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Abstract 
This paper presents a new framework for self-supervised 
sensorimotor learning.  We demonstrate this framework 
with a system that learns to mimic a zebra finch, directly 
modeled on the dynamics of how male fledglings acquire 
birdsong from their fathers. Our system first listens to the 
song of an adult finch. By listening to its own initially 
nascent attempts at mimicry through an articulatory 
synthesizer, the system organizes motor maps generating its 
vocalizations. Our approach is founded on the notion of 
cross-modal clustering, introduced in (Coen 2005, 2006a), 
and is unusual for its recursive reuse of perceptual 
mechanisms in developing motor control.  In this paper, we 
outline this framework, present its results on the 
unsupervised acquisition of birdsong, and discuss other 
potential applications. 

Introduction   
This paper presents a novel computational architecture for 
sensorimotor learning.  In our framework, an agent 
acquires motor control by learning to imitate the observed, 
learned behaviors of an external party, such as a parent.  
The approach presented here is self-supervised, meaning 
no supervisory (corrective) signal is provided to the agent 
nor are any statistical models describing the expected 
inputs (or desired outputs) presumed.  Instead, the system 
supervises its own learning by observing the effects of its 
activities and correlating them with the learned behaviors 
of an external agent. 
 A power of this mechanism is that it can learn mimicry, 
a basic form of behavioral learning in which one animal 
acquires the ability to imitate some aspect of another's 
activity, constrained by the capabilities and dynamics of its 
own sensory and motor systems (Meltzoff and Prinz 2002).  
The developmental notion of programming by example is 
ubiquitous in the animal kingdom (Galef 1988), and this 
work is a step toward providing this capability to artificial 
sensorimotor systems. 
 Furthermore, imitative learning is thought to be among 
the most powerful developmental mechanisms available 
both to natural creatures (Thorndike 1898, Piaget 1971) 
and to artificial ones (Dautenhahn and Nehaniv 2002).  The 
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benefits it provides in perceptual and sensorimotor 
domains are significant because engineered approaches 
tend to be ad hoc and error prone (Coen 2001); 
additionally, in sensorimotor learning we generally have no 
adequate models to specify the desired input/output 
behaviors for our systems.  Often, the most transparent and 
concise specification of a set of desired actions is obtained 
through observations of another entity performing them, 
rather than through abstract formalisms. 
 Our approach recursively applies the perceptual 
grounding framework of cross-modal clustering (Coen 
2005, 2006a).  This algorithm learns categories in datasets 
non-parametrically and without assuming any underlying 
input distributions.  It does so by exploiting spatiotemporal 
redundancies between different – but perceptually 
overlapping – sensory modalities to learn the number and 
structure of events they jointly perceive.  We briefly 
motivate and review cross-modal clustering below. 
 In this paper, we extend this framework by treating the 
motor component of sensorimotor learning as if it were a 
perceptual problem.  This is surprising because one might 
suppose that motor activity is fundamentally different than 
perception.  However, we take the perspective that motor 
control can be seen as perception backwards.  We imagine 
that – in a notion reminiscent of a Cartesian theater 
(Dennett 1991) or a Global Workspace (Baars 1997) – an 
animal can "watch" the activity in its own motor cortex, as 
if it were a privileged form of internal perception.  Then 
for any motor act, there are two associated perceptions – 
the internal one describing the generation of the act and the 
external one describing the self-observation of the act.  The 

 
Figure 1 – An adult male zebra finch (Taeniopygia guttata).
Zebra finches are small, social songbirds and are extremely 
popular for studying neural, physiological, evolutionary, social, 
and developmental aspects of birdsong acquisition.   
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perceptual grounding framework described in (Coen 
2006a, Chapters 2 & 3) can then cross-modally cluster 
these internal and external perceptions with respect to one 
another.  The insight behind this approach is that an agent 
can develop motor control by learning to mimic the events 
it has previously learned through unsupervised 
observations of its world. 
 We demonstrate sensorimotor learning in this 
framework with an artificial system that learns to sing like 
a fledgling zebra finch.  Our system first listens to the song 
of an adult male zebra finch; it cross-modally clusters this 
input to learn songemes, primitive units of bird song that 
we propose as avian analogs of phonemes.  It then uses a 
vocalization synthesizer to generate its own nascent 
birdsong, guided by random exploratory motor behaviors.  
By simultaneously listening to itself sing, the system 
organizes its motor maps by cross-modally clustering them 
with respect to the previously acquired perceptual maps.  
During this process, the fact that the motor data were 
derived internally from innate exploratory behaviors rather 
than from external perceptual events is irrelevant.  By 
treating the motor data as if they were derived perceptually 
from the outside world, the system thereby learns to 
reproduce the same sounds to which it was previously 
exposed.  
 Our goal in this paper is to demonstrate that motor 
learning can be accomplished through recursive perceptual 
grounding.  In other words, we show that perceptual and 
motor learning are unexpectedly similar processes and can 
be achieved within a common mathematical framework.  
This surprising result also suggests an approach to 
grounding higher level cognitive development, by 
continually reapplying this technique of internal 
perception, as suggested by the metalinguistic theories of 
Lakoff (1987). 

