
CLASSES OF COMPUTABLE FUNCTIONS DEFINED BY BOUNDS ON COMPUTATION:
PRELIMINARY REPORT*

E. M. McCreight and A. R. Meyer
Department of Computer Science

Carnegie-Mellon University
Pittsburgh, Pa.

Abstract

The structure of the functions computable in

time or space bounded by t is investigated for

recursive functions t. The t-computable classes

are shown to be closed under increasing recur-

sively enumerable unions; as a corollary the

primitive recursive functions are shown to equal

the t-computable functions for a certain recur-

sive t. Any countable partial order can be iso-

morphically embedded in the family of t-computable

classes partially ordered by set inclusion. For

any recursive t, there is a recursive t' which is

(approximately) equal to an actual running time

such that the t-computable functions equal the

t'-computable functions.

I. Introduction

A rich structure is imposed on the computable

functions by classifying functions according to

the amount of time or space required to compute

them. Following the axiomatic approach of Blum,

it is possible to investigate this structure

independently of particular notions of time or

space arising from specific models of automata.

This paper contains three principal results.

Theorem (5.2) establishes that any countable par-

tial order can be isomorphically embedded in the

ordering of the computable functions determined

by bounds on computation. The Union Theorem

(5.5) indicates that the classes of functions

computable within time t, for recursive functions

t, are closed under increasing recursively enum-

erable unions. As a consequence we conclude that

the primitive recursive functions, the multiply
I

recursive functions, the classes of the Grzegorczyk

hierarchy, and several similar classes of recur-

The results reported here represent a portion of
the first author's doctoral dissertation at
Carnegie-Mellon University under the supervision
of the second author. This research was supported
in part by the Advanced Research Projects Agency
of the Office of the Secretary of Defense under

sive functions are in fact special cases of t-

computable classes for appropriate recursive t

and the familiar measure of Turing machine time

or space. Finally, theorem (6.8) shows that the

class of functions computable in time t can, for

any recursive t, also be defined as the class of

functions computable in time t', where t' is

almost the running time of a program. Other re-

suits in section 6 show that whether t' can equal

a running time depends on the particular time

measure chosen. The proof of theorem (6.8) is of

independent interest as one of the first examples

of a non-trivial priority construction applied to

a theorem about computational complexity.

2. Preliminaries

~Vis the set of nonnegative integers.

is the set of partial recursive functions of n

variables, and ~ is the set of (total) recur-
n

sire functions of n variables. "Function" in

this paper means function from~/x/~/×...×~to~.

The abbreviations "r.e.", "a.e.", and "i.o."

are used for "recursively enumerable", "almost

everywhere", and "infinitely often", respectively.

If P(x) is a statement containing the variable x

then %x[P(x)] is a predicate of one variable on

~. The h-notation is also used for functions.

The statement'~x[P(x)] (a.e.)" means that P(x) is

true for all but finitely many x E~/. Similarly,

"%x[P(x)] (i.o.)" means that P(x) is true for

infinitely many x E/~. The phrase "for suffici-

ently large functions f..." means "there is a

b E ~I such that for all f ~ b (a.e.)..." Sim-

ilarly, "for arbitrarily large functions f..."

"for every b E ~1, there is an f ~ b (a.e.) means

Contract No. F 44620-67-C-0058 and is monitored
by the Air Force Office of Scientific Research,
and in part by the Fannie and John Hertz Founda-
tion.

-79-

The function ~i 6 ~ is the i th partial

recursive function in a standard enumeration of

~]. A Blum measure ~ = [~0,~1,...~ is a sequence

of functions in ~ satisfying two axioms:

1. domain (~i) = domain (~i) for all i 6~,

and

2. ki,x,Y[~i(x) = y] is a recursive pred-

icate.

Intuitively, ~i(x) represents the amount of time

or space used by program number i when it finally

halts after receiving input x. If ~i(x) is un-

defined, the statement "~i(x) ~ y" is true by

convention for any y 6~ or if y is undefined.

We assume the reader is at least cursorily fa-

miliar with the basic paper of Blum , and with

the papers of Hartmanis and Stearns on time and

space bounded Turing machines. T = ~0,T],...]

is taken to be the tape squares measure on Turing

machines which have separate input, output, and

storage tapes; Ti(x) = the number of tape squares

visited on the storage tape by Turing machine i

when it finally halts on input x. The input tape

is taken to be a read-only tape, and the output

tape is a write-only tape. This ensures that

non-trivial computations must occur on the stor-

age tape, and that T satisfies the Blum axioms.

As an aid in exposition, we sometimes infor-

mally assert that two functions t and t' are

"approximately equal". This means that there is

fixed g 6 ~2 (determined by context and inde- a

pendent of t and t') such that t ~ kx[g(t'(x),x)]

(a.e.) and t' K %x[g(t(x),x)] (a.e.).

