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Abstract 
This paper presents a self-supervised algorithm for learning 
perceptual structures based upon correlations in different sensory 
modalities.   The brain and cognitive sciences have gathered an 
enormous body of neurological and phenomenological evidence 
in the past half century that demonstrates the extraordinary degree 
of interaction between sensory modalities during the course of 
ordinary perception.  This paper presents a new framework for 
creating artificial perceptual systems inspired by these findings, 
where the primary architectural motif is the cross-modal 
transmission of perceptual information to enhance each sensory 
channel individually.  The basic hypothesis underlying this 
approach is that the world has regularities – natural laws tend to 
correlate physical properties – and biological perceptory systems 
have evolved to take advantage of this.  They share information 
continually and opportunistically across seemingly disparate 
perceptual channels, not epiphenomenologically, but rather as a 
fundamental component of normal perception.  It is therefore 
essential that their artificial counterparts be able to share 
information synergistically within their perceptual channels, if 
they are to approach degrees of biological sophistication.  This 
paper is a preliminary step in that direction. 

Introduction   
Most of the enormous variability in the world around us is 
unimportant.  Variations in our sensory perceptions are not 
only tolerated, they generally pass unnoticed.  Of course, 
some distinctions are of paramount importance and 
learning which are meaningful as opposed to which can be 
safely ignored is a fundamental problem of cognitive 
development.  This process is a component of perceptual 
grounding, where a perceiver learns how to make sense of 
its sensory inputs.  The perspective in this paper is that  
this is a clustering problem, in that each sense must learn to 
organize its perceptions into meaningful categories.  That 
animals do this so readily belies its complexity.  For 
example, people learn phonetic structures for languages 
simply by listening to them; the phonemes are somehow 
extracted and clustered from auditory input even though 
the listener does not know in advance how many unique 
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phonemes are present in the signal.  Contrast this with a 
standard mathematical approach to clustering, where some 
knowledge of the clusters, e.g., how many there are or their 
distributions, must be known a priori in order to derive 
them.  Without knowing these parameters in advance, 
algorithmic clustering techniques may not be robust (Still 
and Bialek 2004).  Assuming that in many circumstances 
animals cannot know the parameters underlying their 
perceptual inputs, how then do they learn to organize their 
sensory perceptions reliably? 
 This paper presents an approach to clustering based on 
observed correlations between different sensory modalities.  
These cross-modal correlations exist because perceptions 
are created through physical processes governed by natural 
laws (Thompson 1917, Richards 1980, Mumford 2004).  
An event in the world is simultaneously perceived through 
multiple sensory channels in a single observer, and the 
hypothesis of this paper is that these correspondences play 
a primary role in organizing the sensory channels 
individually.  The approach described here uses this 
hypothesis to propose a new framework for grounding 
artificial perceptual systems. We note this technique is not 
specific to a single modality. 
 To develop this framework, we introduce a 
mathematical model of slices, which are topological 
manifolds that encode dynamic perceptual states and are 
inspired by surface models of cortical tissue (Citti and Sarti 
2003, Ratnanather et al. 2003).  Slices are able to represent 
both symbolic and numeric data and provide a natural 
foundation for aggregating and correlating information.  
We then present a cross-modal clustering algorithm that 
organizes slices based on their temporal correlations with 
other slices.  The algorithm does not presume that either 
the number of clusters in the data or their distributions is 
known beforehand.  We then examine the outputs and 
behavior of this algorithm on simulated datasets. 
 To motivate this work, we first consider a concrete 
example that raises the possibility that not only can senses 
influence one another during perception, which has been 
well established (e.g., Stein and Meredith 1993, Calvert et 
al. 2004), they can also influence the perceptual structures 
used internally by other senses.  In essence, we examine 
the possibility that senses can be perceptually grounded by 
bootstrapping off each other. 
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Speechreading 
 
