer equivalence relation on synchronization trees called 

&simulation [19]. Although Milner’s original definition of bisimulation was not 

given in terms of button-pushing experiments on black boxes, he does offer a 

justification in these terms in [18]. In these experiments, the experimenter is given 

the ability to perform repeated subexperiments from any state, allowing the explor- 

ation of the alternatives available in a given state. This may be phrased in several 

ways; for example, one might permit the experimenter to Saue states and later restore 

the process to any saved state. These must be the only operations on states, e.g., 

the experimenter cannot test states for equality. An alternative formulation is that 

the experimenter is equipped with a duplicator, allowing the creation of identical 

copies of the process in any state. The experimenter may perform experiments on 

the copies, and combine the results. 

In general, an experiment on a process P should consist of placing P in a context, 

C[ P], involving other processes, and performing experiments on C[ P]. However, 

it will turn out that the use of contexts expressible in CCS-or indeed in a very 

generous class of extensions of CCS-does not change any of the experimental 

equivalences which we consider, and so it suffices simply to perform experiments 

on isolated processes. In other words, all the experimental equivalences mentioned 

above and considered below are in fact congruences. 

In the next section, we offer what we consider to be the most natural formalization 

of the kind of experiments with copying described informally above. We call these 

duplicator experiments. Our first observation is that despite similar motivation and 

informed description, duplicator experiments differ notably from the experiments 

which characterize bisimulation [ 181. 

Proposition 1.1. Equivalence with respect to duplicator experiments is a strictly coarser 

relation than bisimulation. 

One of the main results of this paper is that duplicator experimental equivalence 

coincides with GSOS congruence [7]. GSOS congruence was originally proposed 

by Istrail and the authors as a formulation of the finest relation distinguishing 
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processes by the completed action sequences visible when the processes appeared 

in contexts whose behavior had a structured operational semantics (SOS) 

specification [23]. It was argued in [7] that equivalences such as bisimulation which 

were strictly finer than GSOS congruence had questionable justification from a 

computational viewpoint. 

GSOS congruence has two further formulations resembling the original definition 

of bisimulation and the subsequent characterization of bisimulation by formulas of 

Hennessy-Mimer logic (cf. Section 4). The principal definitions are summarized in 

the following theorem. The equivalence of the first two definitions is one new result 

of this paper. 

Definition 1.2 [ 161. A ready sim~lafion ’ is a relation s between processes such that 

if P 9 Q, for each action a 

l If P s P’, then Q A Q’ for some Q’ with P’ 9 Q’; 

l If P + Q’ then h. 

PC Q iff there is a ready simulation a such that P a Q. P and Q are ready similar, 

PeQ, iff PcQ%P. 

Theorem 1.3. Thefollowing equivalence relations on synchronization trees are the same: 

l ready similarity [ 161, 

l duplicator-test equivalence, 

l GSOS congruence [7], 

l denial formula equivalence [7]. 

The crucial difference between our duplicator experiments and Milner’s is that 

Milner’s are able to do more than make duplicates of a process. A Mimer experimen- 

ter is able to know when enough duplicates have been made to explore all possible 

alternative behaviors ofthe duplicated process. Mimer uses the metaphor of “weather 

conditions”-these determine which nondeterministic choice the process will make. 

The experimenter is allowed to choose the sequence of weather conditions that the 

process will experience [ 181. This gives the experimenter the ability to observe the 

process in all possible nondeterministic behaviors. 

It is clear that, in this scenario, the number of weathers available must vary over 

the course of the experiment, although (as the experimenter is expected to test the 

process in all weathers, and we require experiments to take finite time) it must 

always be finite in each state. If the number of weathers were fixed (say, at k), then 

it would not be possible to explore all the behaviors of a process capable of k + l-fold 

branching. The number of weathers cannot even be fixed for a particular process; 

it is straightforward to write in CCS a process with at least n-fold branching on its 

nth step. 

’ Originally called :-hisimulation in [ 161 
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Mimer’s weather experimenter has access to overly detailed information about 

the process’ synchronization tree. As a consequence, data is available to enable the 

weather experimenter to distinguish, for example, au + ab and ab + cta2 Our notion 

of global-testing duplicator experiments first arose from our effort to formalize an 

informal explanation given to us by Milner, and he agrees that our formulation 

clearly expresses his intentions [20]. 

