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Abstract 

The structure of the functions computable in 

time or space bounded by t is investigated for 

recursive functions t. The t-computable classes 

are shown to be closed under increasing recur- 

sively enumerable unions; as a corollary the 

primitive recursive functions are shown to equal 

the t-computable functions for a certain recur- 

sive t. Any countable partial order can be iso- 

morphically embedded in the family of t-computable 

classes partially ordered by set inclusion. For 

any recursive t, there is a recursive t' which is 

(approximately) equal to an actual running time 

such that the t-computable functions equal the 

t'-computable functions. 

I. Introduction 

A rich structure is imposed on the computable 

functions by classifying functions according to 

the amount of time or space required to compute 

them. Following the axiomatic approach of Blum, 

it is possible to investigate this structure 

independently of particular notions of time or 

space arising from specific models of automata. 

This paper contains three principal results. 

Theorem (5.2) establishes that any countable par- 

tial order can be isomorphically embedded in the 

ordering of the computable functions determined 

by bounds on computation. The Union Theorem 

(5.5) indicates that the classes of functions 

computable within time t, for recursive functions 

t, are closed under increasing recursively enum- 

erable unions. As a consequence we conclude that 

the primitive recursive functions, the multiply 
I 

recursive functions, the classes of the Grzegorczyk 

hierarchy, and several similar classes of recur- 
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sive functions are in fact special cases of t- 

computable classes for appropriate recursive t 

and the familiar measure of Turing machine time 

or space. Finally, theorem (6.8) shows that the 

class of functions computable in time t can, for 

any recursive t, also be defined as the class of 

functions computable in time t', where t' is 

almost the running time of a program. Other re- 

suits in section 6 show that whether t' can equal 

a running time depends on the particular time 

measure chosen. The proof of theorem (6.8) is of 

independent interest as one of the first examples 

of a non-trivial priority construction applied to 

a theorem about computational complexity. 

2. Preliminaries 

~Vis the set of nonnegative integers. 

is the set of partial recursive functions of n 

variables, and ~ is the set of (total) recur- 
n 

sire functions of n variables. "Function" in 

this paper means function from~/x/~/×...×~to~. 

The abbreviations "r.e.", "a.e.", and "i.o." 

are used for "recursively enumerable", "almost 

everywhere", and "infinitely often", respectively. 

If P(x) is a statement containing the variable x 

then %x[P(x)] is a predicate of one variable on 

~. The h-notation is also used for functions. 

The statement'~x[P(x)] (a.e.)" means that P(x) is 

true for all but finitely many x E~/. Similarly, 

"%x[P(x)] (i.o.)" means that P(x) is true for 

infinitely many x E/~. The phrase "for suffici- 

ently large functions f..." means "there is a 

b E ~I such that for all f ~ b (a.e.)..." Sim- 

ilarly, "for arbitrarily large functions f..." 

"for every b E ~1, there is an f ~ b (a.e.) means 
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The function ~i 6 ~ is the i th partial 

recursive function in a standard enumeration of 

~]. A Blum measure ~ = [~0,~1,...~ is a sequence 

of functions in ~ satisfying two axioms: 

1. domain (~i) = domain (~i) for all i 6~, 

and 

2. ki,x,Y[~i(x) = y] is a recursive pred- 

icate. 

Intuitively, ~i(x) represents the amount of time 

or space used by program number i when it finally 

halts after receiving input x. If ~i(x) is un- 

defined, the statement "~i(x) ~ y" is true by 

convention for any y 6~ or if y is undefined. 

We assume the reader is at least cursorily fa- 

miliar with the basic paper of Blum , and with 

the papers of Hartmanis and Stearns on time and 

space bounded Turing machines. T = ~0,T],...] 

is taken to be the tape squares measure on Turing 

machines which have separate input, output, and 

storage tapes; Ti(x) = the number of tape squares 

visited on the storage tape by Turing machine i 

when it finally halts on input x. The input tape 

is taken to be a read-only tape, and the output 

tape is a write-only tape. This ensures that 

non-trivial computations must occur on the stor- 

age tape, and that T satisfies the Blum axioms. 

As an aid in exposition, we sometimes infor- 

mally assert that two functions t and t' are 

"approximately equal". This means that there is 

fixed g 6 ~2 (determined by context and inde- a 

pendent of t and t') such that t ~ kx[g(t'(x),x)] 

(a.e.) and t' K %x[g(t(x),x)] (a.e.). 

