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Abstract 
The paper generalizes the notion of a social law, the 
foundation of the theory of artificial social systems 
developed for coordinating Multi-Agent Systems. In an 
artificial social system, its constituent agents are given a 
common social law to obey and are free to act within the 
confines it legislates, which are carefully designed to avoid 
inter-agent conflict and deadlock.  In this paper, we argue 
that this framework can be overly restrictive in that social 
laws indiscriminately apply to all distributions of agent 
behavior, even when the probability of conflicting 
conditions arising is acceptably small.  We define the notion 
of a non-deterministic social law applicable to a family of 
probability distributions that describe the expected 
behaviors of a system’s agents.  We demonstrate that taking 
these distributions into account can lead to the formulation 
of more efficient social laws and the algorithms that adhere 
to them.  We illustrate our approach with a traffic domain 
problem and demonstrate its utility through an extensive 
series of simulations. 

Introduction   
Agents designed to exist in multi-agent systems in general 
cannot afford to be oblivious to the presence of other 
agents in their environment.  The very notion of a multi-
agent system presupposes that agents, for better or worse, 
will have some impact on each other.   A central problem in 
Distributed AI (DAI) has been to develop strategies for 
coordinating the behaviors of these agents – perhaps to 
cooperatively maximize some measure of the system’s 
global utility or conversely, to insure that non-cooperative 
agents find some acceptable way to peacefully coexist. 
 Many coordination strategies have been developed for 
managing multi-agent systems (MAS).  One axis on which 
we can contrast these different approaches is the degree of 
agent autonomy they suppose.  For example, a centralized 
planning system [5] might globally synchronize each 
agent’s activities in advance, taking pains to insure that 
conflict is avoided among them.  Agents can then blindly 
follow these centrally arranged plans without further 
consideration.  Alternatively, at the other end of the 
                                                 
Copyright © 2000, American Association for Artificial Intelligence  
 (www.aaai.org). All rights reserved. 

spectrum, agents can be wholly autonomous and pursue 
their individual goals without relying on any centralized 
control mechanism.  In the event conflict arises among 
them, preformulated rules of encounter allow the agents to 
dynamically negotiate among themselves to resolve it [3].  
 An intermediary approach between these extremes has 
been explored in the development of artificial social 
systems [2,4], whose workings should feel familiar to 
anyone living in a civilized country.  In an artificial social 
system, its constituent agents are given a common social 
law to obey and are free to act within the confines it 
legislates.  A social law is explicitly designed to prevent 
conflict and deadlock among the agents; however, for it to 
be deemed useful, it should simultaneously allow each 
agent to achieve its individual set of goals.  Thus, designing 
a social law is something of a balancing act.  It must be 
sufficiently strict to prevent conflict or deadlock, and 
simultaneously, it must be sufficiently liberal to allow the 
agents to efficiently achieve their goals.  Useful social laws 
can be designed that not only avoid inter-agent conflict but 
also minimize the use of energy, time, and other resources 
appropriate to the problem domain.  Fitoussi has examined 
an extension of this theory involving minimal social laws.  
These are social laws that minimize the set of restrictions 
placed upon the agents, while still avoiding inter-agent 
conflicts.  Minimal social laws allow agents to have 
maximum flexibility during action selection by only 
disallowing those activities that would prevent other agents 
from obtaining their goals; thus, they are minimally 
restrictive. 
 We propose here that social laws, including even the 
minimal type described above, can be overly restrictive 
because agents must adhere to them in all circumstances – 
even where the possibility of conflict with other agents is 
extremely low.  By insisting that agents avoid any chance 
of conflict or deadlock when these circumstances are highly 
unlikely, even minimal social laws may sometimes be 
overly restrictive and thereby, inherently inefficient.  We 
will refer to this property of a social law as it being 
deterministic.  Consider, for example, a domain consisting 
of a grid traversed by a group of mobile agents.  A 
deterministic social law for this domain might institute 
traffic regulations to insure that agents never collide or get 
stuck and to be useful, it would also allow the agents to 

In Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI'2000), 
pp. 15-21.  Austin, Texas.  2000. 



reach whichever nodes they needed.  However, being 
deterministic, this social law would be equally applicable to 
all distributions describing how agents select nodes to visit 
and how they travel between them. 
 In this paper, we examine how knowledge of the 
probability distributions governing agent behavior in MAS 
can be applied towards more efficiently coordinating them 
through a non-deterministic social law.  For example, in 
the domain above, knowing (or learning) that the agents 
tend to uniformly select nodes in the grid to visit can 
drastically improve our ability to coordinate their 
movement. We note that from a social engineering 
perspective, this might appear somewhat counter-intuitive.  
Much of the work in artificial social systems has been 
motivated through analogy with how human societies 
function.  We institute laws that govern individual behavior 
and thereby benefit the community as a whole.  However, 
the analogy between agents and people must not be taken 
too far.  For example, vehicular traffic laws in human 
society need to be easily remembered, and are thus rarely 
specific to particular distributions and flows of traffic.  
They are even less likely to be changed dynamically to 
reflect learned observations.  Instead, epiphenomenal 
approaches are used: highways are constructed that 
implicitly redirect vehicles, signal light intervals are 
dynamically varied, and traffic reports are broadcast via 
radio – all of these are centralized mechanisms to reduce 
both congestion and the cognitive burden on human 
drivers.  Traffic regulations themselves are essentially 
inviolate and for good reason – people would find it 
difficult to drive safely otherwise.  However, agents do not 
share this limitation.  There is nothing inherently 
worrisome in optimizing social laws to better fit the 
particular MAS they are intended to govern.   
 We would like to clarify a point that has been somewhat 
unclear in the social law literature regarding the efficiency 
of social laws.  Social laws are not algorithms – they do not 
provide a method for accomplishing a particular task.  
Rather, they are guidelines that specify a class of valid 
algorithms (or strategies) for solving problems from a 
particular domain by partitioning the set of possible 
algorithms into “law-abiding” and “criminal” sets.  Social 
laws are thus not necessarily instructive. Just as traffic laws 
in human society do not provide directions but simply 
legislate certain types of behavior in particular situations, 
social laws maintain a set of constraints that simplify 
writing and reasoning about algorithms.  Therefore, it is not 
obviously meaningful to speak about a particular social 
law’s efficiency.  Instead, what should be considered are 
the computational and other costs of the best-known 
algorithms the social law makes realizable.  We may then 
refer to a social law’s efficiency solely in this regard.  
However, others do not always clearly make this 
discrimination, particularly with social laws so highly 
constrained and algorithmically formulated they blur the 
paradigmatic distinction.  In referring to their work, we will 
sometimes find it convenient to ignore this distinction as 
well.  More generally, we will define the notion of a non-

deterministic social law as one that does not guarantee it is 
useful in the technical sense given above, although it is 
highly likely to be for its expected distribution of agent 
goals and behaviors.  We will call non-deterministic social 
algorithms the algorithms that adhere to these laws and 
only present expected efficiency results regarding them. 
 In the next section, we discuss the importance of 
understanding the expected behaviors of the agents – and 
not simply their goal spaces – while formulating social 
laws.  After this, we examine a traffic domain originally 
presented in [4].  We formulate a non-deterministic social 
law for it that is more efficient than its deterministic 
counterpart.  We then present extensive simulation results 
that demonstrate the efficacy of our approach. 

