
Building Brains for Rooms:

Designing Distributed Software Agents

Michael H. Coen

MIT AI Lab
545 Technology Square
Cambridge, MA 02139

mhcoen@ai.mit.edu

Abstract
This paper argues that complex, embedded software agent
systems are best constructed with parallel, layered
architectures. These systems resemble Minskian Societies of
Mind and Brooksian subsumption controllers for robots,
and they demonstrate that complex behaviors can be had via
the aggregates of relatively simple interacting agents. We
illustrate this principle with a distributed software agent
system that controls the behavior of our laboratory’s
Intelligent Room.

Introduction

This paper argues that software agent systems that interact
with dynamic and complex worlds are best constructed
with parallel, layered architectures. We draw on Brooks’
subsumption architecture (Brooks, 1985) and Minsky’s
Society of Mind (Minsky, 1986) theory to dispel the notion
that sophisticated and highly capable agent systems need
elaborately complex and centralized control.

Towards this end, we present an implemented system of
software agents that forms the backbone of our
laboratory’s “Intelligent Room” (Torrance, 1995). These
agents, known collectively as the Scatterbrain, control an
environment very tenuously analogous to the intelligent
rooms so familiar to Star Trek viewers --- i.e., rooms that
listen to you and watch what you do; rooms you can speak
with, gesture to, and interact with in other complex ways.

 The Scatterbrain consists of approximately 20 distinct,
intercommunicating software agents that run on ten
different networked workstations. These agents’ primary
task is to link various components of the room (e.g.,
tracking cameras, speech recognition systems) and to
connect them to internal and external stores of information
(e.g., a person locator, the World Wide Web). Although an

 1

Copyright © 1997, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.
 2This material is based upon work supported by the Advanced Research
Projects Agency of the Department of Defense under contract number
F30602—94—C—0204, monitored through Rome Laboratory and
Griffiss Air Force Base.

individual agent may in fact perform a good deal of
computation, we will focus our interest on the ways in
which agents get connected and share information rather
than how they internally manipulate their own data. And
while the Intelligent Room is a fascinating project in itself,
we will treat it here mainly as a test-bed to learn more
about how software agents can interact with other
computational and real entities.

Our approach has also been modeled on a somewhat
unorthodox combination of the Brooks (Brooks, 1991) and
Minsky approaches to core AI research. As pointed out in
(Kautz et. al., 1994), it is difficult to find specific tasks for
individual agents that are both feasible and useful given
current technology. Many of the non-trivial tasks we
would like software agents to perform are simply beyond
the current state of the art. However, taking our cue from
Minsky, we realize interesting and complex behaviors can
be had via the aggregates of simpler ones; groups of simple
agents can be combined to do interesting things. We also
found Brooks’ subsumption architecture useful for guiding
the creation of the Scatterbrain, particularly for building
parallel layers of behaviors that allow the room to process
multiple events simultaneously and to change contexts
quickly. In many ways, the room is similar to a
disembodied robot, so it comes as no surprise that the
robotics community can provide insight into how the
room’s brain should be designed. We argue, however, that
this does not preclude insights obtained in creating the
Scatterbrain from applying to other distributed software
agents systems. Rather, as argued by Etzioni (Etzioni,
1994, 1996; Etzioni et al. 1994), even agents who solely
interact with the online world (and don’t have cameras for
eyes and microphones for ears) can be viewed as a kind of
simulated, virtual robot. More important than its
connection with the real world, what the Scatterbrain
shares with Brooks’ robots is its organizational structure
and its lack of central processing; all of the Scatterbrain’s
agents work together in parallel with different inputs and
data being processed simultaneously in different places.

The next section of this paper describes the Intelligent
Room’s physical infrastructure. After this, we introduce
the room’s most recent application, a Tour Guide agent
that helps a person present our lab’s research to visitors.

Next, we present in detail the room’s software agent
architecture, including the design and implementation of
several components of the Scatterbrain and Tour Guide
agents. We also contrast our approach with several earlier
monolithic efforts taken in our lab to program and control
the behavior of the Intelligent Room.

Part of the motivation for this work has been to push the
envelope of software agent design. Much has been made
over the lack of obvious “killer applications” for software
agents. After all, how many automated meeting schedulers
does the world need? We are interested in exploring new
realms of complex interactions for software agents which
in and of themselves constitute these “killer apps” that
have been seemingly so elusive from the single-agent
perspective. Minsky argues that societies of agents can do
things that seem inordinately complex when their behavior
is viewed as the work of a single entity. Our experiments
with fairly large assemblies of software agents mark an
early attempt towards establishing that this is indeed the
case.