We prefer to think of the ability to observe all nondeterministic behaviors and 

know that they have all been seen as a component of the testing system in its own 

right. Following Abramsky [l], we equip the experimenter with a global-testing 

duplicator with precisely this capability. However, allowing the experimenter unre- 

stricted use of global-testing outcomes still disagrees with Milner’s scenario, as 

follows from the next theorem. 

Theorem 1.4. Two processes are equivalent with respect to global-testing experiments 

if they are isomorphic as unordered labelled trees. In particular, equivalence with 

respect to global-testing experiments is strictly finer than bisimulation. 

To arrive at bisimulation in the “weather” setting, Milner implicitly places a 

restriction on the experimenter: he is forbidden to count the number of kinds of 

weather available. The experimenter can collect results of experiments on duplicate 

processes only by asking whether all or any experiments succeed, not how many. 

In [20], Milner refined the metaphor: one imagines continuously turning a dial, 

each setting of which determines a weather. The dial has no markings, and it is 

impossible to tell which weather is active at a given instant. An experiment consists 

of the usual kinds of button-pushing, and a turn-the-dial experiment involving 

performing a subexperiment in each of the (infinitely many) settings of the dial, 

and taking the conjunction or disjunction of the results. Call these modal global- 

testing experiments; we can now rephrase Milner’s result as follows. 

Theorem 1.5 (Milner [18]). Two processes are bisimilar if they agree on all modal 

global-testing duplicator experiments. 

Approximation between processes has been usefully interpreted in the Hoare and 

Hennessy process theories as a satisfaction relation between an implementing process 

and a less determinate specifying process; this has lead to a methodology for process 

specification and verification. Ready simulation is a notion of process approximation 

which may likewise be interpreted as specification satisfaction. In fact, there are 

straightforward notions of approximation associated with each of the alternative 

definitions of ready simulation in Theorem 1.3 above, all of which coincide for 

’ If S, and sz are synchronization trees, then their sum .A, + s2 is the tree obtained by identifying the 

roots of sI and .s2. 
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finitely branching processes. We note that, for processes without internal actions, 

no characterizations of bisimulation in terms of an approximation relation is known. 

2. Experiments on machines 

In general, we wish to justify a notion of process equivalence P= Q by giving 

an experimental scenario for it. That is, P Z Q if and only if there is some experiment 

which distinguishes them. Scenarios serve as plausibility arguments for notions of 

process equivalence; they may be used to judge the appropriateness of particular 

equivalences. If a particularly appealing scenario precisely captures = (as the 

button-pushing scenarios described below precisely capture refusal semantics) then 

= becomes more appealing. Conversely, a mathematically beautiful notion of process 

equivalence may be called into question by the nonexistence of a plausible testing 

scenario for it. As “plausible testing scenario ” is an informal notion, this criterion 

cannot be used to refute any process equivalence absolutely. 

The idea of “button-pushing” experiments on processes has been highlighted by 

Hoare as an explanation of CSP semantics. A process is presented as a black box 

with buttons labelled with the visible atomic actions, and no other controls. If 

process P can perform action a, then it is possible to press the u-button and then 

the machine will change state. If P cannot perform a, then the u-button is locked; 

the experimenter can press the button, discover that the machine cannot perform 

an a, and then continue experimenting on P itself. 

A number of variants of simple button-pushing experiments have been considered 

[24,21]. Perhaps the most detailed kind of simple button-pushing is a lighted-button 

experiment. In this scenario, the black box resembles certain soft-drink machines: 

its buttons have lights inside them, and the light on the a-button is lit when that 

button is disabled. In other words, the experimenter can see at every stage which 

actions are possible and which are not, without changing the state of the machine. 

Formally, a lighted-button experiment is a sequence &a,+, . . an&+, alternating 

between sets S, of actions and actions ai E Si; it succeeds when SO is the set of 

initially disabled actions, S, is the set of disabled actions after a, is pressed, and 

so on. 

Definition 2.1. Two processes are equivalent with respect to a class of experiments 

iff they can succeed on precisely the same experiments of that class. 