Cross-Modal Clustering 
We briefly review cross-modal clustering, which is a 
biologically motivated algorithm for learning categories 
based upon correlations in different sensory modalities.  
This approach was inspired by the notion that the sensory 
information gathered by animals is inherently redundant 
(Richards 1980).  This redundancy can enable learning 
without requiring explicit teaching (as in supervised 
learning) or statistical modeling (as in unsupervised 
learning).  In Nature, these are frequently unavailable and 
yet animals learn anyway.  In other words, redundancy 
allows animals to supervise their own learning, hence the 
designation of self-supervised learning.   
 For example, (Coen 2006b) has shown cross-modal 
clustering can learn the vowel structure of American 
English by simultaneously watching and listening to 
someone speak.  It learns the number of vowels and their 
formant structure without any a priori linguistic 
knowledge and receives no information outside of its 
perceptual channels.  One may contrast this with the large 
number of clustering algorithms that require harsh 

simplifying assumptions (e.g., the clusters are Gaussian) or 
careful setting of parameters requiring advance knowledge 
of the data (see the surveys in Jain et al. 1999, Weiss 
1999).  In contrast, cross-modal clustering can learn 
categories in nonparametric data, where we know neither 
the number of represented categories nor their input 
distributions.  However, it requires that we have multiple 
modalities that simultaneously view events in the world; in 
other words, each modality possesses a unique viewpoint 
of the same world events. 
 The cross-modal clustering algorithm precedes by 
hyperclustering the inputs within each dataset into a large 
number of Voronoi regions: this means we construct a 
Voronoi partitioning of each dataset with a far larger 
number of clusters than we assume exists in the data.  For 
each Voronoi region, the algorithm calculates its projection 
onto another modality, based on simple temporal co-
occurrences.  These projections are thus spatial probability 
distributions onto the multi-dimensional metric space 
defined by each dataset.  By comparing the distances 
between these projected distributions, the algorithm 
merges Voronoi regions (within a dataset) that have 
"similar" projections onto other modalities; in this way, it 
generates larger perceptual regions.  In essence, it merges 
regions within one modality that appear conditionally 
identical from the perspective of other modalities. 

Figure 2 – Perceptual grounding through cross-modal 
clustering.  This figure shows we can learn the number and 
structure of vowels in American English by simultaneously 
watching and listening to someone speak.  Auditory formant data 
is displayed on top and visual lip data – corresponding to major 
and minor axes of ellipses fit on the speaker’s mouth – is on the 
bottom.  Initially, nothing is known about the events these 
systems perceive.  Cross-modal clustering lets them mutually 
structure their perceptual representations and thereby learn the 
event categories that generated their sensory inputs.  The region 
colors show the correspondences obtained from cross-modal 
clustering.  Red lines connect corresponding vowels between the 
two datasets and black lines show neighboring regions within 
each dataset.  The phonetic labels were manually added to show 
identity.  The data are from a real speaker and were normalized.  
This figure is taken from (Coen 2006b). 



 Importantly, we note that the notion of modality here 
does not necessarily correspond to an entire sensory 
system, and cross-modal clustering can be applied to sets 
of processed data within the same sensory channel.  For 
example, in learning birdsong, we will focus exclusively 
on auditory features.  The representational primitive in 
cross-modal clustering for representing data is a structure 
called a slice.  For example, Figure 2 contains two 2-D 
slices corresponding to auditory and visual datasets.  Slices 
are manifolds that we will use to represent both sensory 
and motor maps in this paper.  We equivalently use the 
terms “slice” and “map” in this paper to refer to the same 
type of object. 
 