3. RecursiveEnumerabilit Y 

The basic objects of study are the set of 

programs whose measures are bounded by functions 

t:~l~/, and the functions computed by these 

programs. Whether a program's measure is t-bound- 

ed depends on the measure. 

(3.1) Definition. Let t : ~  be a function, 

and ~ a Blum measure. The set of programs (or 

more precisely, indices) t-bounded with respect 

t q~ is 

F(~,t)d~f'[i E ~ I ~i 6 ~] and ~i ~ t (a.e.)}. 

The set of functions t-computable with respect t__q 

is 

~'( t.def~ 
~;~ ~, ) = i~ i E~]I~ i ~ t (a.e.)}={~ili E F(~,t)]. 

(3.2) Remark. For the Turing machine tape-measure 

T with separate input and output tapes, a func- 

tion is t-computable iff there is a program which 

computes the function and which uses at most t(x) 

tape squares for all (rather than almost all) in- 

puts x. On the other hand, the Turing machine 

number-of-steps measure has the property that a 

constant function, for example, much larger than 

t(0) cannot be computed in t steps at all argu- 

ments, because printing out the value of the 

function at argument zero requires more than t(0) 

steps. Hence, the "almost everywhere" condition 

is included in the definition of the F and ~Z 

c lasse s. 

(3.3) Remark. The requirement that ~i 6 ~1 in 

Definition 3.1 is not redundant, since the condi- 

tion ~i ~ t (a.e.) allows ~i (and hence ~i ) to be 

undefined finitely often. The results of this 

paper also apply with [iI~ i ~ t (a.e.)] in place 

of F(~,t)~ but it is convenient to restrict at- 

tention to total functions. 

Hartmanis and Stearns observe that it is 

undecidable whether a recursive function is t- 

computable for any given sufficiently large 

t 6 ~]. More strongly, Young has pointed out 

that a standard reduction to the halting problem 

implies 

(3.4) Fact. For any Blum measure ~ and any func- 

tion t ~ ~1, ~(~,t) ~ ~ = ~il~i ~ ~(~,t)] is 
not r.e. 

Essentially the same reduction argument 

yields 

(3.5) Fact. For any Blum measure ~, and all suf- 

ficiently large t 6 ~1, F(~,t) is ~ot r.e. 

An elegant generalization of fact (3.5) 

appears in Blum . 

The observation that ~(~,t) is an r.e. set 

sufficiently large t 6 ~] of functions for is 

implicit in Hartmanis and Stearns . Moreover, 

when t = ~i for some ~i 6 ~1, their proof yields 
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an enumeration of ~(~,t) by programs which run 

in (approximately) bound t. Young asks whether 

this is true for arbitrary recursive t. The fol- 

lowing theorem gives an affirmative partial answer. 

(3.6) Definition. A sequence of (partial) func- 

tions f0,f],.., is recursively enumerable (r.e.) 

iff ~i,x[fi(x)] E ~2" A set ~ of functions is 

r.e. iff ~ = [fill 6~/} for some r.e. sequence 

of functions f0,fl, .... 

The proof of the following useful fact is 

left as an amusing exercise for the reader. 

(3.7) F@ct. A set J c ~ is r.e. 

~= [~ili E W} for some r.e. set W car 

= [will E R] for some recursive set R c~/. 

If ~ c ~l is r.e., then for any Blum measure ~, 

and all sufficiently large t 6 ~1' ~c ~(~,t). 

(3.8) Theorem. For any Blum measure ~, there is 

a g E ~2 such that: for all sufficiently large 

t 6 ~1' there is an r.e. set W_F(@,%x[g(t(x),x)]) 

= [~i Ii 6 W~. such that 

Sketch of the proof: The object is to enum- 

erate a sequence of programs computing all and 

only the t-computable functions such that the 

programs enumerated actually have measures not 

much larger than t. We shall indicate how to 

do this for the tape measure T. The i th program 

in the enumeration is defined by the following 

instructions, "Given input x, try to compute t(0) 

within x tape squares. If this is possible, try 

to compute ~i(0) within any of the x tape squares 

remaining. If this is possible, try to compute 

t(]), then ~i(I), etc.~ continuing in this manner 

until the x tape squares are exhausted. If at 

any point this process turns up an argument y at 

which the computation of ~i(y) loops or requires 

more than t(y) tape squares, halt and give output 

zero. Otherwise try simultaneously computing 

~i(x) and t(x) without at any point using more 

tape squares for ~i(x) than have been required for 

t(x) up to that point. If ~i(x) can be computed 

in the alloted space, halt and give output ~i(X)o 

Otherwise (if ~i(x) loops or requires more space 

than did t(x)), halt and give output zero." 