Our example begins with the 1939 World’s Fair in New 
York, where Gordon Peterson and Harold Barney (1952) 
collected samples of 76 speakers saying sustained 
American English vowels.  They measured the 
fundamental frequency and first three formants for each 
sample and noticed that when plotted in various ways 
(Figure 1), different vowels fell into different regions of 
the formant space.  This regularity gave hope that spoken 
language – at least vowels – could be understood through 
accurate estimation of formant frequencies.  This early 
hope was dashed in part because co-articulation effects 
lead to considerable movement of the formants during 
speech (Holbrook and Fairbanks 1962).  Although 
formant-based classifications were largely abandoned in 
favor of the dynamic pattern matching techniques 
commonly used today (Jelinek 1997), the belief persists 
that formants are potentially useful in speech recognition, 
particularly for dimensional reduction of data. 
 

It has long been known that watching the movement of a 
speaker’s lips helps people understand what is being said.  
(viz. Bender 1981, p41).  The sight of someone’s moving 
lips in an environment with significant background noise 
makes it easier to understand what the speaker is saying; 
visual cues – e.g., the sight of lips – can alter the signal-to-
noise ratio of an auditory stimulus by 15-20 decibels 
(Sumby and Pollack 1954).  The task of lip-reading has by 
far been the most studied problem in the computational 
multimodal literature (e.g., Mase and Pentland 1990, 
Huang et al. 2003, Potamianos et al. 2004), due to the 
historic prominence of automatic speech recognition in 
computational perception.  Although significant progress 
has been made in automatic speech recognition, state of the 
art performance lags human speech perception by up to an 
order of magnitude, even in highly controlled 
environments (Lippmann 1997).   In response to this, there 
has been increasing interest in non-acoustic sources of 

speech information, of which vision has received the most 
attention.  Information about articulator position is of 
particular interest, because in human speech, acoustically 
ambiguous sounds tend to have visually unambiguous 
features (Massaro and Stork 1998).  For example, visual 
observation of tongue position and lip contours can help 
disambiguate unvoiced velar consonants /p/ and /k/, voiced 
consonants /b/ and /d/, and nasals /m/ and /n/, all of which 
can be difficult to distinguish on the basis of acoustic data 
alone. 
  Articulation data can also help to disambiguate vowels.  
Figure 2 contains images of a speaker voicing different 
sustained vowels, corresponding to those in Figure 1.  
These images are the unmodified output of a mouth 
tracking system written by the author, where the estimated 
lip contour is displayed as an ellipse and overlaid on top of 
the speaker’s mouth.  The scatterplot in Figure 2 shows 
how a speaker’s mouth is represented in this way, with 
contour data normalized such that a resting mouth 
configuration (referred to as null in the figure) corresponds 
with the origin, and other mouth positions are viewed as 
offsets from this position.  For example, when the subject 
makes an /iy/ sound, the ellipse is elongated along its 
major axis, as reflected in the scatterplot.   
 Given this example, it may be surprising that our interest 
in this paper is not how to do speechreading.  Rather, we 
are concerned with a more basic problem: how do sensory 
systems learn to segment their inputs?  In the plots above, 
the data are conveniently labeled, which makes the 
correspondences and the clusters obvious, even when they 
are overlapping.  However, perceptual events in the world 
are generally not accompanied with explicit labels.  
Instead, animals are faced with data like those in Figure 3 
and must somehow learn to make sense of them.  This 
process is not confined to development, as perceptual 
correspondences are plastic and can change over time.     

Figure 1 – Labeled scatterplot of the first two formants for 
English vowels (Peterson and Barney 1952). 

Figure 2 – Modeling lip contours with an ellipse.  The scatterplot 
shows normalized major (x) and minor (y) axes for ellipses 
corresponding to the same vowels as those in Figure 1. 



 We would therefore like to have a general purpose way 
of taking data (such as shown in Figure 3) and deriving the 
kinds of correspondences and segmentations (as shown 
between Figures 1 & 2) without external supervision.  
Instead, we will use the cross modal correspondences 
among the inputs to derive a training signal.   