Using Distribution Information 
Social laws in MAS do not always provide sufficient 
information to write efficient control algorithms for the 
agents.  This is not necessarily a limitation of social laws 
per se.  However, it indicates the importance of 
understanding the expected behavior of the agents as a 
group somewhere in the system’s coordination mechanism, 
whether it be directly incorporated into the system’s social 
laws as we argue in the next section, or instead, into the 
actual control algorithms for its agents.  Even though we 
are investigating a coordination paradigm that has no 
centralized controller, there is no reason to insist that 
individual agents have no knowledge of their expected 
group behavior.   
 To better understand this point, it will be useful to first 
make explicit the role of social laws from a programmer’s 
perspective.  A social law for a multi-agent system is 
designed to give its agents some measure of autonomy and 
self-government. While it is essential that each agent follow 
the law, it is of no concern what the agent actually does as 
long as all of its activities are legal.  In other words, social 
laws make no recommendations as to how agents should 
spend their time; they simply insure the agents do not 
unduly interfere with each other.  Formulating a useful 
social law is computationally demanding, and even 
determining whether one exists for a MAS is in general 
NP-complete [4].  Therefore, the development of a social 
law is taken to be an offline practice.  However, once a 
social law is formulated, it can be repeatedly used without 
further computational expense.  This may be contrasted 
with negotiation protocols, in which computational effort 
goes into both formulating a protocol and then 
subsequently negotiating according to it each time is it 
employed. 
 After a social law is designed for a system, it is supplied 
to the agents’ programmers, who are then responsible for 
implementing control algorithms for the agents that obey it. 
However, without more information about the expected 
behavior of the other agents in the system, this may be 
quite difficult to do efficiently.  This is because a social law 
indicates which set of actions is legal in any encountered 
situation without providing guidance for selecting among 



the legal alternatives.  It can be difficult do so without 
additional information.  For example, consider the 
following domain, taken from [1], in which m agents 
synchronously travel circularly around an n-node ring, with 
nodes clockwise labeled from 1…n.  At each time step, an 
agent can move to either of its two neighboring nodes or it 
can remain immobile.  A minimal social law presented in 
[1] that permitted these agents to travel was: 
 
(1) Staying immobile is forbidden if the node that can be 

reached by a single counterclockwise movement is 
occupied.   

(2) Moving counterclockwise is allowed only if the two 
nodes that would be encountered by moving counter-
clockwise twice are free. 

 
While this social law provides a framework that guarantees 
two agents cannot collide or deadlock, it does not provide 
any practical guidance for how to actually move agents 
around the ring.  If an agent is on node k and wishes to 
travel to node j, j>k, should it take a clockwise or 
counterclockwise path?  Supposing 2/nkj <− , the agent 
should clearly move clockwise.  However, if 2/nkj >− , 
it is not obvious which direction is best without knowing 
both the current value of m and how other agents tend to 
move (or stay immobile) on the ring.  If the agent tried to 
reach node j but was blocked k steps along the path 
between them, it might then have to travel clockwise 
around the ring to j, thereby incurring a 2k penalty for its 
unsuccessful counterclockwise attempt.  The primary 
question here is how far an agent can expect to move 
counterclockwise without being blocked by another agent.  
Although we do not further analyze this problem here, this 
simple example makes clear the need for an individual 
agent to have available more information than that 
provided directly by its social law or sensory capabilities. 

The Multi-Agent Grid System 
We now examine the multi-agent traffic domain presented 
in [4], which we will refer to as the Grid System.  This 
domain consists of an nxn grid that is traversed by m 
mobile agents (e.g., robots), as shown in Figure 1.  The 
rows and columns of the grid form lanes that the agents can 
navigate.  We assume that time is discrete and the system is 
synchronous, so at every time step, each agent is located at 
some grid coordinate.  In this system, agents are given 
goals in the form of grid coordinates to which they must 
navigate.  Every time an agent reaches its destination, it 
receives a new goal to visit.  For example, the agents might 
be transporting goods in a warehouse and are alternatively 
picking up and dropping off items.  (We note such systems 
are currently in frequent commercial use.) 
 The main consideration here is how to insure that the 
agents do not collide while they navigate the grid.  For 
example, the most naïve strategy would simply “snake” the 
agents in a Hamiltonian cycle around the grid, as shown in 