Both CSP equivalence and Phillips’ somewhat finer refusal testing equivalence 

[22] can be characterized as equivalences based on slight restrictions of lighted- 

button experiments. 

Note that a process may be able both to succeed and to fail on the same experiment, 

depending on which nondeterministic choices the process makes. For example, the 

process ub + ac can pass the experiment {b, c}a{a, c} if it takes its first a-action 
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alternative or fail if it takes its second alternative. On the other hand, the process 

a( b+ c) cannot pass this experiment, since it cannot refuse c after doing a. Thus 

ab + UC and a( b + c) are not lighted-button experiment equivalent, and indeed the 

simple kind of experiment which distinguishes them established that they are not 

CSP equivalent. 

Lighted-button experiments actually make more distinctions than CSP, but do 

not yet represent the full experimental scenario we wish to examine. For example, 

it is easy to check that the following holds. 

Lemma 2.2. The processes abc + abd and a (bc + bd) are equivalent with respect to all 

lighted-button experiments. 

Nevertheless, there is a simple experiment distinguishing these processes. We 

imagine equipping the experimenter with a duplicator, allowing him to copy the 

machine at any time, and perform independent experiments on the copies. 

Equivalently, we allow him to save and restore states of the machines. For example, 

we might think of implementing such experiments in software using an operating 

system fork. 

The typical sort of duplicator-experiment looks something like the following. 

(1) Press the u-button on P, and call the resulting machine P,. Fail if the a-button 

cannot be pushed. 

(2) Make two copies of P,, call them P,, and PClr. This step cannot fail. 

(3) Press the b-button and then the c-button of P,, . Fail if either cannot be pushed. 

(4) Press the b-button and then the c-button of P,?. Fail if either the b-button 

cannot be pushed, or the c-button can be pushed. 

(5) Succeed if none of the previous steps have failed. 

The process a(bc+ cd) can pass this test, but the process abc+ abd cannot. So 

duplication increases the power of a lighted-button experimenter. In fact, 

equivalence with respect to duplicator experiments is precisely ready simulation; 

this is a corollary to Theorem 2.7. 

It is well-known that understanding bisimulation in general seems to require 

exploring the behavior of all the children of a process. We present an excessively 

powerful form of duplicator experiment, called wild duplicator experiments, in which 

the experimenter is allowed to make any quantity (not necessarily finite) of copies 

of the process at each stage, and perform separate experiments on the copies. In 

particular, it is possible for the experimenter to see all the children of a process. 

We will show that this form of duplicator still only observes ready simulation. 

We will allow infinite numbers of tests, and arbitrary Boolean combinations of 

the results. We do not restrict infinities to be countable. The infinities allow the 

results of this section to apply to arbitrarily branching processes, and a fortiori to 

finitely branching processes. 

However, even wild duplicator experiments still do not explain bisimulation. It 

is easy to exhibit ready simulations between the nonbisimilar processes a( bc + bd) 
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and abc + a( bc + bd) + abd of Fig. 1, and so by Theorem 1.3 they cannot be distin- 

guished by duplicator experiments. 

Let B be the set { tt, ff} of Booleans; we use tt for success and ff for failure of 

experiments. 

Definition 2.3. A wild duplicator experiment is an ordered tree, possibly countably 

deep and arbitrarily wide, with node labels and branching as follows. Each node v 

is labelled either choose, a E Act, or B : B” + B, where K is a cardinal 2 0, such that 

(1) If v is labelled a, then v has exactly two children V, and K; 

(2) If v is labelled B : B” + B, then v has K children, where K is any ordinal S 0 

and if K = 0 then v is a leaf node; 

(3) If v is labelled choose then v may have any positive cardinality of children. 

The intent is that nodes v labelled with actions a involve pushing the u-button 

on the process. If the button can be pushed, then the experimenter proceeds with 

V+ on the resultant process; otherwise, the experimenter performs V_ on the 

unchanged original process. Nodes labelled with K-ary Boolean functions instruct 

the experimenter to make K copies of the process, perform the appropriate experi- 

ment on each copy, and combine the results by applying B. Nodes labelled choose 

allow the experimenter to choose one of the children and perform that experiment. 