 Algorithmic Framework 
Intuitively, we are going to proceed by hyperclustering 
each perceptual space into a codebook.  This means we are 
going to partition it into far more regions than necessary 
for categorizing its perceptual data.  The partitioning is 
created with a variant of k-means clustering discussed 
below.  We call this codebook a slice, through analogy to  
a small slice of cortical tissue.   
 Our goal is then to combine the codebook clusters into 
larger regions that reflect the actual perceptual categories 
represented in sensory data.  To do this, we need some 
meaningful way to compare the similarity of different 
clusters in the same codebook.  We introduce the notion of 
a reverse Hebbian projection of a codebook region, which 
provides an intuitive way to view co-occurrence relations 
between different slices.  We then compare the reverse 
Hebbian projections of different regions using the 
Kantorovich-Wasserstein distance (Gibbs and Su 2002).  
This provides a non-Euclidean measure of how similar two 
codebook clusters in the same slice appear from the 
perspective of the other modalities that co-occur with 
them.  Using this metric, we define a cross-modal 
clustering algorithm to combine codebook regions into 
larger regions corresponding with the actual perceptual 
categories of interest.   This process continues iteratively in 
parallel across all the slices in a system, allowing them to 
perceptually bootstrap on one another, until a well-defined 
termination criterion is met.  The reliance on co-occurring 
slices for defining this codebook distance metric is why 
this is called cross-modal clustering.   

We define a slice Si as an n-dimensional topological 
manifold that represents the perceptual organization of an 
individual sensory system.  Each slice consists of a set of 
clusters cj that partition it.  These partitions are created by 
first using k-means clustering for some high value of k, 
e.g., 100.  This initial clustering is then iteratively refined 
by recursively reclustering individual regions to normalize 

the overall cluster density.  What value of k should be 
used?  Because we are creating a codebook first rather than 
directly separating the data into perceptual categories, this 
approach is less sensitive to the selection of k than would 
be the case otherwise.  Codebook creation tends towards 
being a heuristic process and a rule of thumb in this 
domain is using 5-10 times the maximum number of 
possible clusters provides satisfactory results.  Using more 
than is necessary simply means more training data may be 
required.  Using fewer runs the risk of missing categories, 
but recent results have indicated this condition may be both 
detectable and correctable.   

Without loss of generality, we assume that all perceptual 
dimensions are normalized to [0, 1], so that each cluster 
cj [0,1]n⊂ .  We say that a perceptual input activates 
whichever cluster contains it.  By way of example, Figure 
4 contains the codebooks of two slices SA and SB, 
corresponding to hypothetical modalities each containing a 
mixture of two Gaussian inputs. 
 A data stream d1,..,dn I∈  is a series of sensory inputs.  
With respect to any data stream D, we are interested in the 
conditional probabilities of clusters in different slices being 
active simultaneously. 
 Consider two slices SA and SB, partitioned into regions 
such that { } { }1 2 1 2  ,  ,  ...,  ,  , ,...,= =A m B nS p p p S q q q . For 
event x, let h(x) = # of times event x occurs, so Pr(q|p) = 
h(p,q)/h(p).  We define a region ⊆ Ar S  as a set of 
codebook clusters. 
 We then define the Hebbian projection of region 

⊆ Ar S onto SB as: 
 [ ]1 2 ( ) Pr( | ),Pr( | ),...,Pr( | )= nH r q r q r q r  
The Hebbian projection is a spatial probability distribution 
that provides a picture of how slice SB appears whenever 
region r in SA is active. 
 We now define weighted versions of these as follows: 

 
Finally, we define the reverse Hebbian Projection of 
region ⊆ Ar S onto SB as: 

Slice SA Slice SB 

Figure 3 – Unlabeled sensory inputs.  Formants F1 and F2 are 
displayed on the left and lip contour positions corresponding to 
major and minor axes of fit ellipses are shown on the right.  
All data are normalized. 
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Figure 4 – Codebooks for two slices SA and SB corresponding to 
hypothetical modalities, each containing a mixture of two 
Gaussian inputs. 
 



