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ABSTRACT 
 
This thesis presents a self-supervised framework for perceptual and motor learning based upon 
correlations in different sensory modalities.  The brain and cognitive sciences have gathered an 
enormous body of neurological and phenomenological evidence in the past half century 
demonstrating the extraordinary degree of interaction between sensory modalities during the 
course of ordinary perception.  We develop a framework for creating artificial perceptual systems 
that draws on these findings, where the primary architectural motif is the cross-modal 
transmission of perceptual information to enhance each sensory channel individually.  We present 
self-supervised algorithms for learning perceptual grounding, intersensory influence, and sensory-
motor coordination, which derive training signals from internal cross-modal correlations rather 
than from external supervision.  Our goal is to create systems that develop by interacting with the 
world around them, inspired by development in animals. 
 
We demonstrate this framework with: (1) a system that learns the number and structure of vowels 
in American English by simultaneously watching and listening to someone speak.  The system 
then cross-modally clusters the correlated auditory and visual data.  It has no advance linguistic 
knowledge and receives no information outside of its sensory channels.  This work is the first 
unsupervised acquisition of phonetic structure of which we are aware, outside of that done by 
human infants.  (2) a system that learns to sing like a zebra finch, following the developmental 
stages of a juvenile zebra finch.  It first learns the song of an adult male and then listens to its own 
initially nascent attempts at mimicry through an articulatory synthesizer.  In acquiring the 
birdsong to which it was initially exposed, this system demonstrates self-supervised sensorimotor 
learning.  It also demonstrates afferent and efferent equivalence – the system learns motor maps 
with the same computational framework used for learning sensory maps.  
 
 
Thesis Supervisor: Whitman Richards 
Title: Professor of Brain and Cognitive Sciences 
 
Thesis Supervisor: Howard Shrobe 
Title: Principal Research Scientist, EECS
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We have sat around for hours and wondered how you look. If you have closed 
your senses upon silk, light, color, odor, character, temperament, you must be 
by now completely shriveled up. There are so many minor senses, all running 
like tributaries into the mainstream of love, nourishing it.   

The Diary of Anais Nin (1943) 

 

He plays by sense of smell. 

Tommy, The Who (1969) 

 
 

Chapter 1  

Introduction     

This thesis presents a unified framework for perceptual and motor learning based upon 

correlations in different sensory modalities.  The brain and cognitive sciences have 

gathered a large body of neurological and phenomenological evidence in the past half 

century demonstrating the extraordinary degree of interaction between sensory modalities 

during the course of ordinary perception.  We present a framework for artificial 

perceptual systems that draws on these findings, where the primary architectural motif is 

the cross-modal transmission of perceptual information to structure and enhance sensory 

channels individually.  We present self-supervised algorithms for learning perceptual 

grounding, intersensory influence, and sensorimotor coordination, which derive training 

signals from internal cross-modal correlations rather than from external supervision.  Our 

goal is to create perceptual and motor systems that develop by interacting with the world 

around them, inspired by development in animals. 

Our approach is to formalize mathematically an insight in Aristotle's De Anima (350 

B.C.E.), that differences in the world are only detectable because different senses 

perceive the same world events differently.  This implies both that sensory systems need 

                                                 
A glossary of technical terms is contained in Appendix 1. Our usage of the word "sense" is defined in §1.5. 



 18    

some way to share their different perspectives on the world and that they need some way 

to incorporate these shared influences into their own internal workings.   

We begin with a computational methodology for perceptual grounding, which addresses 

the first question that any natural (or artificial) creature faces: what different things in the 

world am I capable of sensing?  This question is deceptively simple because a formal 

notion of what makes things different (or the same) is non-trivial and often elusive.   We 

will show that animals (and machines) can learn their perceptual repertoires by 

simultaneously correlating information from their different senses, even when they have 

no advance knowledge of what events these senses are individually capable of 

perceiving.  In essence, by cross-modally sharing information between different senses, 

we demonstrate that sensory systems can be perceptually grounded by mutually 

bootstrapping off each other.   As a demonstration of this, we present a system that learns 

the number (and formant structure) of vowels in American English, simply by watching 

and listening to someone speak and then cross-modally clustering the accumulated 

auditory and visual data.  The system has no advance knowledge of these vowels and 

receives no information outside of its sensory channels.  This work is the first 

unsupervised acquisition of phonetic structure of which we are aware, at least outside of 

that done by human infants, who solve this problem easily. 

The second component of this thesis naturally follows perceptual grounding.  Once an 

animal (or a machine) has learned the range of events it can detect in the world, how does 

it know what it's perceiving at any given moment?  We will refer to this as perceptual 

interpretation.  Note that grounding and interpretation are different things.  By way of 

analogy to reading, one might say that grounding provides the dictionary and 

interpretation explains how to disambiguate among possible word meanings.  More 

formally, grounding is an ontological process that defines what is perceptually knowable, 

and interpretation is an algorithmic process that describes how perceptions are 

categorized within a grounded system.  We will present a novel framework for perceptual 

interpretation called influence networks (unrelated to a formalism know as influence 

diagrams) that blurs the distinctions between different sensory channels and allows them 

to influence one another while they are in the midst of perceiving.  Biological perceptual 
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systems share cross-modal information routinely and opportunistically (Stein and 

Meredith 1993, Lewkowicz and Lickliter 1994, Rock 1997, Shimojo and Shams 2001, 

Calvert et al. 2004, Spence and Driver 2004); intersensory influence is an essential 

component of perception but one that most artificial perceptual systems lack in any 

meaningful way.  We argue that this is among the most serious shortcomings facing 

them, and an engineering goal of this thesis is to propose a workable solution to this 

problem.  

The third component of this thesis enables sensorimotor learning using the first two 

components, namely, perceptual grounding and interpretation.  This is surprising because 

one might suppose that motor activity is fundamentally different than perception.  

However, we take the perspective that motor control can be seen as perception 

backwards.  From this point of view, we imagine that – in a notion reminiscent of a 

Cartesian theater – an animal can "watch" the activity in its own motor cortex, as if it 

were a privileged form of internal perception.  Then for any motor act, there are two 

associated perceptions – the internal one describing the generation of the act and the 

external one describing the self-observation of the act.  The perceptual grounding 

framework described above can then cross-modally ground these internal and external 

perceptions with respect to one another.  The power of this mechanism is that it can learn 

mimicry, an essential form of behavioral learning (see the developmental sections of 

Meltzoff and Prinz 2002) where one animal acquires the ability to imitate some aspect of 

another's activity, constrained by the capabilities and dynamics of its own sensory and 

motor systems.  We will demonstrate sensorimotor learning in our framework with an 

artificial system that learns to sing like a zebra finch by first listening to a real bird sing 

and then by learning from its own initially uninformed attempts to mimic it. 

This thesis has been motivated by surprising results about how animals process sensory 

information.  These findings, gathered by the brain and cognitive sciences communities 

primarily over the past 50 years, have challenged century long held notions about how 

the brain works and how we experience the world in which we live.  We argue that 

current approaches to building computers that perceive and interact with the real, human 

world are largely based upon developmental and structural assumptions, tracing back 
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several hundred years, that are no longer thought to be descriptively or biologically 

accurate.  In particular, the notion that perceptual senses are in functional isolation – that 

they do not internally structure and influence each other – is no longer tenable, although 

we still build artificial perceptual systems as if it were.   

1.1 Computational Contributions 

This thesis introduces three new computational tools.  The first is a mathematical model 

of slices, which are a new type of data structure for representing sensory inputs.  Slices 

are topological manifolds that encode dynamic perceptual states and are inspired by 

surface models of cortical tissue (Dale et al. 1999, Fischl et al. 1999, Citti and Sarti 2003, 

Ratnanather et al. 2003).  They can represent both symbolic and numeric data and 

provide a natural foundation for aggregating and correlating information.  Slices 

represent the data in a perceptual system, but they are also amodal, in that they are not 

specific to any sensory representation.  For example, we may have slices containing 

visual information and other slices containing auditory information, but it may not be 

possible to distinguish them further without additional information.  In fact, we can 

equivalently represent either sensory or motor information within a slice.  This generality 

will allow us to easily incorporate the learning of motor control into what is initially a 

perceptual framework. 

The second tool is an algorithm for cross-modal clustering, which is an unsupervised 

technique for organizing slices based on their spatiotemporal correlations with other 

slices.  These correlations exist because an event in the world is simultaneously – but 

differently – perceived through multiple sensory channels in an observer.  The hypothesis 

underlying this approach is that the world has regularities – natural laws tend to correlate 

physical properties (Thompson 1917, Richards 1980, Mumford 2004) – and biological 

perceptory systems have evolved to take advantage of this.  One may contrast this with 

mathematical approaches to clustering where some knowledge of the clusters, e.g., how 

many there are or their distributions, must be known a priori in order to derive them.  

Without knowing these parameters in advance, many algorithmic clustering techniques 

may not be robust (Kleinberg 2002, Still and Bialek 2004).  Assuming that in many 

circumstances animals cannot know the parameters underlying their perceptual inputs, 
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how can they learn to organize their sensory perceptions?  Cross-modal clustering 

answers this question by exploiting naturally occurring intersensory correlations.   

The third tool in this thesis is a new family of models called influence networks      

(Figure 1.1).  Influence networks use slices to interconnect independent perceptual 

systems, such as those illustrated in the classical view in Figure 1.1a, so they can 

influence one another during perception, as proposed in Figure 1.1b.  Influence networks 

dynamically modify percepts within these systems to effect influence among their 

different components.   The influence is designed to increase perceptual accuracy within 

individual perceptual channels by incorporating information from other co-occurring 

senses.  More formally, influence networks are designed to move ambiguous perceptual 

inputs into easily recognized subsets of their representational spaces.  In contrast with 

approaches taken in engineering what are typically called multimodal systems, influence 

networks are not intended to create high-level joint perceptions.  Instead, they share 

sensory information across perceptual channels to increase local perceptual accuracy 

within the individual perceptual channels themselves.  As we discuss in Chapter 6, this 

type of cross-modal perceptual reinforcement is ubiquitous in the animal world. 

 
 

Figure 1.1– Adding an influence network to two preexisting systems.  We start in (a) with two pipelined 
networks that independently compute separate functions.  In (b), we compose on each function a 
corresponding influence function, which dynamically modifies its output based on activity at the other 
influence functions.  The interaction among these influence functions is described by an influence network, 

which is defined in Chapter 5.  The parameters describing this network can be found via unsupervised 
learning for a large class of perceptual systems, due to correspondences in the physical events that generate 
the signals they perceive and to the evolutionary incorporation of these regularities into the biological 
sensory systems that these computational systems model.   Note influence networks are distinct from an 
unrelated formalism called influence diagrams. 
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1.2 Theoretic Contributions 

The work presented here addresses several important problems.  From an engineering 

perspective, it provides a principled, neurologically informed approach to building 

complex, interactive systems that can learn through their own experiences.  In perceptual 

domains, it answers a fundamental question in mathematical clustering: how should an 

unknown dataset be clustered?  The connection between clustering and perceptual 

grounding follows from the observation that learning to perceive is learning to organize 

perceptions into meaningful categories.  From this perspective, asking what an animal 

can perceive is equivalent to asking how it should cluster its sensory inputs.  This thesis 

presents a self-supervised approach to this problem, meaning our sub-systems derive 

feedback from one another cross-modally rather than rely on an external tutor such as a 

parent (or a programmer).  Our approach is also highly nonparametric, in that it presumes 

neither that the number of clusters nor their distributions are known in advance, 

conditions which tend to defy other algorithmic techniques.  The benefits of self-

supervised learning in perceptual and motor domains are enormous because engineered 

approaches tend to be ad hoc and error prone; additionally, in sensorimotor learning we 

generally have no adequate models to specify the desired input/output behaviors for our 

systems.  The notion of programming by example is nowhere truer than in the 

developmental mimicry widespread in animal kingdom (Meltzoff and Prinz 2002), and 

this work is a step in that direction for artificial sensorimotor systems. 

Furthermore, this thesis suggests that not only do senses influence each other during 

perception, which is well established, it also proposes that perceptual channels 

cooperatively structure their internal representations.  This mutual structuring is a basic 

feature in our approach to perceptual grounding.  We argue, however, that it is not simply 

an epiphenomenon; rather, it is a fundamental component of perception itself, because it 

provides representational compatibility for sharing information cross-modally during 

higher-level perceptual processing.  The inability to share perceptual data is one of the 

major shortcomings in current engineered approaches to building interactive systems. 

Finally, within this framework, we will address three questions that are basic to 

developing a coherent understanding of cross-modal perception.  They concern both 
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process and representation and raise the possibility that unifying (i.e. meta-level) 

principles might govern intersensory function: 

1) Can the senses be perceptually grounded by bootstrapping off each other?  Is 

shared experience sufficient for learning how to categorize sensory inputs? 

2) How can seemingly different senses share information?  What representational 

and computational restrictions does this place upon them? 

3) Could the development of motor control use the same mechanism?  In other 

words, can there be afferent and efferent equivalence in learning? 

 

1.3 A Brief Motivation 

 
The goal of this thesis is to propose a design for artificial systems that more accurately 

reflects how animal brains appear to process sensory inputs.  In particular, we argue 

against post-perceptual integration, where the sensory inputs are separately processed in 

isolated, increasingly abstracted pipelines and then merged in a final integrative step as in 

Figure 1.2.  Instead, we argue for cross-modally integrated perception, where the senses 

share information during perception that synergistically enhances them individually, as in 

Figure 1.1b.  The main difficulty with the post-perceptual approach is that integration 

happens after the individual perceptions are generated.  Integration occurs after each 

perceptual subsystem has already “decided” what it has perceived, when it is too late for 

intersensory influence to affect the individual, concurrent perceptions.  This is due to 

information loss from both vector quantization and the explicit abstraction fundamental 

to the pipeline design.  Most importantly, these approaches also preclude cooperative 

perceptual grounding; the bootstrapping provided by cross-modal clustering cannot occur 

when sensory systems are independent.  These architectures are therefore also at odds 

with developmental approaches to building interactive systems.   
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Not only is the post-perceptual approach to integration biologically implausible from a 

scientific perspective, it is poor engineering as well.  The real world is inherently 

multimodal in a way that most modern artificial perceptual systems do not capture or take 

advantage of.  Isolating sensory inputs while they are being processed prevents the lateral 

sharing of information across perceptual channels, even though these sensory inputs are 

inherently linked by the physics of the world that generates them.  Furthermore, we will 

argue that the co-evolution of senses within an individual species provided evolutionary 

pressure towards representational and algorithmic compatibilities essentially unknown in 

modern artificial perception.  These issues are examined in detail in Chapters 6. 

Our work is computationally motivated by Gibson (1950, 1987), who viewed perception 

as an external as well as an internal event, by Brooks (1986, 1991), who elevated 

perception onto an equal footing with symbolic reasoning, and by Richards (1988), who 

described how to exploit regularities in the world to make learning easier.  The recursive 

use of a perceptual mechanism to enable sensorimotor learning in Chapter 4 is a result of 

our exposure to the ideas of Sussman and Abelson (1983).  

 

 
 

 

Figure 1.2 – Classical approaches to post-perceptual integration in traditional multimodal systems.  Here, 
auditory (A) and visual (V) inputs pass through specialized unimodal processing pathways and are 
combined via an integration mechanism, which creates multimodal perceptions by extracting and 
reconciling data from the individual channels.  Integration can happen earlier (a) or later (b).  Hybrid 
architectures are also common.  In (c), multiple pathways process the visual input and are pre-integrated 
before the final integration step; for example, the output of this preintegration step could be spatial 
localization derived solely through visual input.  This diagram is modeled after (Stork and Hennecke 1996). 
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1.4 Demonstrations 

The framework and its instantiation will be evaluated by a set of experiments that explore 

perceptual grounding, perceptual interpretation, and sensorimotor learning.  These will 

be demonstrated with: 

 

1) Phonetic learning: We present a system that learns the number and formant 

structure of vowels (monophthongs) in American English, simply by watching 

and listening to someone speak and then cross-modally clustering the 

accumulated auditory and visual data.  The system has no advance knowledge of 

these vowels and receives no information outside of its sensory channels.  This 

work is the first unsupervised machine acquisition of phonetic structure of which 

we are aware. 

2) Speechreading: We incorporate an influence network into the cross-modally 

clustered slices obtained in Experiment 1 to increase the accuracy of perceptual 

classification within the slices individually.   In particular, we demonstrate the 

ability of influence networks to move ambiguous perceptual inputs to 

unambiguous regions of their perceptual representational spaces.  

3) Learning birdsong:  We will demonstrate self-supervised sensorimotor learning 

with a system that learns to mimic a Zebra Finch.  The system is directly modeled 

on the dynamics of how male baby finches learn birdsong from their fathers 

(Tchernichovski et al. 2004, Fee et al. 2004).  Our system first listens to an adult 

finch and uses cross-modal clustering to learn songemes, primitive units of bird 

song that we propose as an avian equivalent of phonemes.  It then uses a 

vocalization synthesizer to generate its own nascent birdsong, guided by random 

exploratory motor behavior.  By listening to itself sing, the system organizes the 

motor maps generating its vocalizations by cross-modally clustering them with 

respect to the previously learned songeme maps of its parent.  In this way, it 

learns to generate the same sounds to which it was previously exposed.  Finally, 

we incorporate a standard hidden Markov model into this system, to model the 



 26    

temporal structure and thereby combine songemes into actual birdsong.  The 

Zebra Finch is a particularly suitable species to use for guiding this 

demonstration, as each bird essentially sings a single unique song accompanied 

by minor variations.   

We note that the above examples all use real data, gathered from a real person speaking 

and from a real bird singing.  We also present results on a number of synthetic datasets 

drawn from a variety of mixture distributions to provide basic insights into the algorithms 

and slice data structure work.  Finally, we believe it is possible to allow the 

computational side of this question to inform the biological one, and we will analyze the 

model, in its own right and in light of these results, to explore its algorithmic and 

representational implications for biological perceptual systems, particularly from the 

perspective of how sharing information restricts the modalities individually.   

 

1.5 What Is a "Sense?" 

 
Although Appendix 1 contains a glossary of technical terms, one clarification is so 

important that it deserves special mention.  We have repeatedly used the word sense, e.g., 

sense, sensory, intersensory, etc., without defining what a sense is.  One generally thinks 

of a sense as the perceptual capability associated with a distinct, usually external, sensory 

organ.  It seems quite natural to say vision is through the eyes, touch is through the skin, 

etc.  (Notable exceptions include proprioception – the body's sense of internal state – 

which is somewhat more difficult to localize and vestibular perception, which occurs 

mainly in the inner ear but is not necessarily experienced there.)  However, this coarse 

definition of sense is misleading. 

Each sensory organ provides an entire class of sensory capabilities, which we will 

individually call modes.  For example, we are familiar with the bitterness mode of taste, 

which is distinct from other taste modes such as sweetness.   In the visual system, object 

segmentation is a mode that is distinct from color perception, which is why we can 

appreciate black and white photography.  Most importantly, individuals may lack 
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particular modes without other modes in that sense being affected (e.g., Wolfe 1983), 

thus demonstrating they are phenomenologically independent.  For example, people who 

like broccoli are insensitive to the taste of the chemical phenylthiocarbamide (Drayna et 

al. 2003); however, we would not say these people are unable to taste – they are simply 

missing an individual taste mode.  There are a wide variety of visual agnosias that 

selectively affect visual experience, e.g., simultanagnosia is the inability to perform 

visual object segmentation, but we certainly would not consider a patient with this deficit 

to be blind, as it leaves the other visual processing modes intact.   

Considering these fine grained aspects of the senses, we allow intersensory influence to 

happen between modes even within the same sensory system, e.g., entirely within vision, 

or alternatively, between modes in different sensory systems, e.g., in vision and audition.  

Because the framework presented here is amodal, i.e., not specific to any sensory system 

or mode, it treats both of these cases equivalently. 

 

1.6 Roadmap 

Chapter 2 sets the stage for the rest of this thesis by visiting an example stemming from 

the 1939 World's Fair.  It intuitively makes clear what we mean by perceptual grounding 

and interpretation, which until now have remained somewhat abstract. 

Chapter 3 presents our approach to perceptual grounding by introducing slices, a data 

structure for representing sensory information.  We then define our algorithm for cross-

modal clustering, which autonomously learns perceptual categories within slices by 

considering how the data within them co-occur.  We demonstrate this approach in 

learning the vowel structure of American English by simultaneously watching and 

listening to a person speak.  Finally, we examine and contrast related work in 

unsupervised clustering with our approach. 

Chapter 4 builds upon the results in Chapter 3 to present our approach to perceptual 

interpretation.  We incorporate the temporal dynamics of sensory perception by treating 

slices as phase spaces through which sensory inputs move during the time windows 



 28    

corresponding to percept formation.  We define a dynamic activation model on slices and 

interconnect them through an influence network, which allows different modes to 

influence each other's perceptions dynamically.   We then examine using this framework 

to disambiguate simultaneous audio-visual speech inputs.  Note that this mathematical 

chapter may be skipped on a cursory reading of this thesis. 

Chapter 5 builds upon the previous two chapters to define our architecture for 

sensorimotor learning, based on a Cartesian theater.  Our system simultaneously 

"watches" its internal motor activity while it observes the effects of its own actions 

externally.  Cross-modal clustering then allows it to ground its motor maps using 

previously clustered perceptual maps.  This is possible because slices can equivalently 

contain perceptual or motor data, and in fact, slices do not "know" what kind of data they 

contain.   The principle example in this chapter is the acquisition of species-specific 

birdsong. 

Chapter 6 connects the work in the computational framework presented in this thesis with 

a modern understanding of perception in biological systems.  Doing so motivates the 

approach taken here and allows us to suggest how this work may reciprocally contribute 

towards a better computational understanding biological perception.  We also examine 

related work in multimodal integration and examine the engineered system that motivated 

much of the work in this thesis.  Finally, we speculate on a number of theoretical issues 

in Intersensory perception and examine how the work in this thesis addresses them. 

Chapter 7 contains a brief summary of the contributions of this thesis and outlines future 

work. 
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Chapter 2  
 

Setting the Stage 

We begin with an example to illustrate the two fundamental problems of perception 

addressed in this thesis: 

1) Grounding –  how are sensory inputs categorized in a perceptual system? 

2) Interpretation – how should sensory inputs be classified once their possible 
categories are known? 

The example presented below concerns speechreading, but the techniques presented in 

later chapters for solving the problems raised here are not specific to any perceptual 

modality.  They can be applied to range of perceptual and motor learning problems, and 

we will examine some of their nonperceptual applications as well. 

2.1 Peterson and Barney at the World's Fair 

Our example begins with the 1939 World’s Fair in New York, where Gordon Peterson 

and Harold Barney (1952) collected samples of 76 speakers saying sustained American 

    
Figure 2.1— On the left is a spectrogram of the author saying, “Hello.”  The demarcated region (from 690-
710ms) marks the middle of phoneme /ow/, corresponding to the middle of the vowel "o" in “hello.”  The 
spectrum corresponding to this 20ms window is shown on the right.  A 12th order linear predictive coding 
(LPC) model is shown overlaid, from which the formants, i.e., the spectral peaks, are estimated.  In this 
example: F1 = 266Hz, F2 = 922Hz, and F3 = 2531Hz.  Formants above F3 are generally ignored for sound 
classification because they tend to be speaker dependent.  Notice that F2 is slightly underestimated in this 
example, a reflection of the heuristic nature of computational formant determination. 
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English vowels.  They measured the fundamental frequency and first three formants (see 

Figure 2.1) for each sample and noticed that when plotted in various ways (Figure 2.2), 

different vowels fell into different regions of the formant space.  This regularity gave 

hope that spoken language – at least vowels – could be understood through accurate 

estimation of formant frequencies.  This early hope was dashed in part because co-

articulation effects lead to considerable movement of the formants during speech 

(Holbrook and Fairbanks 1962).  Although formant-based classifications were largely 

abandoned in favor of the dynamic pattern matching techniques commonly used today 

(Jelinek 1997), the belief persists that formants are potentially useful in speech 

recognition, particularly for dimensional reduction of data. 

It has long been known that watching the movement of a speaker’s lips helps people 

understand what is being said (Bender 1981, p41).  The sight of someone’s moving lips 

in an environment with significant background noise makes it easier to understand what 

the speaker is saying; visual cues – e.g., the sight of lips – can alter the signal-to-noise 

ratio of an auditory stimulus by 15-20 decibels (Sumby and Pollack 1954).  The task of 

lip-reading has by far been the most studied problem in the computational multimodal 

 

                

Figure 2.2 – Peterson and Barney Data.  On the left is a scatterplot of the first two formants, with 
different regions labeled by their corresponding vowel categories. 
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literature (e.g., Mase and Pentland 1990, Huang et al. 2003, Potamianos et al. 2004), due 

to the historic prominence of automatic speech recognition in computational perception.  

Although significant progress has been made in automatic speech recognition, state of the 

art performance has lagged human speech perception by up to an order of magnitude, 

even in highly controlled environments (Lippmann 1997).  In response to this, there has 

been increasing interest in non-acoustic sources of speech information, of which vision 

has received the most attention.  Information about articulator position is of particular 

interest, because in human speech, acoustically ambiguous sounds tend to have visually 

unambiguous features (Massaro and Stork 1998).  For example, visual observation of 

tongue position and lip contours can help disambiguate unvoiced velar consonants /p/ and 

/k/, voiced consonants /b/ and /d/, and nasals /m/ and /n/, all of which can be difficult to 

distinguish on the basis of acoustic data alone. 

Articulation data can also help to disambiguate vowels.  Figure 2.3 contains images of a 

speaker voicing different sustained vowels, corresponding to those in Figure 2.2.  These 

images are the unmodified output of a mouth tracking system written by the author, 

where the estimated lip contour is displayed as an ellipse and overlaid on top of the 

speaker’s mouth.  The scatterplot in Figure 2.4 shows how a speaker’s mouth is 

represented in this way, with contour data normalized such that a resting mouth 

 
Figure 2.3 – Automatically tracking mouth positions of test subject in a video stream.  Lip positions are 
found via a deformable template and fit to an ellipse using least squares.  The upper images contains 
excerpts from speech segments, corresponding left to right with phonemes: /eh/, /ae/, /uw/, /ah/, and /iy/.  
The bottom row contains non-speech mouth positions.  Notice that fitting the mouth to an ellipse can be 
non-optimal, as is the case with the two left-most images; independently fitting the upper and lower lip 
curves to low-order polynomials would yield a better fit.  For the purposes of this example, however, 
ellipses provide an adequate, distance invariant, and low-dimensional model.  The author is indebted to his 
wife for having lips that were computationally easy to detect. 
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configuration (referred to as null in the figure) corresponds with the origin, and other 

mouth positions are viewed as offsets from this position.  For example, when the subject 

makes an /iy/ sound, the ellipse is elongated along its major axis, as reflected in the 

scatterplot.   