3. RecursiveEnumerabilit Y

The basic objects of study are the set of

programs whose measures are bounded by functions

t:~l~/, and the functions computed by these

programs. Whether a program's measure is t-bound-

ed depends on the measure.

(3.1) Definition. Let t : ~ be a function,

and ~ a Blum measure. The set of programs (or

more precisely, indices) t-bounded with respect

t q~ is

F(~,t)d~f'[i E ~ I ~i 6 ~] and ~i ~ t (a.e.)}.

The set of functions t-computable with respect t__q

is

~'(t.def~
~;~ ~,) = i~ i E~]I~ i ~ t (a.e.)}={~ili E F(~,t)].

(3.2) Remark. For the Turing machine tape-measure

T with separate input and output tapes, a func-

tion is t-computable iff there is a program which

computes the function and which uses at most t(x)

tape squares for all (rather than almost all) in-

puts x. On the other hand, the Turing machine

number-of-steps measure has the property that a

constant function, for example, much larger than

t(0) cannot be computed in t steps at all argu-

ments, because printing out the value of the

function at argument zero requires more than t(0)

steps. Hence, the "almost everywhere" condition

is included in the definition of the F and ~Z

c lasse s.

(3.3) Remark. The requirement that ~i 6 ~1 in

Definition 3.1 is not redundant, since the condi-

tion ~i ~ t (a.e.) allows ~i (and hence ~i) to be

undefined finitely often. The results of this

paper also apply with [iI~ i ~ t (a.e.)] in place

of F(~,t)~ but it is convenient to restrict at-

tention to total functions.

Hartmanis and Stearns observe that it is

undecidable whether a recursive function is t-

computable for any given sufficiently large

t 6 ~]. More strongly, Young has pointed out

that a standard reduction to the halting problem

implies

(3.4) Fact. For any Blum measure ~ and any func-

tion t ~ ~1, ~(~,t) ~ ~ = ~il~i ~ ~(~,t)] is
not r.e.

Essentially the same reduction argument

yields

(3.5) Fact. For any Blum measure ~, and all suf-

ficiently large t 6 ~1, F(~,t) is ~ot r.e.

An elegant generalization of fact (3.5)

appears in Blum .

The observation that ~(~,t) is an r.e. set

sufficiently large t 6 ~] of functions for is

implicit in Hartmanis and Stearns . Moreover,

when t = ~i for some ~i 6 ~1, their proof yields

-80-

an enumeration of ~(~,t) by programs which run

in (approximately) bound t. Young asks whether

this is true for arbitrary recursive t. The fol-

lowing theorem gives an affirmative partial answer.

(3.6) Definition. A sequence of (partial) func-

tions f0,f],.., is recursively enumerable (r.e.)

iff ~i,x[fi(x)] E ~2" A set ~ of functions is

r.e. iff ~ = [fill 6~/} for some r.e. sequence

of functions f0,fl,

The proof of the following useful fact is

left as an amusing exercise for the reader.

(3.7) F@ct. A set J c ~ is r.e.

~= [~ili E W} for some r.e. set W car

= [will E R] for some recursive set R c~/.

If ~ c ~l is r.e., then for any Blum measure ~,

and all sufficiently large t 6 ~1' ~c ~(~,t).

(3.8) Theorem. For any Blum measure ~, there is

a g E ~2 such that: for all sufficiently large

t 6 ~1' there is an r.e. set W_F(@,%x[g(t(x),x)])

= [~i Ii 6 W~. such that

Sketch of the proof: The object is to enum-

erate a sequence of programs computing all and

only the t-computable functions such that the

programs enumerated actually have measures not

much larger than t. We shall indicate how to

do this for the tape measure T. The i th program

in the enumeration is defined by the following

instructions, "Given input x, try to compute t(0)

within x tape squares. If this is possible, try

to compute ~i(0) within any of the x tape squares

remaining. If this is possible, try to compute

t(]), then ~i(I), etc.~ continuing in this manner

until the x tape squares are exhausted. If at

any point this process turns up an argument y at

which the computation of ~i(y) loops or requires

more than t(y) tape squares, halt and give output

zero. Otherwise try simultaneously computing

~i(x) and t(x) without at any point using more

tape squares for ~i(x) than have been required for

t(x) up to that point. If ~i(x) can be computed

in the alloted space, halt and give output ~i(X)o

Otherwise (if ~i(x) loops or requires more space

than did t(x)), halt and give output zero."

