
Theoretical Computer Science 101 (1992) 223-237

Elsevier

223

Experimenting with
process equivalence

Bard Bloom*
Department of‘Mathematics and Cornpurer Science, Cornell University, Ithaca, NY 14853, USA

Albert R. Meyer**
MIT Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139, USA

Abstract

Bloom, B. and A.R. Meyer, Experimenting with process equivalence, Theoretical Computer

Science 101 (1992) 223-237.

Distinctions between concurrent processes based on observable outcomes of computational

experiments are examined. The equivalence determined by a general class of experiments involving
duplication of processes can be characterized by a notion of ready simulation resembling, but

strictly coarser than, Milner’s bisimulation equivalence.

1. Introduction

In the “interleaving” approach to concurrent process theory, the operational

behavior of a process is completely captured by a synchrmization tree, a rooted,

unordered tree whose edges are labelled with symbols denoting basic actions or

events, which is generally infinite and nondeterministic [14, 17, 10, 12, 3, 5, 9, 4,

11,221. Milner’s CCS [17, 191, Hoare’s CSP [14, 151 and Hennessy’s algebraic theory

of processes [12] are notable theories of this kind.

The concept of an internal “hidden” or r-action is another important aspect and

point of contrast among these theories. However, in this paper we restrict ourselves

to the technically simpler case without internal r-actions. We expect many of our

results to generalize to the case with internal actions, but we have not investigated

this as yet.

These interleaving theories further agree that synchronization trees are an over-

specification of process behavior-certain distinct trees must be regarded as

equivalent processes. The main theoretical difference among the theories is in which

trees are identified.

* Supported by an NSF Fellowship, also NSF Grants No. 8511190-DCR and No. CCR-9003441 and
ONR grant No. N00014-83-K-0125.

** Supported by an NSF Grant No. 8511190.DCR and by ONR grant No. N00014-83-K-0125.

Elsevier Science Publishers B.V.

224 B. Bloom, A. R. Meyer

In CSP [15], two processes are identified if they are equivalent with respect to a

limited class of “button-pushing” experiments. A process is thought of as a black

box, with one button for each action it can take. The experimenter presses buttons

on the box. If the process can actually take that action, the machine will change

state; if it cannot, the button does not allow itself to be pressed. Two processes are

identified if they can perform the same sequences of actions followed by the same

set of failures. An independent notion of experimental equivalence is defined by De

Nicola and Hennessy [lo] considering both necessary and possible success of certain

interactive experiments on processes. In our setting without hidden moves, De

Nicola-Hennessy experimental equivalence and the CSP failure-experiment

equivalence coincide [12] (see also [2] for an extensive algebraic analysis of a variety

of testing scenarios).

CCS is based on a finer equivalence relation on synchronization trees called

&simulation [19]. Although Milner’s original definition of bisimulation was not

given in terms of button-pushing experiments on black boxes, he does offer a

justification in these terms in [18]. In these experiments, the experimenter is given

the ability to perform repeated subexperiments from any state, allowing the explor-

ation of the alternatives available in a given state. This may be phrased in several

ways; for example, one might permit the experimenter to Saue states and later restore

the process to any saved state. These must be the only operations on states, e.g.,

the experimenter cannot test states for equality. An alternative formulation is that

the experimenter is equipped with a duplicator, allowing the creation of identical

copies of the process in any state. The experimenter may perform experiments on

the copies, and combine the results.

In general, an experiment on a process P should consist of placing P in a context,

C[P], involving other processes, and performing experiments on C[P]. However,

it will turn out that the use of contexts expressible in CCS-or indeed in a very

generous class of extensions of CCS-does not change any of the experimental

equivalences which we consider, and so it suffices simply to perform experiments

on isolated processes. In other words, all the experimental equivalences mentioned

above and considered below are in fact congruences.

In the next section, we offer what we consider to be the most natural formalization

of the kind of experiments with copying described informally above. We call these

duplicator experiments. Our first observation is that despite similar motivation and

informed description, duplicator experiments differ notably from the experiments

which characterize bisimulation [181.

Proposition 1.1. Equivalence with respect to duplicator experiments is a strictly coarser

relation than bisimulation.

One of the main results of this paper is that duplicator experimental equivalence

coincides with GSOS congruence [7]. GSOS congruence was originally proposed

by Istrail and the authors as a formulation of the finest relation distinguishing

Experimenting with process equicalencr 225

processes by the completed action sequences visible when the processes appeared

in contexts whose behavior had a structured operational semantics (SOS)

specification [23]. It was argued in [7] that equivalences such as bisimulation which

were strictly finer than GSOS congruence had questionable justification from a

computational viewpoint.

