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Very abstract concepts underlie the design of modern programming languages—
higher-order functions, abstract data types, types as values, names of names. These
concepts arise naturally in the course of program design; with an intuitive explana-
tion, programmers generally understand and use them effectively.

Nevertheless, intuition has its limits. Situations arise repeatedly where firmer guide-
lines are needed to resolve confusions and inconsistency. This note illustrates some
of the places where intuitive programming concepts are not adequate. Some specific
puzzling cases are collected below which highlight areas where more guidance would
be valuable. The statements of the puzzles are, I hope, almost all accessible to novice
programmers, though they vary in difficulty as well as significance.

My emphasis is on puzzles which come up in most programming languages, not on
problems reflecting the idiosyncrasies of some particular language. “Solutions” for
the puzzles are supplied, but they are really brief hints about the current state of
the theoretical answers. Simple as the puzzles appear, several of them currently lack
satisfactory solutions.

The puzzles are intended to make the point that reasoning about program behav-
ior raises challenges with a significant mathematical component. One aim of pro-
gramming language theory is to provide a mathematical foundation for the abstract
concepts in programming.

Software engineering, in common with other design disciplines, deals with the orga-
nization and management of large systems interacting with complex environments.
At the same time it contrasts with other design disciplines: programs, like essays or
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mathematical proofs, are built of symbols and words, and lack any physical realiza-
tion. The constructs of software engineering are more purely conceptual than those
of other engineering disciplines.

Programs do, of course, direct the behavior of physical devices—computers — so
once a computer is at hand, there is a sure way to resolve any doubt about how the
program will behave in a particular instance—run it. Some theoretical analysis is
needed to certify how the program will behave in general. But a central question for
programming language theory is less how does a program behave, but how should it
behave? The puzzles are also intended to illustrate some of the unexpected complexity
of making such design decisions.

There are surely many more puzzles in the style of the ones below about the numerous
features typical in modern languages. If the reader has some to contribute, I would
be grateful to hear about them.

1 The Puzzles

Puzzle 1 Exhibit a declaration of a procedure E which takes no arguments and re-
turns an integer value such that the conditional expression

if E = E then 0 else 1 fi

evaluates to 1 in most programming languages.

I was disappointed to discover that most people actually solve Puzzle 1 so quickly
that they aren’t struck by the real puzzle: how is one supposed to make sense of
programming languages in which this kind of thing happens?

Puzzle 2 Let E be an integer procedure whose evaluation never properly terminates,
e.g., E might be declared by

integer procedure E;
return(E + 1);

end E.

What simple integer expression e is a counter-example to the rule

E + e = e + E?

Puzzle 3 Exhibit a simple context into which either of the phrases (1 + 2) or (2 +
1) can be substituted so that in essentially all programming languages the resulting
substitutions yield different results.
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It is too easy to dash expectations of sensible program behavior if we exploit the
features on which the previous puzzles were based. So henceforth we shall assume
that expressions are without side-effects, i.e., expression evaluation does not cause
detectable changes in the state of the computer store or other memory. Expressions
which induce breaks in flow-of-control, e.g., whose evaluation can cause exceptions,
can also be pathological, and we shall disallow these too in the discussion which
follows. Finally, we shall assume that program phrases have and are used in appro-
priately typed contexts—not, for example, as character strings.

Puzzle 4 Consider the side-effect-free procedure G declared as follows:

integer procedure G(x, y);
x, y : integer;
if x = 0 then return(y) else return(G(x + 1, y)) fi;

end G.

In the scope of this declaration, does the test G(0, y) = G(0, y) evaluate to true? How
about G(1, y) = G(1, y)? Should a compiler optimize by skipping these tests?

