

Non-deterministic Social Laws

Michael H. Coen

MIT Artificial Intelligence Lab
545 Technology Square
Cambridge, MA 02139

mhcoen@ai.mit.edu

Abstract
The paper generalizes the notion of a social law, the
foundation of the theory of artificial social systems
developed for coordinating Multi-Agent Systems. In an
artificial social system, its constituent agents are given a
common social law to obey and are free to act within the
confines it legislates, which are carefully designed to avoid
inter-agent conflict and deadlock. In this paper, we argue
that this framework can be overly restrictive in that social
laws indiscriminately apply to all distributions of agent
behavior, even when the probability of conflicting
conditions arising is acceptably small. We define the notion
of a non-deterministic social law applicable to a family of
probability distributions that describe the expected
behaviors of a system’s agents. We demonstrate that taking
these distributions into account can lead to the formulation
of more efficient social laws and the algorithms that adhere
to them. We illustrate our approach with a traffic domain
problem and demonstrate its utility through an extensive
series of simulations.

Introduction
Agents designed to exist in multi-agent systems in general
cannot afford to be oblivious to the presence of other
agents in their environment. The very notion of a multi-
agent system presupposes that agents, for better or worse,
will have some impact on each other. A central problem in
Distributed AI (DAI) has been to develop strategies for
coordinating the behaviors of these agents – perhaps to
cooperatively maximize some measure of the system’s
global utility or conversely, to insure that non-cooperative
agents find some acceptable way to peacefully coexist.
 Many coordination strategies have been developed for
managing multi-agent systems (MAS). One axis on which
we can contrast these different approaches is the degree of
agent autonomy they suppose. For example, a centralized
planning system [5] might globally synchronize each
agent’s activities in advance, taking pains to insure that
conflict is avoided among them. Agents can then blindly
follow these centrally arranged plans without further
consideration. Alternatively, at the other end of the

Copyright © 2000, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

spectrum, agents can be wholly autonomous and pursue
their individual goals without relying on any centralized
control mechanism. In the event conflict arises among
them, preformulated rules of encounter allow the agents to
dynamically negotiate among themselves to resolve it [3].
 An intermediary approach between these extremes has
been explored in the development of artificial social
systems [2,4], whose workings should feel familiar to
anyone living in a civilized country. In an artificial social
system, its constituent agents are given a common social
law to obey and are free to act within the confines it
legislates. A social law is explicitly designed to prevent
conflict and deadlock among the agents; however, for it to
be deemed useful, it should simultaneously allow each
agent to achieve its individual set of goals. Thus, designing
a social law is something of a balancing act. It must be
sufficiently strict to prevent conflict or deadlock, and
simultaneously, it must be sufficiently liberal to allow the
agents to efficiently achieve their goals. Useful social laws
can be designed that not only avoid inter-agent conflict but
also minimize the use of energy, time, and other resources
appropriate to the problem domain. Fitoussi has examined
an extension of this theory involving minimal social laws.
These are social laws that minimize the set of restrictions
placed upon the agents, while still avoiding inter-agent
conflicts. Minimal social laws allow agents to have
maximum flexibility during action selection by only
disallowing those activities that would prevent other agents
from obtaining their goals; thus, they are minimally
restrictive.
 We propose here that social laws, including even the
minimal type described above, can be overly restrictive
because agents must adhere to them in all circumstances –
even where the possibility of conflict with other agents is
extremely low. By insisting that agents avoid any chance
of conflict or deadlock when these circumstances are highly
unlikely, even minimal social laws may sometimes be
overly restrictive and thereby, inherently inefficient. We
will refer to this property of a social law as it being
deterministic. Consider, for example, a domain consisting
of a grid traversed by a group of mobile agents. A
deterministic social law for this domain might institute
traffic regulations to insure that agents never collide or get
stuck and to be useful, it would also allow the agents to

In Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI'2000),
pp. 15-21. Austin, Texas. 2000.