Clearly, if T. ~ t, the preceding instruc-
l

tions compute ~i" Also, if Ti(Y) > t(y) for some

y, this will be discovered by the program on all

large inputs, and the program will compute a func-

tion equal to zero (a.e.). Observing that the

functions equal to zero (a.e.) can be computed in
i

space zero, it follows from remark (3.2) that the

programs above enumerate the t-computable func-

tions. Moreover, each program uses at most

t(x) + x tape squares for almost all inputs x. []

(3.9) Corollary. (Hartmanis-Stearns, Young) For

any Blum measure ~, and all sufficiently large

t 6 ~I' ~ (~,t) is an r.e. set of functions.

(3.10) Remark. Given any ~, it is certainly not

the case that all r.e. sets of reeursive functions

are equal to ~(~,t) for some t 6 ~I" For

example, let f,g E ~1 be such that g is harder to

compute than f, viz., g 6 ~(~,t) = f 6 ~(~,t).

Then for any t 6 ~] larger than the measure of

some program for g, the r.e. set ~(~,t) - [f]

contains g but not f, and hence cannot be obtained.

However, given any r.e. set of recursive functions,

the Blum axioms are weak enough that we have

(3.1]) Fact. Let ~ c ~1 be an r.e. set of func-
tions. There is a Blum measure ~ such that

= ~(~,~x[0]).

(3.12) Remark. Thus far we have restricted at-

tention to t 6 R]. From corollary (3.9) it fol-

lows immediately that ~1 ~ ~(~,t) for any Blum

or t 6 ~], since -- ~] is well-known not measure

to be r.e. On the other hand, if we choose a

(non-recursive) t which majorizes all recursive

functions (e.g. Rado's function), then ~1 =~(~,t).

The preceding remark indicates that non-recu~-

sive functions t can lead to new classes. This

remains true even if we require that t be bounded

by a recursive function.

(3.13) Theorem. For every Blum measure ~, there

a b 6 ~1 such that there are uncountably many is

sets ~(~,t) as t ranges over the (non-recursive)

functions bounded above by b.

-81-

Sketch of the proof: Construct an infinite

sequence A0,Ai,... of disjoint, infinite recur-

sire sets such that %i,x[x 6 A i] is a recursive

predicate. Define fi(x) = huge(x).CA.(X) where
l

huge 6 ~] is very rapidly increasing, and

CA. ~I is the characteristic function of 6 A i •
l

The sequence f0,f],.., is r.e., and by Fact (3.7)

is contained in the b-computable functions for

b 6 ~1. Let d 6 ~1 be a function which some

for each i exceeds the measure of some program

for CAi(again d exists since C A ,C A ,... is an

r.e. sequence of functions). 0 i

For x ~ Ai, we have fi(x) = 0, and moreover

f.(x) can be computed in roughly d(x) steps for
l

almost all such x. On the other hand, for x 6 A i,

fi(x) = huge(x) and by choosing huge large enough,

it can be guaranteed that fi(x) requires much

more than d(x) steps to compute for almost all

such x.

Now choose any S c~, and let

#b(x) if X 6 A i for some i 6 S
ts(X) = ~d(x) otherwise.

It follows that those functions fi which are

ts-computable are precisely [fill £ S]. Since

there are uncountably many sets S c l~, there are

uncountably many distinct classes of ts-COmputable

functions. []

(3.74) Corollary. For every Blum measure ~, there

is a (non-recursive) function t which is bounded

above by a recursive function such that ~(~,t) is

not an r.e. set of functions.

Prpof: There are only countably many r.e.

sets of functions.

4. Invariance

The Blum axioms are intentionally weak, the

point being that any theorem following from the

axioms applies to all notions of time or space

arising from any conceivable machine model. Fact

(3.7]) indicates that whether an r.e. set of

recursive functions is a class of t-computable

functions varies with the measure. The following

definition is useful in considering dependence on

the measure.

(4.1) Definition. Let ~ and ~' be Blum measures.

~' is a refinement of ~ iff for all sufficiently

t 6 ~I' there is a t' 6 ~I such that large

~(~,t) = ~(~',t').

In short, measures which are refinements of

each other define the same classes of t-comput-

able functions for large enough t 6 ~I" Refine-

ment is obviously a transitive relation on mea-

sures. This definition allows one to ignore some

of the pathologies illustrated by fact (3.11),

and it is not obvious that there are measures

which are not refinements of each other. This

question was answered for us by Manuel Blum.

(4.2) Theorem (Blum~. Given any Blum measure ~,

one can construct a Blum measure ~' such that

neither ~ nor ~' is a refinement of the other.

Sketch of the proof: By a minor modifica-

tion of the proof of Blum's compression theorem ,

one can show that in any given measure ~ there

are arbitrarily complicated pairs of functions

c,d 6 ~I such that range(c) = [0,I],

range(d) = [2,3], and d is slightly harder to

compute than c.