GSOS congruence has two further formulations resembling the original definition

of bisimulation and the subsequent characterization of bisimulation by formulas of

Hennessy-Mimer logic (cf. Section 4). The principal definitions are summarized in

the following theorem. The equivalence of the first two definitions is one new result

of this paper.

Definition 1.2 [161. A ready sim~lafion ’ is a relation s between processes such that

if P 9 Q, for each action a

l If P s P’, then Q A Q’ for some Q’ with P’ 9 Q’;

l If P + Q’ then h.

PC Q iff there is a ready simulation a such that P a Q. P and Q are ready similar,

PeQ, iff PcQ%P.

Theorem 1.3. Thefollowing equivalence relations on synchronization trees are the same:

l ready similarity [161,

l duplicator-test equivalence,

l GSOS congruence [7],

l denial formula equivalence [7].

The crucial difference between our duplicator experiments and Milner’s is that

Milner’s are able to do more than make duplicates of a process. A Mimer experimen-

ter is able to know when enough duplicates have been made to explore all possible

alternative behaviors ofthe duplicated process. Mimer uses the metaphor of “weather

conditions”-these determine which nondeterministic choice the process will make.

The experimenter is allowed to choose the sequence of weather conditions that the

process will experience [181. This gives the experimenter the ability to observe the

process in all possible nondeterministic behaviors.

It is clear that, in this scenario, the number of weathers available must vary over

the course of the experiment, although (as the experimenter is expected to test the

process in all weathers, and we require experiments to take finite time) it must

always be finite in each state. If the number of weathers were fixed (say, at k), then

it would not be possible to explore all the behaviors of a process capable of k + l-fold

branching. The number of weathers cannot even be fixed for a particular process;

it is straightforward to write in CCS a process with at least n-fold branching on its

nth step.

’ Originally called :-hisimulation in [161

226 B. Bloom, A.R. Meyer

Mimer’s weather experimenter has access to overly detailed information about

the process’ synchronization tree. As a consequence, data is available to enable the

weather experimenter to distinguish, for example, au + ab and ab + cta2 Our notion

of global-testing duplicator experiments first arose from our effort to formalize an

informal explanation given to us by Milner, and he agrees that our formulation

clearly expresses his intentions [20].

We prefer to think of the ability to observe all nondeterministic behaviors and

know that they have all been seen as a component of the testing system in its own

right. Following Abramsky [l], we equip the experimenter with a global-testing

duplicator with precisely this capability. However, allowing the experimenter unre-

stricted use of global-testing outcomes still disagrees with Milner’s scenario, as

follows from the next theorem.

Theorem 1.4. Two processes are equivalent with respect to global-testing experiments

if they are isomorphic as unordered labelled trees. In particular, equivalence with

respect to global-testing experiments is strictly finer than bisimulation.

To arrive at bisimulation in the “weather” setting, Milner implicitly places a

restriction on the experimenter: he is forbidden to count the number of kinds of

weather available. The experimenter can collect results of experiments on duplicate

processes only by asking whether all or any experiments succeed, not how many.

In [20], Milner refined the metaphor: one imagines continuously turning a dial,

each setting of which determines a weather. The dial has no markings, and it is

impossible to tell which weather is active at a given instant. An experiment consists

of the usual kinds of button-pushing, and a turn-the-dial experiment involving

performing a subexperiment in each of the (infinitely many) settings of the dial,

and taking the conjunction or disjunction of the results. Call these modal global-

testing experiments; we can now rephrase Milner’s result as follows.

Theorem 1.5 (Milner [18]). Two processes are bisimilar if they agree on all modal

global-testing duplicator experiments.

Approximation between processes has been usefully interpreted in the Hoare and

Hennessy process theories as a satisfaction relation between an implementing process

and a less determinate specifying process; this has lead to a methodology for process

specification and verification. Ready simulation is a notion of process approximation

which may likewise be interpreted as specification satisfaction. In fact, there are

straightforward notions of approximation associated with each of the alternative

definitions of ready simulation in Theorem 1.3 above, all of which coincide for

’ If S, and sz are synchronization trees, then their sum .A, + s2 is the tree obtained by identifying the

roots of sI and .s2.

Experimenfing wifh process equivalence 227

finitely branching processes. We note that, for processes without internal actions,

no characterizations of bisimulation in terms of an approximation relation is known.