Clearly, if T. ~ t, the preceding instruc- 
l 

tions compute ~i" Also, if Ti(Y) > t(y) for some 

y, this will be discovered by the program on all 

large inputs, and the program will compute a func- 

tion equal to zero (a.e.). Observing that the 

functions equal to zero (a.e.) can be computed in 
i 

space zero, it follows from remark (3.2) that the 

programs above enumerate the t-computable func- 

tions. Moreover, each program uses at most 

t(x) + x tape squares for almost all inputs x. [] 

(3.9) Corollary. (Hartmanis-Stearns, Young) For 

any Blum measure ~, and all sufficiently large 

t 6 ~I' ~ (~,t) is an r.e. set of functions. 

(3.10) Remark. Given any ~, it is certainly not 

the case that all r.e. sets of reeursive functions 

are equal to ~(~,t) for some t 6 ~I" For 

example, let f,g E ~1 be such that g is harder to 

compute than f, viz., g 6 ~(~,t) = f 6 ~(~,t). 

Then for any t 6 ~] larger than the measure of 

some program for g, the r.e. set ~(~,t) - [f] 

contains g but not f, and hence cannot be obtained. 

However, given any r.e. set of recursive functions, 

the Blum axioms are weak enough that we have 

(3.1]) Fact. Let ~ c ~1 be an r.e. set of func- 
tions. There is a Blum measure ~ such that 

= ~(~,~x[0]). 

(3.12) Remark. Thus far we have restricted at- 

tention to t 6 R]. From corollary (3.9) it fol- 

lows immediately that ~1 ~ ~(~,t) for any Blum 

or t 6 ~], since -- ~] is well-known not measure 

to be r.e. On the other hand, if we choose a 

(non-recursive) t which majorizes all recursive 

functions (e.g. Rado's function), then ~1 =~(~,t). 

The preceding remark indicates that non-recu~- 

sive functions t can lead to new classes. This 

remains true even if we require that t be bounded 

by a recursive function. 

(3.13) Theorem. For every Blum measure ~, there 

a b 6 ~1 such that there are uncountably many is 

sets ~(~,t) as t ranges over the (non-recursive) 

functions bounded above by b. 
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Sketch of the proof: Construct an infinite 

sequence A0,Ai,... of disjoint, infinite recur- 

sire sets such that %i,x[x 6 A i] is a recursive 

predicate. Define fi(x) = huge(x).CA.(X) where 
l 

huge 6 ~] is very rapidly increasing, and 

CA. ~I is the characteristic function of 6 A i • 
l 

The sequence f0,f],.., is r.e., and by Fact (3.7) 

is contained in the b-computable functions for 

b 6 ~1. Let d 6 ~1 be a function which some 

for each i exceeds the measure of some program 

for CAi(again d exists since C A ,C A ,... is an 

r.e. sequence of functions). 0 i 

For x ~ Ai, we have fi(x) = 0, and moreover 

f.(x) can be computed in roughly d(x) steps for 
l 

almost all such x. On the other hand, for x 6 A i, 

fi(x) = huge(x) and by choosing huge large enough, 

it can be guaranteed that fi(x) requires much 

more than d(x) steps to compute for almost all 

such x. 

Now choose any S c~, and let 

#b(x) if X 6 A i for some i 6 S 
ts(X) = ~d(x) otherwise. 

It follows that those functions fi which are 

ts-computable are precisely [fill £ S]. Since 

there are uncountably many sets S c l~, there are 

uncountably many distinct classes of ts-COmputable 

functions. [] 

(3.74) Corollary. For every Blum measure ~, there 

is a (non-recursive) function t which is bounded 

above by a recursive function such that ~(~,t) is 

not an r.e. set of functions. 

Prpof: There are only countably many r.e. 

sets of functions. 

4. Invariance 

The Blum axioms are intentionally weak, the 

point being that any theorem following from the 

axioms applies to all notions of time or space 

arising from any conceivable machine model. Fact 

(3.7]) indicates that whether an r.e. set of 

recursive functions is a class of t-computable 

functions varies with the measure. The following 

definition is useful in considering dependence on 

the measure. 

(4.1) Definition. Let ~ and ~' be Blum measures. 

~' is a refinement of ~ iff for all sufficiently 

t 6 ~I' there is a t' 6 ~I such that large 

~(~,t) = ~(~',t'). 