Define a new measure ~' as follows:

~i(x) if ~i(x) is undefined, or if

=~ ~i(x) ~ [0,1],

~(X) L h(~i(x)'x) otherwise.

By choosing (independently of c and d)

6 ~2 to grow sufficiently fast, one can guar- h

antee that c is harder to compute than d in the

~' measure. Hence neither ~ nor ~' is a refine-

ment of the other. []

Theorem (4.2) indicates that additional

restrictions must be placed on the notion of

measure before a measure-invariant notion of

t-computable classes can be obtained. Additional

axioms which restrict measures to more accurately

reflect properties of time or space arising from

familiar machine models have been considered hy

Borodin and Young . However, even without fur-

ther restrictions, we can assert that the t-com-

putable classes of different measures interlace

-82-

in a regular manner.

(4.3) Theorem. For any Blum measures ~ and ~',

there is a g E ~2 such that for all functions

F(~,t) c F(~',%x[g(t(x),x)]) and

F(~',t) c F(~,kx[g(t(x),x)]).

Proof: By a theorem of Blum ~ for any

~,~', there is a g E ~2 such that for every

i 6/~,~ i ~ ~x[g(~(x),x)] (a.e.) and
I ~i ~ kx[g(~i(x)'x)] (a.e.). The theorem follows

if we assume (without loss of generality) that g

is non-decreasing. []

5. Set Theoretic Structure

For f,g E ~1, the notion that f is as com-

plicated (hard to compute) as g can be expressed

by saying that for every program computing f,

there is an almost everywhere faster program for

g.

(5.0) Remark. An apparently more natural formula-

tion might be that no program for f is faster

than the "fastest" program for g. In view of

Blum's Speed-up theorem , however, there may not

be a "fastest" program for g.

The relation "as complicated as" on ~1 was

proposed by Rabin , who observed that it is

transitive and leads to a partial order on the

equivalence classes of equally complex computable

functions. This partial order can also be con-

sidered in terms of set inclusion among the

classes ~(t)* since f is as complicated as g iff

(¥t 6 ~])[f 6 ~(t) = g 6 ~(t)]. The fact that

the ~ classes are actually partially , rather

than totally ordered follows from the fact that

the ~classes are not closed under union (though

they are trivially closed under intersection).

(5.1) Theorem. For all sufficiently large t 6~],

there is a t' 6 ~] such that

~(t) U ~(t') ~ ~(f) for any function f:/A/~/.

The proof, which we omit, resembles the

proof by Hartmanis and Stearns of a similar

*
The results in this section are measure inde-

pendent, so we suppress mention of ~.

theorem for Turing machine measures.

The partial order of the t-computability

classes is extremely complicated, as is clear

from:

(5.2) Theorem. Any countable partial order is

isomorphic to some family~ of t-computability

(t E ~]) classes partially ordered under set

Moreover, there is a g 6 ~2 inclusion. (depend-

ing only on the measure) such that for arbitrarily

large h E ~i, the family ~can be chosen as a

suborder of

{~(t) It 6 ~1, h ~ t ~ kx[g(h(x),x)](a.e.)].

The lengthy proof, which we omit, is based

on a theorem of Mostowski asserting that there

is a recursive partial order on ~/into which any

countable partial order can be isomorphically

embedded, and a generalization of recursion

theorem construction whichappears in ~eyer and

Fischer . Actually a stronger result is proved:

(5.3) Corollary. The family~ of Theorem (5.2)

can be chosen to satisfy the additional condi-

tions that for all ~(t]),~(t 2) 6~:

(5.3.1) ~(t]) ~(t 21 = (~c E~(t]))[~ i = c =

~i > t2 (a.e.) and range(c) = {0,]]], and

(5.3.2) ~(t I) ~ ~(t 2) =

~c 6~(t]) - ~(t2))[range(c) = [0,1}].

We now establish a powerful closure property

of the t-computable classes which has some sur-

prising corollaries.

(5.4) 'Definition. A set ~ of total functions

from ~/ to ~/ is self-bounded iff for every finite

subset ~0 c~ there is a t E~ such that

t ~ kx[max[f(x) if E ~0}] (a.e.).

(5.5) Union Theorem. Let ~ c ~] be an r.e.

self-boundedt Iset of functions. There is a t E ~]

such that f~F(f) = F(t).