The Intelligent Room

The Intelligent Room project explores new forms of
interaction and collaboration between people and
computers. Our objective is to create a new kind of
environment capable of interpreting and contributing to
activity within it. On a grand scale, we are examining a
paradigmatic shift in what it means to use a computer.
Rather than view a computer as a box with a keyboard and
monitor used for traditional computational tasks, we
envision computers being embedded in the environment
and assisting with ordinary, traditionally non-
computational activity. For example, if I lose my keys in
the Intelligent Room, I’d someday simply like to ask the
room where I left them.

The Intelligent Room is an excellent environment in
which to conduct core AI research according to the criteria
of both Brooks (Brooks, 1991) and Etzioni (Etzioni, 1994),
The room is “physically” grounded in the real-world. The
room’s cameras and microphones allow it to deal allow it
to deal with the kinds of complex, unpredictable and
genuine phenomena that Brook’s argues is essential for a
core AI research testbed. However, the room also
processes abstract, symbolic information that actually
represents something extant, thereby satisfying Etzioni’s
desiderata. For example, if a person asks the room, What
is the weather in Boston?, the room needs to recognize
more than a meaningless weather token - it needs to get
that information and display it to the user. This is done
using a variety of information retrieval systems available
on the World Wide Web.

This section first describes the room’s physical
infrastructure. We then present the room’s most recent
application, a Tour Guide agent that helps a person present
our lab’s research to visitors. In the next section, we
discuss in detail the room’s software agent architecture,
including the design and implementation of the

Scatterbrain and Tour Guide agents.

Infrastructure - From the bottom up
Figure 1 diagrams the room’s physical layout. The
Intelligent Room’s infrastructure consists of several
hardware and software systems that allow the room to
observe and control its environment in real-time. The
positions of people in the room are determined using a
multi-person tracking system. Hand pointing actions are
recognized by two separate gesture recognition systems.
The one used in the application described below allows the
room to determine where someone is pointing on either of
two images projected on a room wall from high-intensity,
ceiling mounted VGA projectors. A speech recognition
system developed by (Zue, 1994) allows the room to listen
to its inhabitants, and it is used in conjunction with a
speech generator to enable to the room to engage in
sustained dialogues with people. The room interfaces with
the START natural-language information retrieval system
(Katz, 1990) to enhance its ability to understand complex
linguistic input. The room also controls two VCRs and
several other video displays in addition to the ceiling
mounted projectors. A matrix switcher allows arbitrary
connections between the room’s audio/visual inputs and
outputs.

The room’s hardware systems are directly interfaced
with low-level C programs to insure their real-time
operation. For example, the room’s tracking cameras have
30 Hz frame rates and their data streams need to be
synchronously processed using direct operating system
calls.

Figure 1 - Intelligent Room Floor Plan

The Tour Guide Agent
The room’s most recent application provides support for
someone giving tours of our laboratory. These tours
typically involve a group of visitors meeting with a
graduate student who discusses and answers questions
about the lab’s research and shows several video clips.
Rather than have these presentations given in an ordinary

conference room, we have decided to have them in the
Intelligent Room so the room can assist the human tour
guide. A typical dialogue between the room and student
tour guide is:

Tour guide: Computer, load the AI Lab tour.
Room: I am loading the AI Lab tour. Right projector now
displays a Netscape browser window with a special Lab Tour
home page.
Tour guide: Using hand, points at link to a research project
displayed on the wall and says, Computer, follow this link
Room: Loads the indicated page into the browser.
Tour guide: Computer, show me the Intelligent Room home
page.
Room: Loads the URL corresponding to the name of the page.
Then says, I have a video clip for this research. Would you like
to see it?
Tour guide: Computer, yes.
Room: Moves appropriate video casettetape to correct position
and starts the clip playing on left projector.
Tour guide: (watches video for a few seonds) Computer, stop the
video. Computer, play the Virtual Surgery clip.
Room: Performs requested action. Stops video when clip is done.
Tour guide: Computer, how many graduate students are there at
the AI Lab?
Room: I am asking the START system for the answer…The
Laboratory's 178 members include 17 faculty members, 26
academic staff, 29 research and support staff, and 106 graduate
 students. Also displays web page with elaborated answer.