Suppose we now consider the formant and lip contour data simultaneously, as in Figure 

2.5.  Because the data are conveniently labeled, the clusters within and the 

correspondences between the two scatterplots are obvious.  We notice that the two 

domains can mutually disambiguate one another.  For example, /er/ and /uh/ are difficult 

to separate acoustically with formants but are easy to distinguish visually.  Conversely, 

/ae/ and /eh/ are visually similar but acoustically distinct.  Using these complementary 

representations, one could imagine combining the auditory and visual information to 

create a simple speechreading system for vowels. 

2.2 Nature Does Not Label Its Data 

Given this example, it may be surprising that our interest here is not in building a 

speechreading system.  Rather, we are concerned with a more fundamental problem: how 

do sensory systems learn to segment their inputs to begin with?  In the color-coded plots 

 
Figure 2.4 -- Modeling lip contours with an ellipse.  The scatterplot shows normalized major (x) and minor 
(y) axes for ellipses corresponding to the same vowels as those in Figure 2.2.  In this space, a closed mouth 
corresponds to a point labeled null.  Other lip contours can be viewed as offsets from the null configuration 
and are shown here segmented by color.  These data points were collected from video of this woman 
speaking. 
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in Figure 2.5, it is easy to see the different represented categories.  However, perceptual 

events in the world are generally not accompanied with explicit category labels.  Instead, 

animals are faced with data like those in Figure 2.6 and must somehow learn to make 

sense of them.  We want to know how the categories are learned in the first place.  We 

note this learning process is not confined to development, as perceptual correspondences 

are plastic and can change over time. 

We would therefore like to have a general purpose way of taking data (such as shown in 

Figure 2.6) and deriving the kinds of correspondences and segmentations (as shown in 

Figure 2.5) without external supervision.  This is what we mean by perceptual grounding 

 
Figure 2.5 – Labeled scatterplots side-by-side.  Formant data (from Peterson Barney 1952) is displayed on 
the left and lip contour data (from the author’s wife) is show on the right.  Each plot contains data 
corresponding to the ten listed vowels in American English.   

  

 
Figure 2.6 – Unlabeled data.  These are the same data shown above in Figure 2.5, with the labels removed.  
This picture is closer to what animals actually encounter in Nature.  As above, formants are displayed on 
the left and lip contours are on the right.  Our goal is to learn the categories present in these data without 
supervision, so that we can automatically derive the categories and clusters such as those show above. 
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and our perspective here is that it is a clustering problem: animals must learn to organize 

their perceptions into meaningful categories.  We examine below why this is a 

challenging problem. 

 

2.3 Why Is This Difficult? 

As we have noted above, Nature does not label its data.  By this, we mean that the 

perceptual inputs animals receive are not generally accompanied by any meta-level data 

explaining what they represent.  Our framework must therefore assume the learning is 

unsupervised, in that there are no data outside of the perceptual inputs themselves 

available to the learner. 

From a clustering perspective, perceptual data is highly non-parametric in that both the 

number of clusters and their underlying distributions may be unknown.  Clustering 

algorithms generally make strong assumptions about one or both of these.  For example, 

the Expectation Maximization algorithm (Dempster et al. 1977) is frequently used a basis 

for clustering mixtures of distributions whose maximum likelihood estimation is easy to 

compute.  This algorithm is therefore popular for clustering known finite numbers of 

Gaussian mixture models (e.g., Nabney 2002, Witten and Frank 2005).  However, if the 

number of clusters is unknown, the algorithm tends to converge to a local minimum with 

the wrong number of clusters.  Also, if the data deviate from a mixture of Gaussian (or 

some expected) distributions, the assignment of clusters degrades accordingly.  More 

generally, when faced with nonparametric, distribution-free data, algorithmic clustering 

techniques tend not be robust (Fraley and Raftery 2002, Still and Bialek 2004).   

Perceptual data are also noisy.  This is due both to the enormous amount of variability in 

the world and to the probabilistic nature of the neuronal firings that are responsible for 

the perception (and sometimes the generation) of perceivable events.  The brain itself 

introduces a great deal of uncertainty into many perceptual processes. In fact, one may 

perhaps view the need for high precision as the exception rather than the rule.  For 

example, during auditory localization based on interaural time delays, highly specialized 
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neurons known as the end-bulbs of Held – among the largest neuronal structures in the 

brain – provide the requisite accuracy by making neuronal firings in this section of 

auditory cortex highly deterministic (Trussell 1999).  It appears that the need for 

mathematical precision during perceptual processing can require extraordinary 

neuroanatomical specialization. 

Perhaps most importantly, perceptual grounding is difficult because there is no objective 

mathematical definition of "coherence" or "similarity."  In many approaches to clustering, 

each cluster is represented by a prototype that, according to some well-defined measure, 

is an exemplar for all other data it represents.  However, in the absence of fairly strong 

assumptions about the data being clustered, there may be no obvious way to select this 

measure.  In other words, it is not clear how to formally define what it means for data to 

be objectively similar or dissimilar.  In perceptual and cognitive domains, it may also 

depend on why the question of similarity is being asked.  Consider a classic AI 

conundrum, "what constitutes a chair?" (Winston 1970, Minsky 1974, Brooks 1987).  

For many purposes, it may be sufficient to respond, "anything upon which one can sit."  

However, when decorating a home, we may prefer a slightly more sophisticated answer.  

Although this is a higher level distinction than the ones we examine in this thesis, the 

principle remains the same and reminds us why similarity can be such a difficult notion 

to pin down. 

Finally, even if we were to formulate a satisfactory measure of similarity for static data, 

one might then ask how this measure would behave in a dynamic system.  Many 

perceptual (and motor) systems are inherently dynamic – they involve processes with 

complex, non-linear temporal behavior (Thelen and Smith 1994), as can been seen during 

perceptual bistability, cross-modal influence, habituation, and priming.  Thus, one may 

ask whether a similarity metric captures a system's temporal dynamics; in a clustering 

domain, the question might be posed: do points that start out in the same cluster end up 

in the same cluster?  We know from Lorentz (1964) that it is possible for arbitrarily small 

differences to be amplified in a non-linear system.  It is quite plausible that a static 

similarity metric might be oblivious to a system's temporal dynamics, and therefore, 

sensory inputs that initially seem almost identical could lead to entirely different percepts 
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being generated.  This issue will be raised in more detail in Chapter 4, where we will 

view clusters as fixed points in representational phase spaces in which perceptual inputs 

follow trajectories between different clusters.   

In Chapter 3, we will present a framework for perceptual grounding that addresses many 

of the issues raised here.  We show that animals (and machines) can learn how to cluster 

their perceptual inputs by simultaneously correlating information from their different 

senses, even when they have no advance knowledge of what events these senses are 

individually capable of perceiving.  By cross-modally sharing information between 

different senses, we will demonstrate that sensory systems can be perceptually grounded 

by bootstrapping off each other.    

 

2.4 Perceptual Interpretation 

The previous section outlined some of the difficulties in unsupervised clustering of 

nonparametric sensory data.  However, even if the data came already labeled and 

clustered, it would still be challenging to classify new data points using this information.  

Determining how to assign a new data point to a preexisting cluster (or category) is what 

we mean by perceptual interpretation.  It is the process of deciding what a new input 

 
Figure 2.7 – On the left is a scatterplot of the first two formants, with different regions labeled by their 
corresponding vowel categories.  The output of a backpropagation neural network trained on this data is 
shown on the right and displays decision boundaries and misclassified points.  The misclassification error 
in this case is 19.7%.  Other learning algorithms, e.g., AdaBoost using C4.5, Boosted stumps with 
LogitBoost, and SVM with a 5th order polynomial kernel, have all shown similarly lackluster performance, 
even when additional dimensions (corresponding to F0 and F3) are included (Klautau 2002).  (Figure on 
right is derived from ibid. and used with permission.) 
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actually represents.  In the example here, the difficultly is due to the complexity of 

partitioning formant space to separate the different vowels.  This 50 year old 

classification problem still receives attention today (e.g., Jacobs et al. 1991, de Sa and 

Ballard 1998, Clarkson and Moreno 1999) and Klautau (2002) has surveyed modern 

machine learning algorithms applied to it, an example of which is shown on the right in 

Figure 2.7. 

A common way to distinguish classification algorithms is by visualizing the different 

spaces of possible decision boundaries they are capable of learning.  If one closely 

examines the Peterson and Barney dataset (Figure 2.8), there are many pairs of points that 

are nearly identical in any formant space but correspond to different vowels in the actual 

data, at least according to the speaker’s intention.  It is difficult to imagine any accurate 

partitioning that would simultaneously avoid overfitting.  There are many factors that 

contribute to this, including the information loss of formant analysis (i.e., incomplete data 

is being classified), computational errors in estimating the formants, lack of 
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Figure 2.8 – Focusing on one of many ambiguous regions in the Peterson-Barney dataset.  Due to a 
confluence of factors described in the text, the data in these regions are not obviously separable.  
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differentiation in vowel pronunciation in different dialects of American English, 

variations in prosody, and individual anatomical differences in the speakers’ vocal tracts.  

It is worth pointing out the latter three of these for the most part exist independently of 

how data is extracted from the speech signal and may present difficulties regardless of 

how the signal is processed.   

The curse of dimensionality (Bellman 1961) is a statement about exponential growth in 

hypervolume as a function of a space’s dimension.  Of its many ramifications, the most 

important here is that many low dimensional phenomena that we are intuitively familiar 

with do not exist in higher dimensions.  For example, the natural clustering of uniformly 

distributed random points in a two dimensional space becomes extremely unlikely in 

higher dimensions; in other words, random points are relatively far apart in high 

dimensions.  In fact, transforming nonseparable samples into higher dimensions is a 

general heuristic for improving separation with many classification schemes.  There is a 

flip-side to this high dimensional curse for us: low dimensional spaces are crowded.  It 

can be difficult to separate classes in these spaces because of their tendency to overlap.  

However, blaming low dimensionality for this problem is like the proverbial cursing of 

darkness.  Cortical architectures make extensive use of low dimensional spaces, e.g., 

throughout visual, auditory, and somatosensory processing (Amari 1980, Swindale 1996, 

Dale et al. 1999, Fischl et al. 1999, Kaas and Hackett 2000, Kardar and Zee 2002, Bednar 

et al. 2004), and this was a primary motivating factor in the development of Self 

Organizing Maps (Kohonen 1984).  In these crowded low-dimensional spaces, 

approaches that try to implicitly or explicitly refine decision boundaries such as those in 

Figure 2.8 (e.g., de Sa 1994) are likely to meet with limited success because there may be 

no good decision boundaries to find; perhaps in these domains, decision boundaries are 

the wrong way to think about the problem. 

Rather than trying to improve classification boundaries directly, one could instead look 

for a way to move ambiguous inputs into easily classified subsets of their representational 

spaces.  This is the essence of the influence network approach presented in Chapter 4 and 

is our proposed solution to the problem of perceptual interpretation.  The goal is to use 

cross-modal information to "move" sensory inputs within their own state spaces to make 
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them easier to classify.  Thus, we take the view that perceptual interpretation is inherently 

a dynamic – rather than static – process that occurs during some window of time.  This 

approach relaxes the requirement that the training data be separable in the traditional 

machine learning sense; unclassifiable subspaces are not a problem if we can determine 

how to move out of them by relying on other modalities, which are experiencing the same 

sensory events from their unique perspectives.  We will show that this approach is not 

only biologically plausible, it is also computationally efficient in that it allows us to use 

lower dimensional representations for modeling sensory and motor data. 
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It might be asked why we have more senses than one. [Had it been otherwise],… 
everything would have merged for us into an indistinguishable identity. 

Aristotle, De Anima (350 B.C.E) 

 

Chapter 3  

Perceptual Grounding 

Most of the enormous variability in the world around us is unimportant.  Variations in our 

sensory perceptions are not only tolerated, they generally pass unnoticed.  Of course, 

some distinctions are of paramount importance and learning which are meaningful as 

opposed to which can be safely ignored is a fundamental problem of cognitive 

development.  This process is a component of perceptual grounding, where a perceiver 

learns to make sense of its sensory inputs.  The perspective taken here is that this is a 

clustering problem, in that each sense must learn to organize its perceptions into 

meaningful categories.  That animals do this so readily belies its complexity.  For 

example, people learn phonetic structures for languages simply by listening to them; the 

phonemes are somehow extracted and clustered from auditory inputs even though the 

listener does not know in advance how many unique phonemes are present in the signal. 

Contrast this with a standard mathematical approach to clustering, where some 

knowledge of the clusters, e.g., how many there are or their distributions, must be known 

a priori in order to derive them.  Without knowing these parameters in advance, 

algorithmic clustering techniques may not be robust (Fraley and Raftery 2002, Kleinberg 

2002, Still and Bialek 2004).  Assuming that in many circumstances animals cannot 

know the parameters underlying their perceptual inputs, how then do they learn to 

organize their sensory perceptions reliably? 

This chapter presents an approach to clustering based on observed correlations between 

different sensory modalities.  These cross-modal correlations exist because perceptions 

are created through physical processes governed by natural laws (Thompson 1917, 

Richards 1980, Mumford 2004).  An event in the world is simultaneously perceived 

through multiple sensory pathways in a single observer; while each pathway may have a 
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unique perspective on the event, their perspectives tend to be correlated by regularities in 

the physical world (Richards and Bobick 1988).  We propose here that these 

correspondences play a primary role in organizing the sensory channels individually.  

Based on this hypothesis, we develop a new framework for grounding artificial 

perceptual systems.   

Towards this, we will introduce a mathematical model of slices, which are topological 

manifolds that encode dynamic perceptual states and are inspired by surface models of 

cortical tissue (Dale et al. 1999, Fischl et al. 1999, Citti and Sarti 2003, Ratnanather et al. 

2003).  Slices partition perceptual spaces into large numbers of small regions 

(hyperclusters) and then reassemble them to construct clusters corresponding to the actual 

sensory events being perceived.  This reassembly is performed by cross-modal 

clustering, which uses temporal correlations between slices to determine which 

hyperclusters within a slice correspond to the same sensory events.   The cross-modal 

clustering algorithm does not presume that either the number of clusters in the data or 

their distributions is known beforehand.  We examine the outputs and behavior of this 

algorithm on simulated datasets, drawn from a variety of mixture distributions, and on 

real data gathered in computational experiments.   Some of the work in this chapter has 

appeared in (Coen 2005, Coen 2006). 

 

3.1 The Simplest Complex Example 

As in Chapter 2, we proceed here by first considering an example.  We will return to 

using real datasets towards the end of this chapter, but for the moment, it is helpful to 

pare down the subject matter to its bare essentials.   

Let us consider two hypothetical sensory modes, each of which is capable of sensing the 

same two events in the world, which we call the red and blue events.  These two modes 

are illustrated below in Figure 3.1, where the dots within each mode represent its 

perceptual inputs and the blue and red ellipses delineate the two events.  For example, if a 

"red" event takes place in the world, each mode would receive sensory input that 
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(probabilistically) falls within its red ellipse.  Notice that events within each mode 

overlap, and they are in fact represented by a mixture of two overlapping Gaussian 

distributions.  We have chosen this example because it is simple – each mode perceives 

only two events – but it has the added complexity that the events overlap – meaning there 

is likely to be some ambiguity in interpreting the perceptual inputs.   

Keep in mind that while we know there are only two events (red and blue) in this 

hypothetical world, the modes themselves do not "know" anything at all about what they 

can perceive.  The colorful ellipses are solely for the reader's benefit; the only thing the 

modes receive is their raw input data.  Our goal then is to learn the perceptual categories 

in each mode – e.g., to learn that each mode in this example senses these two overlapping 

events – by exploiting the temporal correlations between them.   

 

3.2 Generating Codebooks 

We are going to proceed by hyperclustering each perceptual space into a codebook.  This 

simply means that we are going to generate far more clusters than are necessary for 

representing the actual number of perceptual events in the data.  In this case, that would 
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Figure 3.1 – Two hypothetical co-occurring perceptual modes.   Each mode, unbeknownst to itself,  
receives inputs generated by a simple, overlapping Gaussian mixture model.   To make matters more 
concrete, we might imagine Mode A is a simple auditory system that hears two different events in the 
world and Mode B is a simple visual system sees those same two events, which are indicated by the red and 
blue ellipses. 
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be two, but instead, we will employ a (much) larger number.  For the rest of this 

discussion, we will refer to two different types of clusters: 

1) codebook clusters (or hyperclusters) are generated by hyperclustering and are 

illustrated by the Voronoi regions show in Figure 3.2 on the right. 

2) perceptual clusters refer to actual sensory events and are outlined with the colored 

ellipses in Figure 3.1. 

Our goal will be to combine the codebook clusters to "assemble" the perceptual clusters.  

We note that while perceptual clustering is quite difficult, for reasons outlined in the 

previous chapter, hyperclustering is quite easy because there is no notion of perceptual 

correctness associated with it.  Although we must determine how many codebook clusters 

to generate, we will show this number influences the amount of training data necessary 

rather than the correctness of the derived perceptual clusters.  In other words, this 

approach is not overly sensitive to the hyperclustering: generating too many hyperclusters 

simply means learning takes longer, not that the end results are incorrect.  Generating too 

few hyperclusters tends not to happen because of the density normalization described 

below.  It is also sometimes possible to detect that too few clusters have been generated 

by using cross-modal information, a technique we examine later in this chapter.  

To generate the codebooks, we will use a variant of the Generalized Lloyd Algorithm 

(GLA) (Lloyd 1982).  We modify the algorithm to normalize the point densities within 
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Figure 3.2 – Hyperclustering Mode B with the algorithm given below.  Mode B is shown hyperclustered 
on the right.  Here, we specified k=30 and the algorithm ended up generating 53 clusters after normalizing 
their densities. 
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the hyperclusters, which otherwise can vary enormously.  Many clustering algorithms, 

including GLA, optimize initially random codebooks by minimizing a strongly Euclidean 

distance metric between cluster centroids and their members.  A cluster with a large 

numbers of nearby points may be viewed as equivalent to (from the perspective of the 

optimization) a cluster with a small number of distant points.  It is therefore possible to 

have substantial variance in the number of points assigned to each codebook cluster.  

This is problematic because our approach will require that each perceptual cluster be 

represented by multiple codebook clusters, from which it is "assembled."  The Euclidean 

bias introduced by the distance metric used for codebook optimization means that "small" 

perceptual events may be relegated to a single codebook cluster.  This would prevent 

them from ever being detected. 

There are many ways one could imagine achieving this density normalization.  For 

example, we could explicitly add inverse cluster size to the minimization calculation 

performed during codebook refinement.  This would leave the number of codebook 

clusters constant overall but introduce pressure against wide variation in the number of 

points assigned to each one.  Rather than take an approach that preserves the overall 

number of clusters, we will instead modify the algorithm to recluster codebook regions 

that have been assigned "too many" points.  This benefit of this is that we leave the GLA 

algorithm intact but now invoke it recursively on subregions where its performance is 

unsatisfactory.  By keeping the basic structure of GLA, many of the mathematic 

properties of the generated codebooks remain unchanged.  The downside of this approach 

is that the recursive reclustering increases the total number of generated hyperclusters.   

Thus, the algorithm generates at least as many codebook clusters as we specify and 

sometimes many more.  This increase in codebook size can affect the computational 

complexity of algorithms operating over these codebooks, which we investigate later in 

this chapter.  We note, however, that adding these additional clusters does not tend to 

require gathering more training data, an issue raised above.  This is because the extra 

clusters are generated in regions that already have high point densities. 

Our hyperclustering algorithm for generating (at least) k codebook regions over dataset 

N
D ⊆ �  is: 



 46    

1) Let s = /D k .  This is our goal size for the number of data points per cluster. 

2) Let { }1 2, ,..., ,  N

k iP P P P P= ⊂ �  be a Lloyd partitioning of D over k clusters.  This is 

the output of the Generalized Lloyd Algorithm. 

3) For each cluster 
i

P P∈ :  

If iP s>  (the cluster has too many points), then recursively partition 
i

P : 

a. Let { }1 2, ,  N

iQ P P P= ⊂ �  be a Lloyd partitioning of 
i

P  over 2 clusters. 

b. Set ( ) / iP P Q P= ∪ .  Add the two new partitions and remove the old one. 

End if statement 

4) Repeat step 3 until no new partitions are added.  Then, return the centroids of the sets 

in P as the final hyperclustering.  Empirically, we find that 2k P k< < . 

The output of this algorithm on the data in Mode B is shown above in Figure 3.3.  Notice 

how the number of clusters increases in the region corresponding to the overlap of the 

two Gaussian distributions, which is due to the density normalization.  We note that any 

number of variations on this algorithm is possible.  For example, in the reclustering step 

                      
Figure 3.3 – The hyperclusters generated for the data in Mode B, with the data removed.  The number 
identifying each cluster is located at its centroid.  Notice how the number of clusters increases in the region 
corresponding to the overlap of the two Gaussian distributions, where the overall point density is highest. 
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in (3), we might recursively generate /iP s  rather than 2 clusters.  We could also modify 

the goal size s to change the degree of density normalization.  In any event, we have 

found that our approach is not particularly sensitive to the precise details of the 

codebook's generation; we confirm this statement later in this chapter, when we consider 

hyperclustering other mixture distributions.  At present, the most important consideration 

is that the cluster densities are normalized, which minimizes the Euclidean bias inherent 

in the centroid optimization performed by the Lloyd algorithm. 

 

3.3 Generating Slices 

We now introduce a new data structure called slices that are constructed using the 

codebooks defined in the previous section.  Figure 3.4 illustrates slices constructed for 

Modes A and B from our example above.  Slices are topological manifolds that encode 

dynamic perceptual states and are inspired by surface models of cortical tissue (Citti and 

Sarti 2003, Ratnanather et al. 2003).  They are able to represent both symbolic and 

numeric data and provide a natural foundation for aggregating and correlating 

information.  Intuitively, a slice is a codebook with a non-Euclidean distance metric 

defined between its cluster centroids.  In other words, distances within each cluster are 

Euclidean, whereas distances between clusters are not.  A topological manifold is simply 

a manifold "glued" together from Euclidean spaces, and that is exactly what a slice is.   
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Figure 3.4 – Slices generated for Modes A and B using the hyperclustering algorithm in the previous 
section.  Our goal is to combine the codebook clusters to reconstruct the actual sensory events perceived 
within the slices.   
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Our goal is to combine the codebook regions to "reconstruct" the larger perceptual 

regions within a slice.  To do this, we will define a non-Euclidean distance metric 

between codebook regions that reflects how much we think they are part of the same 

perceptual event.  In this metric, codebook regions corresponding to the same perceptual 

event will be closer together and those corresponding to different events will be further 

apart.  Towards defining this metric, we first collect co-occurrence data between the 

codebook regions in different modes.  We want to know how each codebook region in a 

mode temporally co-occurs with the codebook regions in other modes. 

This data can be easily gathered with the classical sense of Hebbian learning (Hebb 

1949), where connections between regions are strengthened as they are simultaneously 

active.  The result of this process is illustrated in Figure 3.5, where the modes are 

vertically stacked to make the correspondences clearer.  We will exploit the spatial 

structure of this Hebbian co-occurrence data to define the distance metric within each 

mode.   

Mode A

Mode B

 
Figure 3.5 – Viewing Hebbian linkages between two different slices.  The modes have been vertically 
stacked here to make the correspondences clearer.  The blue lines indicate that two codebook regions 
temporally co-occur with each other.  Note that these connections are weighted based on their strengths, 
which is not visually represented here, and that these weights are additionally asymmetric between each 
pair of connected regions.  
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3.4 Hebbian Projections 

In this section, we define the notion of a Hebbian projection.  These are spatial 

probability distributions that provide an intuitive way to view co-occurrence relations 

between different slices.  We first give a formal definition and then illustrate the concept 

visually. 

Consider two slices , n

A B
M M ⊆ � , with associated codebooks { }1 2, ,...,A aC p p p=  and 

{ }1 2, ,...,B bC q q q= , where cluster centroids , N

i jp q ∈� . 

For some event x, we define ( )h x = # of times event x occurs.   Similarly, for events x and 

y, we define ( , )h x y =  # of times events x and y co-occur.  For example, 1( )h p  is the 

number of times inputs that belong to cluster 1p  were seen during some time period of 

interest.  So, we see that Pr( | ) ( , ) / ( ).x y h p q h p=  

We define the Hebbian projection of a codebook cluster 
i A

p C∈  onto mode 
B

M : 

 [ ]1 2( ) Pr( | ),Pr( | ),..., Pr( | )B

A i i i b iH p q p q p q p=
�

 (3.1) 

When the modes are clear from context, we will simply refer to the projection by ( )
i

H p
�

.  

A Hebbian projection is simply a conditional spatial probability distribution that lets us 

know what mode 
B

M  probabilistically "looks" like when a region 
i

p  is active in co-

occurring mode 
A

M .   This is visualized in Figure 3.6. 

We can equivalently define a Hebbian projection for a region 
A

r M⊆  constructed out of 

a subset of its codebook clusters { }1 2, ,...,r r r rk AC p p p C= ⊆ : 

 [ ]1 2( ) Pr( | ),Pr( | ),..., Pr( | )B

A bH r q r q r q r=
�

 (3.2) 

We will also define the notion of a reverse Hebbian projection, which projects a Hebbian 

projection back onto its source mode.  It lets us measure – from the perspective of 
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another modality – which other codebook regions in a slice appear similar to a reference 

region. 
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Mode A

Mode B

Mode A

Mode B

 
 

Figure 3.6 – A visualization of two Hebbian projections.  On the top, we project from a cluster pi in Mode 
A onto Mode B.  The dotted lines correspond to Hebbian linkages and the blue shading in each cluster qj in 
Mode B is proportional to Pr(qj|pi).   A Hebbian projection lets us know what Mode B probabilistically 
"looks" like when some prototype in Mode A is active.  On the bottom, we see a projection from a cluster 
in Mode B onto Mode A.   
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To do this, we first define weighted versions of the functions defined above for a set of 

weights ω .  Consider a region r, r k= , where each cluster is assigned some weight 
i

ω .  

We assume that 1
i

ω =∑ .   