The reverse Hebbian projection of a region r is a spatial 
probability distribution that answers the question: what 
other regions does slice SB think region r is similar to in 
slice SA?  It is equal to the Hebbian projection of all of SB 
onto SA, weighted by the Hebbian projection of the region r 
onto SB.   

 
Figure 5 – A visualization of the reverse Hebbian projection of 
the circled cluster r in slice SA (on the bottom) onto slice SB (on 
the top).   It shows (on the bottom) which other regions in SA are 
thought to be similar to r from the perspective of SB.  On top, 
slice SB is shaded by the Hebbian projection of r.  
 
Recall that our goal is to combine codebook clusters in a 
slice into larger regions corresponding to actual perceptual 
categories.  Doing this requires a similarity metric between 
different slice regions, and we formulate one by comparing 
the probability distributions corresponding to the regions' 
reverse Hebbian projections.  It is important to note that 
these distributions are on n-dimensional data.  It is 
therefore not possible to use one dimensional measures, 
e.g., Kolmogorov-Smirnov distance, to compare them.  
Instead, we measure the difference in the spatial 
distributions of region projections using a higher 
dimensional metric, the Kantorovich-Wasserstein distance 
dW: 
 Consider the reverse projections for two regions in SA: 

The Wasserstein distance between them is defined to be: 

where the infimum is taken over all joint distributions J on 
x and y with marginals 1( )

�

H r and 2( )
�

H r , and d() is the 
distance function ∆ defined below. 
 Determining the value of dW is a well-studied 
optimization problem.  In our framework, it is equal to: 

where the minimum is taken over all possible permutations 
of {1,…,m}, where m is the number of clusters in SA.  In 
practice, the Hungarian algorithm (Kuhn 1955) solves this 
optimization problem effectively.  Also, notice that as k 

increases in our domain, the Hebbian conditional 
probabilities for most cluster pairs are expected to 
approach or are equal to zero.  The algorithm capitalizes on 
this and therefore, remains practical even for very large 
values of k. 
 We are now in a position to define a cross-modal 
distance metric ∆B  between two regions r1 and r2 in slice 
SA, with respect to another slice SB: 

The function Ed is the Euclidean distance between cluster 
centroids.  The parameter λ  defines the relative 
importance of Euclidean with respect to cross-modal 
distances.  In most applications, we set λ  = 1, so 
Euclidean distance is ignored.  When spatial locality is 
important, e.g., in handwriting recognition, smaller values 
may be useful.   
 This distance function lets us compare clusters based on 
both their spatial distance (the Ed term) and their apparent 
distance as seen from another slice (the dW term).  Thus, 
even if two clusters are spatially far apart, their effective 
distance may be quite small if other co-occurring slices 
cannot tell them apart.  Conversely, two clusters that are 
near each other in space may be deemed effectively far 
apart if they seem different from a cross-modal 
perspective.  We can therefore use this aggregate measure 
to determine which clusters in a slice actually represent the 
same percepts and which do not.  In practice, we 
repeatedly recompute ∆  by defining it through an iterated 
function system; details are beyond the scope of this short 
paper. 
 The self distance of a region r in slice SA measures its 
own distance to its reverse Hebbian projection, with 
respect to another slice: 
 ( )( )  ( ), ( )= ∆

�

A Bs r H r H r  
Note that the term ( )AH r  has a very simple interpretation.  
It is simply the relative probabilities of the codebook 
clusters in SA given that region r is active.  Self distance is 
a measure of how far away region r is from the other 
regions to which it is similar.  We use this notion to define 
the neighborhood of a region r: 
 { }  ( ) : ( , ) ( )= ∆ <i iN r c r c s r  
 
The neighborhood of a region is the set of codebook 
clusters that it is closest to, namely, those within its own 
self distance.  Note that this may include codebooks that 
are not members of the given region. 
 Lastly, we define the threshold t(r) of a region r in slice 
SA with respect to slice SB: 
 