In short, measures which are refinements of 

each other define the same classes of t-comput- 

able functions for large enough t 6 ~I" Refine- 

ment is obviously a transitive relation on mea- 

sures. This definition allows one to ignore some 

of the pathologies illustrated by fact (3.11), 

and it is not obvious that there are measures 

which are not refinements of each other. This 

question was answered for us by Manuel Blum. 

(4.2) Theorem (Blum~. Given any Blum measure ~, 

one can construct a Blum measure ~' such that 

neither ~ nor ~' is a refinement of the other. 

Sketch of the proof: By a minor modifica- 

tion of the proof of Blum's compression theorem , 

one can show that in any given measure ~ there 

are arbitrarily complicated pairs of functions 

c,d 6 ~I such that range(c) = [0,I], 

range(d) = [2,3], and d is slightly harder to 

compute than c. 

Define a new measure ~' as follows: 

~i(x) if ~i(x) is undefined, or if 

=~ ~i(x) ~ [0,1], 

~(X) L h(~i(x)'x) otherwise. 

By choosing (independently of c and d) 

6 ~2 to grow sufficiently fast, one can guar- h 

antee that c is harder to compute than d in the 

~' measure. Hence neither ~ nor ~' is a refine- 

ment of the other. [] 

Theorem (4.2) indicates that additional 

restrictions must be placed on the notion of 

measure before a measure-invariant notion of 

t-computable classes can be obtained. Additional 

axioms which restrict measures to more accurately 

reflect properties of time or space arising from 

familiar machine models have been considered hy 

Borodin and Young . However, even without fur- 

ther restrictions, we can assert that the t-com- 

putable classes of different measures interlace 

-82- 



in a regular manner. 

(4.3) Theorem. For any Blum measures ~ and ~', 

there is a g E ~2 such that for all functions 

F(~,t) c F(~',%x[g(t(x),x)]) and 

F(~',t) c F(~,kx[g(t(x),x)]). 

Proof: By a theorem of Blum ~ for any 

~,~', there is a g E ~2 such that for every 

i 6/~,~ i ~ ~x[g(~(x),x)] (a.e.) and 
I ~i ~ kx[g(~i(x)'x)] (a.e.). The theorem follows 

if we assume (without loss of generality) that g 

is non-decreasing. [] 

5. Set Theoretic Structure 

For f,g E ~1, the notion that f is as com- 

plicated (hard to compute) as g can be expressed 

by saying that for every program computing f, 

there is an almost everywhere faster program for 

g. 

(5.0) Remark. An apparently more natural formula- 

tion might be that no program for f is faster 

than the "fastest" program for g. In view of 

Blum's Speed-up theorem , however, there may not 

be a "fastest" program for g. 

The relation "as complicated as" on ~1 was 

proposed by Rabin , who observed that it is 

transitive and leads to a partial order on the 

equivalence classes of equally complex computable 

functions. This partial order can also be con- 

sidered in terms of set inclusion among the 

classes ~(t)* since f is as complicated as g iff 

(¥t 6 ~])[f 6 ~(t) = g 6 ~(t)]. The fact that 

the ~ classes are actually partially , rather 

than totally ordered follows from the fact that 

the ~classes are not closed under union (though 

they are trivially closed under intersection). 

(5.1) Theorem. For all sufficiently large t 6~], 

there is a t' 6 ~] such that 

~(t) U ~(t') ~ ~(f) for any function f:/A/~/. 

The proof, which we omit, resembles the 

proof by Hartmanis and Stearns of a similar 

* 
The results in this section are measure inde- 

pendent, so we suppress mention of ~. 

theorem for Turing machine measures. 

The partial order of the t-computability 

classes is extremely complicated, as is clear 

from: 

(5.2) Theorem. Any countable partial order is 

isomorphic to some family~ of t-computability 

(t E ~]) classes partially ordered under set 

Moreover, there is a g 6 ~2 inclusion. (depend- 

ing only on the measure) such that for arbitrarily 

large h E ~i, the family ~can be chosen as a 

suborder of 

{~(t) It 6 ~1, h ~ t ~ kx[g(h(x),x)](a.e.)]. 