2. Experiments on machines

In general, we wish to justify a notion of process equivalence P= Q by giving

an experimental scenario for it. That is, P Z Q if and only if there is some experiment

which distinguishes them. Scenarios serve as plausibility arguments for notions of

process equivalence; they may be used to judge the appropriateness of particular

equivalences. If a particularly appealing scenario precisely captures = (as the

button-pushing scenarios described below precisely capture refusal semantics) then

= becomes more appealing. Conversely, a mathematically beautiful notion of process

equivalence may be called into question by the nonexistence of a plausible testing

scenario for it. As “plausible testing scenario ” is an informal notion, this criterion

cannot be used to refute any process equivalence absolutely.

The idea of “button-pushing” experiments on processes has been highlighted by

Hoare as an explanation of CSP semantics. A process is presented as a black box

with buttons labelled with the visible atomic actions, and no other controls. If

process P can perform action a, then it is possible to press the u-button and then

the machine will change state. If P cannot perform a, then the u-button is locked;

the experimenter can press the button, discover that the machine cannot perform

an a, and then continue experimenting on P itself.

A number of variants of simple button-pushing experiments have been considered

[24,21]. Perhaps the most detailed kind of simple button-pushing is a lighted-button

experiment. In this scenario, the black box resembles certain soft-drink machines:

its buttons have lights inside them, and the light on the a-button is lit when that

button is disabled. In other words, the experimenter can see at every stage which

actions are possible and which are not, without changing the state of the machine.

Formally, a lighted-button experiment is a sequence &a,+, . . an&+, alternating

between sets S, of actions and actions ai E Si; it succeeds when SO is the set of

initially disabled actions, S, is the set of disabled actions after a, is pressed, and

so on.

Definition 2.1. Two processes are equivalent with respect to a class of experiments

iff they can succeed on precisely the same experiments of that class.

Both CSP equivalence and Phillips’ somewhat finer refusal testing equivalence

[22] can be characterized as equivalences based on slight restrictions of lighted-

button experiments.

Note that a process may be able both to succeed and to fail on the same experiment,

depending on which nondeterministic choices the process makes. For example, the

process ub + ac can pass the experiment {b, c}a{a, c} if it takes its first a-action

228 R. Ahom, A. R. Mew

alternative or fail if it takes its second alternative. On the other hand, the process

a(b+ c) cannot pass this experiment, since it cannot refuse c after doing a. Thus

ab + UC and a(b + c) are not lighted-button experiment equivalent, and indeed the

simple kind of experiment which distinguishes them established that they are not

CSP equivalent.

Lighted-button experiments actually make more distinctions than CSP, but do

not yet represent the full experimental scenario we wish to examine. For example,

it is easy to check that the following holds.

Lemma 2.2. The processes abc + abd and a (bc + bd) are equivalent with respect to all

lighted-button experiments.

Nevertheless, there is a simple experiment distinguishing these processes. We

imagine equipping the experimenter with a duplicator, allowing him to copy the

machine at any time, and perform independent experiments on the copies.

Equivalently, we allow him to save and restore states of the machines. For example,

we might think of implementing such experiments in software using an operating

system fork.

The typical sort of duplicator-experiment looks something like the following.

(1) Press the u-button on P, and call the resulting machine P,. Fail if the a-button

cannot be pushed.

(2) Make two copies of P,, call them P,, and PClr. This step cannot fail.

(3) Press the b-button and then the c-button of P,, . Fail if either cannot be pushed.

(4) Press the b-button and then the c-button of P,?. Fail if either the b-button

cannot be pushed, or the c-button can be pushed.

(5) Succeed if none of the previous steps have failed.

The process a(bc+ cd) can pass this test, but the process abc+ abd cannot. So

duplication increases the power of a lighted-button experimenter. In fact,

equivalence with respect to duplicator experiments is precisely ready simulation;

this is a corollary to Theorem 2.7.

It is well-known that understanding bisimulation in general seems to require

exploring the behavior of all the children of a process. We present an excessively

powerful form of duplicator experiment, called wild duplicator experiments, in which

the experimenter is allowed to make any quantity (not necessarily finite) of copies

of the process at each stage, and perform separate experiments on the copies. In

particular, it is possible for the experimenter to see all the children of a process.

We will show that this form of duplicator still only observes ready simulation.

We will allow infinite numbers of tests, and arbitrary Boolean combinations of

the results. We do not restrict infinities to be countable. The infinities allow the

results of this section to apply to arbitrarily branching processes, and a fortiori to

finitely branching processes.