Figure 2A. Each trip between any two nodes would take 
O( 2n ) time units to complete, which does not compare 
favorably with the O(n) steps an agent would take to make 
the same trip in isolation – i.e., with no other agents 
present.  Because this domain does not have cooperative 
goals – ones that agents work together to achieve – the time 
an agent would take to complete a task in isolation is the 
optimum that any social law could achieve.   
 In [4], a complex, deterministic social law is presented 
for the Grid System that guarantees agents can achieve 
their goals within certain time bounds.  This law requires 
that agents only use certain rows and columns in the grid 
for “long distance” travel, much like we use a highway.  
When an agent reaches the neighborhood of its goal, it then 
travels to it directly along the “local” grid, as illustrated in 
Figure 2B. 
 Summarizing their results, an agent that can achieve a 
goal in time t in isolation can achieve it using their social 
law in time )(2 nont ++ , assuming )( nOm =  and m << n .  
For the case where nm ≤ , a variant of this law provides 
that each goal can be achieved in n4 time steps. 
 It is helpful to keep in mind that with )( nOm = , the grid 
is very sparsely populated.  For example, if ,100=n  a grid 
containing 10,000 locations would have on the order of 10 
agents moving on it.  We are interested in answering the 
following questions: by insuring generality, is the 
deterministic social law framework overly constraining?  
How can its assumptions be loosened in order to achieve a 
more efficient coordination system?  Can we both increase 
the number of agents travelling on the grid and 
simultaneously decrease the amount of time they take to 
reach their goals? 
 
The Uniform Grid System 
In this section, we consider the grid system presented 
above under a particular probability distribution describing 
an agent’s goal selection.  Namely, we will assume that the 
goals are uniformly distributed over all points (x, y) on the 
grid: 
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Figure 1 – An 8x8 grid with three agents that will 
travel along the indicated paths.  Notice that in three time 
steps, agents 1& 3 will collide at coordinate (2,3) 



 
It is important to note that this assumption will certainly not 
always be valid, and the non-deterministic social law we 
present here is not intended for systems where it is not.  
However, for MAS with agents described by this 
distribution, we can obtain far more efficient results than 
those in [4].  
 Towards determining a lower bound for the non-
deterministic social law’s efficiency, we first determine the 
expected distance between two randomly selected integral 
coordinates, which we call ∆ , on a line from [0, n-1] 
inclusive: 

 
On a two-dimensional grid, the expected distance between 
a pair of successive goals will be )(2 ∆E , because the total 
distance will be the sum of the distances along each axis 
independently.  We will call this value the isolation time, 
denoted by ∆G; it is the expected travel time between goals 
for an unconstrained, isolated agent.  It is therefore also a 
lower bound on the time taken by any social law governing 
the uniform grid system.  Our goal is to formulate a non-
deterministic social law that approaches this lower bound 
as closely as possible. 
 Our approach will be to essentially allow the agents to 
move as they would in isolation.   They will explicitly 
check to make sure their moves are “safe,” and take 
corrective action if necessary.  We assume that each agent 
has sufficient sensory capabilities to realize that other 
agents are in its immediate vicinity, i.e. up to 2 steps away.  
In the event a transition between nodes would cause a 
collision, an agent simply waits to try again on the next 
move.  If an agent is blocked for an extended period along 
its path, the social law requires that it formulate some 
alternate route to its destination.  Particularly important in 
this case is ensuring that the deadlock recovery mechanism 
maintains the assumed probability distribution describing 
the agents’ movements through the grid. 
 Notice that this approach does not guarantee deadlock 
will be avoided.  It is possible (however unlikely) that two 
agents headed in opposite directions along a column or row 
can indefinitely block one another, even after repeatedly 
trying alternate paths to their destinations.  In practice, we 
might try to detect such situations and formulate rules of 
encounter to avoid them.  However, in tens of millions of 
simulation runs, non-recoverable deadlock has never been 
encountered.  Nonetheless, the non-deterministic social law 
shown below, which we call law Traffic Law U (for 
uniform), is not guaranteed in its present form to be useful 
in the technical sense defined in the introduction: 
 
Traffic Law U 

1)   At step i+1, an agent may not move to a spot occupied 
by another agent at step i. 