A Sensorimotor Architecture 
We begin by examining abstract models of innate sensory 
and motor processing in isolation.  Afterwards, we 
integrate them to enable sensorimotor learning.   
 

A Simple Model of Innate Sensory Perception 
Our framework begins with the model of afferent sensory 
perception outlined in Figure 3, which schematically 
diagrams an abstract computational sensory cortex.  In this 
model, external events in the world impinge upon sensory 
organs.  These receptors in turn generate perceptual inputs, 
which feed into specialized perceptual processing 
channels.  A primary outcome of this processing is the 
extraction of descriptive features, which capture abstract 
sensory detail.  This process occurs in parallel within 

multiple sensory pipelines, as illustrated in Figure 3 on the 
right.  This hypothetical example shows auditory and 
visual receptors that provide inputs to their respective 
perceptual pathways.  These channels extract features from 
their perceptual input streams, which are fed into the slices 
displayed on top and then cross-modally clustered to learn 
the different events they are capable of distinguishing. 

A Simple Model of Innate Motor Activity 
We now present an abstract model of innate efferent motor 
activity, which is sometimes called reflexive behavior.  It 
is well established that young animals engage in a range of 
involuntary motor activities; much of this appears to 
facilitate the acquisition of cognitive and motor functions, 
leading to the development of voluntary, intentional 
behaviors.  Behavioral learning is therefore not a passive 
phenomenon; instead, it is often guided by 
phylogenetically "programmed" activities that have been 
specifically selected to satisfy the idiosyncratic 
developmental requirements of an individual species 
(Tinbergen 1951). 
 An abstract model describing the generation of innate 
efferent motor activity is shown in Figure 4.  In a sense, 
this model is the reverse of the one displayed in Figure 3.  
Instead of the outside world generating events, we assume 
an innate generative mechanism stimulates a motor control 
center.  This in turn evokes coordinated activity in a 
muscle or effector system, leading to the generation of an 
external event in the world.   
 In our model, the innate specification of developmental 
behaviors is represented by a joint probability distribution 
over a set of parameters governing motor activity.  This is 

 

 
Figure 3 – An abstract model of sensory processing in our 
framework.  A schematic view is shown on the left, which is 
expanded upon in the example of the right.  Events in the world 
are detected by sensory organs, here labeled A and V, 
representing auditory and visual receptors.  These are fed into 
processing pipelines shown here by the composition of functional 
units.  The features extracted from these pipelines are fed into 
slices, which are then cross-modally clustered with respect to one 
another.   
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Figure 4 – An abstract model of innate motor activity.  A 
schematic view is shown on the left, which is expanded upon in 
the example on the right.  For illustration, we examine a model of 
human vocal articulation.  This is parameterized by articulator 
positions at the lips (L), tongue tip (T), jaw (J), tongue center (C), 
velum (V), and hyoid (H).  Motor control corresponds to a set of 
state equations governing the constrained movement of these 
articulators over some time period.  Parameters describing this 
movement are selected from some assumed innate distribution on 
the top right. 



motivated by the specification of a motor program as a 
descriptive parameterization.  Alternatively, one could 
assume the existence of a set of deterministic motor 
schemas, corresponding to predetermined patterns of 
activity.   

An Integrated Architecture 
We now interconnect these isolated sensory and motor 
systems.  To do this, we introduce the notion of internal 
perception, which allows a system to "watch" the 
generation of its internal motor parameters as if they were 
coming from the outside world.  Thus, we will create 
motor maps that are populated with behavioral data, in 
exactly the same way we create perceptual maps, which are 
populated with sensory data.  The resulting maps do not 
"know" if their data were generated internally or 
externally, and for the purposes of cross-modal clustering, 
it makes no difference.  We can thereby acquire motor 
categories that correspond to previously acquired 
perceptual categories.   
 In our model, internal perception occurs through the 
addition of a Cartesian theater (Dennett 1991), so named 
because it provides a platform for internal observation.  
Pursuing this philosophical metaphor, the homunculus in 
our theater will be replaced by cross-modal clustering.  We 
may therefore use the notion of a Cartesian theater without 
engendering its associated dualist criticisms.  We argue 

that internal perception is a useful framework for higher 
level cognitive bootstrapping, where cross-modal 
clustering replaces an internal observer and any notions of 
"intentionality" are attributed to innate phylogenetic 
structures and tendencies.  Our integrated sensorimotor 
framework is shown in Figure 5.   
 Most importantly, the system observes its own actions.  
Innately generated events impinge upon the sensory organs 
and are fed into the sensory apparatus on the left.  Features 
extracted from these data are fed into sensory slices (C).  
This process thereby creates the co-occurrence linkages 
used by cross-modal clustering between the sensory slices 
(C) and the motor slices (D), which correspond to 
conditional spatial probability distributions on regions 
within their manifolds. 
 We point out that slices are what may be deemed 