However, even wild duplicator experiments still do not explain bisimulation. It

is easy to exhibit ready simulations between the nonbisimilar processes a(bc + bd)

Experimenting with procers equivalence 229

and abc + a(bc + bd) + abd of Fig. 1, and so by Theorem 1.3 they cannot be distin-

guished by duplicator experiments.

Let B be the set { tt, ff} of Booleans; we use tt for success and ff for failure of

experiments.

Definition 2.3. A wild duplicator experiment is an ordered tree, possibly countably

deep and arbitrarily wide, with node labels and branching as follows. Each node v

is labelled either choose, a E Act, or B : B” + B, where K is a cardinal 2 0, such that

(1) If v is labelled a, then v has exactly two children V, and K;

(2) If v is labelled B : B” + B, then v has K children, where K is any ordinal S 0

and if K = 0 then v is a leaf node;

(3) If v is labelled choose then v may have any positive cardinality of children.

The intent is that nodes v labelled with actions a involve pushing the u-button

on the process. If the button can be pushed, then the experimenter proceeds with

V+ on the resultant process; otherwise, the experimenter performs V_ on the

unchanged original process. Nodes labelled with K-ary Boolean functions instruct

the experimenter to make K copies of the process, perform the appropriate experi-

ment on each copy, and combine the results by applying B. Nodes labelled choose

allow the experimenter to choose one of the children and perform that experiment.

A simple duplication is modeled by a Boolean node. For example, consider an

experiment which makes two copies of the process, runs test 15, and E, on them,

and succeeds iff both tests succeed; this is formalized by a node labelled by the

binary and function, with children given by the formalizations of E, and E,. The

wild duplicator, which produces some unknown number of children, is a choice

node with one child for the experiment to be performed on each number of children.

For example, if the experiment is “Wild-duplicate P, and perform E on each copy,

succeeding iff each copy succeeds”, then the formalization starts with a single

choose node with countably many children, the nth of which is an n-fold or node.

We write root(E) for the root node of the tree E.

Definition 2.4. We define P p E (resp. PC E), p renounced “P can pass (resp. fail)

E”, iff there is some partial function { from the nodes of E to pairs of truth values

b

d

a(bc+bd) abc+a(bc+bd)+abd

Fig. 1. Ready similar but not bisimilar.

230 B. Bloom, A.R. Meyer

and processes, such that S(root(E)) = (tt, P), (resp. (ff, P)) and whenever C(V) =

(b, R) we have the following.

l If v is labelled a, then either

- there is some R’ such that R + R’ and l(v,) = (b, R’); or

- R A, and l(v_) = (6, R).

l v is labelled by B : B” + B, and there is some K-length vector b of Booleans such

that B(b) = b and the ath child V, of v has c(va) = (b,, R).

l v is labelled choose, has K children v,,, and there is some p <K such that

S(vp)=(b, R).
We say that 5 demonstrates that P 4 E (resp. P$ E).

Intuitively, l assigns to each node a process and the success or failure of the

experiment given by that node on that process; the consistency conditions chart the

progress of the experiment. It is possible that both P T E and PC E; consider the

wild duplicator experiment which succeeds precisely when the duplicator produces

a prime number of copies. It is also possible to define experiments which can report

both success and failure from the same sequence of actions of the process; e.g., the

experiment which consists of infinitely often duplicating the process and never

actually letting it perform an action.

We define P ~Wild Q as for all experiments E, whenever P ‘f E then Q T E. For

each experiment E there is an experiment 1E such that P ‘T 1E iff P$ E and vice

versa; take IE to be the experiment E with an extra root node labelled by the

negation function. Thus, we lose no generality by considering only successes.

We will need to construct demonstrations i; the following lemma makes the

construction easier.

Definition 2.5. The function f is a consistent choice function for P&P’ if f is a

function from the descendants of P to those of P’, such that f(P) = P’ and for all

Q + R descendants of P, the following holds:

Q c f(Q)
a I I ll

R 5 f(R)

Lemma 2.6. Suppose that P and P’ are arbitrarily-branching trees such that Pg P’.

Then there is a consistent choice function for P c P’.

Proof. We may nonconstructively build such a function f by the Axiom of Choice.