Say ~= [f0,f]] Proof: and

Xi,x[fi(x)] E ~2" Observe that

f0,max[f0,f]~,max[f0,f],f2} is a non-decreas-

ing r.e. sequence which defines the same union as

~. Hence, we assume without loss of generality

that i ~ j = fi ~ f" (everywhere). J

-83-

The function t is computed in stages. Cer-

tain variables "guess(0)", "guess(1)",... are

given values during the computation, and these

variables are assumed to have the same values

from stage to stage unless they are explicitly

set to new values. The computation begins at

stage zero. Stage x: "Set guess(x) = x. Find

[i ~ xI~i(x) > fguess(i)(x)}; call this set A(x).

If A(x) = ~, define t(x) = fx(X) and go to stage

x+l. Otherwise, define

t(x) = min[fguess(i)(x)li E A(x)~, set guess(1)=x

for all i E A(x), and go to stage x+l."

We leave as a difficult exercise the proof

of the claim that for all i, ~. ~ t (a.e.)
i

(~n,k E~)[guess(i)=k at every stage after stage

n and ~i ~ fk (a°e.)] ~ (~k E/~[~ i ~ fk (a.e.)].

Hence i E F(t) ~ i E F(f k) for some fk E~. []

(5.6) Remark. With the proof complete, it fol-

lows trivially that Theorem (5.5) remains true

with "F" replaced by "~".

(5.7) Corollary. There is a t E ~I such that

the set of primitive recursive functions (of one

argument) is precisely the set of t-computable

functions with respect to both the Turing machine

space measure and the Turing machine time measure.

Proof: By theorems of R. W. Ritchie and

, a function p E ~I is primitive recur- Cobham

sire iff some Turing machine computing p uses

time or space bounded by a primitive recursive

function. Since the primitive recursive func-

tions of one argument are on r.e. self-bounded

set of recursive functions, the corollary fol-

lows from remark (5.6). We let the reader con-

vince himself that the same function t works for

time and space. []

(5.8) Corollary. Same as corollary (5.7) with

"primitive recursive" replaced by "elementary

functions of Kalmar", " ~ functions of

Grzegorczyk for each n ~ 3", "n-fold recursive

functions of P~ter for each n ~ I", and "multiply

recursive functions of PEter".

Proof: Each of these classes are well-known

to be r.e. self-bounded sets of recursive func-

tions. Meyer and D. Ritchie ~ and D. Ritchie

observe that these classes also satisfy the R. W.

Ritchie-Cobham property that a function is in

the class iff it can be completed in time or space

bounded by a function in the class. []

(5.9) Remark. Corollary (5.7) also applies to

the Grzegorczyk class E 2 and the R. W. Ritchie

classes of predictably computable functions pro-

viding that only the Turing machine space measure

is used.

(5.10) Remark. The function t of Corollary (5.7)

must majorize (exceed almost everywhere) every

primitive recursive function, and hence cannot

itself be primitive recursive. Therefore, t

cannot be t-computable in the Turing machine time

or space measure. This means that t must grow

considerably more slowly than Ackerman's function,

for example, which also majorizes the primitive

recursive functions. By remark (5.13) below, t

can be made non-decreasing.

Borodin has observed that the minimal growth

rate theorems for Turing machine time and space

can be extended to a wide

class of Blum measures, but not all Blum measures.

He requires that a minimal growth rate be non-

decreasing. By relaxing this condition we can

obtain a somewhat weaker result which however

applies to all measures.

(5.11) Definition. A weak minimal ~rowth rate is

a function t : ~ such that lim inf t(x) =
X ~

and for all i E~, ~i ~ t (a.e.)

~k E~)[~i ~ k (a.e.)].

(5.12) Cqrollary. There exists a recursive weak

minimal growth rate.

Proof. The constant functions are an r.e.

self-bounded set of recurslve functions. By the

union theorem, there is a t E~ I such that the

t-bounded programs are precisely the constant-

bounded programs. That lim inf t = ~ follows

from the proof of the union theorem. []

(5.13) Remark. Borodin's construction of Blum

measures in which non-decreasing recursive weak

-84-

minimal growth rates do not exist suggests the

following question: if f0,f],.., is an r.e.

self-bounded sequence of non-decreasing recur-

sive functions, is ~F(f k) = F(t) for some non-

t 9 A modification of the proof decreasing 6 ~1.

of the union theorem shows that the answer is

yes providing that any one of f0,f],.., is un-

bounded. Thus Borodin's counter-example cannot

be extended beyond the constant functions.

Another corollary is an amusing observation

(made independently of theorem (5.5)) by Blum

about non-deterministic space-bounded Turing

machines. An important open problem in automata

theory is whether the languages recognizable by

nondeterministic linear space bounded Turing

machines properly contain those languages recog-

nized by deterministic linear space bounded by

Turing machines. For certain peculiar space

bounds the question can be settled trivially.

(5.]4) Corollary (Blum~. There are arbitrarily

large t 6 ~I such that a language is recogniz-

able within space t on a nondeterministic Turing

machine iff it is recognizable within space t on

a deterministic Turing machine.