This puzzle emphasizes the familiar fact that one has to take account of the possibil-
ity of nonterminating computations in reasoning about expression evaluation—even
after making the simplifying assumption that expressions do not have side-effects
or error-breaks. The real puzzle, then, is understanding the logic of nonterminat-
ing expressions and procedures. This is easier than understanding expressions with
side-effects and has been pretty satisfactorily worked out in the last fifteen years
[26, 21, 10], though the last word has not been said (cf. [22]).

Puzzle 5 Many programming languages allow procedures which can take themselves
as arguments. But type-violations like self-application lead to contradictions in a few
lines:

Let P (f) =def if f(f) 6= 0 then 0 else 1 fi. By definition, P (f) 6= f(f)
for all functions f . Now letting f be P yields the contradiction P (P ) 6=
P (P )!

What actually happens when P (P ) is evaluated in a language which allowed this sort
of definition (e.g., LISP or ALGOL)? Why aren’t these contradictions applicable in
programming?

The most familiar genus of programming languages consists of imperative languages
defining procedures with side-effects. This genus is immediately identifiable as the
languages containing an assignment statement of the typical form x := e. Reasoning
about “pure” side-effect-inducing procedures requires a special style as suggested by
the next puzzles.
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Puzzle 6 After executing the assignment statement x := 0, it will be the case that
x = 0. Replace x by an array reference a[1], and it’s still true. But replace x by an
array reference like a[a[1]], and it’s not true anymore. Explain!

Puzzle 7 Suppose x and y are distinct identifiers of type integer. Exhibit a simple
context into which either of the code fragments x := 0; y := 1 or y := 1; x := 0 can be
substituted (as phrases of type program, cf. Puzzle 3) so that in most programming
languages the resulting substitutions yield different results.

Puzzle 8 Let Q be a pure procedure identifier, i.e., a call of Q is made for its side-
effects and returns no value. Argue that in block structured programming languages
the block

begin x : integer-var;
x := 0;
Q;

end

ought to behave equivalently to the call Q. Now give several reasons why it might not.

Here the syntax integer-var indicates that the evaluation of G or x yields what
in programming language jargon are called variables , i.e., memory locations, which
contain integers. (Calling locations “variables” conflicts with mathematical usage,
but is fairly standard in Computer Science.)

Readers who have been exposed to languages like LISP which use dynamic scoping
conventions will find this puzzle too easy; so assume instead that the more familiar
static scoping conventions are in use.

Joseph Stoy suggested the following lovely puzzle exposing the muddiness surrounding
implicit type-coercions. In practice, the behavior of compilers on this kind of example
is inconsistent and unpredictable, reflecting the fact that a satisfactory theory of data-
type coercions, containments, and equivalences in programming has just begun to be
developed (cf. [24, 20, 6].)

Puzzle 9 In a programming language which treats integers as a subtype of reals and
automatically coerces reals used in integer contexts by rounding down, exhibit a simple
context which distinguishes the calls P (x) and Q(x) where P and Q are declared as
follows:

procedure P (y); procedure Q(y);
y : integer-var; y : integer-var;
skip; y := y

end P ; end Q
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Nondeterministic and concurrent programs are a rich source of puzzles. Researchers
are busily seeking satisfactory explanations of nondeterminism, parallelism and con-
currency in programming, and there is still debate about what the basic models should
be [15, 18, 4, 8]. The next subtle puzzle was suggested by David Park, who observes
that it is the simplest case of what is known as the Brock-Ackerman Anomaly.

Puzzle 10 Consider a programming language with the nondeterministic primitive
construct amb taking two integer arguments, with amb(E, F ) yielding the same value
as expression E or F if evaluation of E or F terminates, choosing nondeterminis-
tically to yield one of these values if both terminate. Now consider the recursive
declaration

integer procedure C;
return(amb(0,max(1, C)));

end C;

Give an operational argument supporting the claim that the proper result of evaluating
C is 0, not 1!

Puzzle 11 The code fragments x := x and skip are essentially equivalent in ordinary
sequential programming languages in contexts where x denotes a variable (and no
coercions occur, cf. Puzzle 9). What about in programming languages with concurrent
processes?