 

[ ]1 2

( ) ( ),  where  is a codebook cluster in region 

Pr ( , ) ( , ) / ( ) ( , ) ( )

( ) Pr ( | ),Pr ( | ),...,Pr ( | )

p

p r

p p

p r p r

n

h r h p p r

q r h r q h r h p q h p

H r q r q r q r

ω

ω ω ω

ω ω ω ω

ω

ω ω

∈

∈ ∈

=

= =

=

∑

∑ ∑
�

 

 

The reverse Hebbian projection ( )B

A
H r
�

 of a region 
A

r M⊆  onto mode 
B

M  is then 

defined: 

( )
( )  ( )B

A BH r
H r H M= �

��
  (3.3) 

( ) 1 ( ) 2 ( ) Pr ( | ),Pr ( | ),..., Pr ( | )
H r B H r B H r m B

p M p M p M =    (3.4) 

Again, when the modes are clear from context, we will simply refer to this as ( )H r
�

.  

 
This distribution has a simple interpretation: the reverse Hebbian projection from mode 

A
M  onto mode 

B
M  for some region 

A
r M⊆  is the Hebbian projection of all of mode 

B
M  onto mode 

A
M , weighted by the forward Hebbian projection of region r, as shown 

in equation (3.3).  This process is visualized in Figure 3.7.  Note that we are projecting an 

entire mode 
B

M  here.  This might seem initially surprising, but it simply corresponds to 

a projection of a region that contains all the codebook clusters for a given slice. 

The reverse Hebbian projection ( )H r
�

 answers the question: what other regions does 

mode 
B

M  think region r is similar to in mode 
A

M ?  It can therefore be viewed as a 

distribution that measures cross-modal confusion.  For this reason, it provides a useful 

optimization tool, because we will only need to disambiguate regions that appear in each 

other's reverse Hebbian projections, i.e., they have a non-zero (or above some threshold) 

probability of being confused for one another by other modalities. 
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3.5 Measuring Distance in a Slice 

Let us briefly review where we stand at this point.  We have introduced the idea of a 

slice, which breaks up a representational space into many smaller pieces that are 

generated by hyperclustering it.  We would like to assemble these small hyperclusters 

into larger regions that represent actual perceptual categories present in the input data.  In 

this section, we define the non-Euclidean distance metric between the hyperclusters that 

helps make this possible.   

Consider the colored regions in Figure 3.8.  We would like to determine that the blue and 

red regions are part of their respective blue and red events, indicated by the colored 

ellipses.  It is important to recall that the colors here are simply for the reader's benefit.  

There is no labeling of regions or perceptual events within the slice itself.  We will 

proceed by formulating a distance metric that minimizes the distance between codebook 

regions that are actually within the same perceptual region and maximizes the distance 

Mode A

Mode B

 
Figure 3.7 – Visualizing a reverse Hebbian projection.  We first generate the Hebbian projection of the 
green cluster pi in Mode A onto Mode B.  This projection is represented by the shading of each region qj in 
Mode B, corresponding to Pr(qj|pi).  We then project all of Mode B back onto Mode A, weighting the 
contributions of each cluster qi by Pr(qj|pi).  This generates the reverse Hebbian projection, which is 
indicated by the shading of regions in Mode A. 
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between codebook regions that are in different regions.  That this metric must be non-

Euclidean is clear from looking at the figure.  Each highlighted region is closer to one of 

a different color than it is to its matching partner.    

We are going to use the Hebbian projections defined in the previous section to formulate 

this similarity metric for codebook regions.  This will make the metric  inherently cross-

modal because we will rely on co-occurring modalities to determine how similar two 

regions within a slice are.  Our approach is to compare codebook regions by comparing 

their Hebbian projections onto co-occurring slices.  This process is illustrated in Figure 9. 

The problem of measuring distances between prototypes is thereby transformed into a 

problem of measuring similarity between spatial probability distributions.  The 

distributions are spatial because the codebook regions have definite locations within a 

slice, which are subspaces of n
� .  Hebbian projections are thus spatial distributions on n-

dimensional data.  It is therefore not possible to use one dimensional metrics, e.g., 

Kolmogorov-Smirnov distance, to compare them because doing so would throw away the 

essential spatial information within each slice. 

 

               

Mode B

 
 

Figure 3.8 – Combining codebook regions to construct perceptual regions.  We would like to determine 
that regions within each ellipse are all part of the same perceptual event.  Here, for example, the two blue 
codebook regions (probabilistically) correspond the blue event and the red regions correspond to the red 
event. 
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Figure 3.9 – Our approach to computing distances cross-modally.  To determine the distance between 
codebook regions 1 2 and r r  in Mode B on top, we project them onto a co-occurring modality (Mode A) as 

shown in the middle.  We then ask: how similar are their Hebbian projections onto Mode A?, as shown on 
the bottom.  We have thereby transformed a question about distance between regions into a question of 
similarity between the spatial probability distributions provided by their Hebbian projections. 
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3.6 Defining Similarity 

What does it mean for two things to be similar?  This deceptively difficult question is at 

the heart of mathematical clustering and perceptual categorization and is common to a 

number of fields, including computer vision, statistical physics, and information and 

probability theory.  The goal of measuring similarity between different things is often 

cast as a problem of measuring distances between multidimensional distributions on 

descriptive features.  For example, in computer vision, finding minimum matchings 

between image feature distributions is a common approach to object recognition 

(Belongie et al. 2002). 

In this section, we present a new metric for measuring similarity between spatial 

probability distributions, i.e., distributions on multidimensional metric spaces.   We will 

use this metric to compute distances between codebook regions by comparing their 

Hebbian projections onto co-occurring modalities, as shown above in Figure 3.9.  Our 

approach is therefore inherently multimodal – although we may be unable to determine a 

priori how similar two codebook regions are in isolation (i.e., unimodally), we can 

measure their similarity by examining how they are viewed from the perspectives of 

other co-occurring sensory channels.  We therefore want to formulate a similarity metric 

on Hebbian projections that tells us not how far apart they are but rather, how similar 

they are to one another.  This will enable perceptual bootstrapping by allowing us to 

answer a fundamental question:  

Can any other modality distinguish between two regions in the same 

codebook?  If not, then they represent the same percept. 

3.6.1 Introduction 

 
There are a wide variety of metrics available to quantify distances between probability 

distributions (see the surveys in Rachev 1991, Gibbs and Su 2002).  We may contrast 

these in many ways, including whether they are actually metrics (i.e., symmetric and 

satisfy the triangle inequality), the properties of their state spaces, their computational 

complexity, whether they admit practical bounding techniques, etc.  For example, the 
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common 2χ  distance is not a metric because it is asymmetric.  In contrast, Kolmogorov-

Smirnov distance is a metric but is defined only over 1
� .  Choosing an appropriate 

metric for a given problem is a fundamental step towards solving it and can yield 

important insights into its internal structure. 

In discussions of probability metrics, the notion of similarity generally follows directly 

from the definition of distance.  Two distributions are deemed similar if the distance 

between them is small according to some metric; conversely, they are deemed dissimilar 

when the metric determines they are far apart.  In our approach, we will reverse this 

dependency.  We first intuitively describe our notion of similarity and then formulate a 

metric that computes it in a well-defined way.  We call this metric the Similarity distance 

and it is the primary contribution of this section.  Our approach is applicable to 

comparing distributions over any metric space and has a number of interesting properties, 

such as scale invariance, that make it additionally useful for work beyond the scope of 

this thesis.  

 

3.6.2 Intuition 

 
We begin by first examining similarity informally.  Consider the two simple examples 

shown in Figure 3.10.  Each shows two overlapping Gaussian distributions, whose 

similarity we would like to compare.  Intuitively, we would say the distributions in 

Example A (on the left) are more similar to one another than those in Example B (on the 

right), because we will think of similarity as a measure of the overlap or proximity of 

spatial density.  We are not yet concerned with formally defining similarity, but the 

intuition in these examples is exactly what we are trying to capture.  Notice that the 

distributions in Example A cover roughly two orders of magnitude more area than those 

in Example B.  Therefore, if we were to derive similarity from distance, the strong 

Euclidean bias incorporated into a wide variety of probability metrics would lead us to 

the opposite of our desired result.  Namely, because the examples in B are much closer 

than those in A, we would therefore deem them more similar, thereby contradicting our 
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desired meaning.  Because we are looking for a distance measure based on similarity – 

and not a direct similarity measure – it should smaller for things that are more similar 

and larger for things that are less similar.   This is the opposite of what one would expect 

were we directly formulating a measure of similarity, which presumably would be higher 

for more similar distributions. 

Note that we cannot simply normalize pairs of distributions before computing some 

metric on them because our results would be highly sensitive to outliers.  Doing so would 

also make common comparisons difficult, which is particularly important when 

demonstrating convergence in a sequence of probability measures.  Finally, we want our 

similarity metric to be distribution-free and make no assumptions about the underlying 

data, which would make generalizing a simple normalization schema difficult. 

 

3.6.3 Probabilistic Framework 

We begin with some formal definitions.  Our approach will be to define Similarity 

distance 
S

D  as the ratio between two other metrics.  These are the Kantorovich-

Wasserstein distance and a new metric we introduce called the one-to-many distance.  For 
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Figure 3.10 – Intuitively defining similarity. We consider the two distributions illustrated in Example A to 
be far more similar to one another than those in Example B, even though many metrics would deem them 
further apart due to inherent Euclidean biases.  Notice that the distributions in Example A cover roughly 
two orders of magnitude more area than those in Example B.  Note that simply normalizing the 
distributions before computing some metric on them would be ad hoc, very sensitive to outliers, and make 
common comparisons difficult. 
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each of these, we will provide a definition over continuous distributions and then present 

equivalent formulations for discrete weighted point sets.  These are more computationally 

efficient for computing Similarity distance on the slice data structures introduced earlier.  

After this formal exposition, we intuitively explain and motivate these metrics in Section 

3.6.4 and then show how Similarity distance is derived from them. 

3.6.3.1 Kantorovich-Wasserstein Distance 

Let µ  and ν  and be distributions on state space nΩ = � .  The Kantorovich-Wasserstein 

distance 
W

D  (Kantorovich 1942, Gibbs and Su 2002) between µ  and ν  may be defined: 

 ( ) { }, inf ( , ) :  ( ) ,  ( )W
J

D D x y L x L yµ ν µ ν= = =  (3.5) 

where the infimum is taken over all joint distributions J on x and y with marginals 

( )L x µ=  and ( )L y ν=  respectively.  For brevity, we will refer to 
W

D  simply as the 

Wasserstein distance.  Notice that in order to compute the Wasserstein distance, we 

already need to have a distance metric D defined to calculate the infimum.  Where does D 

come from?  In fact, in the approach described above, isn't D supposed to be the 

Similarity distance 
S

D , because we are proposing to use Similarity distance to measure 

distances within slices?  Thus, we seem to have a “chicken and egg” problem from the 

start.  We will sidestep this by defining D recursively through an iterative function 

system on 
S

D .  This will allow us to compute Similarity distance by incrementally 

refining our calculation of it.   

The definition in (3.5) assumes the distributions are continuous.  Hebbian projections, 

however, are discrete distributions (i.e., weighted point sets) because they are over the 

codebooks within a slice.  We may therefore simplify our computation by carrying it out 

directly over these codebooks.  To do so, we define the Wasserstein distance on weighted 

point sets corresponding to discrete probability distributions.  Consider finite sets 

1 2,r r ⊂ Ω  with point densities 1 2,ϕ ϕ  respectively.  Then we have: 

( ) { }1 1 2 2 1 1 2 2, , , inf ( , ) :  ( ) , ,  ( ) ,W
J

D r r D x y L x r L y rϕ ϕ ϕ ϕ= = =  
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which by (Levina and Bickel 2001) is equal to: 

 ( ) ( )
1

1/ 22
1

1 1 2 2 1 1 2 2
,..,

1

, , , min , , ,
i

m

m

W m i jj j
i

D r r D r rϕ ϕ ϕ ϕ
=

 =   
∑  (3.6) 

where m is the maximum of the sizes of 1r  and 2r , the minimum is taken over all 

permutations of { }1,...,m , and ,a a i
r ϕ  is the i

th element of set ,a ar ϕ .  We note that 

(ibid.) has shown this is equivalent to the Earth Mover's distance (Rubner et al. 1998), a 

popular empirical measure used primarily in the machine vision community, when they 

are both computed over probability distributions. 

We can now define the Wasserstein distance between Hebbian projections of 1 2,
A

r r M⊆  

onto 
B

M  as: 

 ( ) { }1 2 1 2( ), ( ) inf ( , ) :  ( ) ( ),  ( ) ( )
W

J
D H r H r D x y L x H r L y H r= = =

� � � �
 (3.7) 

where the infimum is taken over all joint distributions J on x and y with marginals 

1 2( ) and ( )H r H r
� �

.  By (3.6), we have this is equal to: 

 ( ) ( )
1

1/ 22
1

1 2 1 2
,..,

1

( ), ( ) min ( ) , ( )
i

m

m

W i jm
j j

i

D H r H r D H r H r
=

 =
  ∑

� � � �
 (3.8) 

where m is the number of codebook regions in 
B

M , the minimum is taken over all 

permutations of { }1,...,m ,  and ( )  component of ( )th

i
H r i H r=
� �

. 

We note that the Wasserstein distance presented above is not a candidate for measuring 

similarity.  In fact, referring back to Figure 3.10, the red and blue distributions in 

Example A here are further apart as determined by the Wasserstein distance than those in 

Example B, i.e., (Example A)  (Example B)
W W

D D> , which does not capture our intended 

meaning of similarity.  The additional measure needed will be described shortly, 

following a brief discussion of how 
W

D  can be computed efficiently. 

 



 61    

3.6.3.2 Computational Complexity 

The optimization problem in (3.6) was first proposed by Monge (1781) and is known as 

the Transportation Problem.  It involves combinatorial optimization because the 

minimum is taken over (2 )mO  different permutations and can be solved by Kuhn's 

Hungarian method (1955, see also Frank 2004).  However, by treating it as a flow 

problem, we instead use the Transportation Simplex method introduced by Dantzig 

(1951) and subsequently enhanced upon by Munkres (1957), which has worst case 

exponential time but in practice is quite efficient (Klee and Minty 1972). 

To get some insight into the structure of this problem, we take a moment to examine the 

complexity of determining exact solutions to it according to (3.8).  Although this is not 

necessary in practice, it is instructive to see how the choice of mixture distributions 

influences the complexity of the problem and the implications this has for selecting 

perceptual features.  Notice that in the minimization in equation (3.8), the vast majority 

of permutations can be ignored because we only need examine regions that have non-zero 

probabilities in the Hebbian projections.  In other words, we could choose to ignore any 

region 
i B

q M⊆  where 1 2max( ( ) , ( ) )
i i

H r H r ε≤
� �

 for some small ε .  A conservative 

approach would set 0ε = , however, one can certainly imagine using a slightly higher 

threshold to simultaneously reduce noise and computational complexity. 

We may estimate the running time of calculating 
W

D  exactly by asking how many non-

zeros values we expect to find in the Hebbian projections onto mode 
B

M  of two regions 

in mode 
A

M .  Let us suppose that mode 
B

M  actually has d events (of equal likelihood) 

distributed over m codebook regions.  How many codebook regions are there within each 

event?  If the events do not overlap, then we expect that each perceptual event is covered 

by m/d codebook regions, due to the density normalization performed during codebook 

generation.  In this case, the minimization must be performed over 1 /(2 )m dO +  

permutations.  Alternatively, it is possible for all of the sensory events to overlap, giving 

an upper bound, worst case of m regions per event and (2 )mO  running time.   Thus, the 

running time is a function of the event mixture distributions as much as it is the number 
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of codebooks.  When Hebbian distributions are "localized," in the sense they are confined 

to subsets of the codebook regions, the worst-case running time is closer to 1 /(2 )m dO + .   

We can optimize the computation by taking advantage of the fact that the projections are 

over identical codebooks, i.e., their spatial distributions are over the same set of points 

generated by the hyperclustering of 
B

M .  In the general statement of the Transportation 

Problem, this need not be the case.  We can therefore reduce the number of codebook 

regions involved by removing the intersection of the projections from the calculation.  

Where they overlap, namely, the distribution described by a normalized 

( )1 2min ( ), ( )H r H r
� �

, we know the Wasserstein distance between them is 0.   Therefore, 

let: 

 ( )1 1 1 2( ) ( ) min ( ), ( )H r H r H r H r′ = −
� � � �

 (3.9) 

 ( )2 2 1 2( ) ( ) min ( ), ( )H r H r H r H r′ = −
� � � �

 (3.10) 

 ( )1 21 min ( ), ( )H r H r∆ = −∑
� �

 (3.11) 

 We then have: 

 ( ) ( )1 2 1 2( ), ( )  ( ), ( )
W W

D H r H r D H r H r′ ′= ∆
� � � �

 (3.12) 

In other words, the Wasserstein distance computed over a common codebook (3.12) is 

equal to the distance computed on the distributions ((3.9) and (3.10)) over their non-

intersecting mass (3.11).  (Note that we must normalize (3.9) and (3.10) to insure they 

remain probability distributions, but the reader may assume this normalization step is 

always implied when necessary.)  When the distributions overlap strongly, which we 

previously identified as the worst case scenario, we can typically use this optimization to 

cut the number of involved codebooks regions in half.  When the distributions do not 

overlap, this optimization provides no benefit, but as we have already noted, this is a best 

case scenario and optimization is less necessary.  As a further enhancement, we could 

also establish thresholds for ∆  to avoid calculating 
W

D  altogether.  For example, in the 

case where their non-intersecting mass is extremely small, we might chose to define 

0 or some other approximation
W

D = . 
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In summary then, the computational complexity of exactly computing the Wasserstein 

distance very much rests on the selection of mixture distributions over which it is 

computed.  These in turn depend upon the feature selection used in our perceptual 

algorithms, which directly determine the distributions of sensory data within a slice.  We 

say that "good" features are ones that tend to restrict Hebbian projections to smaller 

subsets of slices and to reduce the amount of overlap among detectable perceptual events.  

(We suspect one can directly formulate a measure of the entropy in features based on 

these criteria but have not done so here.)  Empirically, "good" features for computing the 

Wasserstein distance tend to be similar to the ones we naturally select when creating 

artificial perceptual systems.  "Bad" features provide little information because their 

values are difficult to separate, i.e., they have high entropy.  Later in the thesis, we will 

draw biological evidence for these theses idea from (Ernst and Banks 2002) . 

 

3.6.3.3 The One-to-Many Distance 

We now introduce a new distance metric called the one-to-many distance.  Afterwards, 

we examine this metric intuitively and show how it naturally complements the 

Wasserstein distance.  We will use these metrics together to formalize our intuitive notion 

of similarity. 

Let f and g be the respective density functions of distributions µ  and ν  on state space 

nΩ = � .  Then the one-to-many distance (
OTM

D ) between µ  and ν  is: 

( , ) ( ) ( , ) 

( ) ( ) ( , )  

( ) ( , ) ( , )

OTM W

W OTM

D f x D x dx

f x g y d x y dxdy

g y D y dy D

µ

µ ν

ν

µ ν ν

µ ν µ

= ⋅

= ⋅ ⋅

= ⋅ =

∫

∫ ∫

∫

 

 

We define this over weighted pointed sets as: 
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d p p

d p p

D r r

ϕ ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ

ϕ ϕ

∈

∈ ∈

∈ ∈

=

=

=

=

∑

∑ ∑

∑ ∑
 

The one-to-many distance is the weighted sum of the Wasserstein distances between each 

individual point within a distribution and the entirety of another distribution.  It is 

straightforward to directly calculate 
W

D  between a point and a distribution and 

computing 
OTM

D  requires 2( )O m  time, where m is the maximum number of weighted 

points in the distributions.   Also, we note from these definitions that 
OTM

D  is symmetric.  

From this definition, we can now formulate 
OTM

D  between Hebbian projections of 

1 2,
A

r r M⊆  onto 
B

M : 

 ( ) ( )
1

1 2 2
( )

( ), ( )  , ( )
OTM i W

i H r

D H r H r D i H rω
∈

= ∑
�

� � �
 (3.13) 

 
1 2( ) ( )

( , )i j

i H r j H r

D i jω ω
∈ ∈

= ∑ ∑
� �

 (3.14) 

where 1 2( )  and ( )i i j jH r H rω ω= =
� �

.  Recall that ( )  component of ( )th

i
H r i H r=
� �

. 

 
We see this is symmetric: 

 ( ) ( )1 2 2 1( ), ( ) ( ), ( )
OTM OTM

D H r H r D H r H r=
� � � �

 

 
The one-to-many distance is a weighted sum of the Wasserstein distances between each 

individual region in a projection and the other projection in its entirety.  The weights are 

taken directly from the original Hebbian projections.  This is represented by the term 

( )2 , ( )
i W

D i H rω
�

 in (3.13).   We note that the Wasserstein distance between a single region 

and a distribution is trivial to compute directly, as shown in (3.14), and it can be 

calculated in ( )O m  time, where m is the number of codebooks in Mode B.  Therefore, 

OTM
D  can be computed in 2( )O m  time. 
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Mode A

Mode B

 
Figure 3.11 –   A simpler example.  Mode B is the same as in previous examples but the events in Mode A 
have been separated  so they do not overlap.  The colored ellipses show how the external red and blue 
events probabilistically appear within each mode. 

 
 
 

      

Mode A

Mode B

 
Figure 3.12 – Hebbian projections from regions in Mode B onto Mode A.   Notice that the Hebbian 
projections have no overlap, which simplifies the visualization and discussion in the text.  However, this 
does not affect the generality of the results. 
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3.6.4 Visualizing the Metrics: A Simpler Example 

 
Consider the example in Figure 3.11.  We have modified Mode A, on the bottom, so that 

its events no longer overlap.  (Mode B on top remains unchanged.)  This will simplify the 

presentation but does not affect the generality of the results presented here.  As before, 

the two world events perceived by each mode are delineated with colored ellipses for the 

benefit of the reader but the modes themselves have no knowledge of them.  The Hebbian 

projections from two codebook regions in Mode B are shown in Figure 3.12.  We see this 

example was designed so that the projections have no overlap, making it easy to view 

them independently. 

We now give an intuitive interpretation of the two distance metrics, WD  and OTMD , based 

on the classic statement of the Transportation Problem (Monge 1781).  This problem is 

more naturally viewed with discrete distributions, but the presentation generalizes readily 

to continuous distributions.  Consider the Hebbian projections from our example in 

isolation, as show in Figure 3.13.  On the left, 1( )H r
�

 is shown in red, and 2( )H r
�

 is shown 

in blue on the right.  The shading within each Voronoi region is proportional to its weight 

(i.e., point density) within its respective distribution.   

In the Transportation Problem, we imagine the red regions (on the left) need to deliver 

supplies to the blue regions (on the right).  Each red region contains a mass of supplies 

proportional to its shading and each blue region is expecting a mass of supplies 

proportional to its shading.  (We know that mass being "shipped" is equal to the mass 

being "received" because they are described by probability distributions.)  The one-to-

many distance is how much work would be necessary to deliver all the material from the 

red to blue regions, if each region had to independently deliver its mass proportionally to 

all regions in the other distribution.  Work here is defined as mass×distance . 

The Wasserstein distance computes the minimum amount of work that would be 

necessary if the regions cooperate with one another.  Namely, red regions could deliver 

material to nearby blue regions on behalf of other red regions, and blue regions could 

receive material from nearly red regions on behalf of other blue regions.  Nonetheless, we 
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maintain the restriction that each region has a maximum amount it can send or receive, 

corresponding to its point density.  This is why the Wasserstein distance computes the 

solution to the Transportation Problem, which is directly concerned with this type of 

delivery optimization. 

 Thus, we may summarize that OTMD  computes an unoptimized Transportation 

Problem, where cooperation is forbidden, and that WD  computes the optimized 

Transportation Problem, where cooperation is required.   

                   

�

1( )H r
�

2( )H rMode A
 

 

Figure 3.13 – Visualizing 
WD  and 

OTMD  through the Transportation Problem.  We examine the Hebbian 

projections onto Mode A shown in Figure 3.12.  1( )H r
�

 is shown in red on the left and 2( )H r
�

 is shown in 

blue on the right.  Each region is shaded according to its point density.  In the Transportation Problem, we 

want to move the "mass" from one distribution onto the other.  If we define work = mass× distance , then 

OTMD  computes the work required if each codebook region must distribute its mass proportionally to all 

regions in the other distribution. 
WD  computes the work required if the regions cooperatively distribute 

their masses, to minimize the total amount of work required. 
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3.6.5 Defining Similarity 

We are now in a position to formalize the intuitive notion of similarity presented above.   

We define a new metric called the Similarity distance (
S

D ) between continuous 

distributions µ  and ν : 

( , )
( , )

( , )
W

S

OTM

D
D

D

µ ν
µ ν

µ ν
=  

and over weighted point sets: 

( )
( )

1 1 2 2

1 1 2 2

1 1 2 2

, , ,
( , , , )

, , ,

W

S

OTM

D r r
D r r

D r r

ϕ ϕ
ϕ ϕ

ϕ ϕ
=  

We thereby define the Similarity distance between Hebbian projections of 1 2,
A

r r M⊆  

onto 
B

M : 

 ( )
( )
( )

1 2

1 2

1 2

( ), ( )
( ), ( )

( ), ( )

W

S

OTM

D H r H r
D H r H r

D H r H r
=

� �
� �

� �  (3.15) 

The Similarity distance is the ratio of the Wasserstein to the one-to-many distance.  It 

measures the optimization gained when transferring the mass between two spatial 

probability distributions if cooperation is allowed.  Intuitively, it normalizes the 

Wasserstein distance.  It is scale invariant (see Figure 3.14) and captures our desired 

notion of similarity.   

An important note to avoid confusion: Because 
S

D  is a distance measure based on 

similarity – and not a similarity measure – it is smaller for things that are more similar 

and larger for things that are less similar.  So, for any distribution ν , ( ), 0SD ν ν = , 

expressing the notion that anything is (extremely) similar to itself. 

We briefly examine the behavior of 
S

D  at and in between its limits.  Let 1 2( ) and ( )H r H r
� �

 

be identical Hebbian projections separated by some distance ∆ .  Then we have the 

following properties: 
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1) We see that as the distributions are increasingly separated, the optimization provided 
in the Wasserstein calculation disappears: 

( ) ( )1 2 1 2
lim  ( ), ( ) ( ), ( )

W OTM
D H r H r D H r H r

∆→∞
=

� � � �
 

 and therefore: 

( )1 2lim  1( ), ( )
S

D H r H r
∆→∞

=
� �

 

2) As the distributions are brought closer together, the Wasserstein distance decreases 
much faster than the One-To-Many distance: 

( ) ( )1 2 1 2
( ), ( ) ( ), ( )

W OTM
D H r H r D H r H r

∂ ∂
>

∂∆ ∂∆

� � � �
  

3) As they approach, it eventually dominates the calculation: 

1 2
0

lim  ( ( ), ( )) 0
W

D H r H r
∆→

=
� �

 and therefore, 
1 2

0
lim  ( ( ), ( )) 0

S
D H r H r

∆→
=

� �
 

4) So, we see that 1 20 ( )  1 ( ), ( )
S

D H r H r≤ ≤
� �

and 
S

D  varies non-linearly between these 

limits.   