 
Figure 5 – An integrated sensory motor framework.  We 
connect the isolated sensory and motor systems with the addition 
of a Cartesian theater (G), which receives data via (1), 
corresponding to innate exploratory behaviors generated in (D).  
These data are fed into motor slices (H) via (2).  These 
exploratory behaviors also trigger motor activity via the efferent 
pathways in (E) and (F).  Most importantly, the system is able to 
perceive its own actions, as shown by (3).  These inputs feed into 
the afferent sensory system, where features are extracted and fed 
into perceptual slices (C).  We thereby learn the Hebbian 
probabilities between the perceptual slices (C) and motor slices 
(H), which describe the generation of these perceptions.  In the 
final step, we cross-modally cluster the motor slices (H) with 
respect to the perceptual slices (C); we thereby learn the motor 
categories that generate previously acquired sensory categories 
learned when the system was perceptually grounded. 

 
Figure 6 – Developmental stages in our model.  i) The juvenile 
acquires perceptual structures from its parent.  ii)  Motor acts are 
observed internally through a Cartesian Theater.  iii)  The effects 
of motor acts are observed externally through perceptual 
channels.  iv) Motor slices are cross-modally clustered with 
respect to perceptual slices.  The juvenile thereby learns how to 
generate the events it learned in stage (i).  v) Random exploratory 
behaviors are disconnected and motor slices take over the 
generation of motor activity.  The juvenile is now able to 
intentionally generate the sensory events acquired from its parent.  
vi)  Internal perception can be used subsequently in non-juveniles 
to refine motor control. 



agnostic data structures – they neither "know" nor "care" 
what type of data they contain.  We can therefore cross-
modally cluster the motor slices (D), based on the 
categories acquired during the perceptual grounding of the 
sensory slices (C).  We note that this is a one-way process.  
In other words, we fix the sensory categories and only 
cluster the motor data.  We thereby learn motor categories 
that correspond to previously acquired perceptual 
categories.   The developmental stages of this model are 
independently illustrated in Figure 6. 
  

An Example 
Let us consider a simple example.  Consider the situation 
illustrated in Figure 7, in which a hypothetical sensory 
system that has learned four events in the world.  These are 
acquired through cross-modal clustering, using the 
framework described above.  For simplicity, only a single 
sensory mode is illustrated here.  This corresponds to stage 
(i) in Figure 6. 
 The second and third stages of our model correspond to 
a system's observation of its own innate, exploratory motor 

activity, as illustrated in Figure 8.  Although reflexive 
behaviors are phylogenetically selected in animals to 
satisfy their individual motor requirements (Tinbergen 
1951), in artificial systems, we must specify how these 
innate behaviors are generated.  While it may often be 
reasonable to design exploratory behaviors that are 
predetermined to satisfy a set of motor goals, we examine a 
generic strategy here.  Our goal is simply to explore a 
motor space and in doing so, simultaneously observe the 
effects internally through the Cartesian theater and 
externally through normal perceptual channels.  Consider, 
for example, the problem of generating pairs of exploratory 
parameters (x,y) in a hypothetical motor system.  We have 
found it useful to select these parameters and thereby 
explore motor spaces according to an Archimedean spiral.  
In this case, the internal perception of this motor activity 
might be represented by the slice on left in Figure 8.   
 Note that the slice representing the external perception 
of this motor activity may "look" entirely different than the 
motor slice representing its generation.  In other words, 
there is no reason to expect any direct correspondence or 
isomorphism between motor and perceptual slices.  The 
motor parameters indirectly generate perceptual events 
through an effector system, which may be non-linear, have 
discontinuities, or display complex dynamics or artifacts. 
 We see this phenomenon in the slice on the right in 
Figure 8, which visualizes perception of the motor activity 
generated by the slice on the left.  For the purpose of this 
example, we generated a non-bijective mapping between 
the motor parameters and the perceptual features of events 
they generate in order to illustrate the degree to which 
corresponding motor and perceptual slices may appear 
incongruous.  Thus, even though these two slices may 
represent the same set of percepts abstractly, they should 
not be expected to bear any superficial resemblance to each 
other.   
 Figure 9 illustrates the outcome of the cross-modal 
clustering phase (iv) in Figure 6.  In this example, the 
system learned four events during parental training, 
illustrated on the left by the four colored distributions.  By 