This last puzzle emphasizes, as did Puzzle 9, that a change in one part of a language,
in this case the introduction of a new feature allowing instructions to run concurrently,
can change basic properties of even the original phrases of the language which have
not been altered. The following variation on Puzzle 7 provides another illustration of
this point.

Puzzle 12 Suppose x and y denote distinct variables (locations) of type integer. Ex-
hibit a simple context in a programming language with concurrent processes which
distinguishes the code fragments x := 0; y := 1 and y := 1; x := 0, even if assignments
of the form w := z are atomic actions.

The final puzzle is the most purely logical of all.

Puzzle 13 No set of true first-order formulas about arithmetic implies that the pro-
gram

while 0 < x do x := x− 1 od

always halts, because there are nonstandard models of the integers with exactly the
same first-order properties as the standard integers, and this program does not halt
when x is a nonstandard positive integer. But the first-order theory of the integers
(nonstandard ones too) allows induction, and it is easy to prove by induction from a
few first-order axioms about the integers that this program halts. Explain!
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This puzzle clearly requires sophistication in formal logic to appreciate, let alone to
resolve satisfactorily. My objective in including it in the list is to emphasize that
various reasoning systems—equational, first-order, higher-order, etc.—have rich tech-
nical properties. My impression is that students in the automatic theorem-proving
and program verification areas too often simply understand all these systems in a
manipulative/algorithmic way, and are insensitive to their more abstract model- and
proof-theoretic properties. The moral of the puzzle is that committing oneself to first-
order reasoning is a technical decision which may have unexpected consequences.

2 The Solutions

Solution 1 Let E cause side-effects, e.g.,

integer procedure E;
x := x + 1;
return(x);

end E.

My answer to the real puzzle is that it probably isn’t worthwhile trying to under-
stand the “logic” of expressions with side-effects (see [5], however, for an attempt).
Using such expressions strikes me as an unfortunate pun whereby expressions—which
in familiar scientific use denote algebraic values—are reinterpreted as defining com-
putational evaluation procedures. This wouldn’t be so bad if there was a unique,
natural way to evaluate expressions, but there isn’t—evaluation strategies with dif-
ferent properties have been developed in various programming languages—and rather
than try to figure out how to reason about systems in which E isn’t equal to itself, I
think it makes more sense to eliminate the pun: procedures with side-effects should
not return values, and expressions which return values should not have side-effects
[25]. The idea of expressions which both return values and have side-effects seems
most deeply embedded in LISP. A recent study [11] provides preliminary confirmation
of my suspicion that separating value-returning expressions from side-effect-inducing
procedures will not hinder LISP-style programming. The gain in program compre-
hensibility from maintaining this separation seems substantial.

Solution 2 Let e be 1/0.

In most programming languages, the attempt to divide by zero causes an “error-
exception” which aborts evaluation. If sums are evaluated left-to-right, then E + 1/0
does not terminate, but 1/0 + E terminates with a “divide-by-zero” exception value.

Here again the contrast between the semantical view of an expression as denoting
a value versus the operational view as denoting an algorithm yields an unexpected
result.
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Solution 3 The context is print(” . . . ”).

Again the solution is obvious, although even some experts stumble on it because one
naturally expects the given phrases to be used in a context where they are treated as
arithmetic expressions rather than text strings. Had this type-ambiguity been high-
lighted in the puzzle statement, presumably everyone would get it. So a reasonable
attack on the real puzzle I have in mind, which is when two phrases such as those
in the puzzle are equivalent for programming purposes, can be mounted by taking
account of program phrase types.

I first thought that in languages with a quote-eval feature such as LISP [16] there
was no type distinction between syntactic and executable objects. In fact quote-eval
seems safe enough in LISP because, although quote syntactically looks like a bona fide
operator, like say cond, it really doesn’t behave like one (it only has behavior at parse
time, not run time, e.g., one can’t pass quote as a parameter to a procedure). Still,
I have yet to see convincing examples where the quote-eval feature was worthwhile.