Let s be a well-ordering of the descendants of P’. Define a sequence of partial

functions f;, taking the ith level of P (counting the root as level 1) to that of P’, as

follows. Let f,(P) = P’. Suppose that R is on the nth level of P, and R + S. Let

fn+,(S) be S’, the s-first descendant offn(R) such that S&S’; there is at least one

Experimenting with process equivalence 231

such S’ by the fact that R sf(R). Let f(T) =fn(T) where T is on the nth level of

l? It is easy to see that f is a consistent choice function for Pq P’. 0

Theorem 2.7. For all (arbitrarily branching) processes P and Q, P ~Wild Q ifsPc Q.

Proof. We first show that sWild is a ready simulation relation, and hence P sWild Q

implies PF Q. Suppose that P sWild Q and P s P’; we must show Q % Q’ for some

Q’ such that P’ sWild Q’. Suppose that there were no such Q’. Then for each u-child

Qb, we have P’ g,,,,i,d Q&; thus, there is some experiment E, such that P’ f’ E,, but

not Qh 1‘ E,. Let E’ be the experiment which takes the conjunction of all the E,.

Then P' p E’, but no QCY can pass E’. Let E be the experiment which starts by

pushing the cu-button, and then running E’; P can pass E, but Q cannot. This

violates the hypothesis that P swila Q.

For the other clause of ready simulation, suppose that P swild Q and P -?+. Then

P can pass the experiment which pushes the u-button, failing if it can be pushed

and succeeding if it cannot. Q must pass this experiment as well; hence Q A.

For the converse, suppose that Ph Q and P TE. Let [be any function demonstrat-

ing that P T E. We will construct a function 5’ demonstrating that Q T E. Let f be

a consistent choice function for P& Q. Define

i

(&f(R)) if C(V) = (b, R) and R E descendants(P),

5’(v) = (b, R) if cJ’(V) = (b, R) and R sf descendents(P),

undefined otherwise.

It is straightforward to check that 5’ demonstrates that Q 9 E. q

It is worth noting that simple duplicator experiments (with binary Boolean

operations and no choice nodes) suffice to capture ready simulation of finitely-

branching processes; see [6] for more details.

3. Global testing experiments

For any process P, let Succ, (P) = {P’ : P -% P’}. In our setting, this set of successor

processes of P will always be finite.’ Notice that a duplicator, by making ISucc,(P)I

copies of P and pressing an u-button on each copy, has the possibility of getting

the entire set Succ,(P) to experiment upon. Milner’s experimental explanation of

bisimulation reveals that the experimenter must, however, do more than merely

have the possibility to see all the successors-he must know when he has seen them

all.

’ Also, as we are taking synchronization trees as our basic semantics, there may be several isomorphic

elements of Succ,,(P). In particular, the process a + a has a synchronization tree with two leaves, which

are isomorphic but not equal; Succ,,(a + a) is the (two-element) set containing those two leaves.

232 B. Bloom, A.R. Mtyer

This is formalized in [181, where Mimer describes a mechanism for exploring all

the alternatives available from a given state, by allowing variation of some “ambient

(‘weather’) conditions” which determine which nondeterministic choice the machine

will take. We formulate ‘weathers’ in terms of a global-testing duplicator [l]. The

global-testing duplicator is a device with a chamber, a control panel with one button

per action, and a chute. The experimenter places the machine in the chamber, and

presses a button on the control panel, say the u-button. Out of the chute drops one

copy of each a-descendant of the process.

However, global-testing goes too far; global-testing equivalence is strictly finer

than bisimulation. The experimenter can simply count the black boxes that come

out of the chute. In Mimer’s metaphor, this is counting the number of varieties of

weather available to investigate. In fact, we have the following theorem.

Theorem 3.1. Global-testing duplicator experiment equivalence coincides with

isomorphism of unordered trees. In particular, the bisimilar processes a and a + a are

not global-testing duplicator equivalent.

The test which distinguishes them is: “put the process in the global-testing

duplicator. Press the u-button. Succeed iff one box comes out the chute”.

Actually this simple form of global-testing duplicator does not precisely match

Milner’s weather scenario: two different forms of weather may drive the process

into the same state. Milner’s description directly corresponds to the wildglobal-testing

duplicator, which may produce one or more copies of each descendent of its input.

This uncertainty blurs the counting of successor processes, raising the prima facie

possibility that nonisomorphic process trees might be identified.

The same experiment distinguishes a from a + a, although in a slightly different

way. Now, a may pass the experiment, although it will no longer pass it in every

run; however a + a must fail in every run.

In fact, the wildness does not blur any distinctions at all, as is seen in the following

result.

Theorem 3.2. Wild global-testing duplicator equivalence coincides with unordered tree

isomorphism.