reach whichever nodes they needed. However, being
deterministic, this social law would be equally applicable to
all distributions describing how agents select nodes to visit
and how they travel between them.
 In this paper, we examine how knowledge of the
probability distributions governing agent behavior in MAS
can be applied towards more efficiently coordinating them
through a non-deterministic social law. For example, in
the domain above, knowing (or learning) that the agents
tend to uniformly select nodes in the grid to visit can
drastically improve our ability to coordinate their
movement. We note that from a social engineering
perspective, this might appear somewhat counter-intuitive.
Much of the work in artificial social systems has been
motivated through analogy with how human societies
function. We institute laws that govern individual behavior
and thereby benefit the community as a whole. However,
the analogy between agents and people must not be taken
too far. For example, vehicular traffic laws in human
society need to be easily remembered, and are thus rarely
specific to particular distributions and flows of traffic.
They are even less likely to be changed dynamically to
reflect learned observations. Instead, epiphenomenal
approaches are used: highways are constructed that
implicitly redirect vehicles, signal light intervals are
dynamically varied, and traffic reports are broadcast via
radio – all of these are centralized mechanisms to reduce
both congestion and the cognitive burden on human
drivers. Traffic regulations themselves are essentially
inviolate and for good reason – people would find it
difficult to drive safely otherwise. However, agents do not
share this limitation. There is nothing inherently
worrisome in optimizing social laws to better fit the
particular MAS they are intended to govern.
 We would like to clarify a point that has been somewhat
unclear in the social law literature regarding the efficiency
of social laws. Social laws are not algorithms – they do not
provide a method for accomplishing a particular task.
Rather, they are guidelines that specify a class of valid
algorithms (or strategies) for solving problems from a
particular domain by partitioning the set of possible
algorithms into “law-abiding” and “criminal” sets. Social
laws are thus not necessarily instructive. Just as traffic laws
in human society do not provide directions but simply
legislate certain types of behavior in particular situations,
social laws maintain a set of constraints that simplify
writing and reasoning about algorithms. Therefore, it is not
obviously meaningful to speak about a particular social
law’s efficiency. Instead, what should be considered are
the computational and other costs of the best-known
algorithms the social law makes realizable. We may then
refer to a social law’s efficiency solely in this regard.
However, others do not always clearly make this
discrimination, particularly with social laws so highly
constrained and algorithmically formulated they blur the
paradigmatic distinction. In referring to their work, we will
sometimes find it convenient to ignore this distinction as
well. More generally, we will define the notion of a non-

deterministic social law as one that does not guarantee it is
useful in the technical sense given above, although it is
highly likely to be for its expected distribution of agent
goals and behaviors. We will call non-deterministic social
algorithms the algorithms that adhere to these laws and
only present expected efficiency results regarding them.
 In the next section, we discuss the importance of
understanding the expected behaviors of the agents – and
not simply their goal spaces – while formulating social
laws. After this, we examine a traffic domain originally
presented in [4]. We formulate a non-deterministic social
law for it that is more efficient than its deterministic
counterpart. We then present extensive simulation results
that demonstrate the efficacy of our approach.

Using Distribution Information
Social laws in MAS do not always provide sufficient
information to write efficient control algorithms for the
agents. This is not necessarily a limitation of social laws
per se. However, it indicates the importance of
understanding the expected behavior of the agents as a
group somewhere in the system’s coordination mechanism,
whether it be directly incorporated into the system’s social
laws as we argue in the next section, or instead, into the
actual control algorithms for its agents. Even though we
are investigating a coordination paradigm that has no
centralized controller, there is no reason to insist that
individual agents have no knowledge of their expected
group behavior.
 To better understand this point, it will be useful to first
make explicit the role of social laws from a programmer’s
perspective. A social law for a multi-agent system is
designed to give its agents some measure of autonomy and
self-government. While it is essential that each agent follow
the law, it is of no concern what the agent actually does as
long as all of its activities are legal. In other words, social
laws make no recommendations as to how agents should
spend their time; they simply insure the agents do not
unduly interfere with each other. Formulating a useful
social law is computationally demanding, and even
determining whether one exists for a MAS is in general
NP-complete [4]. Therefore, the development of a social
law is taken to be an offline practice. However, once a
social law is formulated, it can be repeatedly used without
further computational expense. This may be contrasted
with negotiation protocols, in which computational effort
goes into both formulating a protocol and then
subsequently negotiating according to it each time is it
employed.
 After a social law is designed for a system, it is supplied
to the agents’ programmers, who are then responsible for
implementing control algorithms for the agents that obey it.
However, without more information about the expected
behavior of the other agents in the system, this may be
quite difficult to do efficiently. This is because a social law
indicates which set of actions is legal in any encountered
situation without providing guidance for selecting among