There is a less known construct in LISP known as fexpr which indeed allows dynami-
cally created values to be converted back to syntactic objects (lists). The conceptually
disastrous consequence of blurring the distinction between syntax and values in this
way is that no two programs which differ syntactically in any respect are computa-
tionally equivalent!

Solution 4 The first test is equivalent to y = y which could reasonably be assumed
equivalent to true, but the second is not since the evaluation of G(1, y) will not ter-
minate. Still, replacing the second test by true is an optimization which can only
help, and could appropriately be done even though it does not preserve equivalence—
the optimized program never disagrees with the original, but may terminate in more
cases.

Sophisticates may, by the way, question the remark that the test y = y evaluates
to true. In languages with binding rules (such as ALGOL’s “call-by-name” [19]) by
which the identifier y could itself be bound to an expression whose evaluation could
fail to terminate (such as G(1, z)), the test y = y might also fail to terminate.

Solution 5 Naive solutions to this puzzle revolve around the observation that, in a
programming language context, P is a partial function whose values at certain argu-
ments may be undefined because they lead to nonterminating computations. Indeed,
this is exactly what happens in evaluating P (P ) in any programming language in which
this kind of definition is allowed. Since P (P ) is undefined, there is no contradiction
in the conclusion that P (P ) 6= P (P ).
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The naive explanation sounds OK, but really begs the question. To see that partial-
ness is no explanation, just consider the modified definition

R(f) =def if f(f) is undefined orf(f) 6= 0 then 0 else 1 fi

which yields the same contradiction and cannot be explained away by claiming that
R(R) is undefined (since if it were, then it would equal 0, another contradiction).

The first step in resolving the contradiction alleged above comes by observing that
it hinges on a prior understanding of the notion of function and application of a
function to an argument. Ordinary mathematical functions are not self-applicable,
so before pinpointing flaws in the reasoning above, the first obligation is explaining
what objects are being reasoned about. What is the new notion of function—whether
partial or total?

A rich mathematical theory of models of self-applicable functions has been devel-
oped in the past decade [27, 29, 28, 17]. (Here is where Category Theory, that most
abstract of mathematical disciplines, engages with Computer Science, since it pro-
vides a persuasive general notion of function including self-applicable ones.) Some
of these models are understandable with only a minimal mathematical background,
but this is not the place to describe them in any detail. Enough to say that the
theory admits the definition of P above as well-formed, but disallows the definition
of R. The theory provides specialized rules appropriate for reasoning about values
corresponding to nonterminating computations. For example, the theory confirms the
computational fact that P (P ) denotes a nonterminating value, but the conditional
if 0 = 0 then 1 else P (P ) fi, which contains the nonterminating subexpression
P (P ), does nevertheless terminate with value 1. The rules for nonterminating val-
ues lead to a distinction between the computable equality tests which can appear in
programs and the usual mathematical equality between values. Anything, including
a nonterminating value, is mathematically equal to itself, but the result of applying
the computable equality test to a nonterminating value is the nonterminating value.
From this perspective, the fallacy in the three line argument above can be identified
as the confusion between the computable equality test occurring in the line which
defines P and the mathematical equality test which occurs in the subsequent line.

Solution 6 Suppose a[1] = 1 and a[0] = 2 initially. Then setting a[a[1]] to 0 means
setting a[1] to 0, after which a[1] = 0, so a[a[1]] = a[0] = 2.

The puzzle here revolves around another well-known programming language pun in
which languages typically fail to maintain a syntactic distinction between use of an
array reference a[j] to denote a memory location and its use to denote the integer
value which is stored in that location. As soon as one realizes the distinction, it
becomes clear that when the location denoted by an expression on the lefthand side
of an assignment statement depends on the memory store, then the expression may
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denote different locations before and after execution of the assignment instruction,
and there may not be any relation between the contents of these locations.