            
Figure 7 – A hypothetical sensory system that has learned
four events in the world.  These are acquired through cross-
modal clustering, using the framework in the previous chapter.
For simplicity, only a single sensory mode is illustrated here. 

  
Figure 8 – On the left: Internal perception of exploratory motor
behavior corresponding to an Archimedean spiral.  These data
correspond to the parameters used to generate motor activity.   
On the right: External perception of exploratory motor behavior.
This slice perceives the events generated by the motor activity
described by on the left.  These data correspond to perceptual
features describing sensory observations. 

 

 
Figure 9 – Acquisition of voluntary motor control.  Regions in 
the motor map on the right are now labeled with the perceptual 
events they generate in the sensory map. 



following its innate exploratory pattern and simultaneously 
observing the effects of its own actions, the system is able 
to cross-modally cluster its motor map to generate the 
events to which it was exposed during parental training.   
 It is important to note that most motor activities are not 
discrete, discontinuous phenomena.  Thus, rather than 
select individual points in a motor map to trigger 
behaviors, it is far more plausible to imagine a system 
"moving" through a motor map during a time period 
corresponding to sustained activity.  One may wish to 
therefore incorporate additional constraints into motor 
systems, for example, to minimize energy, avoid 
perceptual ambiguity, or maximize stability. 

Learning Birdsong 
We now demonstrate the use of this framework for self-
supervised learning of birdsong.  Our presentation focuses 
on song learning in the zebra finch, a popular species for 
studying oscine songbird vocal production.  Specifically, 
we examine a system that learns to imitate an adult zebra 
finch in a developmentally realistic way, modeled on the 
dynamics of how male juvenile finches learn birdsong 
from their fathers (Marler 1997, Tchernichovski 2000, 
Nottebohm 2005).  Each male essentially learns its father’s 
song with minor, idiosyncratic variations. 
 Zebra finches are unique for the noisy spectral quality of 
their songs, which are distinct from the whistled, tonal 
characteristics of most other songbirds, such as sparrows or 
canaries.  We can see this harmonic complexity in the song 
snippet in Figure 10.  The complexity of their 
vocalizations, along with a range of behavioral and 
neurological similarities, has prompted many researchers 
to propose studying song learning in zebra finches as a 
model for understanding speech development in humans.   

Towards this end, we introduce the novel notion of a 
songeme, which we propose as avian analog to phonemes.  
Songemes are defined in Figure 10 and are motivated by 
the dynamics of syringeal vocalization in oscine songbirds.   
 Most importantly, songemes give us a way to break 
complex bird song into its constituent, generative 
components.  It is these primitive components that are 
acquired during our system’s development.   
 To train our system, we are indebted to Tchernichovski 
(2005), who provided approximately 5,000 samples of a 
single bird’s song to act as its “father.”  After partitioning 
these into songemes, we extracted streams of acoustic 
features using a customized version of the “Sound Analysis 
for Matlab” software package (Saar 2005).  For each 
songeme, we averaged the feature values within it to obtain 
a compact acoustic description (Figure 11).  These values 
were cross-modally clustered within an assembly of 11 
slices, as shown in Figure 12.  Although these types of 
interconnections are likely phylogenetically determined in 
nature, a more sophisticated artificial system might employ 
techniques to automatically select interconnections 
between acoustic features based on mutual information.   
However, given our task here is to demonstrate acquisition 
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Figure 10 – Partitioning a single syllable into songemes,
viewed as spectral derivatives.  The song syllable on top is
partitioned into songemes on the bottom, which captures its fine
structure.  The songeme partitioning is computed by finding the
peaks in the smoothed log(power) of the signal between 860 and
8600Hz, corresponding to the expected vocalization range of a
zebra finch.  The songeme boundaries are determined by finding
the local minima adjacent to these peaks. 
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Figure 11 – Feature extraction for a single zebra finch song 
partitioned into songemes.  The solid line within each songeme 
shows the mean value for the corresponding feature.   



of sensorimotor control using perceptual mechanisms, 
automating the feature selection and their interconnections 
was not of great concern.  Nonetheless, it should be 
acknowledged that a fair amount of manual effort went 
into architecting the birdsong learner illustrated in Figure 
12, which then was cross-modally clustered based on the 
input song of its parent.   
 We examine two of these slices in detail in Figure 14, 
which are among the most interesting of our results from a 
scientific perspective. 

