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Abstract 

This paper presents a self-supervised framework for 
perceptual learning based upon correlations in different 
sensory modalities.  We demonstrate this with a system that 
has learned the vowel structure of American English – i.e., 
the number of vowels and their phonetic descriptions – by 
simultaneously watching and listening to someone speak.  It 
is highly non-parametric, knowing neither the number of 
vowels nor their input distributions in advance, and it has no 
prior linguistic knowledge.  This work is the first example 
of unsupervised phonetic acquisition of which we are aware, 
outside of that done by human infants.  This system is based 
on the cross-modal clustering framework introduced by [4], 
which has been significantly enhanced here.  This paper 
presents our results and focuses on the mathematical 
framework that enables this type of intersensory self-
supervised learning.  

Introduction   

This paper presents a computational methodology for 
perceptual grounding, which addresses the first question 
that any natural or artificial creature faces: what different 
things in the world am I capable of sensing?  This question 
is deceptively simple because a formal notion of what 
makes things different (or the same) is non-trivial and 
often elusive.   We will show that animals and machines 
can learn their perceptual repertoires by simultaneously 
correlating information from their different senses, even 
when they have no advance knowledge of what events 
these senses are individually capable of perceiving.  In 
essence, by cross-modally sharing information between 
different senses, we show that sensory systems can be 
perceptually grounded by mutually bootstrapping off each 
other. 
 As a demonstration, we present a system that learns the 
number (and formant structure) of vowels in American 
English, simply by watching and listening to someone 
speak and then cross-modally clustering [4] the 
accumulated auditory and visual data.  The system has no 
advance knowledge of these vowels and receives no 
information outside of its sensory channels.  This work is 
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the first unsupervised acquisition of phonetic structure of 
which we are aware, at least outside of that done by human 
infants, who solve this problem easily.  The output of this 
system is displayed in Figure 1.  The goal of this paper is 
to elaborate upon these results and outline the framework 
through which they were obtained. 
 Our approach to perceptual grounding has been to 
mathematically formalize an insight in Aristotle's De 
Anima [1], that differences in the world are only detectable 
because different senses perceive the same world events 
differently.  This implies both that sensory systems need 
some way to share their different perspectives on the world 
and that they need some way to incorporate these shared 

Figure 1 – Mutual bootstrapping through cross-modal clustering.  

This figure shows we can learn the number and structure of 

vowels in American English by simultaneously watching and 

listening to someone speak.  Auditory formant data is displayed 

on top and visual lip data – corresponding to major and minor 

axes of an ellipse fit on the mouth – is on the bottom.  Initially, 

nothing is known about the events these systems perceive.  

Cross-modal clustering lets them mutually structure their 

perceptual representations and thereby learn the event categories 

that generated their sensory inputs.  The region colors show the 

correspondences obtained from cross-modal clustering.  Red lines 

connect corresponding vowels between the two datasets and 

black lines show neighboring regions within each dataset.  The 

phonetic labels were manually added to show identity.  The data 

are from a real speaker and were normalized. 
 



influences into their own internal workings.  This insight 
was the basis for the cross-modal clustering framework in 
[4], which is the foundation for this work and is 
significantly enhanced here.  This approach has been 
motivated by recent results in the cognitive and 
neurosciences [13,2,12] detailing the extraordinary degree 
of interaction between modalities during ordinary 
perception.  These biological motivations are discussed at 
length in [3].  We believe that a biologically-inspired 
approach can help answer what are historically difficult 
computational problems, for example, how to cluster non-
parametric data corresponding to an unknown number of 
categories.  This is an important problem in computer 
science, cognitive science, and neuroscience. 
 We proceed by first defining what is meant by the word 
"sense."  We then introduce our application domain and 
discuss why perceptual grounding is a difficult problem.  
Finally, we present our enhancements to cross-modal 
clustering and demonstrate how the main results in this 
paper were obtained.  We note that the figures in this paper 
are most easily viewed in color. 

What Is a "Sense?" 