The lengthy proof, which we omit, is based 

on a theorem of Mostowski asserting that there 

is a recursive partial order on ~/into which any 

countable partial order can be isomorphically 

embedded, and a generalization of recursion 

theorem construction whichappears in ~eyer and 

Fischer . Actually a stronger result is proved: 

(5.3) Corollary. The family~ of Theorem (5.2) 

can be chosen to satisfy the additional condi- 

tions that for all ~(t]),~(t 2) 6~: 

(5.3.1) ~(t]) ~(t 21 = (~c E~(t]))[~ i = c = 

~i > t2 (a.e.) and range(c) = {0,]]], and 

(5.3.2) ~(t I) ~ ~(t 2) = 

~c 6~(t]) - ~(t2))[range(c) = [0,1}]. 

We now establish a powerful closure property 

of the t-computable classes which has some sur- 

prising corollaries. 

(5.4) 'Definition. A set ~ of total functions 

from ~/ to ~/ is self-bounded iff for every finite 

subset ~0 c~ there is a t E~ such that 

t ~ kx[max[f(x) if E ~0}] (a.e.). 

(5.5) Union Theorem. Let ~ c ~] be an r.e. 

self-boundedt Iset of functions. There is a t E ~] 

such that f~F(f) = F(t). 

Say ~= [f0,f] .... ] Proof: and 

Xi,x[fi(x)] E ~2" Observe that 

f0,max[f0,f]~,max[f0,f],f2} .... is a non-decreas- 

ing r.e. sequence which defines the same union as 

~. Hence, we assume without loss of generality 

that i ~ j = fi ~ f" (everywhere). J 
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The function t is computed in stages. Cer- 

tain variables "guess(0)", "guess(1)",... are 

given values during the computation, and these 

variables are assumed to have the same values 

from stage to stage unless they are explicitly 

set to new values. The computation begins at 

stage zero. Stage x: "Set guess(x) = x. Find 

[i ~ xI~i(x) > fguess(i)(x)}; call this set A(x). 

If A(x) = ~, define t(x) = fx(X) and go to stage 

x+l. Otherwise, define 

t(x) = min[fguess(i)(x)li E A(x)~, set guess(1)=x 

for all i E A(x), and go to stage x+l." 

We leave as a difficult exercise the proof 

of the claim that for all i, ~. ~ t (a.e.) 
i 

(~n,k E~)[guess(i)=k at every stage after stage 

n and ~i ~ fk (a°e.)] ~ (~k E/~[~ i ~ fk (a.e.)]. 

Hence i E F(t) ~ i E F(f k) for some fk E~. [] 

(5.6) Remark. With the proof complete, it fol- 

lows trivially that Theorem (5.5) remains true 

with "F" replaced by "~". 

(5.7) Corollary. There is a t E ~I such that 

the set of primitive recursive functions (of one 

argument) is precisely the set of t-computable 

functions with respect to both the Turing machine 

space measure and the Turing machine time measure. 

Proof: By theorems of R. W. Ritchie and 

, a function p E ~I is primitive recur- Cobham 

sire iff some Turing machine computing p uses 

time or space bounded by a primitive recursive 

function. Since the primitive recursive func- 

tions of one argument are on r.e. self-bounded 

set of recursive functions, the corollary fol- 

lows from remark (5.6). We let the reader con- 

vince himself that the same function t works for 

time and space. [] 

(5.8) Corollary. Same as corollary (5.7) with 

"primitive recursive" replaced by "elementary 

functions of Kalmar", " ~ functions of 

Grzegorczyk for each n ~ 3", "n-fold recursive 

functions of P~ter for each n ~ I", and "multiply 

recursive functions of PEter". 

Proof: Each of these classes are well-known 

to be r.e. self-bounded sets of recursive func- 

tions. Meyer and D. Ritchie ~ and D. Ritchie 

observe that these classes also satisfy the R. W. 

Ritchie-Cobham property that a function is in 

the class iff it can be completed in time or space 

bounded by a function in the class. [] 

(5.9) Remark. Corollary (5.7) also applies to 

the Grzegorczyk class E 2 and the R. W. Ritchie 

classes of predictably computable functions pro- 

viding that only the Turing machine space measure 

is used. 

(5.10) Remark. The function t of Corollary (5.7) 

must majorize (exceed almost everywhere) every 

primitive recursive function, and hence cannot 

itself be primitive recursive. Therefore, t 

cannot be t-computable in the Turing machine time 

or space measure. This means that t must grow 

considerably more slowly than Ackerman's function, 

for example, which also majorizes the primitive 

recursive functions. By remark (5.13) below, t 

can be made non-decreasing. 

Borodin has observed that the minimal growth 

rate theorems for Turing machine time and space 

can be extended to a wide 

class of Blum measures, but not all Blum measures. 