Sketch of the proof: There is a strictly

increasing g E ~1 such that any language recog-

nizable within space f 6 ~] on a nondeterministie

machine can be recognized within space gof on a

deterministic machine. The function g essentially

describes the extra space required to simulate

the apparently more powerful nondeterministie

machines with deterministic ones. Then f, gOf,

gOgOf,.., is an r.e. self-bounded sequence, and

it is immediate that a language recognizable

nondeterministically in space bounded by a func-

tion in the sequence is also recognizable deter-

ministically in space bounded by the next function

in the sequence. By reformulating language recog-

nition in terms of the computation of character-

istic functions and using a space measure for

nondeterminlstlc machines, one can appeal to the

union theorem to obtain the desired t 6 ~].

The preceding corollary sheds no light on

the original problem for linear space bounded

Turing machines. However, since theorems about

computational complexity are sometimes criticized

on the grounds that they apply only to excessively

time-consuming computations, it is worth mention-

ing that functions t satisfying corollary (5.]4)

can he found which are bounded above by

kx[log2(x)].

6. Well-behaved Bounds

The classes of t-compumble functions determined by

non-recursive functions have properties signifi-

cantly different from those classes determined

by reeursive t (cf. Theorem (3.]3)). We now ask

whether the recursive functions are themselves

too broad a class of bounds, and in particular

whether a more tractable structure arises by

considering only bounds which actually are run-

ning times. The significance of this question

becomes obvious from the contrast between the

following thworems:

(6.1) Weak Compression Theorem. (Blum) For

every Blum measure ~, there is a g 6 ~2 such

that for every ~i 6 ~1,

~(~,~i) ~ ~q~,xx[g(~i(xl,x)]).

(6.2) Gap Theorem.(Borodin) For every Blum

measure ~, and every g 6 ~2' there are arbitrar-

ily large t 6 ~] such that

F(~,t) = F(~,%x[g(t(x),x)]) and hence

~(~,t) =~(~,kx[g(t(x),x)]).

(6.2a)Remar k. Blum's compression theorem is much

more powerful than theorem (6.]) which follows

as an in~nediate corollary. Theorem (6.2) is

also a weaker assertion than the original gap

theorem proved by Borodin.

The following corollary of (6.12) below,

together with the two preceding theorems, form a

surprising trilogy.

(6.3) Corollary. There is a Blum measure ~ such

that for every t £ ~I' there is a ~i 6 ~1

such that

F(~,t) = F(~,~i) and hence ~(~,t) = ~ (~,~i).

These results illustrate an important point;

namely, that theorems like the gap theorem which

-85-

appear to be making statements about the struc-

ture of t-computability classes may only be indi-

cating the properties of badly chosen names for

the classes. The same remark applies to Blum's

observation (5.]4) about nondeterministic automata.

One of the essential features of running

times on which theorem (6.]) depends is that the

running time o_~a running time approximately

equals the running time. Such functions are

"honest" (cf. Meyer and D. Ritchie) in that their

values reflect their computational complexity.

(6.4) Definition. Let ~ be a Blum measure and

g 6 6 2 • A function ~ E ~9] is g-honest with

respect to ~ iff (~i E~)[~i = 9 and

~i g kx[g(9(x),x)] (a.e.)].

The notion of honesty can also be formulated

using Blum's elegant definition of a measured set.

(6.5) Definition. (Blum) A sequence ~ = {~0,~i..]

of (partial) functions forms a measured set iff

~i,x,Y[~i(X) = y] is a recursive predicate.

(6.6) Fact. Any Blum measure is a measured set,

is any r.e. set of functions in ~]. A func- as

tion can be a member of a measured set iff its

graph is recursive.

(6.7) Fact. The set of functions which are g-

honest with respect to ~ form a measured set for

any g £ ~2 and Blum measure ~. Conversely, given

any measured set and Blum measure ~, there is a

~2 such that the set of g-honest functions g 6

with respect to ~ contains the measured set.

(6.8) Theorem. For every Blum measure ~, there

is a measured set ~ such that:for all t E ~1,

there is a t' 6 ~ n ~I such that

F(~,t) = F(~,t') and hence ~(~,t) = ~(~,t).

The proof of (6.8) is of independent interest

as one of the first examples of a priority argu-

ment in the theory of computational complexity

(see also, Young , and Borodin).

Detailed sketch of the proof: Given t 6 ~7,

our aim is to construct t' 6 ~I such that for all

i 6/~, ~i > t (i.o) ~ ~i > t' (i.o.), which means

F(~,t) = P(~,t'), and also such that t' is approx-

imately equal to the number of steps required to

compute t', which ensures that t' will be in a

measured set.