2)   If more than one agent simultaneously wants to move to 
a coordinate, only one, chosen at random, is permitted 
to do so.  The rest must remain where they are and 
wait one turn before trying again. 

3)  If an agent has remained immobile for more than k turns 
because its path has been blocked, it must pick another 
route to its goal. 

 
We will refer to the condition of rule 2 of this law as a 
collision and the requirement of rule 3 as rerouting.  Rule 1 
in the above law is a conservative measure that prevents an 
agent from moving to a spot most recently occupied by 
another agent.  While technically unnecessary, it allows us 
to avoid the nightmare of inter-agent communication and 
coordination that would be necessary for moving an 
immediately adjacent queue of agents simultaneously. 
Notice that the Traffic Law U leaves the precise strategy 
for picking an alternate route in rule 3 unspecified. Any 
particular implementation of a non-deterministic social 
algorithm that adheres to Traffic Law U will have to pick 
some mechanism for selecting this alternative route.  This 
could, for example, involve dynamic negotiation between 
the agents, random selection, or some other strategy. 
Below, we examine a method that randomly picks an 
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traverse the grid: (A) Walk a Hamiltonian cycle; (B) 
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intermediate goal to visit along the way to the agent’s 
actual destination in case it gets stuck somewhere. 
 We define an L-path as a path between two grid points 
that contains at most one turn (i.e., change of direction), so 
called because of its resemblance to the letter L.  (See 
Figure 2(c).)  Points not on the same row or column will 
have two L-paths connecting them.  Otherwise, there will 
be only one.  A route is defined to be a sequence of L-
paths.  We now give a non-deterministic social algorithm 
that adheres to Traffic Law U: 
 
Algorithm 1: 
1. Select a new goal g. 
2. Let P be a random L-Path from current position to g. 
3. Set route R = P 
4. Move along route R towards g, following rules 1 and 2 

of Traffic Law U. 
5. If blocked for more than k steps, do the following: 

a. Randomly select new intermediary goal g’ 
b. Let P1 be a random L-path from current position 

to g’ 
c. Let P2 be a random L-path from g’ to g. 
d. Set R = P1, P2 
e. Go to step 4. 

6. Upon reaching goal g, go to step 1. 
 

The insistence that agents travel along L-paths is well 
motivated for maintaining the assumed distribution of 
agents in the grid.  For example, were the agents to travel 
along random paths (i.e., completely shuffled L-paths), this 
would induce a normal distribution of the agents, more 
heavily favoring the center region of the grid and leading to 
higher numbers of collisions and rerouting.  L-paths are to 
be preferred because they more uniformly distribute the 
agents and thus, make collisions far less likely.  
Furthermore, assuming that turning mobile robots requires 
greater energy than moving them in a straight direction and 
additionally interferes with dead-reckoning location 
strategies by introducing additional uncertainty, L-paths are 
to be preferred for practical, non-distribution specific 
reasons as well.   

Analysis 
 The efficiency of this algorithm is strictly determined by 
the number of collisions and amount of rerouting an agent 
has to do.  In the absence of these, each agent would 
achieve optimal time, because the L-path to its goal is a 
shortest length route to it.  However, in the presence of 
other agents, both collisions and rerouting are inevitable 
and can incur prohibitive time penalties.  With respect to 
each agent, a collision has cost 1 because of the incurred 
delay.  Rerouting has cost of at least 2∆G, because 
deadlock may occur during the rerouting process itself.  
However, there is no recursive rerouting – the agent simply 
reroutes with respect to the original goal, not the 
intermediary selected in step (5a) of the algorithm.   