He requires that a minimal growth rate be non- 

decreasing. By relaxing this condition we can 

obtain a somewhat weaker result which however 

applies to all measures. 

(5.11) Definition. A weak minimal ~rowth rate is 

a function t : ~  such that lim inf t(x) = 
X ~ 

and for all i E~, ~i ~ t (a.e.) 

~k E~)[~i ~ k (a.e.)]. 

(5.12) Cqrollary. There exists a recursive weak 

minimal growth rate. 

Proof. The constant functions are an r.e. 

self-bounded set of recurslve functions. By the 

union theorem, there is a t E~ I such that the 

t-bounded programs are precisely the constant- 

bounded programs. That lim inf t = ~ follows 

from the proof of the union theorem. [] 

(5.13) Remark. Borodin's construction of Blum 

measures in which non-decreasing recursive weak 

-84- 



minimal growth rates do not exist suggests the 

following question: if f0,f],.., is an r.e. 

self-bounded sequence of non-decreasing recur- 

sive functions, is ~F(f k) = F(t) for some non- 

t 9 A modification of the proof decreasing 6 ~1. 

of the union theorem shows that the answer is 

yes providing that any one of f0,f],.., is un- 

bounded. Thus Borodin's counter-example cannot 

be extended beyond the constant functions. 

Another corollary is an amusing observation 

(made independently of theorem (5.5)) by Blum 

about non-deterministic space-bounded Turing 

machines. An important open problem in automata 

theory is whether the languages recognizable by 

nondeterministic linear space bounded Turing 

machines properly contain those languages recog- 

nized by deterministic linear space bounded by 

Turing machines. For certain peculiar space 

bounds the question can be settled trivially. 

(5.]4) Corollary (Blum~. There are arbitrarily 

large t 6 ~I such that a language is recogniz- 

able within space t on a nondeterministic Turing 

machine iff it is recognizable within space t on 

a deterministic Turing machine. 

Sketch of the proof: There is a strictly 

increasing g E ~1 such that any language recog- 

nizable within space f 6 ~] on a nondeterministie 

machine can be recognized within space gof on a 

deterministic machine. The function g essentially 

describes the extra space required to simulate 

the apparently more powerful nondeterministie 

machines with deterministic ones. Then f, gOf, 

gOgOf,.., is an r.e. self-bounded sequence, and 

it is immediate that a language recognizable 

nondeterministically in space bounded by a func- 

tion in the sequence is also recognizable deter- 

ministically in space bounded by the next function 

in the sequence. By reformulating language recog- 

nition in terms of the computation of character- 

istic functions and using a space measure for 

nondeterminlstlc machines, one can appeal to the 

union theorem to obtain the desired t 6 ~]. 

The preceding corollary sheds no light on 

the original problem for linear space bounded 

Turing machines. However, since theorems about 

computational complexity are sometimes criticized 

on the grounds that they apply only to excessively 

time-consuming computations, it is worth mention- 

ing that functions t satisfying corollary (5.]4) 

can he found which are bounded above by 

kx[log2(x)]. 

6. Well-behaved Bounds 

The classes of t-compumble functions determined by 

non-recursive functions have properties signifi- 

cantly different from those classes determined 

by reeursive t (cf. Theorem (3.]3)). We now ask 

whether the recursive functions are themselves 

too broad a class of bounds, and in particular 

whether a more tractable structure arises by 

considering only bounds which actually are run- 

ning times. The significance of this question 

becomes obvious from the contrast between the 

following thworems: 

(6.1) Weak Compression Theorem. (Blum) For 

every Blum measure ~, there is a g 6 ~2 such 

that for every ~i 6 ~1, 

~(~,~i ) ~ ~q~,xx[g(~i(xl,x)]). 

(6.2) Gap Theorem.(Borodin) For every Blum 

measure ~, and every g 6 ~2' there are arbitrar- 

ily large t 6 ~] such that 

F(~,t) = F(~,%x[g(t(x),x)]) and hence 

~(~,t) =~(~,kx[g(t(x),x)]). 

(6.2a)Remar k. Blum's compression theorem is much 

more powerful than theorem (6.]) which follows 

as an in~nediate corollary. Theorem (6.2) is 

also a weaker assertion than the original gap 

theorem proved by Borodin. 

The following corollary of (6.12) below, 

together with the two preceding theorems, form a 

surprising trilogy. 

(6.3) Corollary. There is a Blum measure ~ such 

that for every t £ ~I' there is a ~i 6 ~1 

such that 

F(~,t) = F(~,~i) and hence ~(~,t) = ~ (~,~i). 