On the next two pages, we visualize the dependence of 
S

D  on the distance ∆  and the 

angle θ  between pairs of samples drawn from different distributions.  We examine 
samples drawn from Gaussian and Beta distributions in Figure 3.15 and Figure 3.16 
respectively. 
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Figure 3.14– Examining Similarity distance.   Comparing the distributions in the two examples, we have 

(Example A)  (Example B)
S S

D D�  , which captures our intuitive notion of similarity. 



 70    

 
 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
im

ila
ri
ty

 d
is

ta
n
c
e

Distance between means

0 0.31 0.63 0.94 1.26 pi/2 1.88 2.2 2.51 2.83 3.14

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Angle of rotation

ED θ

 
 

Figure 3.15 – Effects on 
S

D  as functions of the distance 
E

D  and angle θ  between Gaussian distributions.  

As the distance 
E

D  or angle between θ  two Gaussian distributions decreases, we see how their 

corresponding similarity distance 
S

D  decreases non-linearly in the graph on the bottom.  
E

D  is shown in 

red and θ  is shown in blue. 
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Figure 3.16 –Effects on 

S
D  as functions of the distance 

E
D  and angle θ  between Beta distributions.  As 

the distance 
E

D  or angle between θ  the two Beta distributions decreases, we see how their corresponding 

similarity distance 
S

D  decreases non-linearly in the graph on the bottom.  
E

D  is shown in red and θ  is 

shown in blue. 

 



 72    

3.6.5.1 A Word about Generality 

We can use Similarity distance to compare arbitrary discrete spatial probability 

distributions.   Several such comparisons are illustrated in Figure 3.17.  These examples 

are important, because our being able to compute Similarity distances between these 

distributions means that we will be able to perceptually ground events drawn from their 

mixtures.  That all our examples have so far involved mixtures of Gaussians has simply 

been for convenience.  We will demonstrate later in this chapter that we can separate 

events corresponding to a wide assortment of mixture distributions such as the ones 

shown here.   

 
Figure 3.17 – Comparing spatial probability distributions.   In each slice, the green and blue points 
represent samples drawn from equivalent but rotated 2-dimensional distributions.  For each example, we 
identify the source distribution and the Similarity distance between the green and blue points.  (A)  A 2-D 
beta distributions with a, b = 4.  Note the low density of points in the center of the distributions and the 
corresponding sizes of the codebook regions.  DS = 0.22.  (B) A 2-D uniform distribution.  DS = 0.11.  (C)  
A 2-D Gaussian distribution with σ = (.15, .04).  DS = 0.67.  (D) A 2-D Poisson distribution, with λ = 

(50,30) and scaled by (.8, .3).  DS = .55. 
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We can also apply the Similarity distance to non-parametric distributions.  For example, 

consider the familiar distributions shown in Figure 3.18.  We have examined using 
S

D  

for handwriting recognition, and one can notice some of the well known properties of 

codebooks constructed on contours in the above images, for example, how they capture 

the medial axes. 

 

3.7 Defining the Distance between Regions 

We now use Similarity distance to define the Cross-Modal distance (
CM

D ) between two 

regions 1 2,
A

r r M∈  with respect to mode 
B

M : 

 [ ]
1 222

1 2 1 2 1 2( , ) (1 ) ( , )    2  ( ( ), ( ))
CM E S

D r r D r r D H r H rλ λ  = − +    
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  
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  
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� �

� �  (3.17) 

     
Figure 3.18 – Some familiar non-parametric probability distributions within codebooks.   
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where 
E

D  is Euclidean distance and λ is the relative importance of cross-modal to 

Euclidean distance.   Thus the distance between two regions within a slice is defined to 

have some component (1 )λ−  of their Euclidean distance and some component ( )λ  of 

the Similarity distance between their Hebbian projections.  This is illustrated in Figure 

3.19. 

In almost all uses of cross-modal distance in this thesis, we set 1λ =  and ignore 

Euclidean distance entirely.  However, in some applications, e.g., hand-writing or 

drawing recognition, spatial locality within a slice is important because it is a 

fundamental component of the phenomenon being recognized.  If so, we can use a lower 

of λ .   Determining the proper balance between Euclidean and Similarity distances is an 

empirical process for such applications.    

So far, we have only considered two co-occurring modes simultaneously to keep the 

examples simple.  However, it is straightforward to generalize the definition to 

incorporate additional modalities, and the calculation scales linearly with the number of 

modalities involved.  To define the cross-modal distance (
CM

D ) between two regions 

1 2,
A

r r M∈  with respect to a set of co-occurring modes 
I

M ∈Μ , we define: 

 [ ]
1 2

22

1 2 1 2 1 2( , ) (1 ) ( , )   2   ( ( ), ( ))
I

I I

CM E E I S A A

M

D r r D r r D H r H rλ λ
∈Μ

 
 = − +  

 
∑

� �
 (3.18) 

where the contributions of each mode 
I

M  is weighted by 
I

λ  and we set 1E Iλ λ+ =∑ .   

For guidance in setting the values of the 
I

λ , we can turn to (Ernst and Banks 2002), who 

found that in intersensory influence, people give preference to senses which minimize the 

variance in joint perceptual interpretations, confirming an earlier prediction by (Welch 

and Warren 1986) about sensory dominance during multimodal interactions.   This lends 

credence to our hypothesis in section 3.6.3.2 regarding the computational value of 

entropy minimization in the selection of perceptual features.  We reexamine these issues 

in the dynamic model presented in Chapter 4. 



 75    

 

 

Mode B

Mode A

Mode B

Mode A

1 2( (

Com

),

p

))

ute

(SD H r H r
� �

1 2

1 2

1 2

1 2

The  between  and 

 is calculated from:

1)  their Euclidean distance: 

and

2)  the Similarity distance of their Hebbian

     proj

( , )

( , )

ections:

 

     

( ( ) ( ) , )

CM

E

S

cross - modal distance r r

D r r

D r r

D H r H r
� �

2r

1r

1( )H r
�

2( )H r
�

1 2( , ) 
E

D r r

 
 

 

Figure 3.19 – Calculating the cross-modal distance between codebook regions in a slice.   The distance is a 
function of their local Euclidean distance and the how similar they appear from the perspective of a co-

occurring modality.  To determine this for regions 1 2 and r r  in Mode B on top, we project them onto 

Mode A, as shown in the middle.  We then compute the Similarity distance of their Hebbian projections, as 
shown on the bottom. 
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3.7.1 Defining a Mutually Iterative System 

 
In this section, we show how to use the cross-modal distance function defined above to 

calculate the distances between regions within a slice.  This statement may seem 

surprising. Why is any elaboration required to use 
CM

D , which we just defined?  There 

are two remaining issues we must address: 

1) We have yet to specify the distance function D used to define the Wasserstein 

distance in equations (3.7) and (3.8), which was also "inherited" in our definition 

of the one-to-many distance in equation (3.14).   

2) By defining distances cross-modally, we have created a mutually recursive system 

of functions.  Consider any two regions 1 2,r r  in mode 
A

M .  When we 

calculate 1 2( , )
CM

D r r , we are relying on knowing the distances between regions 

within another mode 
B

M , which are used to calculate ( )1 2( ), ( )
S

D H r H r
� �

.  

However, the distances between regions in 
B

M  are calculated exactly the same 

way but with respect to 
A

M .  So, every time we calculate distances in a mode, we 

are implicitly changing the distances within every other mode that relies upon it.   

And of course, this means its own inter-region distances may change as a result!  

How do we account for this and how do we know such a system is stable? 

 

We will approach both of these issues simultaneously.  Suppose we parameterize the 

distance function D in all of our definitions: 

( ) ( )
1

1/ 22
1

1 2 1 2
,..,

1

( ), ( ),   min ( ) , ( )
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m

m

W i jm
j j
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D H r H r D D H r H r
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 =
  ∑
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We now define an iterative function system on modes  and 
A B

M M  that mutually 

calculates 
CM

D  over their regions: 

Let X

t CM
D∆ =  in mode 

X
M  at time t.  Recall that 

E
D  is Euclidean distance. 

For all pairs of regions ,
i j A

r r M∈  and ,
i j B

q q M∈ , we define: 

0 ( , )  ( , )A

i j E i jr r D r r∆ =   (3.23) 

0 ( , )  ( , )B

i j E i jq q D q q∆ =  (3.24) 

( )1( , )  , ,A B

t i j CM i j t
r r D r r −∆ = ∆  (3.25) 

( )1( , )  , ,B A

t i j CM i j t
q q D r r −∆ = ∆  (3.26) 

Thus, we are start by assuming in (3.23) and (3.24) that the distances between regions in 

a slice are Euclidean, in the absence of any other information.  (We later eliminate this 

assumption in the intermediate steps of cross-modal clustering, where we have good 

estimates on which to base the iteration.)  The iterative steps are shown in (3.25) and 

(3.26) , where at time t, we recalculate the distances within each slice based upon the 

distances in the other slice at time 1t − .  For example, notice how the definition of 

( , )A

t i jr r∆  calculates 
CM

D  using 1
B

t−∆  in (3.25).  After all pairs of distances have been 

computed at time t, we can then proceed to compute them for time 1t + .  As we did in 

equation (3.18), we can easily generalize this system to include any number of mutually 

recursive modalities.  The complexity again scales linearly with the number of modalities 

involved. 
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We stop the iteration when A

t
∆  and B

t
∆  begin to converge, which empirically tends to 

happen very quickly.  Thus, we stop iterating on mode 
X

M  at time t when: 

 
1

,

( , ) ( , )
max ,  for .9,  we typically have 4.

( , )i j X

X X

t i j t i j

X
r r M

t i j

r r r r
t

r r
κ κ

−

∈

∆ − ∆
< = ≤

∆
 

 

We will refer to this final value of X

t
∆  for any regions ,

i j X
r r M∈  as ( ),

CM i j
D r r� .   

 
With this, we complete our formal definition of the slice data structure.  The final 

component necessary for specifying the topological manifold defined by a slice was the 

non-Euclidean distance metric between the hyperclustered regions.  We now define this 

distance to be 
CM

D� . 
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3.8 Cross-Modal Clustering 

 
Recall that our goal has been to combine codebook regions to "reconstruct" the larger 

perceptual regions within a slice.  The definition of the iterated cross-modal distance 

CM
D�  in the previous section allows us to proceed, because it suggests how to answer the 

following fundamental question:  

Can any other modality distinguish between two regions in the same 

codebook?  If not, then they represent the same percept. 

Because 
CM

D�  represents the distance between two regions from the perspective of other 

modalities, we will use it to define a metric that determines whether to combine them or 

not.  If ( ),
CM i j

D r r�  is sufficiently small for two regions 1 2,
A

r r M⊆ , then we will say they 

are indistinguishable and therefore part of the same perceptual event.  If ( ),
CM i j

D r r�  

between two regions is large, we will say they are distinguishable and therefore, cannot 

be part of the same perceptual event.  These criteria suggest the general structure of our 

cross-modal clustering algorithm.  One important detail remains: how small must 

( ),
CM i j

D r r�  be for us to say it is "sufficiently" small?  How do we define the threshold for 

merging two regions?   An earlier version of this work appeared in (Coen 2005). 

3.8.1 Defining Self-Distance 

We define the notion of self-distance, which measures the internal value of 
CM

D�  within 

an individual region.  Thus, rather than measure the distance between two different 

regions, which has been our focus so far, self-distance measures the internal cross-modal 

distance between points within a single region.  It is a measure of internal coherence and 

will allow us to determine whether two different regions are sufficiently similar to merge.   

Suppose we are considering merging two regions 
i

r  and jr  within some slice M, where 

we have already determined their cross-modal distance ( ),
CM i j

D r r� .  For example, on the 

left in Figure 3.20 we are considering merging the green and blue regions.  Let us 

hypothetically assume that we did merge them to create a new region 'r .  We will now 
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immediately split this new region into two pieces, r+  and r− , as show on the right in 

Figure 3.20.   We now ask: what is the cross-modal distance ( ),
CM

D r r
+ −�  between these 

new regions?  The intuition here is that if 1r  and 2r  really are part of the same region, 

then if we split 'r  differently, we should find the two new regions have approximately 

the same cross-modal distance ( ),
CM i j

D r r� .   In other words, the Hebbian projections of the 

new regions r+  and r−  should be roughly as similar as the Hebbian projections of the 

original regions 1r  and 2r  we are considering merging, because they should co-occur in 

the same way with other modalities.  If the distance ( ),
CM

D r r
+ −�  is much less than 

( ),
CM i j

D r r� , then we have merged two regions that are actually different from one 

another.  Why?   Because we would now be averaging the Hebbian projections of two 

genuinely different regions, which would drastically increase their similarity and 

therefore make ( ),
CM

D r r
+ −�  much smaller than ( ),

CM i j
D r r�  .  The question remains then, 

how do we divide 'r ? 

We will partition 'r  by fitting a linear orthogonal regression onto it.  For a slice 

N
M ⊆ � , this will generate an ( 1)N − -dimensional hyperplane that divides 'r  into two 

sets, r+  and r− , minimizing the perpendicular distances from them to the hyperplane.  

1r

2r

r
+

r
−

r
+

r
−

 
Figure 3.20 -- Determining when to merge two regions.  On the left, we are considering merging the green 

and blue regions  1r  and 2r .  To determine whether or not to proceed, we divide the candidate resulting 

region using a hyperplane generated by its principal components, as shown on the right.   This generates 

two new regions r+  and r− .   If ( ),
CM

D r r
+ −�  << ( ),

CM i j
D r r� , then we determine the regions should not be 

merged.  See the accompanying text for details. 
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Note that because the data are drawn from independent distributions, there is no error-

free predictor dimension that generates the other dimensions according to some function.  

This is equivalent to the case where all variables are measured with error, and standard 

least squares techniques do not work in this circumstance.  We therefore perform 

principal components analysis on the points in region 'r  and generate the hyperplane by 

retaining its 1N −  principal components.  This computes what is known as the 

orthogonal regression and works even in cases where all the data in 'r  are independent. 

We use this hyperplane to partition 'r  into r+  and r− , as shown in Figure 3.20.  We 

define the self-distance ( )
self

D  of region 'r : 

 
( )
( )1 2

,
( ')

,

CM

self

CM

D r r
D r

D r r

+ −

=
�

�
 (3.27) 

 

If ( ')
self

D r  < ½, then we do not combine 1r  and 2r , because this indicates we would be 

averaging two dissimilar Hebbian projections were the merger to occur.  At the moment, 

this remains an empirical statement, but we note that this threshold is not a parameter of 

the cross-modal clustering algorithm and it is fixed throughout the results in this thesis.  

In practice, the self-distance value ( )
self

D  tends towards either zero or one, which 

motivated our selection of ½ as the merger threshold.  A more theoretical investigation of 

this empirical criterion is among our future work. 

 

3.8.2 A Cross-Modal Clustering Algorithm 

We now present an algorithm for combining codebook clusters into regions that represent 

the sensory events within a slice.  This is done in a greedy fashion, by combining the 

closest regions according to 
CM

D�  within each slice.  We use the definition of self-

distance to derive a threshold for insuring regions are sufficiently close to merge.  

Afterwards, we examine the algorithm and some examples of its output. 
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Cross-Modal Clustering: 

 
Given: A set of slices M and λ , the parameter for weighting Euclidean to Similarity 

distances.  For each slice 
i

M M∈ , we will call its codebook { }1,..., ii k
C p p= . 

 
Initialization:  For each slice 

i
M M∈ , initialize a set of regions 

i i
R C= .  Each slice 

will begin with a set of regions based on its codebook.  We will merge these regions 
together in the algorithm below. 
 
Algorithm:  

Calculate 
CM

D�  over the slices in set M. 

 
While (true) do: 
  

Calculate 
CM

D�  over the slices in set M.  Use current 
CM

D�  as t=0 value 

For each slice 
i

M M∈ : 

Sort the pairs of regions in 
i

M , ,
a b i

r r R∈ , by ( ),CM a bD r r�  

  For each pair ,
a b i

r r R∈ , in sorted order: 

   If   ( )' .5,  where 'self a bD r r r r≥ = ∪ : 

    Merge( ,
a b

r r ) 

    Exit inner for loop. 
    

 
   For each codebook cluster 

i
p  in 

i
C : 

    Let r = ( )min arg ,
i

CM i
r R

D p r
∈

  
�  

    Move 
i

p  into region r 

 
 
 
         If no regions were merged in any slice 
      Either wait for new data or stop 
     
 
 

Procedure Merge( ,
a b

r r ): 

 

( ) ( ) ( )( )

.

/ .

For all regions ,  set , min , , , .

a a b

i i b

c i CM a c CM a c CM b c

r r r

R R r

r R D r r D r r D r r

= ∪

=

∈ =� � �
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The cross-modal clustering algorithm initially creates a set of regions in each slice 

corresponding to its codebook.  The goal is to merge these regions based on their cross-

modal distances.  The algorithm proceeds in a two-step greedy fashion: 

1) For each slice, consider its regions in pairs, sorted by 
CM

D� .  If we find two 

regions 
a

r  and 
b

r  satisfying ( )' .5,  where 'self a bD r r r r≥ = ∪ , we merge them and 

move onto the next step.   

2) If as a result of this merger, some codebook cluster 
i

p  is now closer to another 

region, we simply move it there.   

When we merge two regions, we set the pairwise distances to other regions to be the 

minimum of the distances to the original regions, because we now view them as all part 

of the same underlying perceptual event and therefore equivalent to one another.  At the 

end of each loop, we recompute 
CM

D�  using the current value as the starting point in the 

iteration, which propagates the effects of mergers to the other slices in M.  In the event no 

mergers are made in any slices, we can choose to either wait for new data, which will 

update the Hebbian linkages, or we can terminate the algorithm, if we assume sufficient 

training data has already been collected. 

Most clustering techniques work by iteratively refining a model subject to an 

optimization constraint.  The iterative refinement in our algorithm occurs in the 

recalculation of 
CM

D� , which is updated after each round of mergers within the slices.  

This spreads the effect of a merger within a slice by changing the Similarity distances 

between Hebbian projections onto it.  This in turn changes the distances between regions 

in other slices and so forth, as discussed in section 3.7.1.  The optimization constraint is 

that we do not create regions whose internal self-distances violate the above constraint, 

where a drastic decrease in self-distance would indicate the regions under consideration 

are viewed differently by other co-occurring modalities. 
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Figure 3.21 – The progression of the cross-modal clustering algorithm.  (A) shows the initial codebook 
creation in each slice.  (B) and (C) show intermediate region formation.  (D) shows the correctly clustered 
outputs, with the confusion region between the categories indicated by the yellow region in the center.  
Note in this example, we set .7λ =  to make region formation easier to see by favoring spatial locality.  The 
final clustering was obtained by setting 1.λ =    
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Figure 3.22 – The output of cross-modally clustering four overlapping Gaussian distributions in each slice.  
The confusion region between them is indicated in the center of the clusters. 

 
 
 
 
 
 
 
 
 
 

 
Figure 3.23 – Finding one cluster embedded in another.   In mode B, cross-modal clustering is able both to 
detect the small cluster embedded in the larger one and to use this separation of clusters to detect those in 
mode A.  This is due to the non-Euclidean scale invariance of Similarity distance, which is used for 
determining the cross-modal distance between regions.  Thus, region size is unimportant in this framework, 
and "small" regions are as effective in disambiguating other modes as are "large" regions. 
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Figure 3.24 – Self-supervised acquisition of vowels (monophthongs) in American English.  This work is 
the  first unsupervised acquisition of human phonetic data of which we are aware.  The identifying labels 
were manually added for reference and ellipses were fit onto the regions to aid visualization.  All data have 
been normalized.  Note the correspondence between this and the Peterson-Barney data show below. 

 

    
Figure 3.25—The Peterson-Barney dataset.  Note the correspondence between this and Figure 3.24. 
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The progression of the algorithm starting with the initial codebook is shown in Figure 

3.21.  Setting 1λ <  includes Euclidean distances in the calculation of
CM

D� .  This favors 

mergers between adjacent regions, which makes the algorithm easier to visualize.  At the 

final step, setting 1λ =  and thereby ignoring Euclidean distance allows the remaining 

spatially disjoint regions to merge.  Had we been uninterested in visualizing the 

intermediate clusterings, we would have set 1λ =  at the beginning.  Doing so yields an 

identical result with this dataset, but the regions merge in a different, disjoint order.  Note 

in general, however, it is not the case that different values of λ  yield identical 

clusterings.  All other examples in this thesis use 1λ =  exclusively. 

Figure 3.22 demonstrates that the algorithm is able to resolve multiple overlapping 

clusters, in this case, two mixtures of four Gaussian distributions.  Figure 3.23 show an 

important property of the Similarity distance, namely, it is scale invariant.  The smaller 

cluster in Mode B is just as "distinct" as the larger one in which it is embedded.  It is both 

detected and used to help cluster the regions in Mode A.   

 

3.9 Clustering Phonetic Data 

In Chapter 2, we asked the basic question of how categories are learned from unlabelled 

perceptual data.  In this section, we provide an answer to this question using cross-modal 

clustering.  We present a system that learns the number (and formant structure) of vowels 

(monophthongs) in American English, simply by watching and listening to someone 

speak and then cross-modally clustering the accumulated auditory and visual data.  The 

system has no advance knowledge of these vowels and receives no information outside of 

its sensory channels.  This work is the first unsupervised machine acquisition of phonetic 

structure of which we are aware.   

For this experiment, data was gathered using the same pronunciation protocol employed 

by (Peterson and Barney 1952).  Each vowel was spoken within the context of an English 

word beginning with [h] and ending with [d]; for example, /ae/ was pronounced in the 

context of "had."   Each vowel was spoken by an adult female approximately 90-140 
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times.  The speaker was videotaped and we note that during the recording session, a small 

number of extraneous comments were included and analyzed with the data.  The auditory 

and video streams were then extracted and processed.   

Formant analysis was done with the Praat system (Goedemans 2001, Boersma and 

Weenink 2005), using a 30ms FFT window and a 14th order LPC model.  Lip contours 

were extracted using a system written by the author described in Chapter 2.  Time-

stamped formant and lip contour data were fed into slices in an implementation of the 

work in this thesis written by the author in Matlab and C.  This implementation is able to 

visually animate many of the computational processes described here.  This capability 

was used to generate most of the figures in this thesis, which represent actual system 

outputs. 

Figure 3.24 shows the result of cross-modally clustering formant data with respect to lip 

contour data.  Notice the close correspondence between the formant clusterings in 

Figures 22 and 23, which displays the Peterson-Barney dataset introduced earlier.  We 

see the cross-modal clustering algorithm was able to derive the same clusters with the 

same spatial topology, without knowing either the number of clusters or their 

distributions. 

The formant and lip slices are shown together in Figure 3.26, where the colors show 

region correspondences between the slices.  This picture exactly captures what we mean 

by mutual bootstrapping.  Initially, the slices "knew" nothing about the events they 

perceive.  Cross-modal clustering lets them mutually structure their perceptual 

representations and thereby learn the event categories that generated their sensory inputs.  

The black lines in the figure connect neighboring regions within each slice and the red 

lines connect corresponding regions in different slices.  They show a graph view of the 

clustering within each slice and illustrate how a higher-dimensional manifold may be 

constructed out of lower-dimensional slices.  This proposes an alternative view of the 

structures created by cross-modal clustering, which we hope to explore in future work. 
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3.10 Related Work 

There is a vast literature on unsupervised clustering techniques.  However, these 

generally make strong assumptions about the data being clustered, have no corresponding 

notion of correctness associated with their results, or employ arbitrary threshold values.  

The intersensory approach taken here is entirely non-parametric and makes no a priori 

assumptions about the underlying distributions or the number of clusters being 

represented.  We examine several of the main avenues of related work below. 

3.10.1  Language Acquisition 

De Sa (1994) and de Sa and Ballard (1997) have taken a similar approach to the work 

presented here.  Namely, they are interested in unsupervised learning of linguistic 

 
Figure 3.26 – Mutual bootstrapping through cross-modal clustering.  This displays the formant and lip 
slices together, where the colors show the region correspondences that are obtained from cross-modal 
clustering.  Initially, the slices "knew" nothing about the events they perceive.  Cross-modal clustering lets 
them mutually structure their perceptual representations and thereby learn the event categories that 
generated their sensory inputs.  The black lines in the figure connect neighboring regions within each slice 
and the red lines connect corresponding regions in different slices.  The identifying labels were manually 
added for reference and ellipses were fit onto the regions to aid visualization.  All data have been 
normalized. 
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category boundaries based on cross-modal co-occurrences.  However, their approach 

requires that the number of categories be known beforehand.  For example, to separate 

the vowels in the English, they would need to know in advance that ten such vowels 

exist.  Thus, their approach cannot solve the perceptual grounding problem presented in 

this chapter.  However, their work is capable of refining boundaries once the categories 

have been learned, which would be a useful addition to our framework.  Thus, one can 

easily imagine combining the two approaches to yield something more powerful than 

either of them alone. 

De Marcken (1996) has studied the unsupervised acquisition of English from audio 

streams.  However, he uses the phonetic model of Young and Woodland (1993) 

implemented in the HTK HMM toolkit to perform phonetic segmentation, which has 

already been trained to segregate phonemes.  Thus, this aspect of his work is heavily 

supervised. 

Other unsupervised linguistic learning systems (e.g., McCallum and Nigam 1998) are 

built around the Expectation Maximization algorithm (Dempster et al. 1977), which we 

discuss below.  These approaches make very strong assumptions about the parametric 

nature of the data being clustering. 

 

3.10.2  Machine Vision 

The vast majority of research in the machine vision has employed supervised learning 

techniques.  Some notable unsupervised approaches include Bartlett’s (2001) work on 

using independent component analysis for face recognition, based upon assumed 

statistical dependencies among image features.  Although there are no obvious metrics 

for correctness associated with the clustering itself, her selection of features has yielded 

performance comparable to that of humans in face recognition.  One may therefore view 

her approach and ours as complementary.  Her work would be an ideal basis for guiding 

the feature selection that generates inputs into slices in our approach. 
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Stauffer (2002) has studied using multiple sensors to learn object and event segmentation.   