Other applications include a control center for planning
huricane disaster relief and an intelligent living room.

Control Architectures

The room has been discussed so far at its most concrete
and most abstract: namely, its hardware infrastructure and
its high-level software applications. How these applications
are actually created on top of this infrastructure, i.e., how
the room actually works, is the subject of this section.

Monolithic Control
In its early stages of development, each of the room’s
components was wrapped inside a TCP client or server that
connected with a monolithic C-language program that
controlled the room’s behavior. Figure 2 contains this
controller along with each of the programs it connected
with. (Included in parentheses with each component is the
name of the workstation it ran on.)

From a conceptual point of view, the most serious flaw
with the centralized controller was that it failed to
distinguish between basic functioning common to all room
contexts –such as noticing when someone came through
the doorway – and unique activities associated with a
particular room application. Furthermore, adding new
functionality to the room required modifying the
monolithic controller and manually determining the
interactions and conflicts between old and new room

functions. There was no way to modularly add new room
capabilities on top of old ones and assume everything
would continue working as expected.

Also, directing the information flow among the room’s
various components –one of the main functions of the
controller – was overly difficult in a language like C. We
needed higher-level mechanisms for describing how room
information moved among its producers and consumers.
 From a practical point of view, the monolithic controller
also made it difficult to reconfigure the room dynamically
or restart pieces of the room independently of others. We
often found while working on the room that in order to
restart one component, it was necessary to restart the entire
room. This was particularly frustrating because starting the
room required the coordinated activity of several people to
start particular programs (in a predetermined order) and
configure various room hardware. It was also difficult to
move components of the room to different workstations
because that required modifying hard-coded machine
dependencies in the code.

SodaBot
Although we managed to use the monolithic approach

for several very simple applications, it seemed unlikely to
scale to the more complex interactions we had in mind for
the room. Our initial dissatisfaction with this architecture
led to the adoption of the SodaBot software agent platform
(Coen, 1994) for duplicating the functionality of our initial
monolithic room controller with a system of distributed
software agents.

SodaBot provides both a programming language and
runtime platform for software agents, and it simplifies
writing interactive programs by providing high-level
primitives for directing flows of online information. For
example, it provides mechanisms for writing agent-
wrappers that interface with preexisting software either via
text-based or graphical user interfaces (X-windows and
Windows 95/NT).

For example, we created a SodaBot Netscape Agent that
controls interactions with a Netscape browser. It offers
functions to other agents such as those listed below.

SpeechOut
(oat-bran)

Netscape
(testerosa)

Zue Client
(love-bug)

Zue Server
(general-lee)

Tracking
(brave-heart, diablo, & raphael)

Pointing
(big-bang)

Enhanced Reality
(testerosa)

VideoMux
(wonderbug)

VCR
(wonderbug)

X-Control
(testerosa)

START
(sakharov)

Big Messy
C Program
(outer-space)

Figure 2 - The Monolithic Controller

Function Purpose
New (host) Runs a new browser on given host
Load(url) Loads URL in browser
Page_watch() Arranges for notification (of URL) to

another agent whenever browser loads new
page

Link_watch() Arranges for notification to another agent
when a new page is loaded containing its
URL/anchor text pairs

Text Returns text of current page
Page(direction) Moves browser scroll-bar in given

direction

For the Intelligent Room, we use SodaBot agents as
computational glue for interconnecting all of the room’s
components and moving information among them.
Initially, we simply duplicated the room’s monolithic
controller using SodaBot’s high-level programming
language. Most notably, SodaBot simplified description of
room functioning and interaction with remote TCP-based
clients and servers by removing networking and hardware
details. However, this new room controller, dubbed the
Brain, was still a computational bottleneck, and we had yet
to distinguish between a general behavioral infrastructure
for the room (i.e. its core functionality) and the more
complex, application specific interactions we built on top
of it. This led to the development of the room’s current
control system, the Scatterbrain, which is the subject of the
next section.