These results illustrate an important point; 

namely, that theorems like the gap theorem which 
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appear to be making statements about the struc- 

ture of t-computability classes may only be indi- 

cating the properties of badly chosen names for 

the classes. The same remark applies to Blum's 

observation (5.]4) about nondeterministic automata. 

One of the essential features of running 

times on which theorem (6.]) depends is that the 

running time o_~a running time approximately 

equals the running time. Such functions are 

"honest" (cf. Meyer and D. Ritchie ) in that their 

values reflect their computational complexity. 

(6.4) Definition. Let ~ be a Blum measure and 

g 6 6 2 • A function ~ E ~9] is g-honest with 

respect to ~ iff (~i E~)[~i = 9 and 

~i g kx[g(9(x),x)] (a.e.)]. 

The notion of honesty can also be formulated 

using Blum's elegant definition of a measured set. 

(6.5) Definition. (Blum) A sequence ~ = {~0,~i.. ] 

of (partial) functions forms a measured set iff 

~i,x,Y[~i(X) = y] is a recursive predicate. 

(6.6) Fact. Any Blum measure is a measured set, 

is any r.e. set of functions in ~]. A func- as 

tion can be a member of a measured set iff its 

graph is recursive. 

(6.7) Fact. The set of functions which are g- 

honest with respect to ~ form a measured set for 

any g £ ~2 and Blum measure ~. Conversely, given 

any measured set and Blum measure ~, there is a 

~2 such that the set of g-honest functions g 6 

with respect to ~ contains the measured set. 

(6.8) Theorem. For every Blum measure ~, there 

is a measured set ~ such that:for all t E ~1, 

there is a t' 6 ~ n ~I such that 

F(~,t) = F(~,t') and hence ~(~,t) = ~(~,t ). 

The proof of (6.8) is of independent interest 

as one of the first examples of a priority argu- 

ment in the theory of computational complexity 

(see also, Young , and Borodin ). 

Detailed sketch of the proof: Given t 6 ~7, 

our aim is to construct t' 6 ~I such that for all 

i 6/~, ~i > t (i.o) ~ ~i > t' (i.o.), which means 

F(~,t) = P(~,t'), and also such that t' is approx- 

imately equal to the number of steps required to 

compute t', which ensures that t' will be in a 

measured set. 

In order to guarantee the second condition, 

t' will be defined by a dovetailing procedure so 

that small values of t' on large arguments will 

generally be defined before large values of t' 

on smaller arguments. The difficulty in satis- 

fying the first condition is that there generally 

will not be time to compute t(y) when defining 

t'(y). This difficulty is met by defining t'(y) 

to satisfy conditions which depend on the value 

of t of some easily computed argument other than 

y. The value of t'(y) must be chosen to satisfy 

two conflicting conditions: first, it must be 

larger than the number of steps taken at arg=- 

ment y by those programs which appear to be t- 

bounded, and second, it must be smaller than 

those programs which have been discovered to 

exceed t at some arguments. The conflicts are 

resolved by a priority mechanism described below. 

The computation of t' proceeds in stages 

beginning at stage zero. Programs 0,1,...,x are 

under consideration at any stage x and have a 

priority ordering which remains the same as it 

was at the previous stage unless it is explicitly 

changed. Similarly, at each stage certain pro- 

grams are requesting a "pop", which means their 

running times exceeded t somewhere and they want 

their running times to pop above t' somewhere. 

Pop requests also remain the same from stage to 

stage unless they are explicitly changed. 

Let ~1(x) be some recursive function which 

takes all integer values infinitely often and 

~1(x) ~ x. 

Stage x: Part I. Assign lowest priority to 

program x, and request that program x no__!be 

popped. Devote x steps to a dovetailed computa- 

tion of t, and see if there is a z such that t(z) 

can be computed at this stage, but not at Part I 

of any earlier stage° If such z can be found in 

the alloted time, go to Part II. 

Otherwise, simulate programs 0,1,...,z on 

input z for t(z) steps, and request that those 

programs which did not halt be popped. Go to 

Part II. 
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Part II. Let y =~1(x). See if t'(y) has 

been defined at an earlier stage; if so go to 

stage x+1. Otherwise, determine the priorities 

and requests of programs 0,],...,y at the end of 

stage ~. 

Try to find the program F with highest priorJ 

ity (at stage y), such that P was requesting a pop 

at stage y and such that none of those programs 

which beth 

(]) at stage ~ wererequesting not to be 

popped, and 

(2) at stage Z had higher priority than P, 

actually takes as many steps on input ~ as P takes 

on input ~. 