The unsupervised learning component of his system assumes that the data are represented 

by mixtures of Gaussians, which is quite reasonable given the enormous amount of data 

collected by his sensor networks and their intended applications.  In this, his framework 

makes strong parametric assumptions.  It is also difficult to gauge the absolute 

correctness of his results in that it does not seem to have been applied to problems that 

have well-defined metrics.  As this is not the goal of his framework, this comment should 

be viewed more as a differing characteristic than a criticism of his work. 

 

3.10.3  Statistical Clustering 

There is an enormous body of literature on statistical clustering techniques, which used 

assumed properties of the data being clustering to guide the segmentation process.  For 

example, the Expectation Maximization (EM) algorithm (Dempster et al. 1977) is widely 

used a basis for clustering mixtures of distributions whose maximum likelihood 

estimation is easy to compute.  This algorithm is therefore popular for clustering known 

finite numbers of Gaussian mixture models (e.g., Nabney 2002, Witten and Frank 2005).  

However, if the number of clusters is unknown, the algorithm tends to converge to a local 

minimum with the wrong number of clusters.  Also, if the data deviate from a mixture of 

Gaussian (or some expected) distributions, the assignment of clusters degrades 

accordingly.   

Wide ranges of clustering techniques (e.g., Cadez and Smyth 1999, Taskar et al. 2001) 

base their category assignment upon the EM algorithm.  As such, they tend to require 

large amounts of data corresponding to presumed distributions, and they generally require 

the number of expected clusters be known in advance.  While these assumptions may be 

reasonable for a wide range of applications, they violate the clustering requirements 

stated here. 
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3.10.4  Blind Signal Separation 

Separating a set of independent signals from a mixture is a classic problem in clustering.  

For example, from a recording of an orchestra, we might like to isolate the sounds 

contributed by each individual instrument.  This is an extraordinarily difficult problem in 

its general form.  However, the assumption that the signals are mutually independent, 

which is not always realistic, supports a number of approaches.  Principal components 

analysis (PCA) is a frequent tool used for separating signals, and while it is useful for 

reducing the dimensionality of a dataset, it does not necessarily provide a notion of 

correct clustering.   

A number of interesting results have been found using PCA for data mining, for example, 

Honkela and Hyvärinen’s (2004) work on linguistic data extraction, but our approach is 

founded on the notion that our cross-modal signals are mutually dependent, not 

independent.  In that sense, our work makes a very different set of assumptions than most 

efforts in signal separation.  Instead of looking for principal components in a high 

dimensional space, which for example might correspond to the vowels in the example in 

this chapter, we use a larger number of low dimensional spaces (i.e., slices) in parallel.  

Thus, we approach the problem from an entirely different angle, and as such, our 

framework appears to be more biologically realistic in that it is dimensionally compact. 

 

3.10.5  Neuroscientific Models 

The neuroscience community has proposed a number of approaches to unsupervised 

clustering (e.g., Becker and Hinton 1995, Rodriguez et al. 2004, Becker 2005).  These are 

frequently based upon standard statistical approaches and often involve threshold values 

that are difficult to justify independently.  Most problematically, they generally have no 

measure of absolute correctness.  So, for example, the work of (Aleksandrovsky et al. 

1996) learns multiple phonetic representations of audio signals without actually knowing 

how many unique phonemes are represented.  Although one may argue that each 

phoneme is represented by multiple phones in practice, there is a clear consensus that it is 
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meaningful to speak about the number of actual number of phonemes within in a 

language, which these techniques do not capture. 

 

3.10.6  Minimally Supervised Methods 

Blum and Mitchell (1988) have proposed using small amount of supervision to help 

bootstrap unsupervised learning systems.  Although their approach is clearly supervised, 

one may argue that this supervision could come from phylogenetic development 

(Tinbergen 1951) and thereby provide support for innate models.  We return to this 

discussion in Chapter 5, and note that it is entirely complementary to our approach.  By 

pre-partitioning slices, we can easily incorporate varying amounts of supervision into our 

framework. 

3.11 Summary 

This chapter introduced slices, a neurologically inspired data structure for representing 

sensory information.  Slices partition perceptual spaces into codebooks and then 

reassemble them to construct clusters corresponding to the actual sensory events being 

perceived.  To enable this, we defined a new metric for comparing spatial probability 

distributions called Similarity distance; this allows us to measure distances within slices 

through cross-modal Hebbian projections onto other slices.   

We then presented an algorithm for cross-modal clustering, which uses temporal 

correlations between slices to determine which hyperclusters within a slice correspond to 

the same sensory events.  The cross-modal clustering algorithm does not presume that 

either the number of clusters in the data or their distributions is known beforehand and 

has no arbitrary thresholds. 

We also examined the outputs and behavior of this algorithm on simulated datasets and 

on real data gathered in computational experiments.  Finally, using cross-modal 

clustering, we learned the ten vowels in American English without supervision by 

watching and listening to someone speak.  In this, we have shown that sensory systems 

can be perceptually grounded by bootstrapping off each other. 
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Chapter 4  

Perceptual Interpretation 

We saw in Chapter 3 that sensory systems can mutually structure one another by 

exploiting their temporal co-occurrences.  We called this process of discovering shared 

sensory categories perceptual grounding and suggested that it is a fundamental 

component of cognitive development in animals; it answers the first question that any 

natural (or artificial) creature faces: what different events in the world can I detect?   

The subject of this chapter follows naturally from this question.  Once an animal (or a 

machine) has learned the set of events it can detect in the world, how does it know what it 

is perceiving at any given moment?  We refer to this as perceptual interpretation.  We 

will take the view that perceptual interpretation is inherently a dynamic – rather than 

static – process that occurs during some window of time.  This approach relaxes the 

requirement that our perceptual categories be separable in the traditional machine 

learning sense; unclassifiable subspaces are not a problem if we can determine how to 

move out of them by relying on other modalities.  We will argue that this approach is not 

only biologically plausible, it is also computationally efficient in that it allows us to use 

lower dimensional representations for modeling sensory and motor data. 

 

4.1 Introduction 

In this chapter, we introduce a new family of models called influence networks, which 

incorporate temporal dynamics into our framework.  Influence networks connect cross-

modally clustered slices and modify their sensory inputs to reflect the perceptual states 

within other slices.  This cross-modal influence is designed to increase perceptual 

accuracy by fusing together information from co-occurring senses, which are all 

experiencing the same sensory events from their unique perspectives.  This type of cross-

modal perceptual reinforcement is commonplace in the animal world, as we discuss in 

Chapter 6. 
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Our approach will be to formulate a dynamic system in which slices are viewed as 

coupled perceptual state spaces.  In these state spaces, sensory inputs move along 

trajectories determined both locally – due a slice's internal structure – and cross-modally 

– due to the influence of other co-occurring slices.  This addition of temporal dynamics 

will allow us to define our notion of perceptual interpretation, which is the goal of this 

chapter.    

The model presented here is inspired by sensory dynamics in animals, but it does not 

approach the richness or complexity inherent in biological perception.  Our intent, 

however, is to work toward creating better artificial perceptual systems by providing 

them with a more realistic sensorial framework. 

4.2 The Simplest Complex Example 

We will proceed by considering an example.  We turn to the hypothetical perceptual 

modes introduced in Chapter 3, as shown in Figure 4.1.  Recall that each mode here is 

capable of sensing the same two events in the world, which we have called the red and 

blue events.  The cross-modal clustering of these modes in shown in Figure 4.2.  We see 

that the larger perceptual regions have been assembled out of the codebook clusters, 

shaded red or blue to indicate their corresponding sensory category.  Our interest here, 

however, is not in these large perceptual regions but rather in the small yellow regions at 

their intersections.  Sensory inputs within the yellow regions are ambiguous – these are 

the inputs that we cannot classify, at least not without further information.   

Although this example was selected for its simplicity, it worthwhile pointing out some of 

the complexity it presents, and thereby examine some of the assumptions in our 

framework before we proceed.  Notice that because the mixtures of Gaussians here 

intersect near their means, the "small" yellow regions will receive almost as many 

sensory inputs as either of the "large" blue and red ones.  Estimating from the limits of 

the density normalization performed during codebook generation, we expect at least 1/4 

of the inputs in this example to be unclassifiable because they will fall into these yellow 

confusion zones.  If our goal is to categorize sensory inputs, these yellow regions will 

prove quite troublesome; we need to find some way of avoiding them. 
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Figure 4.1 -- Two hypothetical co-occurring perceptual modes.   Each mode, unbeknownst to itself,  
receives inputs generated by a simple, overlapping Gaussian mixture model.   For example, if a "red" event 
takes place in the world, each mode would receive sensory input that probabilistically falls within its red 
ellipse.  To make matters more concrete, we might imagine Mode A is a simple auditory system that hears 
two different events in the world and Mode B is a simple visual system sees those same two events, which 
are indicated by the red and blue ellipses. 

 
 
 
 
 
 
 
 

Mode A Mode B

 
Figure 4.2 – The output of cross-modally clustering the modes in Figure 4.1.  The perceptual regions have 

been constructed out of the codebook clusters and are indicated respectively by the blue and red shading.  

The confusion region between them is indicated at their intersection in yellow.  To assist with visualization, 

ellipses have been fit using least squares onto the data points within each sensory region, as determined by 

cross-modal clustering.  Note that approximately ¼ of the inputs within each mode fall into the confusion 

region and are therefore ambiguous. 
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In fact, as things stand at the moment, we expect the overall classification error rate 

would be somewhat higher than this.  Sensory events are only probabilistically described 

by the derived perceptual regions.  Thus, inputs will not always fall into the "right" area, 

at least according to the output of cross-modal clustering.  We also assume that the 

feature extraction (e.g., formant estimation) generating the sensory inputs to slices 

introduces some degree of error; this may be due to noise, heuristic estimation, 

instability, incorrect or incomplete modeling, limitations from perceptual thresholds, etc.  

We elaborate on this point in Chapter 6, but it is reasonable to expect these types of 

processing errors occur in both biological and artificial systems.  Although, not a source 

of error, an additional complexity is that we generally expect many more than two modes 

will be active simultaneously, corresponding to the fine-grained model of perception we 

adopted in Chapter 1.  

 

4.2.1 Visualizing an Influence Network 

Our goal is to "move" sensory inputs within slices to make them easier to classify.  In 

doing so, we seek to avoid perceptual ambiguity when possible and to recover from 

errors introduced during perceptual processing.   

We have so far considered slices through their codebooks or through the entire perceptual 

(e.g., red and blue) regions found within them by cross-modal clustering.  We now 

instead look at the local neighboring (connected) components within each of these larger 

regions; we are going to call these local regions nodes (Figure 4.3); to be clear, the nodes 

partition the modes (i.e., slices) into locally connected regions.  Nodes correspond to the 

representational areas that are easy to classify, and therefore, they will help us 

disambiguate perceptual inputs.  We note that the lines between nodes represent 

perceptual equivalence as determined by cross-modal clustering.  Although they are 

derived from Hebbian data, the lines do not represent the Hebbian linkages described 

earlier because they are restricted to regions corresponding to the same perceptual 

categories.    
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We would like to use cross-modal correspondences, as indicated by these lines of 

perceptual equivalence, to define a framework where slices can mutually disambiguate 

one another.  For example, suppose Mode B on top sees an input in a blue node.  One 

could certainly imagine that knowing this might help resolve a simultaneous ambiguous 

input in Mode A.  In a static framework, we could for example implement a 

disambiguation strategy using posterior probabilities (e.g., Wu et al. 1999).  This would 

be relatively straightforward, at least for a small number of co-occurring modes. 

The problem with this solution, however, is that perception in animals has complex 

temporal dynamics – generating percepts does not correspond to an instantaneous 

decision process.  This is evidenced during cross-modal influence (Calvert et al. 2004), 

perceptual warping (Beale and Keil 1995), interpretative bistability (Blake et al. 2003), 

habituation (Grunfeld et al. 2000), and priming (Wiggs and Martin 1998), and these 

effects are particularly prominent during development (Thelen and Smith 1994).  We will 

examine these phenomena in detail in Chapter 6.  For the moment, we further note that 

                 

Mode A

Mode B

 
 
Figure 4.3 – Viewing the nodes within the modes.  Nodes are the locally connected components in each 
perceptual region; they are indicated here by color and with ellipses, fit on their inputs after cross-modal 
clustering.  In this example, each mode has 5 nodes: 2 blue, 2 red, and 1 yellow.  The colored lines indicate 
perceptual equivalence between nodes in different slices. 
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even unimodal percept generation has complex sensory and temporal threshold dynamics 

(Nakayama et al. 1986); in fact, different features may have different thresholds, which 

themselves change dynamically (e.g.. Hamill et al. 1989, Wang et al. 2002).    

Most importantly, these phenomena are not simply biological "implementation" details; 

they are not epiphenomena.  Rather, they are fundamental components of perceptual 

activity and are a large part of why animal perception is so robust.  Because the 

perceptual phenomena we are interested in modeling correspond to temporal processes, 

we will argue that our models should be similarly dynamic.  In particular, static 

techniques seem poor approaches for understanding the intersensory and temporal 

complexities of biological interpretative mechanisms.    

4.2.2 Towards a Dynamic Model 

Instead, our approach will be to view slices as perceptual state spaces, where the nodes 

correspond to fixed points.  Ambiguous nodes, like the yellow ones in our example, will 

be treated as repellers in this space, and unambiguous nodes, such as the red and blue 

ones, will be treated as attractors.  Perceptual inputs will travel along trajectories defined 

by these fixed points. 

We visualize this state space view of slices on page 101.  The repellers (ambiguous 

nodes) correspond to maxima; the attractors (unambiguous nodes) are the minima and 

surrounded by their basins of attraction.  In this framework, perceptual interpretation will 

loosely correspond to energy minimization; that is, we would like move sensory inputs 

into the basins that represent their correct classifications.  In this way, the dynamics of 

the system will perform the sensory classification for us.   

Intersensory influence – the ability of one slice to modify perceptions in another – will be 

realized by having slices induce vector fields upon one another, thereby cross-modally 

modifying their temporal dynamics.  This in turn can modify perceptual classifications by 

leading sensory inputs into different basins of attraction (or perhaps by even introducing 

bistability). 
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Figure 4.4  -- Visualizing slices as state spaces where the nodes are the fixed points.  Repellers, 
corresponding to ambiguous nodes,  are maxima and shown in the center; attractors, corresponding to 
unambiguous nodes, are minima and are outlined by their basins of attraction.   It may be helpful to 
compare this view to the one in Figure 4.3.       

 
 

     
Figure 4.5 -- A view of the basins of attraction from below.  This is a rotation of Figure 4.4 into the page to 
help visualize the basins, which are partially occluded above.  The basins here correspond to the blue and 
red nodes in Figure 4.3. 
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To formulate a dynamic model, the first step is to incorporate some model of time into 

our framework.  We start by assuming that any perceivable event in the world persists for 

some (perhaps variable) temporal duration, e.g., 10 – 1000 milliseconds.  During this 

interval, the event will be perceptually sampled, i.e., some finite number of sensory 

inputs will be generated describing it.  This assumption is quite reasonable from a 

biological perspective.  For example, this could correspond to a series of neuronal firings 

in the striate cortex, during the period of time an object is visually observed (Hubel and 

Wiesel 1962).  Alternatively, in an artificial system, a stream of sensory inputs might be 

generated by sliding a fast Fourier transform window over an auditory signal.  Regardless 

of how the features are selected and extracted, the important consideration here is that an 

event in the world generates a stream of perceptual inputs, rather than a unitary data 

point.  We will use the time this provides to effect intersensory influence. 

We also need to define the state within a slice, namely, the quantity that will be changing 

during the lifetime of an individual perception.  In our model, each slice will receive a 

stream of sensory inputs when it is stimulated, as described above.  After receiving some 

number of inputs, a slice may eventually "decide" that a recognizable perceptual event 

has occurred.  In the interim, however, a slice maintains an estimate of what it might be 

perceiving.  The estimate corresponds to a point in N
�  that moves through the slice's 

state space.  At any given moment, three factors influence the trajectory of this point 

through state space. 

1) The current perceptual input.  An estimate tends to move towards the current 

input.   

2) A gradient defined by the fixed points within a slice.  An estimate moves towards 

the attractors, which are the unambiguous nodes in a slice.  The gradients for the 

two slices we have been examining are displayed in Figure 4.6 . 

3) Any induced vector fields from co-occurring slices.  This is visualized in Figure 

4.7 for the ambiguous scenario described above.  We discuss this in more detail 

below. 
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Mode A

Mode B

 
Figure 4.6 – Viewing innate state space dynamics.  The nodes define a gradient in the state space.  In the 

absence of other influences, points move towards attractors (unambiguous nodes) and away from repellers 

(ambiguous nodes).  The generation of these gradients is discussed in § 4.3.1.1. 
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4.2.3 Intersensory Influence 

Biological perceptual systems share cross-modal information routinely and 

opportunistically (Stein and Meredith 1993, Lewkowicz and Lickliter 1994, Rock 1997, 

Shimojo and Shams 2001, Calvert et al. 2004, Spence and Driver 2004); we have 

suggested that intersensory influence is an essential component of perception but one that 

most artificial perceptual systems lack in any meaningful way.  In our framework, cross-

modal influence is realized by having modes bias the temporal dynamics of other modes, 

thereby sharing their views of the world. 

Recall the ambiguous scenario described on page 99.  We imagined that in Figure 4.3, 

Mode B saw an input corresponding to blue node.  We asked how this might help 

disambiguate a simultaneous event in Mode A.  Our solution to this problem is illustrated 

       

 
Figure 4.7 – Visualizing cross-modal influence through a vector field induced on Mode A by Mode B.  
This field modifies the dynamic behavior in Mode A to favor Mode B's perceptual interpretation.  This 
"pulls" the estimate in Mode A towards the blue attractors, corresponding in this case to Mode B's 
assessment of the world.  We have added light red and blue shading in the background to recall the 
perceptual categories contained in this slice. 
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in Figure 4.7.  We allow Mode B to induce a vector field on Mode A, thereby modifying 

its dynamic behavior.  This vector field incorporates Mode B's perceptual perspective 

into Mode A.  This "pulls" the estimate in Mode A towards the blue attractors, 

corresponding to Mode B's assessment of what is being perceived.   The "interlingua" 

that makes this influence possible is their shared perceptual categories, which are 

obtained through cross-modal clustering and provide a common frame of sensorial 

reference. 

Therefore, we see that the movement of the estimate within a slice is governed: 

(1) externally, by events happening in the world; (2) innately, by the previously learned 

structure of events with the slice; and (3) cross-modally, from the perspectives of other 

perceptual channels viewing the same external events.  We can in fact adjust the 

influences of these individual contributions dynamically.  For example, in noisy 

conditions, an auditory slice may prefer to discount perceptual inputs and rely more 

heavily on cross-modal inputs.  These kinds of tradeoffs are common in biological 

perception (Cherry 1953, Sumby and Pollack 1954).  We discuss this further below. 

 

4.3 Influence Networks 

In our model of perception, an event in the world corresponds to a path taken through a 

slice.  In this section, we define both the rules that govern this path and how a slice 

decides something has been perceived, a concept we have not encountered so far in this 

chapter. 

By formulating this problem dynamically, we lose one of the primary attractions of a 

static framework – that we know with certainty something has "actually" occurred.  In 

static frameworks, this decision is usually made independently by some precursor to the 

interpretative mechanism; in other words, the decision must be made but it is done 

somewhere else.  This usually corresponds to fixed sets of determination criteria within 

the  independent perceptual components. 
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In our framework, how far down its path must an input travel for a slice to know that an 

event is actually occurring?  Presumably, a single sampled input is insufficient.  

Generally, both natural and artificial perceptual systems have thresholds – they require 

some minimum amount of stimulation to register an event in the world (Hughes 1946, 

Fitzpatrick and McCloskey 1994).  Rather than assume this happens externally, a slice 

must make this determination itself, but it is not necessarily doing so alone.  This 

decision itself is now a dynamic process open to intersensory influence – consistent 

interpretations among slices will lower their sensory and temporal thresholds, whereas 

inconsistent interpretations will raise them.  Cross-modal perception is known to 

significantly improve upon unimodal response times in humans (Hershenson 1962, Frens 

1995, Calvert et al. 2000), a phenomenon that is captured by our model. 

We now proceed by defining the state-space view of slices that has been motivated 

informally so far.  State within each slice has two distinct components: 

1) The position of its estimate.  This is what the slice "thinks" it might be perceiving. 

2) The activation potential of its nodes.  Nodes have internal potentials, which are 

increased whenever the perceptual estimate falls within them. 

Below, we define the state space equations that govern how these quantities change 

during the lifetime of a perception.  Towards this, we begin with some preliminary 

definitions covering the concepts raised earlier in this chapter.    

Note that we will limit some our of presentation to 2-dimensional slices, because 2
�  is 

easy to describe and a reasonable model for cortical representations.  3
�  is the largest 

space in which we have constructed slices.  Higher dimensional spaces may generalize 

from these aspects of the presentation but that is an unexamined hypothesis.  Also, 

because cross-modal clustering connects regions in different slices, it lets us approximate 

higher-dimensional manifolds.  This may reduce the need for directly implementing 

higher dimensional perceptual representations. 
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We note that the dynamic framework below is implemented in the examples in this thesis 

by a discrete simulation that uses a 10 millisecond time step. 

 

4.3.1 Preliminary Concepts 

Consider a slice n

A
M ⊆ �  with associated codebook { }1 2, ,...,A aC p p p= .   Suppose 

A
M  

is cross-modally clustered with respect to slice 
B

M  into k perceptual categories.  We call 

the set of perceptual categories 1{ ,..., }
k

C c c= .  To represent the assignment of codebooks 

to categories, we define a multi-partitioning MP  of 
A

M  as a mapping 

{ }1,2,...,: 2 k

A
MP C → .  This assigns each codebook cluster to a subset of integers from 1 to 

k, representing the k different perceptual categories discovered during cross-modal 

clustering.  If a codebook cluster is in more than one category, then it is deemed 

ambiguous, as shown in (4.1).   

We define a node  
A

u C⊆ as a locally connected set of codebook clusters that are 

members of the same perceptual categories; for any two clusters 
b

p  and 
c

p  in u, 

( ) ( )
b c

MP p MP p= .  We say 
i

u c∈  if node u is in category 
i

c .  We define the nodebook 

A
N  as the set of all nodes in slice 

A
M .  Nodebooks are used to represent the connected 

components in the output of cross-modal clustering.  The density of node u is the 

percentage of sensory inputs falling within it over some assumed time window. 

For node 
i

u , we define 

 
if ( ) 1    (attractor)  1,

sign( )    
if ( ) 1    (repeller)-1,

i

i

i

MP u
u

MP u

=
= 

>
 (4.1) 

which indicates whether 
i

u  will be an attractor or a repeller in the state space, determined 

by whether it is or is not ambiguous.  Let 1 2[sign( ),  sign(u ),...,sign( )]
A a

S u u=  be a vector 

containing all signs within a slice, which captures the ambiguity within it.   



  108 

4.3.1.1 Defining a Surface 

Towards defining a surface on slice 2
A

M ⊆ � , we first define a reference surface from 

which it will be piecewise constructed.  Let ( , ) sin( ) sin( )Z x y x yπ π= ⋅ , corresponding to 

the shape of our fixed points. 

We will fit copies of Z onto 's
A

M  nodebook, towards building a surface over the entire 

slice.  For each node 
i A

u N∈ , let 0 0, , , ,
i

a b x y θ  be an ellipse fit onto the node's sensory 

inputs via (Fitzgibbon et al. 1999).  We then define a surface on node 
i

u , 

( )0 0sign( ) density( ) , , , ,
i i i i

Z u u Z a b x y θ= ⋅ ⋅ , where we stretch, translate, and rotate the 

reference shape Z onto the node's descriptive ellipse.  The term sign( )
i

u  determines 

whether a node is a local maxima or minima. 

We define the innate surface 
A

Z  over the entire slice by piecewise summing the 

contributions of the individual nodes, A iZ Z=∑ .  Although this surface is constructed 

piecewise, we know it is smooth due to the reference surface Z  being sine-based, and 

therefore, it is continuously differentiable within the boundaries of the slice.  This surface 

is illustrated in Figure 4.4 and Figure 4.5, where the repellers correspond to local maxima 

and the attractors correspond to local minima. 

The gradient of this surface 

 A A
A

Z Z
Z

x y

∂ ∂
∇ = +

∂ ∂
 (4.2) 

captures the innate dynamic behavior of the slice due to cross-modal clustering.   Two 

examples of this are illustrated in Figure 4.6.  We can view the effect of this gradient as 

the slice trying to classify inputs to match its learned events.  In other words, perceptual 

grounding biases slices in favor of particular interpretations, namely, the ones derived 

from cross-modal clustering.  This may correspond with the "perceptual magnet effect," 

which reduces detectable differences between sensory inputs near previously acquired 

categories (Kuhl 1991). 
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An inefficiency introduced by representing data in Euclidean Voronoi regions is that 

sometimes space is "wasted," particularly around the boundaries.  We can see this in 

Figure 4.2, where the data points are fairly sparse.  We note this is a synthetic data set 

with only two events, so the sparsity is exaggerated here.  Nonetheless, we would prefer a 

"warped" representation, where unused areas of the map are reduced in favor of 

expanding or stretching the areas that are more perceptually prominent.  It is clear that 

cortical maps are continuously modified in animals, where regions are allocated 

proportionally with their use (Buonomano and Merzenich 1998, Kaas 2000).  For 

example, it has been found that the fingers of the left hand in right-handed violinists have 

increased cortical representation (Elbert et al 1995), corresponding to their development 

of fine motor control during fingering. 

Because our implementation does not support spatial plasticity, there may be sections of 

Voronoi regions which are generally devoid of inputs.  However, over time, we expect 

that inputs will fall within them, albeit somewhat infrequently.  To account for these stray 

inputs, we induce a weak, constant magnitude vector field over the surface of each slice, 

specifically for the benefit of these "empty" regions.  The field within each node 
i

u  

points towards or away from its fixed point, depending upon sign( )
i

u .  This reflects each 

node's innate perceptual bias throughout its entire Voronoi region. 

 

4.3.1.2 Hebbian Gradients 

Towards defining cross-modal influence, we parameterize the approach above.  Consider 

a slice n

A
M ⊆ �  with associated codebook { }1 2, ,...,A aN u u u= .  Let { }1 2, ,..., aS s s s= , 

where each [ 1, 1]
i

s ∈ −  .  We call S a sign set and use it to provide signs for each node in 

A
N , i.e., whether it attracts or repels.  Although signs were previously restricted to be 

either -1 or 1, a continuous range here reflects confidence in the assignments.   