A simple duplication is modeled by a Boolean node. For example, consider an 

experiment which makes two copies of the process, runs test 15, and E, on them, 

and succeeds iff both tests succeed; this is formalized by a node labelled by the 

binary and function, with children given by the formalizations of E, and E,. The 

wild duplicator, which produces some unknown number of children, is a choice 

node with one child for the experiment to be performed on each number of children. 

For example, if the experiment is “Wild-duplicate P, and perform E on each copy, 

succeeding iff each copy succeeds”, then the formalization starts with a single 

choose node with countably many children, the nth of which is an n-fold or node. 

We write root(E) for the root node of the tree E. 

Definition 2.4. We define P p E (resp. PC E), p renounced “P can pass (resp. fail) 

E”, iff there is some partial function { from the nodes of E to pairs of truth values 

b 

d 

a(bc+bd) abc+a(bc+bd)+abd 

Fig. 1. Ready similar but not bisimilar. 
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and processes, such that S(root(E)) = (tt, P), (resp. (ff, P)) and whenever C(V) = 

(b, R) we have the following. 

l If v is labelled a, then either 

- there is some R’ such that R + R’ and l( v,) = (b, R’); or 

- R A, and l( v_) = (6, R). 

l v is labelled by B : B” + B, and there is some K-length vector b of Booleans such 

that B(b) = b and the ath child V, of v has c( va) = (b,, R). 

l v is labelled choose, has K children v,,, and there is some p <K such that 

S(vp)=(b, R). 
We say that 5 demonstrates that P 4 E (resp. P$ E). 

Intuitively, l assigns to each node a process and the success or failure of the 

experiment given by that node on that process; the consistency conditions chart the 

progress of the experiment. It is possible that both P T E and PC E; consider the 

wild duplicator experiment which succeeds precisely when the duplicator produces 

a prime number of copies. It is also possible to define experiments which can report 

both success and failure from the same sequence of actions of the process; e.g., the 

experiment which consists of infinitely often duplicating the process and never 

actually letting it perform an action. 

We define P ~Wild Q as for all experiments E, whenever P ‘f E then Q T E. For 

each experiment E there is an experiment 1E such that P ‘T 1E iff P$ E and vice 

versa; take IE to be the experiment E with an extra root node labelled by the 

negation function. Thus, we lose no generality by considering only successes. 

We will need to construct demonstrations i; the following lemma makes the 

construction easier. 

Definition 2.5. The function f is a consistent choice function for P&P’ if f is a 

function from the descendants of P to those of P’, such that f(P) = P’ and for all 

Q + R descendants of P, the following holds: 

Q c f(Q) 
a I I ll 

R 5 f(R) 

Lemma 2.6. Suppose that P and P’ are arbitrarily-branching trees such that Pg P’. 

Then there is a consistent choice function for P c P’. 

Proof. We may nonconstructively build such a function f by the Axiom of Choice. 

Let s be a well-ordering of the descendants of P’. Define a sequence of partial 

functions f;, taking the ith level of P (counting the root as level 1) to that of P’, as 

follows. Let f,(P) = P’. Suppose that R is on the nth level of P, and R + S. Let 

fn+,(S) be S’, the s-first descendant offn(R) such that S&S’; there is at least one 
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such S’ by the fact that R sf( R). Let f(T) =fn( T) where T is on the nth level of 

l? It is easy to see that f is a consistent choice function for Pq P’. 0 

Theorem 2.7. For all (arbitrarily branching) processes P and Q, P ~Wild Q ifsPc Q. 

Proof. We first show that sWild is a ready simulation relation, and hence P sWild Q 

implies PF Q. Suppose that P sWild Q and P s P’; we must show Q % Q’ for some 

Q’ such that P’ sWild Q’. Suppose that there were no such Q’. Then for each u-child 

Qb, we have P’ g,,,,i,d Q&; thus, there is some experiment E, such that P’ f’ E,, but 

not Qh 1‘ E,. Let E’ be the experiment which takes the conjunction of all the E,. 

Then P' p E’, but no QCY can pass E’. Let E be the experiment which starts by 

pushing the cu-button, and then running E’; P can pass E, but Q cannot. This 

violates the hypothesis that P swila Q. 