We will first define a partial order P5 Q on finite trees. Let P r n be P truncated

at depth n. Unlike most comparisons between processes we have considered, I is

antisymmetric; P 5 Q and Q 5 P will imply P = Q (viz. that P and Q are isomorphic

synchronization trees). We will construct experiments E,, such that P can pass

E,, iff P 1 n 5 Q r n. If P and Q are distinct synchronization trees, then for some

n we have P r n % Q r n, and so either P 1 n 5 Q 1 n or Q 1 n 5 P / n. So, E,, or E,,

will distinguish P and Q, and the theorem will follow. The necessary mathematics

will take up the rest of this section.

Experimenting with process equiualence 233

First, our partial order on finite trees. The condition PS Q holds if, informally,

Q can be obtained by repeated duplication of subtrees of P. Formally, this is defined

by induction on the depth of finite trees.

Definition 3.3. 050, and whenever

PC,

P = C C aPut,
utAct i=l

%

Q = C C aQa,
oi*ct ,=I

(*)

are such that

(1) for each Qui there is some PUi such that P,, 5 Qa,,

(2) there is a l-l function f: [1 . . . pa] + [1 . . . qa] such that P,, 5 Q0 ,,,, ,,

then P 5 Q.

That is, each child of Q has a “cousin” which is a child of P, and distinct children

of P have distinct cousins in Q. It is easy to show that i is a preorder.

Lemma 3.4. 5 is a partial order, and a congruence with respect to a(.), +, and In.

Proof. Reflexitivity, transitivity, and congruence are straightforward. By a predict-

able induction on n, we show that it is antisymmetric; that is, if P 5 Q 5 P then P

and Q are isomorphic synchronization trees. This is trivial if P = Q = 0. Let P and

Q be expressed as in (*), fix an action a and let f:[l...pC,]+[l...q,] and

g:[l...qa]+[l... pa] be the l-l functions showing that PL Q and QS P respec-

tively. The existence of l-l functions shows that pa c qa spa and hence p‘, = qO.

Therefore f and g are also onto, and so fg and gf are permutations. Recall that if

h is a permutation of a finite set and i is an element of that set, then the set

{i, h(i), hC2’(i), . . .} is a finite set, called the orbit of i under h; as h is l-l, we must

have hCA’(i) = i for some k, called the period of i.

Fix i. We have

where k is the period of i. By transitivity, we have Q “,,, (,, 5 Po,i, and so by induction

Pa,, = Qa,,tt). With a little bit of work, this establishes a bijection between the children

of P and those of Q as desired. 0

We now define the experiments E,, such that P can pass E,, iff P r n 5 Q r n.

The experiment E,, always succeeds. To see if P can pass EO,,+,, wild-duplicate

P under each action a, giving Pb,, . . . , Pk,,,. If piI # q0 then the experiment fails.

If pb = qa then for each i, see if Phi passes EvC2,,, Eg,,+, succeeds if each E,<,,,,

succeeds.

234 B. Bloom, A.R. Mew

Lemma 3.5. P can pass E,, iff P 1 n 5 Q 1 n.

Proof. This clearly is true for n = 0. For greater n, suppose that P can pass E,,.

Let P and Q be given as in (*). Suppose that the wild global-testing duplicator

produced (Pi; : a E Act, j E [1 . . . qo]), where each child of P appears in this listing

at least once. We have P SC,, aP&. As each Pij passes E,Cz,,n_, we have

P& 1 (n - 1) 5 Qaj r (n - 1) by induction, and hence we have

PrnlC aP:,r(n--1)5C aQ,r(n-l)=Q]n
a., a,,

as desired. The other direction is similar. 0

Lemma 3.6. P and Q and agree on all wild global-testing duplicator experiments ifs

P= Q.

Proof. Clearly the result of performing an experiment on a process depends only

on its synchronization tree. Conversely, suppose that P f Q. Then there is some n

such that PrnfQln. By antisymmetry, we have P/nSQrn or QrnSPrn;

suppose the former. Then by Lemma 3.5, we know that P cannot pass E,, but Q

can. Hence P and Q are distinguishable with a wild global-testing experiment. 0

4. Modal logic

Modal logics which arise naturally in process specification are intimately con-

nected to experimental equivalence.