the legal alternatives. It can be difficult do so without
additional information. For example, consider the
following domain, taken from [1], in which m agents
synchronously travel circularly around an n-node ring, with
nodes clockwise labeled from 1…n. At each time step, an
agent can move to either of its two neighboring nodes or it
can remain immobile. A minimal social law presented in
[1] that permitted these agents to travel was:

(1) Staying immobile is forbidden if the node that can be

reached by a single counterclockwise movement is
occupied.

(2) Moving counterclockwise is allowed only if the two
nodes that would be encountered by moving counter-
clockwise twice are free.

While this social law provides a framework that guarantees
two agents cannot collide or deadlock, it does not provide
any practical guidance for how to actually move agents
around the ring. If an agent is on node k and wishes to
travel to node j, j>k, should it take a clockwise or
counterclockwise path? Supposing 2/nkj <− , the agent
should clearly move clockwise. However, if 2/nkj >− ,
it is not obvious which direction is best without knowing
both the current value of m and how other agents tend to
move (or stay immobile) on the ring. If the agent tried to
reach node j but was blocked k steps along the path
between them, it might then have to travel clockwise
around the ring to j, thereby incurring a 2k penalty for its
unsuccessful counterclockwise attempt. The primary
question here is how far an agent can expect to move
counterclockwise without being blocked by another agent.
Although we do not further analyze this problem here, this
simple example makes clear the need for an individual
agent to have available more information than that
provided directly by its social law or sensory capabilities.

The Multi-Agent Grid System
We now examine the multi-agent traffic domain presented
in [4], which we will refer to as the Grid System. This
domain consists of an nxn grid that is traversed by m
mobile agents (e.g., robots), as shown in Figure 1. The
rows and columns of the grid form lanes that the agents can
navigate. We assume that time is discrete and the system is
synchronous, so at every time step, each agent is located at
some grid coordinate. In this system, agents are given
goals in the form of grid coordinates to which they must
navigate. Every time an agent reaches its destination, it
receives a new goal to visit. For example, the agents might
be transporting goods in a warehouse and are alternatively
picking up and dropping off items. (We note such systems
are currently in frequent commercial use.)
 The main consideration here is how to insure that the
agents do not collide while they navigate the grid. For
example, the most naïve strategy would simply “snake” the
agents in a Hamiltonian cycle around the grid, as shown in

Figure 2A. Each trip between any two nodes would take
O(2n) time units to complete, which does not compare
favorably with the O(n) steps an agent would take to make
the same trip in isolation – i.e., with no other agents
present. Because this domain does not have cooperative
goals – ones that agents work together to achieve – the time
an agent would take to complete a task in isolation is the
optimum that any social law could achieve.
 In [4], a complex, deterministic social law is presented
for the Grid System that guarantees agents can achieve
their goals within certain time bounds. This law requires
that agents only use certain rows and columns in the grid
for “long distance” travel, much like we use a highway.
When an agent reaches the neighborhood of its goal, it then
travels to it directly along the “local” grid, as illustrated in
Figure 2B.
 Summarizing their results, an agent that can achieve a
goal in time t in isolation can achieve it using their social
law in time)(2 nont ++ , assuming)(nOm = and m << n .
For the case where nm ≤ , a variant of this law provides
that each goal can be achieved in n4 time steps.
 It is helpful to keep in mind that with)(nOm = , the grid
is very sparsely populated. For example, if ,100=n a grid
containing 10,000 locations would have on the order of 10
agents moving on it. We are interested in answering the
following questions: by insuring generality, is the
deterministic social law framework overly constraining?
How can its assumptions be loosened in order to achieve a
more efficient coordination system? Can we both increase
the number of agents travelling on the grid and
simultaneously decrease the amount of time they take to
reach their goals?