We have used the word sense, e.g., sense, sensory, 
intersensory, etc., without defining what a sense is.  One 
generally thinks of a sense as the perceptual capability 
associated with a distinct, usually external, sensory organ.  
It seems quite natural to say vision is through the eyes, 
touch is through the skin, etc.  However, this coarse 
definition of sense is misleading. 
 Each sensory organ provides an entire class of sensory 
capabilities, which we will individually call modes.  For 
example, we are familiar with the bitterness mode of taste, 
which is distinct from other taste modes such as sweetness.   
In the visual system, object segmentation is a mode that is 
distinct from color perception, which is why we can 
appreciate black and white photography.  Most 
importantly, individuals may lack particular modes without 
other modes in that sense being affected [15], thus 
demonstrating they are phenomenologically independent.   

 Therefore, we use a finer grained approach to 
perception.  From this perspective, intersensory influence 
is supported in our model between modes within the same 
sensory system, e.g., entirely within vision, or between 
modes in different sensory systems, e.g., in vision and 
audition.  Because the framework presented here is 
amodal, i.e., not specific to any sensory system, it treats 
both cases equivalently. 

Problem Statement 

Our demonstration for perceptual grounding has been 
inspired by the classic study of Peterson and Barney [10], 
who studied recognition of spoken vowels (monophthongs) 
in English according to their formant frequencies.  (An 
explanation of formant frequencies is contained in 
Figure 2.)  Their observation that formant space could be 
approximately partitioned for vowel identification, as in 
Figure 3, was among the earliest approaches to spectral-
based speech understanding.  The corresponding 
classification problem remains a popular application for 
machine learning, e.g., [6]. 
 It is well known that acoustically ambiguous sounds 
tend to have visually unambiguous features.  For example, 
visual observation of tongue position and lip contours can 
help disambiguate unvoiced velar consonants /p/ and /k/, 
voiced consonants /b/ and /d/, and nasals /m/ and /n/, all of 
which can be difficult to distinguish on the basis of 
acoustic data alone.  Articulation data can also help to 
disambiguate vowels, as shown in Figure  4.  The images 
are taken from a mouth tracking system written by the 
author, where the mouth position is modeled by the major 
and minor axes of an ellipse fit onto the speaker's lips. 
 In Figure 5A, we examine formant and lip data side-by-
side, in color-coded, labeled scatterplots over the same set 
of 10 vowels in American English.  We note that 
ambiguous regions in one mode tend to be unambiguous in 
the other and vice versa.  It is easy to see how this type of  
intersensory disambiguation could enhance speech 
recognition, which is a well-studied computational 
problem [11]. 

 
Figure 3 – Peterson and Barney Data.  A scatterplot of the first 

two formants, with different regions labeled by their 

corresponding vowel categories. 

 
Figure 2 – On the left is a spectrogram of the author saying, 

“hello.”  The demarcated region (from 690-710ms) marks the 

onset of phoneme /ao/, corresponding to the start of the vowel "o" 

in “hello.”  The spectrum corresponding to this 20ms window is 

shown on the right.  A 12th order linear predictive coding model 

is shown overlaid, from which the formants, i.e., the spectral 

peaks, are estimated.  In this example: F1 = 266Hz, F2 = 922Hz, 

and F3 = 2531Hz.  Formants above F3 are generally ignored for 

sound classification because they tend to be speaker dependent.   



Nature Does Not Label Its Data 

We are interested here, however, in a more fundamental 
problem: how do sensory systems learn to segment their 
inputs to begin with?  In the color-coded plots in Figure 
5A, it is easy to see the different represented categories.  
However, perceptual events in the world are generally not 
accompanied with explicit category labels.  Instead, 
animals are faced with data like those in Figure 5B and 
must somehow learn to make sense of them.  We want to 
know how the categories are learned in the first place.  We 
note this learning process is not confined to development, 
as perceptual correspondences are plastic and can change 
over time. 
 We would therefore like to have a general purpose way 
of taking data (such as shown in Figure 5B) and deriving 
the kinds of correspondences and segmentations (as shown 
in Figure 5A) without external supervision.  This is what 
we mean by perceptual grounding and our perspective here 
is that it is a clustering problem: animals must learn to 
organize their perceptions into meaningful categories. 
 