Distributed Room Control
The Scatterbrain (Figure 3) is platform on top of which
room applications can be layered. In the figure, each circle
represents a distinct SodaBot software agent that is
wrapped around and interfaced with an external
application. (The layer containing these “base applications”
is not shown.) Each of the Scatterbrain agents is
responsible for a different room function. For example, the
SpeechIn Agent, runs and interfaces with our speech
recognition systems. Once started, SpeechIn allows other
agents to submit context-free grammars corresponding to
spoken utterances they are interested in. As they do, it
updates the speech recognition systems to contain the
current set of valid utterances. When a sentence is heard
by one of the speech systems, SpeechIn then notifies those
agents who indicated they were interested in it. As another
example, the Netscape Agent connects to the Display Agent
to make sure that when web pages are loaded, the browser
is actually displayed somewhere in the room where people
can see.

The Scatterbrain agents are distributed among 10
different workstations and rely on SodaBot interagent
communication primitives to locate and communicate with
each other. The lines in the figure represent default
interactions the room manifests in all applications, such as
having various agents connect with the speech recognition
agents and making sure the tracking system notices when

someone comes in the room. Essentially, the Scatterbrain
implements the Intelligent Room’s reflexes.

Figure 3 – The Agents of the Scatterbrain

The room no longer has a central controller. A small
startup agent runs all of the Scatterbrain agents which then
autonomously move to the machines on which they are
supposed to run. All the Scatterbrain agents then work
together in parallel with different inputs and data being
processed simultaneously in different places. This makes
the room robust to failure in one of its sub-systems and
allows us to restart sections of the room independently.
Also, the SodaBot system allows real-time data
connections between agents to be broken and resumed
invisibly. For example, if the Tracking Agent is updating
another agent in real-time, either one of them can be
stopped and restarted and they will be automatically
reconnected.

Layerd on top of the Scatterbrain, we created higher-
level agents that rely on the Scatterbrain’s underlying
behaviors. Figure 4 contains the room’s intermediate
information-level applications such as a Weather Agent
that can obtain forecasts and satellite maps for particular
places. By relying on the previously described interaction,
if the Weather Agent uses the Netscape Agent to display
information, it doesn’t need to be concerned with insuring
the browser is displayed in a place where the user is
looking.

Figure 4 – Information Agents

We then created specific room application agents that
relied on the lower-level, general-purpose agents in the
room. Figure 5 contains a diagram of several room
applications and how they connect to the room’s
underlying architecture. Note that all of the objects in the
figure represent SodaBot software agents and many of

Dragon

Summit
FingerPointing

Tracking

X-Control

LaserPointing

VideoMux

Enhanced
Reality

SpeechOutSpeechIn

VCR SGI Setup

Display

Netscape

Dragon

Summit
FingerPointing

Tracking

X-Control

LaserPointing

VideoMux

Enhanced
Reality

SpeechOutSpeechIn

VCR SGI Setup

Display

Weather
Slides

Storm
Interface

START
Interface

Netscape

them connect to non-displayed external applications. The
next section explores two of the application agent
interactions in more detail.

Figure 5 – Intelligent Room Software Agents

Agent Interaction

This section examines how we can get the room to exhibit
interesting behavior by layering agents on top of each
other. We examine two separate room behaviors and then
discuss how they combine to produce greater functionality.

We have a system in the room called Storm, used in a
disaster relief planning scenario, that can display scalable
maps of the Carribean. People can interact with Storm
using pointing and speech. For example,

User: Computer, display Storm on the left projector.
(User now points at Puerto Rico.)
User: Computer, zoom in.
(User now points at San Juan.)
User: Computer, what is the weather here?
(The room then displays a weather forecast for San Juan
inside a Netscape browser on the other projector.)

To see how this scenario works, we first examine pointing
recognition as an example of simple agent interaction. We
then look at a more complex scenario from the Tour Guide
agent presented earlier.

By default, the room’s projectors are set by the Display
Agent to show portions of the screens of two of our SGI
workstations. If someone points someplace close to one of
these projected displays, the display’s mouse cursor moves
to that position. Although this seems like a trivial process,
there is a fair amount of effort behind it, as shown in
Figure 6. The person moving his finger is reflected in the
camera images received by the neural network pointing
software. This reconciles the images to produce new
pointing information. These new data are passed to the
FingerPointing Agent which is responsible for handling all
such events in the room. By default, the Scatterbrain has
all pointing events on the each display sent to an agent

called the X-Server that controls the actual SGI workstation
generating the display. This X-Server agent then moves
the mouse cursor to the appropriate position, which is
reflected in the displayed image. However, the Storm
Agent overrides this default behavior and redirects
pointing events on the Storm display to itself. Upon receipt
of a pointing event, it updates the Storm application’s
internal cursor, which moves intelligently between salient
geographical features. For example, pointing near San
Juan will cause the Storm program to register the city with
the Storm Agent, rather than a point three pixels to its left.
Finally, note that the various agents are responsible for
translating between the room’s many coordinate systems,
as shown along the connections.