We define: 

( )
i

Z S  ( )0 0  ( ) density( ) , , , ,
i i i

S u u Z a b x y θ= ⋅ ⋅  (4.3) 
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( ) 
A

Z S    ( )iZ S= ∑  (4.4) 

( )H S∇  
( ) ( )

  A A
Z S Z S

x y

∂ ∂
= +

∂ ∂
 

(4.5) 

We call ( )H S∇  the Hebbian gradient induced on 
A

M  by sign set S.  Slices will induce 

vector fields derived from Hebbian gradients on one another to create cross-modal 

influence.  The influence is effected by assigning values in sign set S that correspond to 

their perceptual outlooks.  This is possible because cross-modal clustering provides slices 

with a common frame of reference for making these assignments.  Figure 4.7 contains an 

example of such a field.   

 

4.3.1.3 Activation Sets 

Finally, we define the notion of an activation set 1 2{ , ,..., }
j

e e e , where 0 1
i

e≤ ≤ .  

Activation sets will be used to represent activation potentials in our state space models, 

when we define leaky integrate and fire networks.  The activation potential for each node 

corresponds to a temporal-integration of its inputs over some time period, as detailed in 

section 4.3.3.  In anticipation of applying Hebbian gradients in the next section, we show 

here how to project the activation potentials in one mode onto another, by using their 

shared categories as a common frame of reference. 

For mode 
A

M , let { }1 2, ,...,A aN v v v=  be its nodebook and let 
A

N  contain k distinct 

categories, as determined by cross-modal clustering with some mode 
B

M .  We call this 

set of perceptual categories 1{ ,..., }
k

C c c= . 

Let 1 2{ , ,..., }
A a

E e e e=  be an activation set on 
A

M .  We define the activation set on C 

derived from 
A

E  as 1 2{ , ,..., }
k

φ φ φΦ = , where 
i

φ  is simply the sum of the activation 

potentials of the individual nodes within category i :  

 
i

i v

v c

eφ
∈

=∑  (4.6) 
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We will refer to the mapping in (4.6) as ( )
A

EΦ , which projects nodebook activations 

onto category activations. 

Let 1 2{ , ,..., }
k

φ φ φΦ =  be an activation set on the categories in C.  We define an activation 

set 1 2{ , ,..., }
A a

E e e e=  on a node 
A

M  derived from Φ  by reversing the above process: 

 
( )j

i j

c MP a

e φ
∈

= ∑  (4.7) 

We will refer to the mapping in (4.7) as ( )
A

E Φ , which projects category activations  onto 

nodebook activations. 

 
Being able to move back and forth between activations in nodebooks and categories is 

quite useful.  It allows us to share state between two different slices, using their 

categories as an interlingua, and thereby define the Hebbian gradients used in 

intersensory influence. 

 

4.3.2 Perceptual Trajectories 

During the time window corresponding to a sensory event, a slice N

A
M ⊆ �  integrates its 

sensory inputs into a single estimate N
h R∈  that models what it is in the midst of 

perceiving.  This estimate changes over time, and its movement is governed: 

(1) externally, by events happening in the world; (2) innately, by the previously learned 

structure of events with the slice; and (3) cross-modally, from the perspectives of other 

perceptual channels viewing the same external events. 

We now define the state space dynamics due to each of these components. 

(1)  Events in the world reach the slice through a stream of sensory inputs.  (We discuss 

integration of slices into perceptual pipelines later in this chapter.)   We call this input 

stream 1 1 2 2 < , , , ,..., ,
k k

I d t d t d t= > < > < > , where input N

i
d R∈  arrives at time 

i
t . 
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Let 1( )
i i i

I d d −∆ = − , which is a vector measuring the difference between successive 

inputs.  Let ( )A

W i
tδ  be a unit impulse function that is nonzero if an input arrives at 

A
M  at 

time 
i

t . 

We define the change in the estimate due to events in the world as: 

 ( ) ( )A

W i i
W t t Iδ= ⋅∆  (4.8) 

( )W t  provides the gradient of the input change at time t, assuming an input occurred.  

Otherwise, it is zero.  The "W" in this function reminds us it due to changes in the world.  

In the absence of other factors, ( ) W t dt∫  tracks the inputs exactly. 

(2)   The learned category structure within each slice also influences its perceptual inputs.  

In equation (4.4), we defined a parameterized surface ( )
A

Z S  constructed over slice 
A

M .  

The sign values in set S determine the heights of the fixed points corresponding to the 

nodes; these range from -1 to 1, corresponding to repellers or attractors respectively.  

Values within this range reduce the strength of the corresponding gradient. 

Recall vector { }1 2sign( ),  sign(u ),..., sign( )A aS u u= , which captures the ambiguity of 
A

M  

and is used to define the innate surface 
A

Z .   

Let ( )
t A

A M  be a vector of activation potentials for 
A

M  at time t, 1 2( ) [ , ,..., ]
t A a

A M e e e= , 

where 0 1
i

e≤ ≤ .  (This was defined above in § 4.3.1.3 and receives a more detailed 

treatment in  § 4.3.4.) 

We are going to scale 
A

S  by ( )
t A

A M  to generate a gradient corresponding to the innate 

dynamics of slice 
A

M .  Let { }1 1 2 2( ) sign( ), sign( ),..., sign( )A a aS t e u e u e u= ⋅ ⋅ ⋅ . 

We define:  

 ( )( )( ) ( ) ( )A AI t Z S t h= ∇  (4.9) 
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This is the component of the estimate's change that is due to a slice's preference to favor 

previously learned categories.  This influence increases as the activation potentials in the 

nodes increase; the intuition here is that the nodes become increasingly "sticky" as they 

grow closer to generating a perception.  We call this refer to this influence as the slice's 

innate dynamics, and the "I" in this function is a mnemonic for "innate." 

(3)  To define the component of state space dynamics due to intersensory influence, let 

B
M  be a slice that has been cross-modally clustered with 

A
M . 

We are going to use 
B

M  to construct a Hebbian gradient ( )H S∇  on 
A

M .  To do this, we 

need to determine a sign set S that reflects 
B

M 's perceptual preferences.  As we touched 

upon at the beginning of this section, we will be defining an activation potential model on 

the nodebooks in each slice.  We are going to use this model to determine the sign set for 

calculating ( )H S∇ . 

Let ( )
t B

A M  be the set of activation potentials for 
B

M .  Defining the sign set S is a two 

step process.  First, we use ( )
t B

A M  to determine the potentials Φ  of the mutual 

categories C between 
A

M  and 
B

M .  Then, we use Φ  to determine signs for the nodes in 

A
M .   

The simplest definition of 1 2{ , ,..., }
a

S e e e=  is: 

 ( )( )( )
A t B

S E A M= Φ  (4.10) 

This projects the activation potentials in 
B

M  directly onto 
A

M , by using C as a common 

reference.  Because 0
i

e ≥ , this means 
B

M  can only induce a vector field corresponding 

to attractors on 
A

M , per equation (4.1).  Thus, it can encourage the recognition of certain 

categories but it cannot discourage the recognition of others. 

We can imagine a less permissive strategy, where some nodes are encouraged and some 

discouraged, as in: 
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 ( )( )( )12 tan ( ( )) mean( ( ( )) / ,  2A t B t BS E A M A Mα π α−= ⋅ Φ − Φ ≥  (4.11) 

Here, nodes corresponding to categories with above mean potentials are treated as 

attractors and those with below mean potentials are treated as repellers.  

Finally, let us consider the scenario where 
B

M  determines what it is perceiving before 

A
M  does.  In the model defined below, this will correspond to max( ) 1 εΦ ≥ − .  Namely, 

the activation potential of some category reaches a threshold value, at least from 
B

M 's 

perspective, which "resets" the potentials in all other categories.  Perhaps in this case we 

would like to discourage all of the non-recognized categories in 
A

M .  We can do that by 

substituting: 

 ( )( )( )12 tan ( ) / ,  for some large 
A t B

S E A Mα π α−= ⋅Φ  (4.12) 

In practice, we use (4.11) and dynamically substitute in (4.12) when a co-occurring node 

fires. 

We can now define the change in the estimate due to intersensory influence as: 

 ( )( ) ( ) ( )C t H S h= ∇  (4.13) 

The "C" here is a reminder this represents cross-modal influence. 

 

4.3.3 Perceptual Dynamics 

We can now define the state space equation for estimate h: 

 

( )( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )A

W i i A A

dh
W t I t C t

dt

dh
t I h Z S t h H S h

dt

α β γ

α δ β γ

= ⋅ + ⋅ + ⋅

= ⋅ ⋅ ∆ + ⋅ ∇ + ⋅ ∇

 (4.14) 

which combines the dynamic effects from the world (W), its innate structure (I), and 

cross-modal influence (C), where S is defined as above.  We define 1h d=  at time 1t . 
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How do we set the constants ,  , and ?α β γ   By default, we set 1α =  so that each slice 

"receives" its full inputs stream.  We also set 1β γ+ =  so that by the time each slice is 

ready to generate its input, its innate structure and cross-modal influences are as 

important as its inputs in determining which category is recognized.  In particular, we set 

γ β> , so that intersensory influences dominate innate ones.  The reason for this is that 

we suppose the world is already enforcing the innate structure of events in generating 

them.  From the outlooks of both Gibson (1950) and Brooks (1987), dynamically 

reinforcing the world's structure within a slice is redundant.  Nonetheless, we view it is as 

an important component of interpretative stability.  While it may not be necessary from a 

theoretical Gibsonian perspective, incorporating innate perceptual dynamics seems to 

have clear computational advantages in real world conditions.  It stabilizes sensory inputs 

by biasing perceptual interpretation to favor events the slice has previously learned. 

Ideally, it would be optimal to adjust these parameters dynamically.  For example, in 

noisy conditions, an auditory slice may prefer to discount its perceptual inputs in favor of 

visual cross-modal one, realizing what is known as the cocktail party effect (Cherry 1953, 

Sumby and Pollack 1954); raising γ  and lowering α  in (4.14) would have this effect.  

This condition is likely detectable, particularly where we suppose one slice is not 

registering events and another co-occurring one is.  Although we have not implemented 

an automatic mechanism for dynamically balancing these parameters, doing so does not 

seem implausible (e.g., according to maximum-likelihood estimation approach of Ernst 

and Banks, 2002). 

 

4.3.4 An Activation Potential Model 

Let us examine where we stand at this point.  We have defined how to calculate the path 

of a slice's perceptual estimate within its state space.  However, we have not yet specified 

how this path dynamic generates a percept.  We now return to the question posed earlier: 

how far down its path must an input travel for a slice to know that an event has occurred?   
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There is a vast body of literature on perceptual thresholds tracing back to the seminal 

work of Weber and Fechner in the 19th century.  Of particular interest here are the notion  

of temporal thresholds – that sensory stimuli are temporally integrated to generate 

perceptions (Hughes 1946, Green 1960, Watson 1986, Sussman et al. 1999).   We will 

use this to motivate a leaky integrate and fire network (Gerstner and Kistler 2002) over 

the nodes within a slice.  Each node is modeled as a leaky integrator; when it fires, a 

perception corresponding to its category is generated. 

For each node 
i

u  in the nodebook of slice 
A

M , we refer to its activation potential at time 

t as ( )
t i

A u , which ranges between 0 and 1.   If ( ) 1
t i

A u ε≥ − , we say the node fires, and 

the quantity 1 ε−  is called its firing threshold. 

We define a mapping function : N

A
V R N→ , which assigns a point to its nearest node in  

nodebook 
A

N .  Namely, V describes the Voronoi regions over the nodebook.  For each 

node 
i

u , we associate a function ( )
i

u p  where ( ) 1
i

u p =  if and only if ( )
i

V p u= .  

Otherwise, it is equal to zero.  When ( ) 1
i

u p = , we say ( )
i

u p  is active. 

A node's activation increases when the perceptual estimate falls within it.  We define the 

change in potential due to direct activation:  

 ( )
1

( ) ( ) ( )A

W i
D t t u h tδ

η
= ⋅  (4.15) 

The variable η  determines the temporal threshold for the category represented by 
i

u . It 

answers the question: how many times must the nodes in a single category be active for 

that category to be perceived?  Although much has been written documenting temporal 

thresholds, it is not always clear how (or if) they are acquired.  In our framework, we 

make the following fairly weak assumption: during development, a sufficient number of 

unambiguous sensory inputs are observed such that we can derive (e.g., 90%) confidence 

intervals on their lengths.  Then for some confidence interval, [ , ]
min max

t t , we take the 

lower bound 
min

t  as the temporal threshold.  If the inputs are sampled at λ Hz, then we 

define 
min

tη λ= ⋅ .  We note there is some evidence for simplified (unambiguous) inputs 
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during development in people, where parents exaggerate inflection and pitch in speech 

(in what is traditionally known as "motherese"), presumably to help infants analyze 

sounds (Garnicia 1977). 

To this, we also add a leakage term.  Leakage provides that in the absence of stimulation, 

each node drifts to its rest value, which we uniformly define as zero in this model.  This 

is necessary to counter the effect of noise in the perceptual inputs and of spurious 

intersensory activations.  We define the leakage at time t: 

 ( )0L( ) exp ( ) /t t t τ= − −  (4.16) 

where time constant τ  is equal to 
max

t  in the confidence interval above and 0t  is the most 

recent time the node was active. 

Therefore, for each node 
i

u , we have: 

 

( ) ( )0

( )
  ( ) ( )

( ) 1 1
  ( ) ( ) exp ( ) /

t i

At i
W i

dA u
D t L t

dt

dA u
t u h t t t

dt
δ τ

η τ

= +

= ⋅ − − −

�

 (4.17) 

We thereby define a system of AN  simultaneous state equations for mode 
A

M . 

Based on these node activation potentials, we derive activation potentials for perceptual 

categories: 

 ( ) ( )
j i

t i t j

u c

A c A u
∈

= ∑  (4.18) 

That is, the activation potential of a category is the sum of the activation potentials of its 

nodes.  If ( ) 1
t i

A c ε≥ − , then we say that category 
i

c  has fired and the slice outputs this 

category as its perception.  At this point, the activation potentials for all nodes are reset to 

zero.  Assuming we do not implement a refractory period, the node is free to await its 

next input.  In practice, we set 410ε −=  to account for numerical rounding errors during 

our simulation.   
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4.3.4.1 Hebbian Activations 

Finally, we note an important variation on this model by allowing activation potentials to 

spread among nodes in different slices.  In this way, we can incorporate Hebbian 

influence directly into activation potentials and thereby reduce the temporal thresholds 

for perceptual events. 

For ( )
t B

A M , 
B

M 's activation potentials at time t, let: 

 ( )( )( ) 1 2( ) { , ,..., }
A t B a

S E f A M e e e= Φ =  (4.19) 

be the activation set projected onto mode 
A

M  from 
B

M  via (4.11).  We define the 

Hebbian activation potential ( )
t i

H u  induced on node 
i

u  at time t:  

 
1

( ) ( )B

t i W i

b

H u t eδ
η

= ⋅  (4.20) 

where 
b

η  is defined with respect to 
B

M .  This allows 
A

M  to directly incorporate 
B

M 's 

activation potentials into its own, yielding new state space equations for each 
i

u : 

 

( )
( ) ( ) ( )

( )
( ) ( ) ( )

t i
t i

Bt i
W i

b

dA u
D t H u L t

dt

dA u
D t t e L t

dt

κ

κ
δ

η

= + +

= + ⋅ +

�

�

 (4.21) 

We fully expand (4.21) to show the contribution of ( )
t B

A M , the activation potentials in 

B
M : 

( )( )( )( )
( ) ( ) ( ) ( )Bt i

W A t B

b i

dA u
D t t E f A M L t

dt

κ
δ

η

 
= + ⋅ Φ + 

 

�  (4.22) 

The system defined by (4.22) reduces the effective temporal thresholds in perceptual 

systems by spreading activation potentials between their nodes.  We vary κ  between 0 

and 1 to adjust this cross-modal sensory acceleration, in proportion to the observed 

agreement between slices.  Cross-modal perception is known to significantly improve 

upon unimodal response times in humans (Hershenson 1962, Frens 1995, Calvert et al. 

2000); this is captured by our model here. 
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4.4 Summary 

In this chapter, we have introduced a new family of models called influence networks, 

which incorporate temporal dynamics into a perceptual framework.  These networks fuse 

together information from the outside world, innate perceptual structure, and intersensory 

influence to increase perceptual accuracy within slices.  The cross-modal aspect of this is 

illustrated in Figure 4.8, where auditory formant data influences the visual perception of 

lip contours by inducing a Hebbian gradient on it.  This has the effect of “moving” the 

visual sensation to be in closer accord with the auditory perception. 

Influence networks incorporate several basic biological phenomena into a computational 

model, including: cross-modal influence; dynamic adjustment of sensory and temporal 

thresholds; cross-modal substitution; and bistability.  We will show in Chapter 6 that 

while these are fundamental perceptual features in biological systems, they largely tend 

to be absent in artificial ones.  Influence networks are a step toward creating more 

capable artificial perceptual systems by providing them with a more realistic sensorial 

framework.  Figure 4.9 illustrates how an influence network can be incorporated into a 

Lip contour
data

Formant
data

heed (i)

had (æ)

had (æ)

 
Figure 4.8 -- Cross-modal activations in an influence network.  The auditory perception in formant space 
on top increases activations in the lip contour space on the bottom.   This example is unusual because it 
shows an auditory modality influencing a visual one, which is biologically realistic but unusual in an 
artificial perceptual system.  The effect of this influence is that the visual perception is modified due to an 
induced Hebbian gradient.  Shading here corresponds to activation potential levels. 
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preexisting artificial perceptual system to enable a new type of cross-modal influence, 

designed to increase overall perceptual consistency. 

 

 

 
 

Figure 4.9– Adding an influence network to two preexisting systems.  We start in (a) with two pipelined 
networks that independently compute separate functions.  In (b), we incorporate an influence network into 
this architecture that interconnects the functional components of the pipelines and enables them to 
dynamically modify their percepts. 
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Chapter 5  

Sensorimotor Learning 

Up to this point, we have been concerned with learning to recognize events in the world.  

We now turn to the complementary problem of learning to generate events in the world.  

That these two problems are interrelated is well established – animal behaviors are 

frequently learned through observation, particularly in vertebrates (Bloedel et al. 1996).  

In this chapter, we will propose a computational architecture for acquiring intentional 

motor control guided by sensory perception.  Our approach addresses two basic 

questions: 

1) What is the role of perceptual grounding in learning motor activity?  In other 

words, how does the categorization of sensory events assist in the acquisition of 

voluntary motor behaviors? 

2) Can motor systems internally reuse perceptual mechanisms?  Specifically, we 

examine the possibility that the perceptual framework presented in Chapter 3 can 

be applied to learning motor coordination.  This is the most important issue 

addressed in this chapter, because it generalizes to suggest how higher level 

cognitive structures may be iteratively bootstrapped off lower level perceptual 

inputs.  In doing so, it suggests a framework for realizing the embodied cognition 

approaches of Brooks (1991a), Lakoff (1987), and Mataric (1997). 

Towards answering these questions, we present a computational architecture for 

sensorimotor learning, where an animal (or a machine) acquires control over its motor 

systems by observing the effects of its own actions.  Sensory feedback can both initially 

guide juvenile development and then subsequently refine adult motor activity.  This type 

of self-supervised learning is thought to be among the most powerful developmental 

mechanisms available both to natural creatures (Thorndike 1898, Piaget 1971, Hall and 

Moschovakis 2004) and to artificial ones (Weiner 1948, Maes and Brooks 1990). 
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Our approach is to reapply the framework in Chapter 3.  We will treat the motor 

component of sensorimotor learning as if it were a perceptual problem.  This is surprising 

because one might suppose that motor activity is fundamentally different than perception.  

However, we take the perspective that motor control can be seen as perception 

backwards.  We imagine that – in a notion reminiscent of a Cartesian theater – an animal 

can "watch" the activity in its own motor cortex, as if it were a privileged form of 

internal perception.  Then for any motor act, there are two associated perceptions – the 

internal one describing the generation of the act and the external one describing the self-

observation of the act.  The perceptual grounding framework described in Chapter 3 can 

then cross-modally ground these internal and external perceptions with respect to one 

another.  The insight behind this approach is that a system can develop motor control by 

learning to generate the events it has previously acquired through perceptual grounding. 

A benefit of this framework is that it can learn imitation, a fundamental form of 

biological behavioral learning (Byrne and Russon 1998, Meltzoff and Prinz 2002).  In 

imitative behaviors – sometimes known as mimicry – an animal acquires the ability to 

reproduce some aspect of another's activity, constrained by the capabilities and dynamics 

of its own sensory and motor systems.  This is widespread in the animal kingdom (Galef 

1988) and is thought to be among the primary enablers for creating self-supervised 

intelligent machines (Schaal 1999, Dautenhahn and Nehaniv 2002). 

We will demonstrate sensorimotor learning in this framework with an artificial system 

that learns to sing like a zebra finch.  Our system first listens to the song of an adult finch; 

it cross-modal clusters this input to learn songemes, primitive units of bird song that we 

propose as an avian equivalent of phonemes.  It then uses a vocalization synthesizer to 

generate its own nascent birdsong, guided by random exploratory motor behavior.  The 

motor parameters describing this exploratory vocal behavior are fed into motor slices – as 

if they corresponded to external perceptual inputs.  By simultaneously listening to itself 

sing, the system organizes these motor slices by cross-modally clustering them with 

respect to the previously learned songeme slices.  During this process, the fact that the 

motor data were derived internally from innate exploratory behaviors, rather than from 

external perceptual events, is irrelevant.  By treating the motor data as if they were 
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derived perceptually, the system thereby learns to reproduce the same sounds to which it 

was previously exposed.  This approach is modeled on the dynamics of how male 

juvenile finches learn birdsong from their fathers (Tchernichovski et al. 2004, Fee et al. 

2004).   

The model presented here is inspired by sensorimotor learning in animals, and it shares a 

number of features with several prominent approaches to modeling biological 

sensorimotor integration (e.g., Massone and Bizzi 1990, Stein and Meredith 1994, 

Wolpert et al. 1995).  However, it is intended as an abstract computational model; as 

such, it does not approach the richness or complexity inherent in biological sensorimotor 

systems.  Our goal in this chapter is to demonstrate that motor learning can be 

accomplished through iterative perceptual grounding.  In other words, we show that 

perceptual and motor learning are unexpectedly similar processes and can be achieved 

within a common mathematical framework.  This surprising result also suggests an 

approach to grounding higher level cognitive development, by iteratively reapplying this 

technique of internal perception.  We discuss these issues below and will examine them 

again in Chapter 6. 

 

5.1 A Sensorimotor Architecture 

We begin by examining abstract models of innate sensory and motor processing in 

isolation.  Initially, the isolated sensory system simply categorizes the different events to 

which it is exposed, using cross-modal clustering.  One may view this as an unsupervised 

learning phase, in which perceptual categories are acquired through passive observation.  

Subsequently, the isolated motor system generates innately specified behaviors using an 

open-loop control system (Prochazka 1993).  In other words, it receives no initial 

feedback.  To enable sensorimotor learning, we must close this loop by interconnecting 

these isolated systems. 

For this purpose, we will reuse the perceptual machinery of Chapter 3.  Specifically, we 

introduce the notion of internal perception, which allows a system to watch the 
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generation of its internal motor parameters as if they were coming from the outside 

world.  By treating the motor parameters as perceptual inputs, they can be cross-modally 

clustered, regardless of their internal origins.  The system thereby learns to generate 

events it has previously learned how to recognize, by associating motor parameters with 

their observed effects. 

 

5.1.1 A Model of Sensory Perception 

Our framework begins with the model of afferent sensory perception outlined in Figure 

5.1, which schematically diagrams an abstract computational sensory cortex.  In this 

model, external events in the world impinge upon sensory organs.  These receptors in 

turn generate perceptual inputs, which feed into specialized perceptual processing 

channels.  A primary outcome of this processing is the extraction of descriptive features 

(e.g., Muller and Leppelsack 1985, Hubel 1995), which capture abstracted sensory detail.  

This process occurs in parallel within multiple sensory pathways, as illustrated in Figure 
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Figure 5.1 – An abstract model of sensory processing in our framework.  A schematic view is shown on 
the left, which is expanded upon in the example of the right.  Events in the world are detected by sensory 
organs, here labeled A and V, representing auditory and visual receptors.  These are fed into processing 
pipelines shown here by the composition of functional units.  The features extracted from these pipelines 
are fed into slices, which are then cross-modally clustered with respect to one another.  We discuss this 
model further in the text. 
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5.1 on the right.  This hypothetical example shows auditory and visual receptors that 

provide inputs to their respective perceptual pathways.  These channels extract features 

from their perceptual input streams, which are fed into the slices displayed on top.  These 

slices are then cross-modally clustered with respect to one another, as described in 

Chapter 3.   

Later in the thesis, we reexamine the structure of these sensory pipelines.  In biological 

systems, sensory channels are highly interconnected and display complex temporal 

dynamics; we will modify our perceptual model to reflect that.  In Chapter 6, we examine 

the biological implausibility of assuming independence between perceptual channels.  

However, the sensorimotor learning in this chapter assumes only that slices can be cross-

modally clustered, an assumption which remains valid in the subsequent elaborations 

later in this thesis. 

 

5.1.2 A Simple Model of Innate Motor Activity 

We now present an abstract model of innate efferent motor activity, which is sometimes 

called reflexive behavior.  It is well established that young animals engage in a range of 

involuntary motor activities; much of this appears to facilitate the acquisition of cognitive 

and motor functions, leading to the development of voluntary, intentional behaviors 

(Pierce and Cheney 2003, Chapter 3).  Behavioral learning is therefore not a passive 

phenomenon; instead, it is often guided by phylogenetically "programmed" activities that 

have been specifically selected to satisfy the idiosyncratic developmental requirements of 

an individual species (Tinbergen 1951).  

An abstract model describing the generation of innate efferent motor activity is shown in 

Figure 5.2.  In a sense, this model is the reverse of the one displayed in Figure 5.1.  

Instead of the outside world generating events, we assume an innate generative 

mechanism stimulates a motor control center.  This in turn evokes coordinated activity in 

a muscle or effector system, leading to the generation of an external event in the world.   
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In our model, the innate specification of developmental behaviors is represented by a 

joint probability distribution over a set of parameters governing motor activity.  This is 

motivated by Keele and Summers (1976), where a motor program is described by a 

descriptive parameterization.  Alternatively, one could assume the existence of a set of 

deterministic motor schemas, corresponding to predetermined patterns of activity (Arbib 

1985).  From the perspective of our model, this distinction makes little difference; we 

simply assume some mechanism (or set thereof) is responsible for producing the innate 

behaviors that will eventually generate feedback for sensorimotor learning. 