Why is this difficult? 
As we have noted above, Nature does not label its data.  By 
this, we mean that the perceptual inputs animals receive are 
not generally accompanied by any meta-level data 
explaining what they represent.  Our framework must 
therefore assume the learning is unsupervised, in that there 
are no data outside of the perceptual inputs themselves 
available to the learner. 
 From a clustering perspective, perceptual data is highly 
non-parametric in that both the number of clusters and 
their underlying distributions are unknown.  Clustering 
algorithms generally make strong assumptions about one 
or both of these and when faced with nonparametric, 
distribution-free data, algorithmic clustering techniques 
tend not be robust [7,14].   

 Perhaps most importantly, perceptual grounding is 
difficult because there is no objective mathematical 
definition of "coherence" or "similarity."  In many 
approaches to clustering, each cluster is represented by a 
prototype that, according to some well-defined measure, is 
an exemplar for all other data it represents.  However, in 
the absence of fairly strong assumptions about the data 
being clustered, there may be no obvious way to select this 
measure.  In other words, it is not clear how to formally 
define what it means for data to be objectively similar or 
dissimilar.   

The Simplest Complex Example 

We proceed by means of an example.  Let us consider two 
hypothetical sensory modes, each of which is capable of 
sensing the same two events in the world, which we call 
the red and blue events.  These two modes are illustrated in 
Figure 6, where the dots within each mode represent its 
perceptual inputs and the blue and red ellipses delineate the 
two events.  For example, if a "red" event takes place in the 
world, each mode would receive sensory input that 
(probabilistically) falls within its red ellipse.  Notice that 
events within each mode overlap, and they are in fact 
represented by a mixture of two overlapping Gaussian 
distributions.  We have chosen this example because it is 

 
Figure 4 – Modeling lip contours with ellipses.  The scatterplot 

shows normalized major (x) and minor (y) axes for ellipses 

corresponding to the same vowels as those in Figure 3.  In this 

space, a closed mouth corresponds to a point labeled null.  Other 

lip contours can be viewed as offsets from the null configuration 

and are shown here segmented by color.  These data points were 

collected from video of this woman speaking. 

 

Figure 5A (top): Labeled scatterplots side-by-side.  Formant 

data is displayed on the left and lip contour data is on the right.  

Each plot contains data corresponding to the ten listed vowels in 

American English 

Figure 5B (bottom): Unlabeled data.  These are the same data 

shown in Figure 5A, with the labels removed.  This picture is 

closer to what animals actually encounter in Nature.  As above, 

formants are displayed on the left and lip contours are on the 

right.  Our goal is to learn the categories present in these data 

without supervision, so that we can automatically derive the 

categories and clusters such as those shown directly above. 



simple – each mode perceives only two events – but it has 
the added complexity that the events overlap – meaning 
there is likely to be some ambiguity in interpreting the 
perceptual inputs.   
 Keep in mind that while we know there are only two 
events (red and blue) in this hypothetical world, the modes 
themselves do not "know" anything at all about what they 
can perceive.  The colorful ellipses are solely for the 
reader's benefit; the only thing the modes receive is their 
raw input data.  Our goal then is to learn the perceptual 
categories in each mode – e.g., to learn that each mode in 
this example senses these two overlapping events – by 
exploiting the spatiotemporal correlations between them.   

 

Defining Slices 
Our approach is to represent the modes' perceptual inputs 
within slices [4,5].  Slices are a convenient way to 
discretely model perceptual inputs (see Figure 7) and are 
inspired by surface models of cortical tissue.  Formally, 
they are topological manifolds that discretize data within 
Voronoi partitionings, where the regions' densities have 
been normalized.   
 Intuitively, a slice is a codebook [8] with a non-
Euclidean distance metric defined between its cluster 
centroids.  In other words, distances within each cluster are 
Euclidean, whereas distances between clusters are not.  A 
topological manifold is simply a manifold "glued" together 
from Euclidean spaces, and that is exactly what a slice is.  