In order to guarantee the second condition,

t' will be defined by a dovetailing procedure so

that small values of t' on large arguments will

generally be defined before large values of t'

on smaller arguments. The difficulty in satis-

fying the first condition is that there generally

will not be time to compute t(y) when defining

t'(y). This difficulty is met by defining t'(y)

to satisfy conditions which depend on the value

of t of some easily computed argument other than

y. The value of t'(y) must be chosen to satisfy

two conflicting conditions: first, it must be

larger than the number of steps taken at arg=-

ment y by those programs which appear to be t-

bounded, and second, it must be smaller than

those programs which have been discovered to

exceed t at some arguments. The conflicts are

resolved by a priority mechanism described below.

The computation of t' proceeds in stages

beginning at stage zero. Programs 0,1,...,x are

under consideration at any stage x and have a

priority ordering which remains the same as it

was at the previous stage unless it is explicitly

changed. Similarly, at each stage certain pro-

grams are requesting a "pop", which means their

running times exceeded t somewhere and they want

their running times to pop above t' somewhere.

Pop requests also remain the same from stage to

stage unless they are explicitly changed.

Let ~1(x) be some recursive function which

takes all integer values infinitely often and

~1(x) ~ x.

Stage x: Part I. Assign lowest priority to

program x, and request that program x no__!be

popped. Devote x steps to a dovetailed computa-

tion of t, and see if there is a z such that t(z)

can be computed at this stage, but not at Part I

of any earlier stage° If such z can be found in

the alloted time, go to Part II.

Otherwise, simulate programs 0,1,...,z on

input z for t(z) steps, and request that those

programs which did not halt be popped. Go to

Part II.

-Sb-

Part II. Let y =~1(x). See if t'(y) has

been defined at an earlier stage; if so go to

stage x+1. Otherwise, determine the priorities

and requests of programs 0,],...,y at the end of

stage ~.

Try to find the program F with highest priorJ

ity (at stage y), such that P was requesting a pop

at stage y and such that none of those programs

which beth

(]) at stage ~ wererequesting not to be

popped, and

(2) at stage Z had higher priority than P,

actually takes as many steps on input ~ as P takes

on input ~.

If such a P can be found, define t'(y) to be

the largest number of steps taken on input y by

any of the programs satisfying (]) and (2), assign

lowest priority (at this stage ~) to P, request

that P not be popped, and go to stage x+].

However, the preceding attempt to find P

should be stopped if either

(3) it requires more than x steps, or

(4) it requires more steps than are required

to cempute t(y).

If condition (3) occurs firsts go to stage

x+]. If condition (4) occurs first, define t'(y)

to be the larger of t(y) and the number of steps

required to compute t(y); go to stage x+]. END.

Stopping condition (4) guarantees that t'(y)

will be defined for every y. Moreover, t'(y) can

fail to be defined at a stage x such that y =~](x)

only because t'(y) is too large to compute in the

time alloted to stage x. Since the time alloted

to stage x is bounded by a fixed (independent of

t) recursive function of x, it can now be proved

that the number of steps required to compute t'

is approximately equal to t'. (For example, in

the Turing machine case the time to compute t'

will be bounded by at worst an elementary func-

tion composed with t'.)

The proof that the t-bounded and t'-bounded

programs are the same is based on the claim that

~i > t (i.o.) ~ the pop request of program i is

changed at infinitely many stages 9 ~i > t' (i.o.).

Verification of the claim requires a delicate

argument which we omit for lack of space. []

The following rather artificial definition

allows us to state a corollary (6.3) in a stronger

form.

(6.9) Definition. Two Blum measures, ~ and ~',

' for all i such that are similar iff ~i = ~i

range(~Pi) ~ [0].

(6.10) Remark. Similar measures are trivially

refinements of each other. In particular, if

and ~' are similar, then for all t: t~/-~,

~x[0] ~ ~(~,t) n ~(~',t) = ~(~,t) = ~-(~',t).

(6.11) Fact. Given any measured set ~ and Blue

measure ~, there is a Blum measure ~' such that

is similar to ~', and ~ c ~'.

We have immediately from (6.8) and (6.]I):

(6.12) Corollary. Every Blum measure is similar

to a measure ~' such that for every t 6 ~1 there

' 6 ~ such that is a ~i]

,t) =

Our final result is that corollary (6.3)

does not apply to the familiar time and space

measures arising from Turing machines and other

automaton models. Such measures have the impor-

tant property that the measure functions are

%x,y[x]-honest.