 We will first provide a loose upper bound to the 
expected running time for an agent to travel between 
successive goals on an nxn grid containing m agents.  We 
use this to determine how many agents can be allowed on 
the grid simultaneously given how much overhead (i.e. 
wasted travel time) is acceptable.  We then present 
extensive simulation results for Algorithm 1, due to the 
difficultly of obtaining tighter bounds for its running time. 

Analytic Results  
To determine how many agents can simultaneously traverse 
the grid without incurring unreasonable delays due to 
congestion, we approximately model an agent’s movement 
through the Uniform Grid System as if it were governed by 
a negative binomial distribution.  This approximation will 
become increasingly inaccurate in systems where the grid is 
more heavily congested, in which case we must turn to the 
simulation results given below. 
 For Algorithm 1, we bound Et, the expected travel time 
between goals as: 
 

tE ≤  E( time moving towards goal ) +  
    E( time recovering from deadlock ) 
 
We define the probabilities of colliding and successful 
transitions as Pc and Ps respectively: 

 
Note that Pc would be seem to be double the given value 
but we assume that half the time an agent is involved in a 
potential collision, it is the one selected to move per rule 2 
of Traffic Law U, and no time penalty is thereby incurred.  
We bound the probability of deadlock Pd by considering 
that it occurs only when agents collide and then 
subsequently block each other.  Separately accounting for 
interior and border regions, we have: 

 
Recall ∆G, the isolation time, is given by: 

 
We calculate Egoal, the expected time an agent spends 
moving towards its goal using our negative binomial 
distribution assumption: 

 
We determine Edeadlock, the expected time an agent spends 
recovering from deadlocks, explicitly noting that the agent 
may deadlock in the midst of deadlock recovery: 
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We then have the expected time between successive goals 
is: 

 
Next, we define c*, the ratio between the expected and 
isolation times when traveling between successive goals.  It 
is a measure of the overhead due to agent interaction while 
traversing the grid: 

 
Recalling the above definition of Pc, we solve for the 
number of agents m as a function of c* and n: 
 

 
We now have a handle on how many agents can be allowed 
onto an nxn grid given some level of acceptable overhead 
c*.  For example, on a 100x100 grid, if it is acceptable for 
an agent to spend 1.3 times longer between successive 
goals than it would on the grid alone, then we expect that 
roughly 87 agents can be permitted onto the grid 
simultaneously.  Note that this is actually an underestimate 
because of the non-tight bound for Et determined above.  
The actual number demonstrated in simulation for c* = 1.3 
is m=n, or in this case, m=100. 
 

Simulation Results 
A Java-based simulator was written for the Uniform Grid 
System employing Traffic Law U and Algorithm 1.  Our 
approach for each grid of size n was to slowly increase the 
number of agents, m, observing how this impacted the 
average time of an agent to achieve its goals.  We first 
consider the case where m = nc .  As expected, the time 
taken for an agent to achieve its goals on average is 
essentially equal to its isolation time.  Tables 1 and 2 
contain the cases for c = 1 and 10 respectively. 
 Each simulation was run until the agents globally 
achieved 10,000 goals.  In the table: #S represents the 
number of time steps simulated; CP is the total collision 
penalty for the simulation; RP is the total rerouting penalty; 

Avg is the average time an agent took to achieve a goal; ∆G 
is the time an agent would ideally take in isolation; c* is 
Avg/∆G; and %+ is 100x(Avg –∆G)/∆G.  We note that 
lower c* values are better, and a value of 1 is the best that 
can be achieved by any social law in this domain. 
 We then examined cases where cnm = , where 

nc <≤1 .  As c approaches n, the density of the agents 
increases to the point where they become hopelessly 
crowded, and navigation becomes extraordinarily 
inefficient.  As this happens, it becomes more efficient to 
simply “snake” the agents around the grid in a Hamiltonian 
cycle as described above.   Graphs 1 and 2 display the rate 
of change in c* (=Avg/∆G) as a function of c (=m/n) for 
n=10 and 100 respectively.  
 Finally, we examine our results for the case where c = 1 
(m=n), where we find that empirically, c* is roughly 
around 4/3 for all values of n. 
 