To give a clearer sense of this process, we examine the diagram on the right in Figure 5.2.  

This presents an example of human vocal articulation, motivated by (Rubin et al. 1981).  

Although we will focus primarily on avian vocalization later in this chapter, first 

examining human articulation has strong intuitive and didactic appeal, and it sets the 
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Figure 5.2 – An abstract model of innate motor activity.  A schematic view is shown on the left, which is 
expanded upon in the example on the right.  On the bottom right is a model of human vocal articulation.  
This is parameterized by articulator positions at the lips (L), tongue tip (T), jaw (J), tongue center (C), 
velum (V), and hyoid (H).  Motor control corresponds to a set of state equations on the left governing the 
constrained movement of these articulators over some time period.  Parameters describing this movement 
are selected from some assumed innate distribution on the top right.  The selection of parameters in this 
model is based on (Rubin et al. 1981). 
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stage for discussing birdsong generation below.  In this example, a set of parameters are 

selected from some innate distribution InnateD ; these parameters describe the trajectories 

of six primary human vocal articulators, as illustrated in the figure.  The selection of 

parameters thereby corresponds to a primitive speech act.  The actual movements of the 

articulators during a speech act are modeled by a set of partial differential equations, 

determined by the biomechanical constraints on the musculoskeletal apparatus of the 

human vocal tract.  In other words, these equations model the physical characteristics and 

limitations of human vocal production independently of what is being said.  Together, the 

parameters and the state equations lead to the generation of a speech act.  In this domain, 

learning how to produce meaningful sounds corresponds to selecting parameters that 

appropriately generate them, given the physical and dynamic constraints of human 

vocalization. 

 

5.1.3 An Integrated Architecture 

Towards sensorimotor learning, we now interconnect these isolated sensory and motor 

systems.  To do this, we introduce the notion of internal perception, which allows a 

system to "watch" the generation of its internal motor parameters as if they were coming 

from the outside world.  Thus, we will create motor slices that are populated with 

behavioral data, in exactly the same way we created perceptual slices, which were 

populated with sensory data.  The resulting slices do not "know" if their data were 

generated internally or externally, and for the purposes of cross-modal clustering, it 

makes no difference.  We can thereby learn motor categories that correspond to 

previously acquired perceptual categories.   

In our model, internal perception occurs through the addition of a Cartesian theater 

(Dennett 1991), so named because it provides a platform for internal observation.  

Pursuing this philosophical metaphor a bit further,  the homunculus in our theater will be 

replaced by cross-modal clustering.  As we saw in Chapter 3, this is an unsupervised 

learning technique.  We may therefore employ the notion of a Cartesian theater without 

engendering the associated dualistic criticisms of Ryle (1941) or Dennett (1991).  In fact, 
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we will argue that internal perception is a useful framework for higher level cognitive 

bootstrapping, where cross-modal clustering replaces a homunculus and any notions of 

"intentionality" (Dennett and Haugeland 1991) are attributed to innate phylogenetic 

structures and tendencies.  In other words, we will keep the theater but eliminate the 

metaphysical audience. 

Our integrated sensorimotor framework is shown in Figure 3.  We briefly outline this 

architecture and then examine the stages of sensorimotor learning in detail below.  In the 

above diagram, we see the independent sensory and motor components described above 

on the left and right respectively.  In addition, there is now a Cartesian theater (G), which 

receives inputs corresponding to innate exploratory behaviors generated by (D).  These 
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Figure 5.3 – An integrated sensory motor framework.  We connect the isolated sensory and motor systems 

with the addition of a Cartesian theater (G), which receives data via (1), corresponding to innate 

exploratory behaviors generated in (D).  These data are fed into motor slices (H) via (2).  These exploratory 

behaviors also trigger motor activity via the efferent pathways in (E) and (F).  Most importantly, the system 

is able to perceive its own actions, as shown by (3).  These inputs feed into the afferent sensory system, 

where features are extracted and fed into perceptual slices (C).  We thereby learn the Hebbian linkages 

between the codebook clusters in perceptual slices (C) and motor slices (H), which describe the generation 

of these perceptions.  In the final step, we cross-modally cluster the motor slices (H) with respect to the 

perceptual slices (C); we thereby learn the motor categories that generate previously acquired sensory 

categories learned when the system was perceptually grounded. 
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internally produced data are fed to motor slices (H), which are thereby populated with 

behavioral rather than perceptual data.  These data are also simultaneously fed into a 

motor control system (E), which lead to the generation of perceivable events in the 

external world.   

Most importantly, the system observes its own actions.  Innately generated events 

impinge upon the sensory organs and are fed into the sensory apparatus on the left.  

Features extracted from these data are fed into sensory slices (C).  This process thereby 

creates Hebbian linkages between the sensory slices (C) and the motor slices (D).   

We point out that slices are what may be deemed agnostic data structures – they neither 

"know" nor "care" what type of data they contain.  We can therefore cross-modally 

cluster the motor slices (D), based on the categories acquired during the perceptual 

grounding of the sensory slices (C).  Note, that this is a one-way process.  In other words, 

we fix the sensory categories and only cluster the motor data.  We thereby learn motor 

categories that correspond to previously acquired perceptual categories.  We discuss 

relaxing this one-way restriction below, to allow increasing motor sophistication to assist 

in restructuring perceptual categories.  This type of perceptual refinement as a 

consequence of fine motor development has been observed in humans, particularly in 

musicians (e.g., Ohnishi et al. 2001). 
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Figure 5.4 – Developmental stages in our model.  i) The juvenile acquires perceptual structures from its 
parent.  ii)  Motor acts are observed internally through a Cartesian Theater.  iii)  The effects of motor acts 
are observed externally through perceptual channels.  iv)  Motor slices are cross-modally clustered with 
respect to perceptual slices.  The juvenile thereby learns how to generate the events it learned in stage (i).  
v)  Random exploratory behaviors are disconnected and motor slices take over the generation of motor 
activity.  The juvenile is now able to intentionally generate the sensory events acquired from its parent.  
vi)  Internal perception can be used subsequently in non-juveniles to refine motor control.  
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5.2 Stages of Sensorimotor Development 

We now examine the developmental stages of our framework, as illustrated in Figure 5.4.  

Note that one may introduce any number of complexities into these stages, a few of 

which we examine below.  However, we sidestep a number of issues relevant to any 

developmental model that do not uniquely distinguish our approach.  For example, we 

make no commitment to the role of innate vs. learned knowledge (e.g., Chomsky 1957, 

Meltzoff and Moore 1977, Fodor 1983) and believe we can incorporate either 

perspective.  The primary goal here is to outline how our model computationally learns 

imitative behaviors, towards examining the acquisition of birdsong in the next section.  

We therefore avoid a number of important albeit orthogonal topics, some of which we 

will examine in Chapter 6.  

 

5.2.1 Parental Training 

In the first stage of our model, we assume the system corresponds to a neonate.  Its 

sensory processing channels are sufficiently developed to extract features from perceptual 

inputs, provided by its parents, other animals (particularly conspecifics), or directly from 

the environment.  The goal of the system at this point is to collect sufficient data to begin 

cross-modal clustering and thereby become perceptually grounded.  Let us consider the 

outcome of this grounding process, as illustrated in Figure 5.5.  Here, a set of four 

different events in the world has been acquired using the framework of Chapter 3.  The 

goal then is for the system to learn how to generate these events by itself. 

We note that perceptually grounding may involve a gradual progression rather than a 

sudden transition.  Within a single modality, some categories may be easier to learn than 

others, due to their inherent structures, availability of training data, degree of perceptual 

redundancy, individual variations, etc.  In contrast, some perceptual features may be 

higher-level aggregates of simpler ones.  As such, their acquisition depends upon that of 

their components, which themselves may be differentially acquired.  For example. 

phonological development in children proceeds in a number of well-defined, 

interconnected stages that constructively build upon each other (Vihman 1996).  During 
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this lengthy process, children need constant exposure to language, during which they 

extract features corresponding to their current state of development.  More generally, a 

juvenile may undergo multiple stages of perceptual grounding, during which it acquires 

increasingly abstract knowledge from its tutors or environment.   

Although we assume that slices are initially unstructured, i.e., tabula rasa, it is certainly 

possible to incorporate innate pre-partitioning of slices into our framework.  Also, our 

model does not specify how perceptual features are selected in the first place.  We 

assume this is specified genetically in the biological world and programmatically in the 

artificial world. 

 

5.2.2 Internal and External Self-Observation 

The second and third stages of our model correspond to a system's observation of its own 

innate, exploratory motor activity.  Although reflexive behaviors are phylogenetically 

selected in animals to satisfy their individual motor requirements (Tinbergen 1951), in 

artificial systems, we must specify how these innate behaviors are generated.  While it 

 
Figure 5.5 – A hypothetical sensory system that has learned four events in the world.  These are acquired 
through cross-modal clustering, using the framework in the previous chapter.  For simplicity, only a single 
sensory mode is illustrated here. 
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may often be reasonable to design exploratory behaviors that are predetermined to satisfy 

a set of motor goals, we examine a generic strategy here.  Our goal is simply to explore a 

motor space and in doing so, simultaneously observe the effects internally through the 

Cartesian theater and externally through normal perceptual channels. 

Consider, for example, the problem of generating pairs of exploratory parameters (x,y) in 

a hypothetical motor system.  We have found it useful to select these parameters and 

thereby explore motor spaces according to an Archimedean spiral.  We could therefore 

 
Figure 5.6 – Internal perception of exploratory motor behavior corresponding to an Archimedean spiral.  
These data correspond to the parameters used to generate motor activity. 

 
Figure 5.7 – External perception of exploratory motor behavior.  This slice perceives the events generated 
by the motor activity described by Figure 5.6.  These data correspond to perceptual features describing 
sensory observations. 
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specify that the parameter values are drawn from a distribution described by 

1 2cos( )x α θ α θ= ⋅  and 1 2sin( )y α θ α θ= ⋅ .  In this case, the internal perception of this motor 

activity might be represented by the slice in Figure 5.6. 

Note that the slice representing the external perception of this motor activity may "look" 

entirely different than the motor slice representing its generation.  In other words, there is 

no reason to expect any direct correspondence or isomorphism between motor and 

perceptual slices.  The motor parameters indirectly generate perceptual events through an 

effector system, which may be non-linear, have discontinuities, or display complex 

dynamics or artifacts. 

We see this phenomenon in the slice in Figure 5.7, which visualizes perception of the 

motor activity described by Figure 5.6.  For the purpose of this example, we generated a 

non-bijective mapping between the motor parameters and the perceptual features of 

events they generate in order to illustrate the degree to which corresponding motor and 

perceptual slices may appear incongruous.  Thus, even though these two slices may 

represent the same set of percepts abstractly, they should not be expected to bear any 

superficial resemblance to each other.  This was also the case with the solely perceptual 

slices in Chapter 3; however, one might have assumed that a stronger correspondence 

would exist here due to the generative coupling between the slices, which is not the case. 

 

5.2.3 Cross-Modal Clustering 

The fourth stage of our model allows us to learn the correspondences between motor and 

perceptual slices.  Figure 5.8 shows the interconnection of the three slices introduced 

above.  On the bottom left in (A), we see the categories acquired during perceptual 

grounding, as shown in Figure 5.5.  Using these, the system can categorize external 

observations of its own activities as shown in (B); this corresponds to the cross-modal 

clustering of the slice in Figure 5.7.  It can then subsequently use these classifications to 

categorize internally observed motor behaviors, which were responsible for generating 
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this activity to begin with.  This is show in (C) and corresponds to the cross-modal 

clustering of the slice in Figure 5.6.  

Although the discussion here presumes these steps happen sequentially, i.e., the are three 

"rounds" of cross-modally clustering represented in Figure 5.8, taking us from stages (A) 

through (C), it is possible to imagine them overlapping.  In other words, motor learning 

may co-occur with perceptual grounding and one may propose a continuum between 

these two temporal alternatives.  Particularly in systems that have limited access to 

training inputs, self-supplementing these data by generating them independently, as 

perceptual capabilities are differentially acquired, may help to overcome a paucity in 

external stimulation.  This may be additionally helpful in determining ambiguous subsets 

of perceptual and motor space, which were discussed in the previous chapter. 

A) Perceptual Grounding
from Parent

C) Internal Self
Observation

B) External Self

Obseration

Innate Motor Activity

 
Figure 5.8 – Stages of cross-modal clustering.  Starting from the acquisition of perceivable events in (A), 
we learn to classify the effects of our own behaviors in terms of these events in (B).  Finally, we can then 
relate this back to the innate motor activity generating our actions, as in (C).   There are thereby three 
stages of cross-modal clustering in this model. 
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5.2.4 Voluntary Motor Control 

The fifth stage of our model replaces innate, exploratory behavior with voluntary, 

intentional motor control.  Figure 5.9 displays the bottom two slices of Figure 5.8, where 

the motor map on the right is now clustered according to the perceptions it externally 

generates – by way of some effector system – in the sensory map on the left.  

Significantly, the system is now capable of generating the events to which it was exposed 

during parental training. 

As we saw in Chapter 4, motor and sensory events do not happen instantaneously in time.  

They are not discrete, discontinuous phenomena.  Thus, rather than select individual 

points in a motor map to trigger behaviors, it is far more plausible to imagine a system 

"moving" through a motor map during a time period corresponding to sustained activity.  

We previously examined how to move through sensory maps to avoid perceptual 

ambiguity.  We note, however, that one may also wish to incorporate other types of 

constraints into motor systems, for example, to minimize energy or maximize stability. 

 

Sensory Map Motor Map

Effector SystemExternal World

 
Figure 5.9 – Acquisition of voluntary motor control.  Regions in the motor map on the right are now 
labeled with the perceptual events they generate in the sensory map on the right. 
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5.3 Learning Birdsong 

We now propose to use the framework in the previous section for self-supervised 

learning of birdsong.  Our presentation will focus on song learning in the zebra finch, a 

popular species for studying oscine songbird vocal production.  We begin with a brief 

introduction to this species, focusing on the structure of its song and the developmental 

stages of its acquisition.  Towards building a computational model, we next introduce the 

notion of songemes, primitive units of birdsong that we propose as avian equivalents of 

phonemes.  Finally, we present a system that learns to imitate an adult zebra finch in a 

developmentally realistic way, modeled on the dynamics of how male juvenile finches 

learn birdsong from their fathers (Tchernichovski et al. 2004, Fee et al. 2004).   

Our system first listens to an adult male finch and uses cross-modal clustering to learn the 

songemes comprising the song of its "father."  It then uses an articulatory synthesizer to 

generate its own nascent birdsong, guided by random exploratory motor behavior.  By 

listening to itself sing, the system organizes the motor maps generating its vocalizations 

by cross-modally clustering them with respect to the previously learned songeme maps of 

its parent.  In this way, it learns to generate the same sounds to which it was previously 

exposed.   

We are indebted to Ofer Tchernichovski (2005, 2006) for providing the adult zebra finch 

song recordings used to train our system.  We are also grateful to Heather Williams for 

making available a generationally-indexed birdsong library, which provided an additional 

source of inputs using during initial testing (Williams 1997, 2006).  Other sources of 

birdsong files are cited individually below. 

 

5.3.1 Introduction to the Zebra Finch 

The zebra finch is an extremely popular species for researching birdsong acquisition.  

(For surveys on birdsong learning, see Brenowitz et al. 1997 and Ziegler and Marler 

2004, and Nottebohm 2005).  In part, this is due to the ease of maintaining and breeding 
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the species in captivity and its rapid sexual maturity.  However, there are two additional 

characteristics of zebra finches that make them particularly attractive for study.   

The first of these is the noisy spectral quality of their songs, which are distinct from the 

whistled, tonal characteristics of most other songbirds, such as sparrows or canaries.  We 

can see this harmonic complexity in Figure 5.11, which displays spectrograms of songs 

from several oscine species, along with a human vocalization for reference.  It is 

hypothesized that spectral complexity of a zebra finch's song reflects its physical prowess 

and aids in sexual selection (Kroodsma and Byers 1991).  The complexity of their 

vocalizations, along with a range of behavioral and neurological similarities, has 

prompted many researchers to propose studying song learning in zebra finches as a model 

for understanding speech development in humans (Marler 1970, Nottebohm 1972, Doupe 

and Kuhl 1999, Brainard and Doupe 2002, Goldstein et al. 2003).  Perhaps supporting 

this notion, it has been determined that human FOXP2, the first gene linked to speech and 

vocal production, has a protein sequence that is 98% identical to the same gene in the 

zebra finch (Haesler et al. 2004, see also Webb and Zhang 2005). 

 
 

Figure 5.10 – An adult male zebra finch (Taeniopygia guttata).  Zebra finches are small, unusually social 
songbirds that grow to approximately 10cm (4 inches) tall.  They are extremely popular both as pets and as 
research subjects for studying neural, physiological, evolutionary, social, and developmental aspects of 
birdsong acquisition.   
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Figure 5.11 – Spectrograms of songs from five different species.  These include: i) a zebra finch; ii) an 
evening grosbeak; iii) a blue jay; iv) a northern mockingbird; and v) the author singing "Do Re Mi" to 
provide a reference with human vocalization.  Notice the complex harmonic structure of the zebra finch's 
song compared to those of the other birds.  Song in (i) provided by (Tchernichovski 2006).  Songs in (ii)-
(iv) were obtained from the U.S. National Park Service (2005).  Note that the frequency ranges are different 
in each of these spectrograms. 
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The second characteristic that makes zebra finches popular models for song learning is 

the well-defined developmental process through which their song is acquired (Slater et al. 

1988).  Fledglings of both sexes begin learning their father's song early in life.  

Approximately one month after hatching, male juveniles begin producing nascent, 

squeaky sounds and then proceed through a series of stages of vocal refinement 

(Immelmann 1969, Tchernichovski and Mitra 2002).  The goal of this process for a zebra 

finch is to learn to approximately reproduce its father's song, accompanied by 

idiosyncratic, individual variations unique to each bird.  Therefore, a son sounds similar 

but not identical to his father.  At 90 days of age, a bird's song crystallizes as it 

simultaneously reaches sexual maturity, and its song template remains unchanged for the 

remainder of its life (Doupe and Kuhl 1999).  Thus, an adult male zebra finch adheres to 

a single song motif, where each vocalization is constructed from a fixed set of acquired 

components.  We note that as with many other oscine songbird species, females zebra 

finches do not sing.  Instead, they make simple vocalizations known as distance calls, 

through which birds of both sexes are able to individually recognize one another (Miller 

1979, Vignal et al. 2004). 

The juvenile development of song generation is heavily guided by auditory feedback 

(Konishi 1965).  In fact, as a bird begins to vocalize, it no longer requires exposure to its 

tutor's song but instead, it must be able to hear itself sing.  Adult birds also need feedback 

to maintain their singing ability (Nordeen and Nordeen 1992).  Thus, even though adult 

males cannot learn new songs, they require auditory feedback to maintain the neural song 

patterns acquired as juveniles (Brainard and Doupe 2000). 

How juveniles learn from auditory feedback is unknown.  Marler (1997) outlines three 

models of sensorimotor-based song development.  These range from fully open, 

instructive tutoring to the assumption of innate neural templates for highly constrained, 

conspecific song patterns.  He argues for an intermediate approach, incorporating song 

memorization into a phylogenetically constrained framework that has been selected to 

facilitate rapid learning within an individual species. 
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5.3.2 Songemes 

We now introduce the notion of songemes, primitive units of birdsong that we propose as 

avian equivalents of phonemes.  Marler (1997, p508) notes that although "it is the subject 

of score of studies of song learning and its neural basis, … little effort has been directed 

to descriptive studies of zebra finch song structure."  In the research literature, birdsong 

is generally divided into components known as syllables, which are continuous sounds 

bounded by silent intervals (e.g., Williams and Staples 1992, Ölveczky et al. 2005).  It is 

not, however, generally broken down into smaller units.  The goal of this section is to 

define primitive units we call songemes, which we argue correspond more closely to 

basic elements of physiological song production. 

Before proceeding, we briefly discuss the multitaper spectral analysis methods (Thomson 

1982)  that were introduced into the analysis of birdsong by (Tchernichovski et al. 2000). 

Traditional spectrograms show the power at different frequency components of a signal 

over time, as in the top of Figure 5.12.  Multitaper methods compute spectrograms while 

simultaneously providing estimates of spectral derivatives.  That is, rather than only 

measuring power, they also measure instantaneous changes in power, and as such, 
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Figure 5.12 – Comparing a spectrogram to a spectral derivative display for the song of a zebra finch.  A 
spectrogram for a zebra finch song is displayed on top.  The spectral derivative of that song is shown on the 
bottom and provides much clearer visual detail.  It also provides a framework for subsequent harmonic 
analysis.  
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perform a sort of edge detection on the spectrogram, making contours easier to detect 

(see the bottom of Figure 5.12).  They also provide a framework for harmonic analysis 

(ibid, Tchernichovski and Mitra 2004).  In the rest of this chapter, we use spectral 

derivatives in place of spectrograms for examining acoustic analyses of birdsongs. 

Returning to our discussion of syllables in bird song, let us consider the song displayed in 

Figure 5.13.  On the top of the figure, we have partitioned the song according to the 

traditional syllabic breakdown, as determined by the intervals of silence.  On the bottom, 

we have partitioned the song into songemes, which captures the fine structure in the song.  

The songeme partitioning is computed by finding the peaks in the smoothed 

log(power) of the signal between 860 and 8600Hz, corresponding to the expected 

vocalization range of a zebra finch.  The smoothing is done with a low-pass Savitzky-

Golay filter, using a 2nd order polynomial over a window corresponding to approximately 

40msec.  The songeme boundaries are determined by finding the local minima adjacent to 
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Figure 5.13 – Breaking a birdsong down into constituent songemes.  On the top, the song is displayed 
divided into seven syllables.  The 22 derived songemes, defined via peaks of the song's smoothed 
log(power), are shown on the bottom.  The peaks are indicated by the dotted vertical yellow lines.  The blue 
lines indicate songeme boundaries, determined by locally adjacent minima.  We note the long vocalization 
at the end of the song corresponds to a distance call. 
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these peaks, and  the boundaries are shared between songemes when they are temporally 

adjacent.  We examine the partitioning of an individual complex syllable into seven 

songemes in Figure 5.14.  This example supports our belief that the widespread syllabic 

approach to studying birdsong is a poor model for capturing its internal complexity. 

We have used this technique to automatically extract approximately 10,000 songemes 

from wav files recorded from two different zebra finches provided by (Tchernichovski 

2005, 2006).   Of these, we heuristically rejected any songeme of duration less than 10 

msecs, which eliminated approximately 1000 of them.  Many of these are due to non-

verbal sounds, e.g., from a bird moving in its cage or other background noises, that are 

audible on the recordings. 
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Figure 5.14 – Partitioning a single syllable into songemes.  This figure displays the segment of birdsong in 
Figure 5.13 between 520 and 875 msecs.  The single syllable shown on top has been automatically 
partitioned into seven songemes on the bottom, which correspond more closely to the changes in 
vocalization during this interval.  This example supports our belief that the widespread syllabic approach to 
studying birdsong is a poor model for capturing its internal complexity. 
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Figure 5.15 – Feature extraction for a zebra finch song partitioned into songemes.  The solid line within each 
songeme shows the mean value for the corresponding feature within it.  These values are cross-modally clustered 
to learn the structure of the birdsong.  The dotted line within each songeme shows the actual feature data, which is 
smoothed with a low-pass Savitzky-Golay filter.  The feature values have been normalized to fit within each plot.  
We note this is the same song as shown in Figure 5.13 
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We note several other efforts at separating complex animal sounds into primitive 

components.  Kogan and Margoliash (1997) used dynamic time warping and hidden 

Markov models (HMMs) to derive simple units of birdsong for testing automated 

recognition of birds.  Mellinger and Clark (1993) used HMMS for detecting and 

identifying bowhead whales, and Clemins and Johnson (2003) used HMMs for 

recognizing vocalizations in African elephants.   

 

5.3.3 Birdsong Analysis 

We extracted streams of acoustic features from our birdsong sound files using a 

customized version of the Sound Analysis For Matlab software (Saar 2005).  The 

extracted features include: 1) amplitude modulation; 2) frequency modulation; 3) 

entropy; 4) amplitude; 5) mean frequency; 6) pitch goodness; 7) pitch; and 8) pitch 

weight as shown in Figure 5.15.  We note the song in this figure is the one shown Figure 

5.13. 

For each songeme, we average the values of the features within it to obtain a compact 

acoustic description.  These average values are shown by the solid horizontal lines within 

each songeme in Figure 5.15a.  The dotted lines within each songeme display the actual 

feature values, which have been smoothed as described above.  The average feature 

values for approximately 9,000 songemes, derived from our training sound files, were fed 

into as assembly of interconnected slices, to be discussed below.    

We see two of the outputs of this clustering in Figure 5.16.  Among the most interesting 

of our technical results, we can interpret the upper slice as demonstrating the system has 

learned there are three different types of vocalizations: 1) the blue region corresponds to 

noisy sounds perhaps generated by chaotic activity in the avian syringeal sound 

generator.  This is similar to chaotic (e.g., fricative) speech in humans;  2)  the green 

region corresponds to pure tones, such as whistles; and 3) the orange region corresponds 

to harmonic sounds, such as the in the distance call.  We note the relative scarcity of pure 

tones in zebra finch song, as reflected by the sparsity of data in the green region. 
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Figure 5.16 -- Cross-modally clustered zebra finch slices.  We can interpret the upper slice as 
demonstrating the system has learned there are three different types of vocalizations: 1) the blue region 
corresponds to noisy sounds, perhaps generated by chaotic activity in the avian syringeal sound generator.  
This is similar to aspirated speech in humans;  2)  the green region corresponds to pure tones, such as 
whistles; and 3) the orange region corresponds to harmonic sounds, such as in the distance call.  The lower 
slice shows the system has learned the pitch structure for seven different component vocalizations. 
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The slice at the bottom of Figure 5.16 demonstrates that the system has acquired the pitch 

structure of its parent’s birdsong, corresponding with seven different base “notes,” out of 

which songemes are constructed by varying other acoustic features such as harmonic 

complexity and frequency modulation. 