The Uniform Grid System
In this section, we consider the grid system presented
above under a particular probability distribution describing
an agent’s goal selection. Namely, we will assume that the
goals are uniformly distributed over all points (x, y) on the
grid:

0 1 2 3 4

1
2
3
4

5 6 7

5

6
7

1

3

2

Figure 1 – An 8x8 grid with three agents that will
travel along the indicated paths. Notice that in three time
steps, agents 1& 3 will collide at coordinate (2,3)

It is important to note that this assumption will certainly not
always be valid, and the non-deterministic social law we
present here is not intended for systems where it is not.
However, for MAS with agents described by this
distribution, we can obtain far more efficient results than
those in [4].
 Towards determining a lower bound for the non-
deterministic social law’s efficiency, we first determine the
expected distance between two randomly selected integral
coordinates, which we call ∆ , on a line from [0, n-1]
inclusive:

On a two-dimensional grid, the expected distance between
a pair of successive goals will be)(2 ∆E , because the total
distance will be the sum of the distances along each axis
independently. We will call this value the isolation time,
denoted by ∆G; it is the expected travel time between goals
for an unconstrained, isolated agent. It is therefore also a
lower bound on the time taken by any social law governing
the uniform grid system. Our goal is to formulate a non-
deterministic social law that approaches this lower bound
as closely as possible.
 Our approach will be to essentially allow the agents to
move as they would in isolation. They will explicitly
check to make sure their moves are “safe,” and take
corrective action if necessary. We assume that each agent
has sufficient sensory capabilities to realize that other
agents are in its immediate vicinity, i.e. up to 2 steps away.
In the event a transition between nodes would cause a
collision, an agent simply waits to try again on the next
move. If an agent is blocked for an extended period along
its path, the social law requires that it formulate some
alternate route to its destination. Particularly important in
this case is ensuring that the deadlock recovery mechanism
maintains the assumed probability distribution describing
the agents’ movements through the grid.
 Notice that this approach does not guarantee deadlock
will be avoided. It is possible (however unlikely) that two
agents headed in opposite directions along a column or row
can indefinitely block one another, even after repeatedly
trying alternate paths to their destinations. In practice, we
might try to detect such situations and formulate rules of
encounter to avoid them. However, in tens of millions of
simulation runs, non-recoverable deadlock has never been
encountered. Nonetheless, the non-deterministic social law
shown below, which we call law Traffic Law U (for
uniform), is not guaranteed in its present form to be useful
in the technical sense defined in the introduction:

Traffic Law U

1) At step i+1, an agent may not move to a spot occupied
by another agent at step i.

2) If more than one agent simultaneously wants to move to
a coordinate, only one, chosen at random, is permitted
to do so. The rest must remain where they are and
wait one turn before trying again.

3) If an agent has remained immobile for more than k turns
because its path has been blocked, it must pick another
route to its goal.

We will refer to the condition of rule 2 of this law as a
collision and the requirement of rule 3 as rerouting. Rule 1
in the above law is a conservative measure that prevents an
agent from moving to a spot most recently occupied by
another agent. While technically unnecessary, it allows us
to avoid the nightmare of inter-agent communication and
coordination that would be necessary for moving an
immediately adjacent queue of agents simultaneously.
Notice that the Traffic Law U leaves the precise strategy
for picking an alternate route in rule 3 unspecified. Any
particular implementation of a non-deterministic social
algorithm that adheres to Traffic Law U will have to pick
some mechanism for selecting this alternative route. This
could, for example, involve dynamic negotiation between
the agents, random selection, or some other strategy.
Below, we examine a method that randomly picks an

n
n

n
in

iiiE
n

i

n

i
3
1

3
)(2

)Pr()(
1

1

1

1
2

−=−==∆=∆ � �
−

=

−

=

[] nyx
n

goalaisyx <≤= ,0,
1

),(Pr
2

Figure 2 – Different strategies an agent might use to
traverse the grid: (A) Walk a Hamiltonian cycle; (B)
Navigate through course grid until reaching appropriate
neighborhood and then use fine grid; (C) Take a
minimum length path between points; (D) Loop in a
“figure 8” path through grid. Circles in the above
figures represent goals.