It is possible to give a straightforward logic for ready simulation, which we call

denial logic (called “limited modal logic” in [7]). Disjunction does not increase the

descriptive power of denial logic, because the law (a)(cp v $) = ((a)cp) v ((a)$) is

valid. The syntax of denial logic is

cp ::= Can’t(a) 1 tt 1 cpr\cp 1 (a)cp

and satisfaction is defined as usual:

l P k tt always,

l Pl=cpr\$iffPK~andP~+,

l P k (a)cp iff for some P’, P % P’ and P’ k cp,

l P k Can’t(a) if Ph.

Formulas of denial logic correspond quite naturally to a certain set of “elementary”

duplicator experiments. For example, Can’t(a) is an experiment which succeeds if

the a button cannot be pressed, and cp A + is an experiment which starts by duplicat-

ing the process, and then performing appropriate experiments on the copies. In this

way we can show that equivalence with respect to denial logic is identical to

equivalence with respect to duplicator experiments.

E.xperimenting with process equiualence 235

An even more natural Hennessy- Milner logic (HML) logic is well known to yield

to bisimulation [13]. The syntax of HML is

cp ::= tt I ff I cp A cp I cp ” P I (ah I [alcp.

The significant new clause in the definition of satisfaction is P k [a]~ iff for all P’

such that P+ P’, P’ k cp. Note that the denial formula Can’t(u) is expressible in

HML as [a]ff, so denial formulas can be seen as a special case of HML formulas.

Now it is straightforward to seen how to distinguish non-bisimilar processes using

a (modal) global-testing duplicator. Processes P and Q are not bisimilar iff there

is some Hennessy-Milner formula cp which distinguishes them, say Pi= cp and

Q # cp. We can construct an experiment e, from cp on which P can succeed, but Q

never will. For example, the experiment e(u)q starts with pressing the u-button, and

then performs e, on the resulting machine (or failing if the u-button cannot be

pressed). Dually, the experiment eIo19 does an a-button global-test duplication of

the machine in the chamber and checks to see that every machine coming out of

the chute passes e,.

5. Conclusion

We have extended the notion of experimental equivalence of processes by con-

sidering experiments in which processes can be duplicated, allowing collection of

information about alternative process behaviors during an experiment. This idea

was originally suggested by Milner as yielding an experimental understanding of

bisimulation between processes. The authors have found it hard to provide a physical

justification or operational rationale for a key technical restriction used in Milner’s

experimental characterization of bisimulation-that experimental outcomes only be

combined “modally”. The apparently more natural variations of duplicating-experi-

ment equivalence we have examined-ready similarity and unordered tree isomorph-

ism-respectively strictly coarsen and strictly refine bisimulation.

Bisimulation has been singled out by Milner as the finest notion of equivalence

of synchronization trees which seems suitable for interleaving process theory. It

might help clarify the theoretical role of bisimulation if this observation was

rigorously formulated, but the authors do not question that bisimulation arises as

a fundamental concept of interleaving concurrency theory. This is especially clear

in the modal characterization of bisimulation via Hennessy-Milner logic, which is

more elegant than the corresponding characterization of ready similarity.

The debate about the proper choice of process equivalence continues to be

technically fruitful. Recently, Larsen and Skou [16] have argued that bisimulation

can be understood experimentally in the setting of experiments on probabilistic

processes (cf. [S]), and Vaandrager and Groote [111 propose other equivalences

finer than ready simulation, but still coarser than bisimulation, based on a relaxed
SOS discipline.

236 B. Bloom, A.R. Meyer

The authors interpret these results-even Larsen and Skou’s (although they do

not agree)-as indicating that bisimulation has not been persuasively justified as a

computational equivalence based on effectively observing and experimenting with

processes. Consequently, while making full use of the richly developed bisimulation

based methods which Milner’s school has shown are widely applicable, researchers

and protocol specifiers and verifiers should anticipate limitations of bisimulations.

Protocols may be expected to be correct in senses weaker than bisimulation, so

when bisimulation fails to hold, one should not hesitate to try establishing correctness

in terms of suitable experiment-based equivalences.

We are continuing to investigate the theory of ready simulation. For example, we

have a finite axiomatization of ready simulation on finite trees and a naive poly-

nomial-time algorithm for deciding ready simulations of finite-state processes. A

major, crucial, development yet to be undertaken is the extension of the theory of

ready simulation to handle hidden moves.

6. Acknowledgement

Robin Milner has been immensely helpful to this study, and quite generous in

giving clarifications of [181. We are grateful to Kim Larsen, Sorin Istrail and Miller

Maley for several discussions. Finally, we would like to thank Marta Kwiatkowska

and an anonymous referee for much constructive criticism.