We will refer to each individual cluster within a slice as a 
codebook region, and will define the non-Euclidean 
distance metric between them below. 

Our approach 

We would like to assemble the clusters within each slice 
into larger regions that represent actual perceptual 
categories present in the input data.  Consider the colored 
regions in Figure 8.  We would like to determine that the 
blue and red regions are part of their respective blue and 
red events, indicated by the colored ellipses.  We proceed 
by formulating a metric that minimizes the distance 
between codebook regions that are actually within the 
same perceptual region and maximizes the distance 
between codebook regions that are in different regions.  
That this metric must be non-Euclidean is clear from 
looking at the figure.  Each highlighted region is closer to 
one of a different color than it is to its matching partner.    
 Towards defining this metric, we first collect co-
occurrence data between the codebook regions in different 
modes.  We want to know how each codebook region in a 
mode temporally co-occurs with the codebook regions in 
other modes.  This data can be easily gathered with the 
classical sense of Hebbian learning, where connections 
between regions are strengthened as they are 
simultaneously active.  The result of this process is 
illustrated in Figure 9, where the slices are vertically 
stacked to make the correspondences clearer.  We will 
exploit the spatial structure of this Hebbian co-occurrence 
data to define the distance metric within each mode.   
 

Hebbian Projections 

We define the notion of a Hebbian projection.  These are 
spatial probability distributions that provide an intuitive 
way to view co-occurrence relations between different 
slices.  We first give a formal definition and then illustrate 
the concept visually.   

 Consider two slices , n

A B
M M ⊆ � , with associated 

codebooks  { }1 2, ,...,A aC p p p=  and { }1 2, ,...,B bC q q q= , with 
cluster centroids , N

i jp q ∈� .  We define the Hebbian 
projection of a 

i Ap C∈  onto mode 
BM : 
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Figure 6 – Two hypothetical co-occurring perceptual modes.   

Each mode, unbeknownst to itself,  receives inputs generated by a 

simple, overlapping Gaussian mixture model.   To make matters 

more concrete, we might imagine Mode A is a simple auditory 

system that hears two different events in the world and Mode B is 

a simple visual system sees those same two events, which are 

indicated by the red and blue ellipses. 

 
Figure 8 – Combining codebook regions within a slice to 

construct perceptual regions.  We would like to determine that 

regions within each ellipse are all part of the same perceptual 

event.  Here, for example, the two blue codebook regions 

(probabilistically) correspond to the blue event and the red 

regions correspond to the red event. 

 
Figure 7 – Slices generated for Modes A and B using the 

hyperclustering algorithm in [5].  We refer to each Voronoi 

cluster within a slice as a codebook region. 
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A Hebbian projection is simply a conditional spatial 
probability distribution that lets us know what mode 

BM  
probabilistically "looks" like when a region 

ip   is active in 
co-occurring mode  

AM .   This is visualized in Figure 10.   

 We can equivalently define a Hebbian projection for a 
region 

Ar M⊆  constructed out of a subset of its codebook 
clusters { }1 2, ,...,r r r rk AC p p p C= ⊆ : 

 [ ]1 2( ) Pr( | ),Pr( | ),...,Pr( | )B

A bH r q r q r q r=
�

 

A Cross-Modal Distance Metric 

We use the Hebbian projections defined in the previous 
section to define the distance between codebook regions.  
This will make the metric inherently cross-modal, because 
we will rely on co-occurring modalities to determine how 
similar two regions within a slice are.  Our approach is to 
determine the distance between codebook regions by 
comparing their Hebbian projections onto co-occurring 
slices.  This process is illustrated in Figure 12. 
 The problem of measuring distances between prototypes 
is thereby transformed into a problem of measuring 

similarity between spatial probability distributions.  The 
distributions are spatial because the codebook regions have 
definite locations within a slice, which are subspaces of  

n
� .  Hebbian projections are thus spatial distributions on 
n-dimensional data.  It is therefore not possible to use one 
dimensional metrics, e.g., Kolmogorov-Smirnov distance, 
to compare them because doing so would throw away the 
essential spatial information within each slice.  Instead, we 
use the notion of Similarity distance defined in [5], which 
measures the density overlap between distributions on a 
metric space.  This notion is intuitively illustrated in Figure 
11.  For the results below, we replace the cross-modal 
distance metric in [4] with Similarity distance  and use the 
same cross-modal clustering algorithm.  Additional details 
are contained in [5]. 