(A) (B)

(C) (D)

intermediate goal to visit along the way to the agent’s
actual destination in case it gets stuck somewhere.
 We define an L-path as a path between two grid points
that contains at most one turn (i.e., change of direction), so
called because of its resemblance to the letter L. (See
Figure 2(c).) Points not on the same row or column will
have two L-paths connecting them. Otherwise, there will
be only one. A route is defined to be a sequence of L-
paths. We now give a non-deterministic social algorithm
that adheres to Traffic Law U:

Algorithm 1:
1. Select a new goal g.
2. Let P be a random L-Path from current position to g.
3. Set route R = P
4. Move along route R towards g, following rules 1 and 2

of Traffic Law U.
5. If blocked for more than k steps, do the following:

a. Randomly select new intermediary goal g’
b. Let P1 be a random L-path from current position

to g’
c. Let P2 be a random L-path from g’ to g.
d. Set R = P1, P2
e. Go to step 4.

6. Upon reaching goal g, go to step 1.

The insistence that agents travel along L-paths is well
motivated for maintaining the assumed distribution of
agents in the grid. For example, were the agents to travel
along random paths (i.e., completely shuffled L-paths), this
would induce a normal distribution of the agents, more
heavily favoring the center region of the grid and leading to
higher numbers of collisions and rerouting. L-paths are to
be preferred because they more uniformly distribute the
agents and thus, make collisions far less likely.
Furthermore, assuming that turning mobile robots requires
greater energy than moving them in a straight direction and
additionally interferes with dead-reckoning location
strategies by introducing additional uncertainty, L-paths are
to be preferred for practical, non-distribution specific
reasons as well.

Analysis
 The efficiency of this algorithm is strictly determined by
the number of collisions and amount of rerouting an agent
has to do. In the absence of these, each agent would
achieve optimal time, because the L-path to its goal is a
shortest length route to it. However, in the presence of
other agents, both collisions and rerouting are inevitable
and can incur prohibitive time penalties. With respect to
each agent, a collision has cost 1 because of the incurred
delay. Rerouting has cost of at least 2∆G, because
deadlock may occur during the rerouting process itself.
However, there is no recursive rerouting – the agent simply
reroutes with respect to the original goal, not the
intermediary selected in step (5a) of the algorithm.

 We will first provide a loose upper bound to the
expected running time for an agent to travel between
successive goals on an nxn grid containing m agents. We
use this to determine how many agents can be allowed on
the grid simultaneously given how much overhead (i.e.
wasted travel time) is acceptable. We then present
extensive simulation results for Algorithm 1, due to the
difficultly of obtaining tighter bounds for its running time.

Analytic Results
To determine how many agents can simultaneously traverse
the grid without incurring unreasonable delays due to
congestion, we approximately model an agent’s movement
through the Uniform Grid System as if it were governed by
a negative binomial distribution. This approximation will
become increasingly inaccurate in systems where the grid is
more heavily congested, in which case we must turn to the
simulation results given below.
 For Algorithm 1, we bound Et, the expected travel time
between goals as:

tE ≤ E(time moving towards goal) +
 E(time recovering from deadlock)

We define the probabilities of colliding and successful
transitions as Pc and Ps respectively:

Note that Pc would be seem to be double the given value
but we assume that half the time an agent is involved in a
potential collision, it is the one selected to move per rule 2
of Traffic Law U, and no time penalty is thereby incurred.
We bound the probability of deadlock Pd by considering
that it occurs only when agents collide and then
subsequently block each other. Separately accounting for
interior and border regions, we have:

Recall ∆G, the isolation time, is given by:

We calculate Egoal, the expected time an agent spends
moving towards its goal using our negative binomial
distribution assumption:

We determine Edeadlock, the expected time an agent spends
recovering from deadlocks, explicitly noting that the agent
may deadlock in the midst of deadlock recovery:

2

1
, 1

1
c s c

m
P P P

n

−
= = −

−

2

2 2

4

4

(4)

3 4 3 4
c

d

c c c cP n P
P

n n P P P

n n n
+

−
= = + ≈

3/2
3
2

3
2

)(2 n
n

n
EG ≈−=∆=∆

goal

s

G
E

P

∆
=

We then have the expected time between successive goals
is:

Next, we define c*, the ratio between the expected and
isolation times when traveling between successive goals. It
is a measure of the overhead due to agent interaction while
traversing the grid:

Recalling the above definition of Pc, we solve for the
number of agents m as a function of c* and n:

We now have a handle on how many agents can be allowed
onto an nxn grid given some level of acceptable overhead
c*. For example, on a 100x100 grid, if it is acceptable for
an agent to spend 1.3 times longer between successive
goals than it would on the grid alone, then we expect that
roughly 87 agents can be permitted onto the grid
simultaneously. Note that this is actually an underestimate
because of the non-tight bound for Et determined above.
The actual number demonstrated in simulation for c* = 1.3
is m=n, or in this case, m=100.

Simulation Results
A Java-based simulator was written for the Uniform Grid
System employing Traffic Law U and Algorithm 1. Our
approach for each grid of size n was to slowly increase the
number of agents, m, observing how this impacted the
average time of an agent to achieve its goals. We first
consider the case where m = nc . As expected, the time
taken for an agent to achieve its goals on average is
essentially equal to its isolation time. Tables 1 and 2
contain the cases for c = 1 and 10 respectively.
 Each simulation was run until the agents globally
achieved 10,000 goals. In the table: #S represents the
number of time steps simulated; CP is the total collision
penalty for the simulation; RP is the total rerouting penalty;

Avg is the average time an agent took to achieve a goal; ∆G
is the time an agent would ideally take in isolation; c* is
Avg/∆G; and %+ is 100x(Avg –∆G)/∆G. We note that
lower c* values are better, and a value of 1 is the best that
can be achieved by any social law in this domain.
 We then examined cases where cnm = , where

nc <≤1 . As c approaches n, the density of the agents
increases to the point where they become hopelessly
crowded, and navigation becomes extraordinarily
inefficient. As this happens, it becomes more efficient to
simply “snake” the agents around the grid in a Hamiltonian
cycle as described above. Graphs 1 and 2 display the rate
of change in c* (=Avg/∆G) as a function of c (=m/n) for
n=10 and 100 respectively.
 Finally, we examine our results for the case where c = 1
(m=n), where we find that empirically, c* is roughly
around 4/3 for all values of n.

Table 1: m = n

n m #S CP RP Avg ∆G c* %+

10 3 23728 3478 5069 7.12 6.6 1.08 7.85

20 4 34445 2562 7574 13.78 13.3 1.04 3.59

100 10 6589 192 2755 65.89 66.66 0.99 -1.16

200 14 9737 70 1624 136.32 133.33 1.02 2.24

500 22 15208 59 3229 334.58 333.33 1.00 0.37

1000 32 21365 22 2227 683.68 666.66 1.03 2.55

Table 2: m = 10 n

n m #S CP RP Avg ∆G c* %+

10 30 724 13354 5582 21.7 6.60 3.29 2.29

20 40 542 5146 8282 21.61 13.30 1.62 0.62

50 70 590 2708 13775 41.3 33.32 1.24 0.24

100 100 763 1634 17239 76.3 66.66 1.14 0.14

500 220 1752 643 40440 385.1 333.33 1.16 0.16

1000 320 2617 460 55176 836.6 666.67 1.25 0.25

Table 3: m = n

n #S CP RP Avg ∆G c* %+

10 878 1758 1977 8.78 6.60 1.33 0.33

20 846 1895 4361 16.92 13.30 1.27 0.27

50 815 2363 12609 40.71 33.32 1.22 0.22

100 791 1960 22494 78.94 66.66 1.18 0.18

500 825 1376 81594 412.09 333.33 1.24 0.24

1000 931 1139 152955 929.14 666.67 1.39 0.39

Comparison of results
Algorithm 1 is near optimal in the logarithmic cases shown
in Tables 1 and 2, where m = nc . Only in the case