If such a P can be found, define t'(y) to be 

the largest number of steps taken on input y by 

any of the programs satisfying (]) and (2), assign 

lowest priority (at this stage ~) to P, request 

that P not be popped, and go to stage x+]. 

However, the preceding attempt to find P 

should be stopped if either 

(3) it requires more than x steps, or 

(4) it requires more steps than are required 

to cempute t(y). 

If condition (3) occurs firsts go to stage 

x+]. If condition (4) occurs first, define t'(y) 

to be the larger of t(y) and the number of steps 

required to compute t(y); go to stage x+]. END. 

Stopping condition (4) guarantees that t'(y) 

will be defined for every y. Moreover, t'(y) can 

fail to be defined at a stage x such that y =~](x) 

only because t'(y) is too large to compute in the 

time alloted to stage x. Since the time alloted 

to stage x is bounded by a fixed (independent of 

t) recursive function of x, it can now be proved 

that the number of steps required to compute t' 

is approximately equal to t'. (For example, in 

the Turing machine case the time to compute t' 

will be bounded by at worst an elementary func- 

tion composed with t'.) 

The proof that the t-bounded and t'-bounded 

programs are the same is based on the claim that 

~i > t (i.o.) ~ the pop request of program i is 

changed at infinitely many stages 9 ~i > t' (i.o.). 

Verification of the claim requires a delicate 

argument which we omit for lack of space. [] 

The following rather artificial definition 

allows us to state a corollary (6.3) in a stronger 

form. 

(6.9) Definition. Two Blum measures, ~ and ~', 

' for all i such that are similar iff ~i = ~i 

range(~Pi ) ~ [0]. 

(6.10) Remark. Similar measures are trivially 

refinements of each other. In particular, if 

and ~' are similar, then for all t: t~/-~, 

~x[0] ~ ~(~,t) n ~(~',t) = ~(~,t) = ~-(~',t). 

(6.11) Fact. Given any measured set ~ and Blue 

measure ~, there is a Blum measure ~' such that 

is similar to ~', and ~ c ~'. 

We have immediately from (6.8) and (6.]I): 

(6.12) Corollary. Every Blum measure is similar 

to a measure ~' such that for every t 6 ~1 there 

' 6 ~ such that is a ~i ] 

,t) = 

Our final result is that corollary (6.3) 

does not apply to the familiar time and space 

measures arising from Turing machines and other 

automaton models. Such measures have the impor- 

tant property that the measure functions are 

%x,y[x]-honest. 

(6.]3) Definition. A Blum measure ~ is proper iff 

~i E ~(~,~i ) for all ~i E ~1. 
(6.14) Fact. The running time of a function can- 

not be much smaller than the function since many 

steps are required to print a large value. For- 

mally, let ~ be any Blum measure. There is a 

~2 such that (Vj E~/)[~pj~%x[g(~j (x),x)](a.e.)]. g E 

(6.15) Theorem. Let ~ be a proper Blum measure. 

There exist arbitarily large t 6 ~] such that 

for every ~i 6 ~1' 

~(~,t) ~ ~(~,~i ). 

Proof: Let h E ~2 be the pointwise maximum 

of the functions g 6 ~2 of (6.]) and (6.14), and 

assume without loss of generality that h is 
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increasing. For any f 6 ~1' define f0 = f' and 

fn+1 = kx[h(fn(X)'X)]" 

The sequence f0,fl,..., is an r.e. increas- 

ing sequence of recursive functions. By the 

union theorem, there is a t 6 ~I such that 

F(~,t) =~nF(~,fn ). 

Suppose ~(~,t) = ~(~,~i) for some ~i E ~1" 
o-- t Then ~i 6 ,gr(~, ) since ~ is a proper measure, 

i.e., there is a ~j = ~i such that ~j ~ t (a.e.). 

By choice of t, we have ~. ~ f (a.e.) for some n. 
] n 

By (6.14) and monotonicity of h, we have 

~i = ~j ~ Xx[h(~j(x),x)] ~ kx[h(fn(X),X) ] = fn+1 

(a.e.). Hence, 

kx[h(~i(x)'x)] ~ kx[h(fn+1(x)'x)] = fn+2 (a.e.). 

Therefore, by (6.1) 

~(~' ~i )~ ,kx[h (~ i (x), x) ] )c~, fn+2)c~, t), a 

contradiction. [] 
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