More general puzzles here include explaining how to determine from expressions L
which evaluate to locations and expressions I evaluating to integers, whether after
executing L := I, it will the case that contents(L) = I, and if not, just what
assertions can be made about their values after the assignment [9, 14, 3]. Efficient
mechanical procedures are known for making these kind of inferences for expressions
involving arrays, if. . . then. . . else, and algebraic operators.

Solution 7 The context is

procedure P (x, y);
x, y : integer-var;
. . . ;

end P ;
do P (z, z)

In the case that the first code fragment is substituted for the ellipsis, the effect is to
set z to 1, while in the second case z gets set to 0.

Once one realizes that distinct identifiers x and y can be aliases for the same location,
whatever surprise this puzzle may elicit quickly disappears. Still, the expectation that
distinct identifiers denote distinct locations has seemed so reasonable that at least
one programming language, EUCLID [23], was designed with syntactic restrictions
which guarantee that such shared references cannot appear, e.g., procedure calls of
the form P (z, z) are forbidden.

Here I feel reasonably optimistic that, with a little care in keeping track of the type
distinction between locations and their contents, one can work out an understand-
able logic of sharing without suffering the awkward language restrictions apparently
necessary to prevent it [30].

Solution 8 This is one of the deeper puzzles and even the experts don’t agree on the
answers.

The intuitive idea of local storage allocation in blocks is that begin x : integer-var
causes allocation of a “new” location denoted by x until the end of the block. With
this idea in mind, setting the new location x to 0 shouldn’t have any effect on Q,
so the block and call above clearly ought to be equivalent.1 On the other hand, local

1...unless the language observes dynamic scoping. In this case, if x occurs in the body of the
declaration of Q, then within the block, Q can read the “new” x and discover that it has been set
to 0. Dynamic scope is the basic mechanism of most LISP dialects, but finds it way into features
of other languages as well. Dynamic scoping can be implemented a bit more efficiently than static
scoping and is commonly viewed as more convenient for writing systems with numerous modules
which may be independently updated—a view which is questioned by the designers of SCHEME, a
LISP dialect which adopts static scoping [1]. Under dynamic scope, basic logical rules about bound
variables fail, leading to the so-called funarg problems in LISP and similar languages.
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storage is usually implemented by keeping a stack or list of “free” locations which can
be allocated as needed. For efficiency, languages usually adopt a “stack discipline” or
“heap-storage with garbage collection” procedure to recover allocated locations when
they are no longer accessible in an ongoing computation.

With “free-list” semantics, the block leaves the machine in a different state than the
simple call Q because the free-list has gotten shorter, although the new state could be
regarded as equivalent to the old one since the new allocated location will eventually
be restored by a garbage collector. Stack discipline avoids this by restoring the stack
immediately on block exit. But in either case, when we consider the possibility of
running out of free storage, the block is not equivalent to the call because the block
might generate a storage overflow error where the call does not.

Acknowledging the possibility of storage overflow, however, is really an efficiency con-
sideration which it would be nice to keep separate from the question of whether the
program is correct assuming its time and storage requirements were met. By abstractly
modeling the stack or free-list as an infinite list, we ought to be able to reach the desired
conclusion that the block and the call are equivalent. But a more subtle and interesting
question remains: what property of the locations on the free-list makes them free?
For example, how does the allocator know that Q doesn’t refer to the top item on the
free-list? Suppose Q was itself a library routine written in machine language which
had access to all of memory, e,g,, if Q was itself the garbage collector? What does
the allocator use as a “free” location then? Moreover, programming languages all too
frequently allow integers to be used as memory references. For example, a procedure
might calculate some integer, say 7462 (octal), and then assign some value to the
7462nd memory location which might well be on the free-list. In fact, it really isn’t
possible to allocate new locations for such Q, and if we take them into consideration,
then the equivalence proposed in the puzzle fails. So the equivalance holds for some
languages, for example ALGOL-like languages, but fails for others, for example, the
language C.