2
1

(2 (2 (2 ...)...)deadlock d d d
s

d

s d

G

P

PG
G

P

E P G P G P G

P

∆

∆
∆

−

∆ + ∆ + ∆ +
� �

≤ � �
� �

� �= � �
� �

2
1

d
t

s s d

E
PG G

G
P P P

∆ ∆
≤ + ∆

−
� �
� �
� �

* 1 2 1 2

1 1 1 1

/ 4
/ 4

t d c

s s d c c c

E P PG G
c

G P P P P P P

∆ ∆
= + +

∆ − − − −
� � � �

≤ ≤� � � �
� � � �

* *
2 2

* *

1 1
() 1 () 1

2 3
c c

m n n
c G c n

− −≈ + = +
+ ∆ +

where 2/mc ≥ does the performance degrade

substantially. When cnm = , we observe a near constant
multiplicative cost of approximately 1.3∆G for 1=c . As c
starts to increase, we note the expected penalty observed in
the average time it takes an agent to reach its goal. Finally,
as c approaches n itself, the number of agents approaches

2n , and it would be best to dynamically switch to the
Hamiltonian path strategy. In the table below, we compare
the expected time for an agent to reach its goal in our
approach and the one taken in [4]:

Table 4: Comparison of non-deterministic Algorithm 1
with the deterministic social law presented in [4]:

 Expected Time to Goal m =
Non-Deterministic Deterministic

n ∆G (=2n/3) c∆G, c>2

n10 Approaches ∆G c∆G, c>2

n 1.3∆G=13n/15 4n
cn See graphs Not applicable

Conclusions
 In this paper, we proposed that general purpose,
deterministic social laws appropriate for all circumstances
may be inappropriate for the situations MAS actually

encounter. In particular, we argued that knowledge of the
underlying distributions describing agent behavior can give
us new ways of coordinating MAS and help us formulate
more efficient social laws. We demonstrated this by
revisiting a previously studied traffic domain problem. By
assuming a particular distribution of both agent goals and
their deadlock recovery behavior, we were able to
formulate a simple and more efficient strategy for
coordinating the movement of agents throughout the grid.
 Future work in this domain includes more precisely
characterizing the runtime complexity of Algorithm 1,
exploring how well the system works when faced with
other distributions, i.e., how sensitive this formulation is to
the actual encountered behavior, and exploring other
coordination domains that might be amenable to this
approach.

Acknowledgements
This material is based upon work supported by the
Advanced Research Projects Agency of the Department of
Defense under contract number F30602—94—C—0204,
monitored through Rome Laboratory. Special thanks to D.
Fitoussi and L. Weisman.

References
[1] Fitoussi, D. and Tennenholtz, M. Minimal Social Laws. In
Proc. Of the Fifteenth National Conference on Artificial
Intelligence, p26-31. 1998.

[2] Moses, Y., and Tennenholtz, M. Artificial Social Systems.
Computers and Artificial Intelligence. 14(6):533-562.

[3] Rosenschein, J.S., and Zlotkin, G. Rules of Encounter: Design
Conventions for Automated Negotiation among Computers. MIT
Press. 1994.

[4] Shoham, Y., and Tennenholtz, M. Social Laws for Artificial
Agent Societies: Off-line Design. Artificial Intelligence 73.
1995.

[5] Stuart, C. An Implementation of a Multi-Agent Plan
Synchronizer. In Proc. Ninth International Joint Conference on
Artificial Intelligence. 1985.

Graph 1: Grid System with n=10

1 2
3

4

5

6

0

2

4

6

8

10

12

0 2 4 6 8

Multiples of n agents, m=xn

M
ul

tip
le

s
of

 is
ol

at
io

n
tim

e
=

c*

Graph 2: Grid System with n = 100

0
1
2
3
4
5
6

0 5 10 15 20

Multiples of n agents, m=xn

M
ul

tip
le

s
of

 is
ol

at
io

n
tim

e
=

c*