For the other clause of ready simulation, suppose that P swild Q and P -?+. Then 

P can pass the experiment which pushes the u-button, failing if it can be pushed 

and succeeding if it cannot. Q must pass this experiment as well; hence Q A. 

For the converse, suppose that Ph Q and P TE. Let [ be any function demonstrat- 

ing that P T E. We will construct a function 5’ demonstrating that Q T E. Let f be 

a consistent choice function for P& Q. Define 

i 

(&f(R)) if C(V) = (b, R) and R E descendants(P), 

5’(v) = (b, R) if cJ’( V) = (b, R) and R sf descendents( P), 

undefined otherwise. 

It is straightforward to check that 5’ demonstrates that Q 9 E. q 

It is worth noting that simple duplicator experiments (with binary Boolean 

operations and no choice nodes) suffice to capture ready simulation of finitely- 

branching processes; see [6] for more details. 

3. Global testing experiments 

For any process P, let Succ, (P) = {P’ : P -% P’}. In our setting, this set of successor 

processes of P will always be finite.’ Notice that a duplicator, by making ISucc,( P)I 

copies of P and pressing an u-button on each copy, has the possibility of getting 

the entire set Succ,(P) to experiment upon. Milner’s experimental explanation of 

bisimulation reveals that the experimenter must, however, do more than merely 

have the possibility to see all the successors-he must know when he has seen them 

all. 

’ Also, as we are taking synchronization trees as our basic semantics, there may be several isomorphic 

elements of Succ,,( P). In particular, the process a + a has a synchronization tree with two leaves, which 

are isomorphic but not equal; Succ,,(a + a) is the (two-element) set containing those two leaves. 
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This is formalized in [ 181, where Mimer describes a mechanism for exploring all 

the alternatives available from a given state, by allowing variation of some “ambient 

(‘weather’) conditions” which determine which nondeterministic choice the machine 

will take. We formulate ‘weathers’ in terms of a global-testing duplicator [l]. The 

global-testing duplicator is a device with a chamber, a control panel with one button 

per action, and a chute. The experimenter places the machine in the chamber, and 

presses a button on the control panel, say the u-button. Out of the chute drops one 

copy of each a-descendant of the process. 

However, global-testing goes too far; global-testing equivalence is strictly finer 

than bisimulation. The experimenter can simply count the black boxes that come 

out of the chute. In Mimer’s metaphor, this is counting the number of varieties of 

weather available to investigate. In fact, we have the following theorem. 

Theorem 3.1. Global-testing duplicator experiment equivalence coincides with 

isomorphism of unordered trees. In particular, the bisimilar processes a and a + a are 

not global-testing duplicator equivalent. 

The test which distinguishes them is: “put the process in the global-testing 

duplicator. Press the u-button. Succeed iff one box comes out the chute”. 

Actually this simple form of global-testing duplicator does not precisely match 

Milner’s weather scenario: two different forms of weather may drive the process 

into the same state. Milner’s description directly corresponds to the wildglobal-testing 

duplicator, which may produce one or more copies of each descendent of its input. 

This uncertainty blurs the counting of successor processes, raising the prima facie 

possibility that nonisomorphic process trees might be identified. 

The same experiment distinguishes a from a + a, although in a slightly different 

way. Now, a may pass the experiment, although it will no longer pass it in every 

run; however a + a must fail in every run. 

In fact, the wildness does not blur any distinctions at all, as is seen in the following 

result. 

Theorem 3.2. Wild global-testing duplicator equivalence coincides with unordered tree 

isomorphism. 

We will first define a partial order P5 Q on finite trees. Let P r n be P truncated 

at depth n. Unlike most comparisons between processes we have considered, I is 

antisymmetric; P 5 Q and Q 5 P will imply P = Q (viz. that P and Q are isomorphic 

synchronization trees). We will construct experiments E,, such that P can pass 

E,, iff P 1 n 5 Q r n. If P and Q are distinct synchronization trees, then for some 

n we have P r n % Q r n, and so either P 1 n 5 Q 1 n or Q 1 n 5 P / n. So, E,, or E,, 

will distinguish P and Q, and the theorem will follow. The necessary mathematics 

will take up the rest of this section. 
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First, our partial order on finite trees. The condition PS Q holds if, informally, 

Q can be obtained by repeated duplication of subtrees of P. Formally, this is defined 

by induction on the depth of finite trees. 