So the real puzzle here is to determine what properties of languages are compatible
with the expected properties of local storage such as the equivalence between the
block and the call above. Note that part of this real puzzle involves formulating a
theory which specifies just what properties are expected of local storage. An approach
to this puzzle has only recently been proposed [12].
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To understand more of the real puzzle, consider the block

begin x : integer-var;
procedure P ;

x := x + 2;
end P ;

x := 0;
Q(P );
if even(x) then run-forever else . . . fi

end

Here we want to argue that, because x is “new” as far as Q is concerned, Q can only
affect x indirectly by executing P . Since x is initialized to 0 and P only adds 2 to it,
it must therefore contain an even integer if and when the call Q(P ) terminates. Thus
the block above is equivalent to run-forever in any ALGOL-like context in which Q
is declared. But it can be proved that none of the currently proposed methodologies
for reasoning about programs provides rules by which this equivalence can be verified!

Solution 9 The context is

begin x : real-var;
x := 0.1;
. . . ;
return(x + 0.2);

end

As typically compiled, a call P (x) would have no effect, viz., would be the same as
skip. Hence, when P (x) is substituted for the ellipsis, the value returned would simply
be 0.1 + 0.2 = 0.3. On the other hand, if Q(x) is substituted, the real value 0.1
contained in x would presumably be rounded to 0 in the process of being assigned to
the integer variable y, and the final value returned would be 0 + 0.2 = 0.2.

An explanation for the misbehavior here might be laid to the fallacious deduction
that because integers automatically coerce into real, so too integer variables should
coerce into real variables (if anything, the reverse coercion should occur). In general,
rules for implicit coercions are not well understood even in contexts without variables.

Solution 10 In evaluating amb(0,max(1, C)) as the first subgoal in the evaluation
of C, the only way the recursive call to C within the second branch could terminate
would be after the value of C had been committed to be 0 by the choice of the first
branch in some more deeply nested recursive call. Note that backtracking to finish
computing the value 1 for the second branch after a value for the recursive call has
been found is not appropriate: the only point in backtracking would be to find a value
for C, but the backtracking is possible only after a value has already been found to be
0.
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Having presented this argument, let me admit some doubt about its persuasiveness.
Slightly more complex examples using streams better motivate the answer, cf. [8].

Solution 11 The answer depends on whether the assignment is regarded as an atomic
action, or is divisible into more primitive atomic steps such as fetching the contents
of x and then copying the fetched value back into x. In the second case, x := x is
not equivalent to skip, since if the assignment is run concurrently with a procedure
for incrementing x, there is a possibility that the incrementing procedure will take
effect after the fetch and before the copy, with the result that when the copy phase
completes, the contents of x is restored to its original value. On the other hand,
running concurrently with an incrementing procedure leaves no possibility that the
contents of x will remain unchanged.

Solution 12 The context is cobegin . . . and x := y coend. The reasoning is much
the same as for Puzzle 11.

Solution 13 Although induction is a sound way to try to prove any assertion about
the integers, it is only sound for proving first-order assertions about nonstandard
models of the integers. The assertion that the program terminates, however, is not
expressible as a first-order assertion [13].

There is a subtlety here which can be confusing. Using the technique of Gödel-
numbering, one can construct a formula of the first-order language of the integers
which, interpreted over the standard model of the integers asserts that the program
above terminates for all x. Moreover, this formula, being first-order and true of the
integers—indeed easily provable by induction—is also true in all nonstandard integer
models. Unfortunately, when this or any such formula is interpreted over nonstandard
integers, it no longer is equivalent to the assertion that the program terminates ! (The
“nonstandard” notion of termination which the formula does define has been studied
in [2, 7].)
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