Birdsong Synthesis 
To implement the motor component of this system, we 
created a naive articulatory synthesizer for generating 
birdsong, based on the additive synthesizer in the Common 
Lisp Music System and translated into Matlab by Robert 
Strum.  The motor parameters in our model correspond to: 
(1) syringeal excitation; (2) pitch; (3) power; and (4) 
temporal, frequency and amplitude envelopes 
corresponding to simple models of avian vocalization.  In 
our implementation, chaotic syringeal excitation is realized 
by phase and amplitude perturbations of a vocalization's 
harmonic components.  We note that this does not 
correspond with a biologically realistic syringeal 
mechanism, which would be complicated to model 
accurately.  However, our goal here is not to model 
birdsong with perfect accuracy but rather to demonstrate 
self-supervised sensorimotor learning within our 
framework.  Making the synthesizer sounds generally 
realistic was sufficient for our purposes, as we discuss 
below.   
 We refer to the nascent activity of the system as 
babbling, and some examples of increasingly complex 
babbling are shown in Figure 13.  These demonstrate the 
system's acquisition of harmonic complexity in response to 
auditory feedback.  The initial babbling corresponds to 

uninformed, innate motor behavior.  As the system 
simultaneously listens to its own outputs while “watching” 
the internal generation of motor activity, it learns which 
regions of its motor maps are responsible for providing 
harmonic complexity, thereby matching this feature of its 
father’s song through cross-modal clustering.  Each feature 
is acquired in turn, until the complete set of songemes is 
learned.  This differential acquisition of acoustic features is 
characteristic of zebra finch song development. 

         
Figure 12 – Slices for birdsong learning.  On the bottom, one 
dimensional slices feed songeme feature values into the two 
dimensional slices on the top.  The colored lines represent learned 
Hebbian linkages.  The slices are then cross-modally clustered to 
learn songeme categories.  This perceptually grounds the system 
with respect to its "parent's" song.   
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Figure 13  – The temporal evolution of bird babbling in our 
system.  This figure illustrates the acquisition of harmonic 
complexity due to auditory feedback.   
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Figure 14– Two cross-modally clustered zebra finch slices.
Among the most interesting of our results, we can interpret the 
left slice as demonstrating the system has learned there are three 
different types of parent vocalizations: 1) the blue region (far left) 
corresponds to chaotic sounds.  This is similar to fricative speech 
in humans; 2) the green region (bottom) corresponds to pure 
tones, such as whistles; and 3) the orange region (top) 
corresponds to harmonic sounds, such as in the distance call.
The right slice shows the system has learned the pitch structure 
for seven different component vocalizations used to form 
songemes. 



Results 

Evaluating the cross-species empirical results presented in 
this paper is challenging, as the notion of a “correct” 
answer proves elusive.  Spectrograms corresponding to the 
“father” and “son’s” songs are shown in Figure 15. 
Although the acquired song sounds recognizably like the 
parent bird’s to human ears, does it sounds like a bird to 
another bird? 
 Perhaps the best way to evaluate this work would be to 
use it to train a fledgling and see if it acquires song.  In 
other words, could we use our system as a parent?  This is 
a fascinating possibility, however, it is important to keep in 
mind that the goal of this paper is to present an architecture 
for sensorimotor learning in artificial systems; songbirds 
are a well-studied model for this type of acquisition, and as 
such, they are helpful guideposts for examining this 
problem.  Nonetheless, our goal is to propose an 
architecture for more sophisticated computational systems, 
rather than to precisely imitate the song of a particular bird.   
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Figure 15 – Empirical evaluation: On the top is a sample of the 
zebra finch song used as the "parent" for our system.  On the 
bottom is the system's learned imitation, where the acquired 
songemes have been fit to the template of the parent’s song and 
smoothed.  Audio files corresponding to these songs may be 
obtained by searching for the author’s web page via a search 
engine. 
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