Figure 6 – Pointing in the Room

When someone in the room says What’s the weather here?,
the SpeechIn Agent notifies the room’s Disaster Relief
Planning Agent because this utterance is contained in the
grammar that agent had registered when first run. The
Storm Agent is then contacted to determine what
geographical entity is closest to where the person was
pointing close to the time they asked the question. (Low-
level room events are time-stamped by agents in order to
facilitate multimodal reconciliation.) This process is
shown in Figure 7.

Figure 7 – Multimodal Resolution

Pointing
Neural

Net
Image Image

X-Control
FingerPointing

VideoMux

VideoMux

(screen#,x,y)

(x’,y’)

(x”,y”)
Storm
Interface

Storm
Program

Display
Dragon

Summit
FingerPointing

Tracking

X-Control

LaserPointing

VideoMux

Enhanced
Reality

SpeechOutSpeechIn

VCR SGI Setup

Display

Disaster Relief
Scenario

Talk
Presentation

Web
Surfer

Weather
Slides

Storm
Interface

START
Interface

Netscape

Pointing
Neural

Net
Image Image

X-Control
FingerPointing

VideoMux

VideoMux

(screen#,x,y)

(x’,y’)

(x”,y”)

SpeechIn

Storm
Interface

Disaster Relief
Scenario

“What’s the weather here?”

Figure 8 – Loading Weather in Browser

When the Disaster Relief Agent is told what region’s
weather is being queried, the Weather Agent is then asked
to display the requisite information. After consultation
with the START Agent to find an appropriate URL which
contains this information, it asks the Netscape Agent to
load the given page as shown in Figure 8, which also
displays the complete agent interaction for handling the
user’s question.

A separate interaction from the Tour Guide Agent
presented earlier is shown in Figure 9. Here’s someone
asks the room to load a particular web page, e.g.,
Computer, load the Intelligent Room home page.

Figure 9 – Video Notification

After the Netscape Agent receives this request from the
SpeechIn Agent, it loads the URL in the netscape browser.
Whenever the Netscape Agent loads a new page, it also
notifies the Web Surfer Agent that it is doing so. The Web
Surfer Agent consults with the Start Agent to check if it

has any additional information about the content of the
newly loaded web page.3 In this case, it announces that it
has a relevant video. If the user indicates he wants to see
the clip, the VCR agent announces that it is cueing to the
appropriate tape position and then plays the segment.

The Scatterbrain architecture combines these two
behaviors to allow the room, for example, to notify us if
we have additional information about things being
referenced during other interactions. For example, the
room can volunteer to show video clips about San Juan
when a person asks for the weather there. This entire
interaction is contained in Figure 10, which simply
overlaps Figures 8 and 9.

Figure 10 – Combining Behaviors

One of our primary interests is making the room an
active partner in applications rather than a passive servant
that simply responds to explicit commands. The video-
notify behavior discussed here is an early effort towards
this. By layering behaviors on top of the Scatterbrain that
are indirectly triggered by room activity rather than by
direct user instruction, the room can autonomously become
involved in its ongoing activities and thereby appear more
spontaneous and intelligent to users.

Note that although the Scatterbrain is not actually a
subsumption system, the influence of subsumption
architecture is clear. The room is controlled by multiple
layers of behaviors in which higher-level agents rely on the
activity of lower-level ones. When appropriate, these
higher-level agents can also override the specific behaviors
of other agents. The Scatterbrain architecture also supports
combination of agent behaviors to get enhanced
functionality.

3 Note that this information is not contained within the page
itself.

VideoMux

VideoMux

SpeechIn

START
Interface

Netscape
Web

Surfer Display
VCR

SpeechOut

“Load the Intelligent
Room Home Page”

Pointing
Neural

Net
Image Image

X-Control
FingerPointing

VideoMux

VideoMux

(screen#,x,y)

(x’,y’)

(x”,y”)

SpeechIn

Weather

Storm
Interface

START
Interface

Disaster Relief
Scenario

Netscape

SpeechOut

Display

Pointing
Neural

Net
Image Image

X-Control
FingerPointing

VideoMux

VideoMux

(screen#,x,y)

(x’,y’)

(x”,y”)

SpeechIn

Weather

Storm
Interface

START
Interface

Disaster Relief
Scenario

Netscape
Web

Surfer Display
VCR

SpeechOut

“What’s the weather here?”