Experimental Results 

To learn the vowel structure of American English, data was 
gathered according to the same pronunciation protocol 
employed by [10].  Each vowel was spoken within the 
context of an English word beginning with [h] and ending 
with [d]; for example, /ae/ was pronounced in the context 
of "had."   Each vowel was spoken by an adult female 
approximately 90-140 times.  The speaker was videotaped 
and we note that during the recording session, a small 
number of extraneous comments were included and 
analyzed with the data.  The auditory and video streams 
were then extracted and processed.   
 Formant analysis was done with the Praat system, using 
a 30ms FFT window and a 12th order linear predictive 
coding model.  Lip contours were extracted using the 
system described above.  Time-stamped formant and lip 
contour data were fed into slices in an implementation of 
the work in [4], using the Similarity distance described 
above.  We note this implementation was used to generate 
most of the figures in this paper, which represent actual 
system outputs.  The identifying phonetic labels were 
manually added to the figures for reference. 
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Figure 11 – Intuitively defining similarity.  We consider the two 

distributions illustrated in Example A to be far more similar to 

one another than those in Example B, even though many metrics 

would deem them further apart due to inherent Euclidean biases.  

Notice that the distributions in Example A cover roughly two 

orders of magnitude more area than those in Example B.     

Similarity distance [5] measures the overlap in spatial density 

between two distributions and is thereby scale invariant. 

 
Figure 9 – Viewing Hebbian linkages between two different 

slices.  The slices have been vertically stacked here to make the 

correspondences clearer.  The blue lines indicate that two 

codebook regions temporally co-occur with each other.  Note that 

these connections are weighted based on their strengths, which 

are not visually represented here, and that these weights are 

additionally asymmetric between each pair of connected regions. 

Mode 

A

Mode 

B

 
Figure 10 – Visualizations of Hebbian projections.  On the left, 

we project from a cluster pi in Mode A onto Mode B.  The dotted 

lines correspond to Hebbian linkages and the blue shading in 

each cluster qj in Mode B is proportional to Pr(qj|pi). A Hebbian 

projection lets us know what Mode B probabilistically "looks" 

like when some prototype in Mode A is active.  On the right, we 

see a projection from a cluster in Mode B onto Mode A.   



 The results of this experiment are shown in Figures 1 
and 13.  This is the first unsupervised acquisition of human 
phonetic data of which we are aware.  The work of de Sa 
[6] has studied unsupervised cross-modal refinement of 
perceptual boundaries, but it requires that the number of 
categories (e.g., the number of vowels) be known in 
advance.  We note also there is a vast literature on 
unsupervised clustering techniques, but these generally 
make strong assumptions about the data being clustering or 
they have no corresponding notion of correctness 
associated with their results.  The intersensory approach 
taken here is entirely non-parametric and makes no a priori 
assumptions about underlying distributions or the number 
of clusters being represented. 
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Figure 12 – Our approach to computing distances cross-modally.  

To determine the distance between codebook regions r1 and r2 in 

Mode B on top, we project them onto a co-occurring modality 

Mode A as shown in the middle, by examining their conditional 

probability distributions.  We then ask how similar these 

projections onto Mode A are, as shown on the bottom.   We have 

thereby transformed our question about distance between regions 

into a question of similarity between their conditional spatial 

probability distributions in a co-occurring modality.  This is 

computed via their Similarity distance. 
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Figure 13 – Self-supervised acquisition of vowels 

(monophthongs) in American English.  The identifying labels 

were manually added for reference and ellipses were fit onto the 

regions to aid visualization.  Unlabeled regions here have 

ambiguous classifications.  All data have been normalized.  Note 

the correspondence between this and the Peterson-Barney data 

shown in Figure 3. 