References

[I] S. Abramsky, Observation equivalence as a testing equivalence, Theorer. C’ompuf. Sci. 53 (1987)

225-241.

[2] S. Abramsky and S. Vickers, Quantales, observational logic and process semantics, Research Report

DOC 90/l, Imperial College, London, 1990.

[3] D. Austry and G. Boudol, Algkbre de processus et synchronisation, Theoret. Comput. Sci. 30 (1984)

91-131.
[4] J.C.M. Baeten and R.J. van Glabbeek, Another look at abstraction in process algebra, in: T. Ottman,

ed., 14th ICALP, Lecture Notes in Computer Science, Vol. 267 (Springer, Berlin, 1987) 84-94.

[5] J.A. Bergstra and J.W. Klop, Process algebra for synchronous communication, Inform. and Control,

60 (1984) 109-137.
[6] B. Bloom, Ready simulation, bisimulation, and the semantics of CCS-like languages, Ph.D. thesis,

Massachusetts Institute of Technology, August 1989.

[7] B. Bloom, S. Istrail and A.R. Meyer, Bisimulation can’t be traced: Preliminary report, in: Proc.

15th Symp. Principks ofProgramming Languages (ACM, 1988) 229-239; final version in preparation

for journal submission.
[8] B. Bloom and A.R. Meyer, A remark on the bisimulation of probabilistic process, in: A. Meyer and

M. Tails/in, eds, Proc. Logic af Batik ‘89, Lecture Notes in Computer Science, Vol. 363 (Springer,

Berlin, 1989) 26-40.

[9] R. de Simone, Higher-level synchronising devices iI?;y_EIJE-SCCS, Theore,. Comput. Sci. 37 (1985)
245-267.

[IO] R. DeNicola and M.C. Hennessy, Testing equivalences for processes, Thheorer. Comput. Sci. 34

(1984) 83-133.

E.qwrimenting with process equivalence 237

[I I] J.F. Groote and F. Vaandrager, Structured operational semantics and hisimulation as a congruence

(extended abstract), in: G. Ausiello, M. Dezani-Ciancaglini and S. Ronchi della Rocca, eds., Proc.
16th Inrernat. Cdl., Automura, Languages and Programming, Lecture Notes in Computer Science,

Vol. 372 (Springer, Berlin, 1989) 626-638.

[12] M. Hennessy, A/gehraic Theory of Proce.we.~ (MIT Press, Cambridge, MA, 1988).

[I31 M.C.B. Hennessy and R. Milner, On observing nondeterminism and concurrency, in: J. de Bakker

and J. van Leeuwen, eds., Proc. Internat. Co//. Automara, Languager and Programming, Lecture

Notes in Computer Science, Vol. 85 (Springer, Berlin, 1980) 299-309.

[141 C. Hoare, Communicating sequential processes, Comm. ACM. 21 (1978) 666-677.

[151 C.A.R. Hoare, Communicating Sequenrial Processes (Prentice-Hall, Englewood Cliffs, NJ, 1985).

[16] K. Larsen and A. Skou, Bisimulation through probabilistic testing (preliminary report), in: Pror.

16th Symp. Principles of Programming Languages (ACM, 1989) 344-352.

[I71 R. Milner, A Calculu.s of Communicating Systems, Lecture Notes in Computer Science, Vol. 92

(Springer, Berlin, 1980).

[181 R. Milner, A modal characterisation of observable machine-behavior, in: E. Astesiano and C. BGhn,

eds., Proc. CAAP ‘RI, Lecture Notes in Computer Science, Vol. I12 (Springer, Berlin, 1987) 25-34.

[19] R. Milner, Calculi for synchrony and asynchrony, Theorer. Comput. Sci. 25 (1983) 267-310.

[20] R. Milner, Private communication, 1991.

[21] I. Phillips, Refusal testing, in: L. Knott, ed., Proc. 13rh SCALP, Lecture Notes in Computer Science,

Vol. 226 (Springer, Berlin, 1986) 304-313.

[22] I. Phillips, Refusal testing, Theorer. Comput. Sci. 50 (1987) 241-284.

[23] G.D. Plotkin, A structural approach to operational semantics, Technical Report DAlMl FN-19,

Computer Science Dept., Aarhus Univ., 1981.

[24] A. Pnueli, Linear and branching structures in the semantics and logics of reactive systems, in:

W. Brauer, ed. Proc. Inrernat. Cdl. Automara, Lunguages and Programming, Lecture Notes in

Computer Science, Vol. 194 (Springer, Berlin, 198.5) 15-32.