Table 1: m = n  
 

n m #S CP RP Avg ∆G c* %+ 

10 3 23728 3478 5069 7.12 6.6 1.08 7.85 

20 4 34445 2562 7574 13.78 13.3 1.04 3.59 

100 10 6589 192 2755 65.89 66.66 0.99 -1.16 

200 14 9737 70 1624 136.32 133.33 1.02 2.24 

500 22 15208 59 3229 334.58 333.33 1.00 0.37 

1000 32 21365 22 2227 683.68 666.66 1.03 2.55 

Table 2: m = 10 n  

n m #S CP RP Avg ∆G c* %+ 

10 30 724 13354 5582 21.7 6.60 3.29 2.29 

20 40 542 5146 8282 21.61 13.30 1.62 0.62 

50 70 590 2708 13775 41.3 33.32 1.24 0.24 

100 100 763 1634 17239 76.3 66.66 1.14 0.14 

500 220 1752 643 40440 385.1 333.33 1.16 0.16 

1000 320 2617 460 55176 836.6 666.67 1.25 0.25 

 
Table 3: m = n 

n #S CP RP Avg ∆G c* %+ 

10 878 1758 1977 8.78 6.60 1.33 0.33 

20 846 1895 4361 16.92 13.30 1.27 0.27 

50 815 2363 12609 40.71 33.32 1.22 0.22 

100 791 1960 22494 78.94 66.66 1.18 0.18 

500 825 1376 81594 412.09 333.33 1.24 0.24 

1000 931 1139 152955 929.14 666.67 1.39 0.39 

 
 
 
Comparison of results 
Algorithm 1 is near optimal in the logarithmic cases shown 
in Tables 1 and 2, where m = nc .  Only in the case 
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where 2/mc ≥  does the performance degrade 

substantially.  When cnm = , we observe a near constant 
multiplicative cost of approximately 1.3∆G for 1=c . As c 
starts to increase, we note the expected penalty observed in 
the average time it takes an agent to reach its goal.  Finally, 
as c approaches n itself, the number of agents approaches 

2n , and it would be best to dynamically switch to the 
Hamiltonian path strategy.  In the table below, we compare 
the expected time for an agent to reach its goal in our 
approach and the one taken in [4]: 
 

Table 4: Comparison of non-deterministic Algorithm 1 
with the deterministic social law presented in [4]: 

 Expected Time to Goal m = 
Non-Deterministic Deterministic 

n  ∆G (=2n/3) c∆G, c>2 

n10  Approaches ∆G c∆G, c>2 

n 1.3∆G=13n/15 4n 
cn See graphs Not applicable 

 

Conclusions 
 In this paper, we proposed that general purpose, 
deterministic social laws appropriate for all circumstances 
may be inappropriate for the situations MAS actually 

encounter.  In particular, we argued that knowledge of the 
underlying distributions describing agent behavior can give 
us new ways of coordinating MAS and help us formulate 
more efficient social laws.  We demonstrated this by 
revisiting a previously studied traffic domain problem.  By 
assuming a particular distribution of both agent goals and 
their deadlock recovery behavior, we were able to 
formulate a simple and more efficient strategy for 
coordinating the movement of agents throughout the grid. 
 Future work in this domain includes more precisely 
characterizing the runtime complexity of Algorithm 1, 
exploring how well the system works when faced with 
other distributions, i.e., how sensitive this formulation is to 
the actual encountered behavior, and exploring other 
coordination domains that might be amenable to this 
approach. 
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Graph 1: Grid System with n=10
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Graph 2: Grid System with n = 100
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