Definition 3.3. 050, and whenever 

PC, 

P = C C aPut, 
utAct i=l 

% 

Q = C C aQa, 
oi*ct ,=I 

(*) 

are such that 

(1) for each Qui there is some PUi such that P,, 5 Qa,, 

(2) there is a l-l function f: [ 1 . . . pa] + [ 1 . . . qa] such that P,, 5 Q0 ,,,, ,, 

then P 5 Q. 

That is, each child of Q has a “cousin” which is a child of P, and distinct children 

of P have distinct cousins in Q. It is easy to show that i is a preorder. 

Lemma 3.4. 5 is a partial order, and a congruence with respect to a( .), +, and In. 

Proof. Reflexitivity, transitivity, and congruence are straightforward. By a predict- 

able induction on n, we show that it is antisymmetric; that is, if P 5 Q 5 P then P 

and Q are isomorphic synchronization trees. This is trivial if P = Q = 0. Let P and 

Q be expressed as in (*), fix an action a and let f:[l...pC,]+[l...q,] and 

g:[l...qa]+[l... pa] be the l-l functions showing that PL Q and QS P respec- 

tively. The existence of l-l functions shows that pa c qa spa and hence p‘, = qO. 

Therefore f and g are also onto, and so fg and gf are permutations. Recall that if 

h is a permutation of a finite set and i is an element of that set, then the set 

{i, h(i), hC2’(i), . . .} is a finite set, called the orbit of i under h; as h is l-l, we must 

have hCA’( i) = i for some k, called the period of i. 

Fix i. We have 

where k is the period of i. By transitivity, we have Q “,,, (,, 5 Po,i, and so by induction 

Pa,, = Qa,,tt). With a little bit of work, this establishes a bijection between the children 

of P and those of Q as desired. 0 

We now define the experiments E,, such that P can pass E,, iff P r n 5 Q r n. 

The experiment E,, always succeeds. To see if P can pass EO,,+,, wild-duplicate 

P under each action a, giving Pb,, . . . , Pk,,,. If piI # q0 then the experiment fails. 

If pb = qa then for each i, see if Phi passes EvC2,,, Eg,,+, succeeds if each E,<,,,, 

succeeds. 



234 B. Bloom, A.R. Mew 

Lemma 3.5. P can pass E,, iff P 1 n 5 Q 1 n. 

Proof. This clearly is true for n = 0. For greater n, suppose that P can pass E,,. 

Let P and Q be given as in (*). Suppose that the wild global-testing duplicator 

produced (Pi; : a E Act, j E [ 1 . . . qo]), where each child of P appears in this listing 

at least once. We have P SC,, aP&. As each Pij passes E,Cz,,n_, we have 

P& 1 (n - 1) 5 Qaj r (n - 1) by induction, and hence we have 

PrnlC aP:,r(n--1)5C aQ,r(n-l)=Q]n 
a., a,, 

as desired. The other direction is similar. 0 

Lemma 3.6. P and Q and agree on all wild global-testing duplicator experiments ifs 

P= Q. 

Proof. Clearly the result of performing an experiment on a process depends only 

on its synchronization tree. Conversely, suppose that P f Q. Then there is some n 

such that PrnfQln. By antisymmetry, we have P/nSQrn or QrnSPrn; 

suppose the former. Then by Lemma 3.5, we know that P cannot pass E,, but Q 

can. Hence P and Q are distinguishable with a wild global-testing experiment. 0 

4. Modal logic 

Modal logics which arise naturally in process specification are intimately con- 

nected to experimental equivalence. 

It is possible to give a straightforward logic for ready simulation, which we call 

denial logic (called “limited modal logic” in [7]). Disjunction does not increase the 

descriptive power of denial logic, because the law (a)(cp v $) = ((a)cp) v ((a)$) is 

valid. The syntax of denial logic is 

cp ::= Can’t(a) 1 tt 1 cpr\cp 1 (a)cp 

and satisfaction is defined as usual: 

l P k tt always, 

l Pl=cpr\$iffPK~andP~+, 

l P k (a)cp iff for some P’, P % P’ and P’ k cp, 

l P k Can’t(a) if Ph. 