(6.]3) Definition. A Blum measure ~ is proper iff

~i E ~(~,~i) for all ~i E ~1.
(6.14) Fact. The running time of a function can-

not be much smaller than the function since many

steps are required to print a large value. For-

mally, let ~ be any Blum measure. There is a

~2 such that (Vj E~/)[~pj~%x[g(~j (x),x)](a.e.)]. g E

(6.15) Theorem. Let ~ be a proper Blum measure.

There exist arbitarily large t 6 ~] such that

for every ~i 6 ~1'

~(~,t) ~ ~(~,~i).

Proof: Let h E ~2 be the pointwise maximum

of the functions g 6 ~2 of (6.]) and (6.14), and

assume without loss of generality that h is

-87-

increasing. For any f 6 ~1' define f0 = f' and

fn+1 = kx[h(fn(X)'X)]"

The sequence f0,fl,..., is an r.e. increas-

ing sequence of recursive functions. By the

union theorem, there is a t 6 ~I such that

F(~,t) =~nF(~,fn).

Suppose ~(~,t) = ~(~,~i) for some ~i E ~1"
o-- t Then ~i 6 ,gr(~,) since ~ is a proper measure,

i.e., there is a ~j = ~i such that ~j ~ t (a.e.).

By choice of t, we have ~. ~ f (a.e.) for some n.
] n

By (6.14) and monotonicity of h, we have

~i = ~j ~ Xx[h(~j(x),x)] ~ kx[h(fn(X),X)] = fn+1

(a.e.). Hence,

kx[h(~i(x)'x)] ~ kx[h(fn+1(x)'x)] = fn+2 (a.e.).

Therefore, by (6.1)

~(~' ~i)~ ,kx[h (~ i (x), x)])c~, fn+2)c~, t), a

contradiction. []

Acknowledgments

The authors would like to express their

sincere appreciation for the interest shown by

Manuel Blum, who provided the proof of Theorem

(4.2), by Patrick C. Fischer who suggested a sig-

nificant simplification in the proof of Theorem

(6.8), and by Paul Young, who proposed the sharp-

ened form of definition (4.]). We would especi-

ally like to thank Michael J. Fischer for his

invaluable help over many months in revising and

simplifying this material.

References

Blum, M. A machine independent theory of com-

putational complexity. JACM, v.14(1967),

322-336.

Blum, M. Recursive function theory and speed of

computation. Can.Bull.of Math., v.9(1966),

745-750.

Borodin, A. Complexity classes of recursive

functions aed the existence of complexity

gaps, in this volume.

Cobham, A. The intrinsic computational diffi-

culty of functions. Proc. of 1964 Congress

for Logic, Meth., an__~ Phil. of Science,

North Holland(1964).

Grzegorczyk, A. Some classes of recursive func-

tions. Roz~rawyMatematyczne, Warsaw(1953)~

1-46.

Hennie, Fo One-tape, off-line Turing machine com-

putations. Information and Control, v.8

(1965), 553-578.

Hartmannis, J. and R. E. Stearns. On the computa-

tional complexity of algorithms. TAMS,

v.117(1965), 285-306.

Meyer, A. R. and D. M. Ritchie. The complexity of

loop programs. Proc. 22 National ACM Conf.,

Thompson, Washington, D. C.(1967), 465-470.

Meyer, A. R. and D. M. Ritchie. A classification

of functions by computational complexity.

Proc. Hawaii International Conf. o__q 9ystem

Sciences, Univ. of Hawaii(J968),]7-]9.

Meyer, A. and P. C. Fischer. On computational

speed-up. Conf. Record 9 th Annual SymD. o_~

Switchin~ and Automata, IEEE Computer

group(1968), 351-355.

Mostowski, A. Uber gewisse universelle relation-

en. Ann. Soc. Polon. Math., v.]7(1938),

117-118.
Peter, R. Rekursive funktionen. Academlal Kiado,

Budapest(1951).

Rabin, M. O. Degree of difficulty of computing a

function and a partial ordering of recur-

sive sets. Technical Report No. 2, Hebrew

Univ., Israel(1960).

Ritchie, D. M. Program structure and computation-

al complexity. Doctoral dissertation,

Harvard Univ.(1969) o

Ritchie, R. W. Classes of predictably computable

functions. TAMS, v. I06(1963), 139-173.

Stearns, R. E., J. Hartmannis, and P. M. Lewis.

Hierarchies of memory-limited computations.

Proc. 6 th Annual Symp. o__~ Switching Cir-

cuits and Logical Design, IEEE Computer

group(1965), 179-]90.

Young, P. R. Toward a theory of enumerations.
Conf. Rec. of 9th Annual Symp. o_~. SwitchinK
and Automata, IEEE Computer group(1968).

Young, P. R. Speed-ups by changing the order in
which sets are enumerated, i.n this volume.

-88-