Conclusion

Motivated by Minsky’s Society of Mind and Brooks’
subsumption approach to building robots, we have argued
that software agent systems that interact with complex and
dynamic worlds are best created from distributed
collections of simple agents with parallel, layered
architectures.

The complexity of the overall system comes from the
interactions of these agents, even though no individual
agent is in itself particularly complex and no single agent
centralizes the system’s control. This approach allows us
to build robust, reusable, and behaviorally sophisticated
systems that are capable of interacting with the ever-
changing real and online worlds. To demonstrate this
approach, we presented the Scatterbrain – a distributed
collection of software agents that control our laboratory’s
Intelligent Room.

Acknowledgements

Development of the Intelligent Room has involved the
efforts of many people. Professors Tomas Lozano-Perez,
Lynn Stein and Rodney Brooks were principally
responsible for the room's conception and construction.
Mark Torrance led the project during its first year and
wrote the room's earliest monolithic controllers. The
room's many vision systems are due to the efforts of
Jeremy De Bonet, Chris Stauffer, Sajit Rao, Tomas
Lozano-Perez, Darren Phi Bang Dang, JP Mellor, Gideon
Stein, and Kazuyoshi Inoue. Polly Pook contributed to the
design of the room's distributed computation and has
worked on modeling the room's functionality as a cognitive
process. Josh Kramer wrote large sections of the
Scatterbrain and participated in the development of the
SodaBot system. All of the above mentioned were also
responsible for designing room applications, and many of
the above hacked on various room components. Kavita
Thomas, along with help from Mark, Polly, and Tomas,
configured Victor Zue's speech recognition system. (Jim
Glass provided assistance in getting the system running.)
Boris Katz and Deniz Yuret provided much support in
interfacing with and customizing the START natural
language system. Mike Wessler created one of the room's
earliest applications and wrote invaluable graphical
interfaces for much of the room's hardware.

References

Brooks R. 1985: A Robust Layered Control System for a
Mobile Robot, AI Lab Memo 864, Massachusetts Institute
of Technology. Cambridge, MA.

Brooks R. 1991: Intelligence without Representation, in
Special Volume: Foundations of Artificial Intelligence,
Artificial Intelligence, 47(1-3).

Coen, M. 1994. SodaBot: A Software Agent Environment
and Construction System. AI Lab Technical Report 1493.
Massachusetts Institute of Technology. Cambridge, MA.

Etzioni, O. 1994: Intelligence without Robots, AI
Magazine, Winter 1994.

Etzioni, O.; Levy, H.; Segal, R.; and Thekkath,C. 1994. OS
Agents: Using AI Techniques in the Operating System
Environment. Technical Report 93-04-04. Dept. of
Computer Science. University of Washington. Seattle,
WA.

Etzioni, O. 1996: Moving Up the Information Food Chain:
Deploying Softbots on the World Wide Web, in
Proceedings of the Thirteenth National Conference on
Artificial Intelligence, AAAI Press/MIT Press, Cambridge,
MA, pp.1322-1326, 1996.

Kautz, H.; Selman, B.; Coen, M.; and Ketchpel, S. 1994.
An Experiment in the Design of Software Agents. In
Proceedings of the Twelfth National Conference on
Artificial Intelligence, AAAI Press/MIT Press,
Cambridge, MA.

Katz, B. 1990. Using English for Indexing and Retrieving.
In Artificial Intelligence at MIT: Expanding Frontiers.
Winston, P.; and Shellard, S. (editors). MIT Press,
Cambridge, MA. Volume 1.

Minsky, M. 1986. Society of Mind. New York. Simon
and Schuster.

Torrance, M. 1995. Advances in Human-Computer
Interaction: The Intelligent Room, In Working Notes of
the CHI 95 Research Symposium, May 6-7, 1995, Denver,
Colorado.

Zue, V. 1994. Human Computer Interactions Using
Language Based Technology, IEEE International
Symposium on Speech, Image Processing & Neural
Networks, Hong Kong..