 
The threshold is a measure of the distance between a 
region r and the other regions from which it cannot be 
distinguished, according to the perspective of a co-
occurring slice. 
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Cross-Modal Clustering 
We now present an algorithm for combining a slice's 
codebook clusters into regions that actually reflect the 
perceptual structure of its input.  The algorithm proceeds in 
a two step fashion.  First, it looks for two regions in each 
slice that are closest together according to the ∆  metric 
defined above.  If these regions are within each other's 
thresholds, they are joined.  If not, it considers the next two 
closest clusters, and so on.    
  Next, the algorithm greedily moves clusters to their 
closest regions, if they are not already there. 
 The algorithm then repeats, until nothing can be found to 
merge in any of the system's slices, upon which it stops.  It  
is guaranteed to terminate because each step reduces the 
total number of regions in the system by at least 1.  In the 
worst case, therefore, the number of loops would be k(n-1), 
where k corresponds to the maximum number of codebook 
regions and n is the total number of slices.   
 
Algorithm: 
Given: k, the number of codebook clusters, and λ , the parameter 
for weighting Euclidean and cross-modal distances.  In most 
applications, we set 1λ =  and ignore Euclidean distances. 
Initialization: Collect perceptual data to generate the initial 
codebook for each slice.  Standard practice in codebook 
generation is to collect some constant multiple of the number of 
codebook regions.  The examples here use 30k', where k' is equal 
to k plus however many extra regions are generated in the density 
normalization procedure described above.  
Learning:  At this point, all of the slices have been clustered into 
codebooks.  As each perceptual input is received, update the 
conditional probability matrices between slices.  The actual inputs 
themselves need not be stored.  Learning can continue throughout 
the life of the system, in particular, during the region building 
step.    
 
Region Building: 

 
Figure 6 shows the output of this algorithm running on two 
datasets corresponding to Gaussian mixture models.  This 
example is interesting because it is the simplest complex 
input, namely, two overlapping distributions.  The 
algorithm is able to determine the correct number of 
regions, even though they overlap and it does not know at 
the start how many regions to expect in the data.  It is also 
able to create individual regions from non-adjacent 
components, because it is ignoring Euclidean distances.  

Mode A Mode B
a)

b)

c)

Figure 6 – Three stages in cross-modal clustering.  The top 
shows the initial codebook creation in each slice.  The middle 
show intermediate region formation.  The bottom shows the 
correctly clustered outputs.  The confusion regions between the 
categories is indicated in the center.  
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Figure 7 – Outputs of the cross-modal clustering for other sets of 
inputs.   On the top, the algorithm is able to extract an embedded 
perceptual category in Mode B through reference to Mode A.  On 
the bottom, it correctly separates four overlapping Gaussian 
distributions in each modality. 



The algorithm also identifies the confusion area between 
the regions, which can be quite useful in perceptual 
disambiguation and is the subject of our current work.  In 
Figure 7(a), the algorithm is able to detect a region 
embedded in another one in slice B.  Notice here that sizes 
of regions do not matter, because they are compared only 
on the basis of cross-modal rather than Euclidean 
distances.   

Discussion 
We have presented a cross-modal clustering algorithm that 
is able to correctly cluster multiple unknown data 
distributions.  It does this by taking advantage of the high 
degree of correlation among the distributions, which in 
perceptual systems is due to the natural laws that govern 
the generation of perceivable events.   
 The algorithm is also able to function exclusively in low 
dimensional spaces.  Although it can also handle higher 
dimensional data, it is important to note that cortical 
architectures make extensive use of low dimensional 
spaces, e.g., throughout visual, auditory, and 
somatosensory processing (Amari 1980, Bednar et al. 
2004), and this was a primary motivating factor in the 
development of Self Organizing Maps (Kohonen 1984).   
Surprisingly, low dimensional spaces can be difficult to 
work with because they are so crowded.   Percepts tend to 
overlap in complex ways and clustering them generally 
proves challenging.  It is reasonable to assume that animals 
make extensive use of cross-modal information to guide 
this process, and we have very tentatively examined the 
possibility here that artificial perceptual systems may 
benefit from using conceptually similar mechanisms.   
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