Formulas of denial logic correspond quite naturally to a certain set of “elementary” 

duplicator experiments. For example, Can’t(a) is an experiment which succeeds if 

the a button cannot be pressed, and cp A + is an experiment which starts by duplicat- 

ing the process, and then performing appropriate experiments on the copies. In this 

way we can show that equivalence with respect to denial logic is identical to 

equivalence with respect to duplicator experiments. 
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An even more natural Hennessy- Milner logic (HML) logic is well known to yield 

to bisimulation [13]. The syntax of HML is 

cp ::= tt I ff I cp A cp I cp ” P I (ah I [alcp. 

The significant new clause in the definition of satisfaction is P k [a]~ iff for all P’ 

such that P+ P’, P’ k cp. Note that the denial formula Can’t(u) is expressible in 

HML as [a]ff, so denial formulas can be seen as a special case of HML formulas. 

Now it is straightforward to seen how to distinguish non-bisimilar processes using 

a (modal) global-testing duplicator. Processes P and Q are not bisimilar iff there 

is some Hennessy-Milner formula cp which distinguishes them, say Pi= cp and 

Q # cp. We can construct an experiment e, from cp on which P can succeed, but Q 

never will. For example, the experiment e(u)q starts with pressing the u-button, and 

then performs e, on the resulting machine (or failing if the u-button cannot be 

pressed). Dually, the experiment eIo19 does an a-button global-test duplication of 

the machine in the chamber and checks to see that every machine coming out of 

the chute passes e,. 

5. Conclusion 

We have extended the notion of experimental equivalence of processes by con- 

sidering experiments in which processes can be duplicated, allowing collection of 

information about alternative process behaviors during an experiment. This idea 

was originally suggested by Milner as yielding an experimental understanding of 

bisimulation between processes. The authors have found it hard to provide a physical 

justification or operational rationale for a key technical restriction used in Milner’s 

experimental characterization of bisimulation-that experimental outcomes only be 

combined “modally”. The apparently more natural variations of duplicating-experi- 

ment equivalence we have examined-ready similarity and unordered tree isomorph- 

ism-respectively strictly coarsen and strictly refine bisimulation. 

Bisimulation has been singled out by Milner as the finest notion of equivalence 

of synchronization trees which seems suitable for interleaving process theory. It 

might help clarify the theoretical role of bisimulation if this observation was 

rigorously formulated, but the authors do not question that bisimulation arises as 

a fundamental concept of interleaving concurrency theory. This is especially clear 

in the modal characterization of bisimulation via Hennessy-Milner logic, which is 

more elegant than the corresponding characterization of ready similarity. 

The debate about the proper choice of process equivalence continues to be 

technically fruitful. Recently, Larsen and Skou [16] have argued that bisimulation 

can be understood experimentally in the setting of experiments on probabilistic 

processes (cf. [S]), and Vaandrager and Groote [ 111 propose other equivalences 

finer than ready simulation, but still coarser than bisimulation, based on a relaxed 
SOS discipline. 
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The authors interpret these results-even Larsen and Skou’s (although they do 

not agree)-as indicating that bisimulation has not been persuasively justified as a 

computational equivalence based on effectively observing and experimenting with 

processes. Consequently, while making full use of the richly developed bisimulation 

based methods which Milner’s school has shown are widely applicable, researchers 

and protocol specifiers and verifiers should anticipate limitations of bisimulations. 

Protocols may be expected to be correct in senses weaker than bisimulation, so 

when bisimulation fails to hold, one should not hesitate to try establishing correctness 

in terms of suitable experiment-based equivalences. 

We are continuing to investigate the theory of ready simulation. For example, we 

have a finite axiomatization of ready simulation on finite trees and a naive poly- 

nomial-time algorithm for deciding ready simulations of finite-state processes. A 

major, crucial, development yet to be undertaken is the extension of the theory of 

ready simulation to handle hidden moves. 
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