A view of all the slices used for birdsong learning is illustrated in Figure 5.17.  The low-

level features, such as those in Figure 5.15, supplied data to these slices, which manually 

selected and interconnected.  Although these types of interconnections are likely 

phylogenetically determined in nature, a more sophisticated artificial system might 

 
 

Figure 5.17 – Slices for birdsong learning.  On the bottom, one dimensional slices feed songeme feature 
values into the two dimensional slices on the top.  The colored lines represent learned Hebbian linkages.  
The slices are then cross-modally clustered to learn songeme categories.  This perceptually grounds the 
system with respect to its "parent's" song.  Detailed views of two of these slices are contained in Figure 
5.16.  See the text for additional details of this architecture. 



 148 

employ techniques such as (Bartlett 2001) to automatically select interconnections 

between acoustic features based on independent component analysis.   However, given 

our task here is to demonstrate acquisition of sensorimotor control using perceptual 

mechanisms, the precise details of feature selection and interconnection were not of great 

concern.  Nonetheless, it should be acknowledged that a fair amount of manual effort 

went into architecting the birdsong learner illustrated in Figure 5.17, which then was 

cross-modally clustered based on the input song of its parent, as described in §5.2.1. 

 

5.3.4 Articulatory Synthesis  

To implement the motor component of this system, we created a naive articulatory 

synthesizer for generating birdsong, based on the additive synthesizer in the Common 

Lisp Music System (Taube 1989) and translated into Matlab by (Strum 2001).  The motor 

parameters in our model correspond to: (1) syringeal excitation; (2) pitch; (3) power; and 

(4) temporal, frequency and amplitude envelopes corresponding to simple models of 

avian vocalization.  In our implementation, chaotic syringeal excitation is realized by 

phase and amplitude perturbations of a vocalization's harmonic components.  We note 

that this does not correspond with a biologically realistic syringeal mechanism, which 

would be complicated to model accurately.  However, our goal here is not to model 

birdsong with perfect accuracy but rather to demonstrate self-supervised sensorimotor 

learning within our framework.  Making the synthesizer sounds generally realistic was 

sufficient for our purposes, as we discuss below.   

We refer to the nascent activity of the system as babbling.  Some examples of 

increasingly complex babbling are shown in Figure 5.18.  These demonstrate the system's 

acquisition of harmonic complexity in response to auditory feedback and comparison 

with its parent’s song.   The initial babbling corresponds to uninformed, innate motor 

behavior as described above.  As the system simultaneously listened to its own outputs 

while “watching” the internal generation of motor activity, it was able to determine which 

regions of its motor maps were responsible for providing harmonic complexity matching 

its parents through cross-modal clustering, as described in §5.2.3.   
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The increase in complexity is due to continued refinement of the system’s motor maps.  

In other words, as it explored its motor capabilities more completely, it was able to 

classify codebook regions in its motor maps to learn which generated harmonically 

complex outputs.  We manually implemented the strategy that our system select different 

aspects of its parent song to independently master, which reflect the actual strategies 

taken by zebra finches in the wild (Liu et al. 2004), who sequentially focus on different 

features of their song, rather than try to master the parent’s song in its entirely.  A 
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Figure 5.18 – The temporal evolution of bird babbling in our system.  This figure illustrates the acquisition 
of harmonic complexity due to auditory feedback.  See the text for explanatory commentary. 
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presumable benefit of this approach is that it reduces search space complexity 

enormously by isolating and focusing on individual acoustic features, thereby permits 

gradual song acquisition and differential acquisition in case other male siblings are also 

in the midst of their own learning.  Thus, this strategy also prevents co-located siblings 

from confusing one another.  For example, two brothers raised together will select 

(presumably) non-conflicting developmental paths, where one may focus on the temporal 

aspects of its song while the other focuses on pitch, even though they are both essentially 

learning the same song.  Our system was designed to focus on individual songemes, in 

essence acquiring the "notes" of its parent's song.  As this is a much lower level treatment 

than is typically given in the oscine developmental literature, which focuses on song 

syllables, it is difficult to evaluate its developmental realism.  Nonetheless, for an 

artificial system, it seems quite adequate. 

Our strategy was to learn mimicry of each acoustic feature in terms of the articulator’s 

model, which formed the structure of our motor slices.  For each acquired songeme, we 

selected the combination of articulations which maximized our approximation of it.  We 

note that given the constraints of our articulator, certain acoustic features of the parent 
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Figure 5.19 – Birdsong mimicry.  On the top is a sample of the zebra finch song used as the "parent" for 
our system.  On the bottom is the system's learned imitation, where the acquired songemes have been fit to 
the template of the parent’s song and smoothed. 
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birdsong were not possible to reproduce well.  In particular, the harmonic complexity 

associated with chaotic syringeal excitation, a common phenomenon in zebra finch song, 

could only roughly be approximated by our articulatory model.   However, the human ear 

seems far more sensitive to pitch accuracy, which we were able to capture quite well, and 

tends to be less sensitive to reduced acoustic entropy. 

 

5.3.5  Results 

This experiment was in essence empirical.  Our goal was to demonstrate that our 

framework could perform self-supervised sensorimotor learning, using the zebra finch as 

a testbed.  Although the acquired song sounds recognizably like the parent bird’s to 

human ears, does it sounds like a bird to another bird?  In other words, it is unclear how 

to evaluate this mimicry.  We note that human auditory range overlaps well with that of 

the zebra finch, and as mentioned above, the FOXP2 gene thought to be responsible for 

vocal production is remarkably similar between the two species.  Nonetheless, one should 

assume that auditory feature extraction and subsequent processing in the zebra finch is 

uniquely tuned to its auditory requirements, which are surely quite different than our 

own.   

Perhaps the best way to evaluate this work would be to use it to train a fledgling and see 

if it acquires song.  In other words, use our system as a parent.1  This is a fascinating 

possibility which we are currently investigating.  However, it is important to keep in 

mind that the goal of this chapter is to present an architecture for sensorimotor learning in 

artificial systems; songbirds are a well-studied model for this type of acquisition, and as 

such, they are helpful guideposts for examining this problem.  Nonetheless, our goal is 

proposing architecture for more sophisticated computational systems rather than precisely 

imitating the song of a particular bird. 

 

                                                 
1 It has been suggested by Chris Atkeson that we attempt mating our system with a female zebra finch, but 
that would presumably void our computer’s warrantee.   



 152 

5.4 Summary 

This chapter has demonstrated that the cross-modal clustering framework presented in 

Chapter 3 can be recursively reapplied to acquiring self-supervised sensorimotor control.  

We have developed architecture for this type of learning using an internal Cartesian 

theater to correlate the generation of motor activity with its perceived effects through 

cross-modal clustering.  This is possible because slices neither know nor care whether 

they represent sensory or motor data.  It is thus straightforward to seamlessly move 

between the two during clustering. 

We demonstrated this approach with a system that learns birdsong, following the 

developmental stages of a fledgling zebra finch.  This works suggests a number of other 

possible applications for learning motor control through observation, among the most 

common forms of learning in the animal world.    

The benefits of self-supervised learning for artificial sensorimotor systems are enormous 

because engineered approaches tend to be ad hoc and error prone; additionally, in 

sensorimotor learning we generally have no adequate models to specify the desired 

input/output behaviors for our systems.  As we mentioned in Chapter 1, the notion of 

programming by example is nowhere truer than in the developmental mimicry 

widespread in animal kingdom, and this chapter is a significant step in that direction for 

providing that capability to artificial sensorimotor systems. 
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Chapter 6  

Biological and Perceptual Connections 

The chapter connects the computational framework introduced in this thesis to a modern 

understanding of perception in biological systems.  In doing so, we motivate the approach 

taken here and simultaneously suggest how this work may reciprocally contribute 

towards a better computational understanding of biological perception.  We begin by 

examining the interaction between sensory systems during the course of ordinary 

perception. 

 

6.1 Sensory Background 

Who would question that our senses are distinct?  We see, we feel, we hear, we smell, 

and we taste, and these are qualitatively such different experiences that there is no room 

for confusion among them. Even those affected with the peculiar syndrome synesthesia, 

in which real perceptions in one sense are accompanied by illusory ones in another, never 

lose awareness of the distinctiveness of the senses involved.  Consider the woman 

described in (Cytowic 2002), for whom a particular taste always induced the sensation of 

 
Figure 6.1 - Cross-modal matching: a subject is asked to use haptic (e.g., tactile) cues to select an object 
matching a visual stimulus.  From (Stein and Meredith 1993). 
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a specific, corresponding geometric object in her left hand.  A strange occurrence indeed, 

but nonetheless, the tasting and touching – however illusory – were never confused; they 

were never merged into a sensation the rest of us could not comprehend, as would be the 

case, for example, had the subject said something tasted octagonal.  Even among those 

affected by synesthesia, sensory perceptions remain extremely well defined. 

Given that our senses appear so unitary, how then does the brain coordinate and combine 

information from different sensory modalities?  This has become known as the binding 

problem (see Wolfe and Cave 2000 for a review), and the classical assumption has been 

to assume that the sensory streams are abstracted, merged, and integrated in the cortex, at 

the highest levels of brain functioning.  This hypothesis assumed a cognitive 

developmental process in which children slowly developed high-level mappings between 

innately distinct modalities through their interactions with the world.   

We may examine this assumption in context of the most frequently studied of 

intersensory phenomena, cross-modal matching, which is determining that perceptions in 

two different sensory modalities could have the same source.  Figure 6.1 shows a 

standard experimental matching task, in which a subject is asked to use tactile cues to 

select an object matching a visual stimulus.  The actual mechanisms that make cross-

modal matching possible are unknown, but clearly, sufficient correspondences between 

the modalities must exist to enable making this type of equivalency judgment.  Whatever 

form these correspondences take – whether through topographic maps, amodal perceptual 

interlinguas, or other representations – is according to Piaget (1954), among many others, 

developed slowly through experience.  Only when the involved senses have developed to 

the point of descriptional (i.e., representational) parity, can these interrelations develop 

and cross-modal matching thereby take place.  

This position directly traces back to Helmholtz (1884) and even earlier, to Berkeley 

(1709) and Locke (1690), who believed that neonatal senses are congenitally separate and 

interrelated only through experience.  According to this viewpoint, the interrelation does 

not diminish the distinctiveness of the senses themselves, it merely accounts for 

correspondences among them based on perceived co-occurrences.  This was seemingly a 
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very intuitive foundational assumption for studying perception.  Unlike so much of the 

rest of human cognition, we can be introspective about how we perceive the world.  Are 

not our sensory systems innately designed to bring themselves to our attention? 

 

6.2 Intersensory Perception 

Unfortunately for this introspective approach to perception, an overwhelming body of 

evidence has been gathered in the past half century demonstrating that perceptions 

themselves emerge as the integrated products of a surprising diversity of components.  

(For surveys, see Stein and Meredith 1993, Lewkowicz and Lickliter 1994, Rock 1997, 

Shimojo and Shams 2001, Calvert et al. 2004, and Spence and Driver 2004.)  Our 

auditory, olfactory, proprioceptive, somatosensory, vestibular, and visual systems 

influence one another in complex interactive processes rarely subject to conscious 

introspection.  In fact, the results can often be completely counterintuitive. Perception is 

such a fundamental component of our experience that we seldom give its mechanisms 

any direct attention.  It is the perceptions produced by these mechanisms that draw our 

attention, not the mechanisms themselves, and we are ill equipped to examine the 

mechanisms directly without the aid of clever, sometimes even serendipitous, 

experimentation.  In Gibson's (1950) view, perceivers are aware of the world, not their 

own perceptions.2   

For example, let us consider the well-known work of McGurk and MacDonald (1976), 

who studied how infants perceive speech during different periods of development.  In 

preparing an experiment to determine how infants reconcile conflicting information in 

different sensory modalities, they had a lab technician dub the audio syllable /ba/ onto a 

video of someone saying the syllable /ga/.  Much to their surprise, upon viewing the 

dubbed video, they repeatedly and distinctly heard the syllable /da/ (alternatively, some 

hear /tha/), corresponding neither to the actual audio nor video sensory input.  Initial 

                                                 
2 One may contrast this with Russell's (1913) criticism of "materialistic monism," in which he argues that 
abstract, self-aware mental models are an essential component of perception.  This distinction, in the guise 
of the Physical Symbol System Hypothesis (Miller, Galanter, and Pribram 1960, Newell and Simon 1976), 
has been the subject of intense scrutiny within the artificial intelligence community (e.g., Johnson-Laird 
1983, Brooks 1990a). 
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assumptions that this was due to an error on the part of the technician were easily 

discounted simply by shutting their eyes while watching the video; immediately, the 

sound changed to a /ba/.  This surprising fused perception, subsequently verified in 

numerous redesigned experiments and now known as the McGurk effect, is robust and 

persists even when subjects are aware of it. 

The McGurk effect is among the most convincing demonstration of the intersensory 

nature of face-to-face spoken language and the undeniable ability of one modality to 

radically change perception in another.  It has been one of many components leading to 

the reexamination of the introspective approach to perception.  Although it may appear 

reasonable to relegate intersensory processing to the cortex for the reasoning (as opposed 

to perceptual) processes involved in the cross modal matching experiments described 

above, it becomes far more implausible in cases where different senses impinge upon 

each other in ways that locally change the perceptions in the sensory apparatus 

themselves.   

One might object that the McGurk effect is pathological – it describes a perceptual 

phenomenon outside of ordinary experience.  Only within controlled, laboratory 

conditions do we expect to have such grossly conflicting sensory inputs; obviously, were 

these signals to co-occur naturally in the real world, we would not call them conflicting.  

We can refute this objection both because the real world is filled with ambiguous, 

sometimes directly conflicting, perceptual events, and because the McGurk effect is by 

no means the only example of its kind.  There is a large and growing body of evidence 

that the type of direct perceptual influence illustrated by the McGurk effect is 

commonplace in much of ordinary human and more generally animal perception, and it 

 
 
Figure 6.2 - The McGurk Effect.  Disparate auditory and visual inputs can create perceptions corresponding 
to neither.  Picture is from (Haskins 2005). 
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strongly makes the case that our perceptual streams are far more interwoven than 

conscious experience tends to make us aware.  In this, the McGurk effect is unusual in 

that the conflicting audio and visual inputs create perceptions corresponding to neither 

actual input.  More typically, sensory systems influence (e.g., enhance, degrade, change) 

perceptions in one another and at times, substitute for each other as well, by transferring 

perceptual information across modalities (Calvert et al. 2004). 

An example of one sense enhancing another occurs all the time in noisy environments.  

The sight of someone’s moving lips in an environment with significant background noise 

makes it easier to understand what the speaker is saying; visual cues – e.g., the sight of 

lips – can alter the signal-to-noise ratio of an auditory stimulus by 15-20 decibels (Sumby 

and Pollack 1954).  Tied in with audio source separation, this phenomenon is commonly 

known as the cocktail party effect (Cherry 1953).  We see, therefore, that a decrease in 

auditory acuity can be offset by increased reliance on visual input.  In fact, it has long 

been known that watching the movement of a speaker’s lips helps people understand 

what is being said: Juan Pablo Bonet wrote in his 1620 classic “Simplification of Sounds 

and the Act of Teaching the Deaf to Speak,” (cited in Bender 1981, p41):  

“For the deaf to understand what is said to them by the motions of the lips 

there is no teaching necessary; indeed to attempt to teach them it would be a 

very imperfect thing ...to enable the deaf-mute to understand by the lips alone, 

as it is well known many of them have done, cannot be performed by 

teaching, but only by great attention on their part…” 

Although the neural substrate behind this interaction is unknown, it has been determined 

that just the sight of moving lips – without any audio component – modifies activity in 

the auditory cortex (Sams et al. 1991, Calvert et al. 1997).  Furthermore, psycholinguistic 

evidence has long supported the belief that lip-read and heard speech share a degree of 

common processing, notwithstanding the obvious differences in their sensory channels 

(Dodd et al. 1984).   

Examples of senses substituting for one another are commonplace, as when auditory and 

tactile cues replace visual ones in the dark; this is familiar to anyone who has walked 

through a dark room with outstretched, waving arms and hyper-attentive ears.  A far more 
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interesting example is seen in a phenomenon known as the “facial vision” of the blind.  In 

locating objects, blind people often have the impression of a slight touch on their 

forehead, cheeks, and sometimes chest, as though being touched by a fine veil or cobweb 

(James 1890, Kohler 1967).  Consider this quote contained in James (1890, p.204), from 

a blind author of the time: 

“Whether within a house or in the open air, whether walking or standing still, 

I can tell, although quite blind, when I am opposite an object, and can 

perceive whether it be tall or short, slender or bulky.  I can also detect whether 

it be a solitary object or a continuous fence; whether it be a close fence or 

composed of open rails, and often whether it be a wooden fence, a brick or 

stone wall, or a quick-set hedge. …The sense of hearing has nothing to do 

with it, as when snow lies thickly on the ground objects are more distinct, 

although the footfall cannot be heard.  I seem to perceive objects through the 

skin on my face, and to have the impressions immediately transmitted to the 

brain.” 

 

The explanation for this extraordinary perceptory capability had long been a subject of 

fanciful debate.  James demonstrated, by stopping up the ears of blind subjects with 

putty, that audition was behind this sense, which is now known to be caused by intensity, 

direction, and frequency shifts of reflected sounds (Cotzin and Dallenbach 1950, Hoshino 

and Kuroiwa 2001).  The auditory input is so successfully represented haptically in the 

case of facial vision that the perceiver himself cannot identify the source of his 

perceptions. 

There is no doubt that we constantly make use of intersensory cues during perception and 

in directing our attention, and when deprived of these cues, through artificially contrived 

or naturally occurring circumstances, can display marked degradation in what seem to us 

conceptually and functionally isolated sensory systems.  The breadth of these interactions 

and the range of influences they demonstrate have been so surprising that they have 

called for radically new approaches to understanding how our individual perceptual 

systems work, how the brain merges their perceptions, and why these two questions are 

inseparable. 
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6.3 The Relevance 

Why should this reexamination of sensory independence concern us?  We believe the 

answer stems from the fact that the early assumption of perceptual isolation underlies 

nearly all modern interactive systems – it remains the primary architectural metaphor for 

multimodal integration.  The unfortunate consequence of this has been making 

integration a post-perceptual process, which assembles and integrates sensory input after 

the fact, in a mechanism separate from perception itself.  Modern psychophysical, 

neuroanatomical, evolutionary, and phenomenological evidence paints a very different 

picture of how animals, including humans, merge their senses; the notion that the senses 

are processed in isolation is highly implausible.  Much of this evidence also undermines 

classical symbol-processing models of perception (e.g., Fodor and Pylyshyn 1998), where 

cognitivist assumptions can obscure rather than illuminate the subtle intersensory 

perceptual mechanisms we are interested in here.   

 

6.3.1 Perception in Pipelines 

Computational approaches to perception have traditionally been bottom-up, feeding raw 

perceptual inputs into abstraction pipelines, as show in Figure 6.3.  In these frameworks, 

a pipeline is constructed through functional composition of increasingly high-level 

feature detectors.  This approach is apparent in some of the earliest work in 

computational object recognition (Horn 1970, Binford 1971, Agin 1972).  It is also 

explicitly reflected in the perceptual theories described by Marr (1976, 1982), Minsky 

(1987), and Ullman (1998), as well as in the subsumption architecture of Brooks (1986) 

for sensorimotor control.3 

Early approaches to artificial perception focused exclusively on modeling aspects of 

individual modalities in isolation, although the potential for more complex multimodal 

interactions drew the imaginations of early researchers (Turing 1950, Selfridge 1955).  

Among the first efforts to create a user interface that combined two independent 

                                                 
3 Note that both Ullman and Brooks make extensive use of top-down feedback to govern their bottom-up 
processing. 
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perceptual channels was that of Bolt (1980).  His "Put-that-there" system (Figure 6.4) 

enabled users to interact with projected maps by speaking and pointing simultaneously.  

Bolt's system resolved spoken deictic references involving identity ("that") and location 

("there") by visually observing the pointing gestures that accompanied them.  Deictic 

gesture resolution has subsequently become a very popular application for multimodal 

user-interface development (e.g., Oviatt et al. 2003, Kumar et al. 2004). 

Another significant application combining separate modalities is lip-reading, which has  

become perhaps the most studied problem in the computational multimodal literature 

(e.g., Mase and Pentland 1990, Massaro et al. 1993, Brooke and Scott 1994, Bregler and 

Konig 1994, Benoît 1995, Hennecke et al. 1996, Bangalore and Johnston 2000, Huang et 

al. 2003, Potamianos et al. 2004).  This is due both to the historic prominence of 

automatic speech recognition in computational perception and more importantly, to the 

inherent difficulty of recognizing unconstrained speech.  We note that the robotics 

community was perhaps the first to realize that combining multiple sensory channels 

could increase overall perceptual reliability (Nilson 1984, Flynn 1985, Brooks 1986).  

However, in these systems, sensors would substitute for one another depending upon 

context; in other words, one sensor would be used at a time and a robot would 

dynamically switch between them.  Speechreading systems were the first multimodal 

 
 

Figure 6.3 – Unimodal processing pathways.  Individual modalities are processed in specialized pipelines.  
The visual pathway on the left uses 3-dimensional depth and color maps to find candidate regions for 
locating faces.  (Modeled after Darrell et al. 1999.)  The auditory pathway on the right performs speech 
recognition.  (Modeled after Jelinek 1997.)  Notice in this example that higher-level syntactic constraints 
can feed back into the lower-level morphological and phonetic analyses. 
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approaches that sought to increase perceptual accuracy by simultaneously combining 

information from complementary sensory channels.  This is in contrast with the more 

typical goal of multimodal user-interface design, which is to make human-computer 

interaction more natural for people by providing additional input modalities such as 

pointing or context-awareness (Dey et al. 2001).   

In recent years, a wide range of multimodal research areas has emerged, many of which 

were inspired by Weiser's (1991, 1994) notion of ubiquitous computing.  These include 

intelligent environments (Coen 1999, Vanderheiden et al. 2005), wearable computing 

(Starner 1999), physiological monitoring (Intille et al. 2003, Sung and Pentland 2005), 

ambient intelligence (Remagnino et al. 2005), multimodal design (Adler and Davis 

2004), and affective computing (Picard 1997).   Additionally, we note that roboticists 

have a long tradition of combining multimodal perception with sensorimotor control (see 

the references above, along with Brooks et al. 1998, Thrun et al. 2005). 

 

 

 

                                  
 

 

Figure 6.4 – An early multimodal user-interface.  The "Put-that-there" system combined speech processing 
and visual gesture recognition to resolve spoken deictic references to a projected map.  From (Bolt 1980). 
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6.3.2 Classical Architectures 

Surprisingly, even though all of the above applications address a diverse assortment of 

computational problems, their implementations have similar – sometimes almost identical 

– architectures.  Namely, they share a common framework where sensory inputs are 

individually processed in isolated, specialized pathways (Figure 1.2).  Each perceptual 

pipeline then outputs an abstract description of what it sees, hears, senses, etc.  This 

description captures detail sufficient for higher-level manipulation of perceptions, while 

omitting the actual signal data and intermediate analytic representations.  Typically, the 

perceptual subsystems are independently developed and trained on unimodal data; in 

other words, each system is designed to work in isolation.  They are then interconnected 

through some fusive mechanism that combines temporally proximal, abstract unimodal 

inputs into some integrated event model.   

The integration itself may be effected in many different ways.  These include: 

multilayered neural networks (Waibel et al. 1995); hidden Markov models (Stork and 

Hennecke 1996); coupled hidden Markov models (Nefian et al. 2002); dynamic Bayesian 

 
 

 
Figure 6.5 – Classical post-perceptual integration in multimodal systems.  Here, auditory (A) and visual 
(V) inputs pass through specialized unimodal processing pathways and are combined via an integration 
mechanism, which creates multimodal perceptions by extracting and reconciling data from the individual 
channels.  Integration can happen earlier (a) or later (b).  Hybrid architectures are also common.  In (c), 
multiple pathways process the visual input and are pre-integrated before the final integration step; for 
example, the output of this preintegration step could be spatial localization derived solely through visual 
input.  This diagram is modeled after (Stork and Hennecke 1996). 
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networks (Wang et al. 2005); unification logics (Cohen et al. 1997); Harmony theory 

(Smolensky 1986); posterior probabilities (Wu et al. 1999); fuzzy logic (Massaro 1998); 

maximally informative joint subspaces (Fisher et al. 2001); recurrent mixture models 

(Hsu and Ray 1999); subsumption architectures (Brooks 1986); agent hierarchies 

(Minsky 1986); partially observable Markov decision processes (Lopez et al 2003); 

layered topographic maps (Coen 2001); and various ad hoc techniques, which tend to be 

the most popular (e.g., Bobick et al. 1998).  The integrated events themselves have 

specialized representations, which may be multimodal, in that they explicitly represent 

information gathered from separate modalities, or they may be amodal, in that they 

represent features not tied to any specific perceptual channel.  For example, intensity is an 

amodal feature, because it can be measured independently of any sensory system, 

whereas deictic references are inherently multimodal, because they consist of co-

occurrences of two distinct modal cues, namely, of speech and gesture.  The output of the 

integration process, whether amodal or multimodal, is then fed into some higher-level 

interpretative mechanism – the architectural equivalent of a cortex.  

 

6.3.3 What's Missing Here? 

This post-perceptual approach to integration is commonplace in engineered systems.  It 

suffers, however, from a number of serious flaws: 

1) As we saw earlier in this chapter, the evidence is strongly against animals 

perceiving this way.  Perceptual modalities interact constantly during ordinary 

perception, and even unimodal perception has strong multimodal components.  

That is not to say that all perception must be multimodal.  Nonetheless, symbiotic 

interactions between sensory systems go a long way toward explaining why 

perception is so robust in biological systems, in marked contrast with their 

engineered counterparts.  Because the individual components of multimodal 

systems in these architectures tend to be independently designed, they are both 

representationally and algorithmically incompatible with one another.  Therefore, 
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it is often extraordinarily difficult to enable information sharing among them after 

the fact.  We return to this point below. 

2) Integration in these models happens too late.  Integration occurs after each system 

has already “decided” what it has perceived, when it is too late for intersensory 

influence to affect the individual concurrent perceptions.  This is due to the 

information loss from both vector quantization and the explicit abstraction 

fundamental to the pipeline design. 

3) Biological sensory systems are perceptually impoverished – they are incapable of 

simultaneously detecting all sensible events to which they are exposed.  Instead, 

they exhibit attentive focusing, which narrows their windows of sensory 

awareness and thereby increases sensory discrimination.  This prevents seemingly 

chaotic composite signals from impinging upon the sensory cortex, and this 

mechanism is thought to be responsible for the coherence in our generation of 

perceptual scenes.  However, it simultaneously requires that something guides this 

focus.  For example, saccadic behavior in the eye enables perception of a large 

image, overcoming the retina's narrow foveal limits.  However, without highly 

informed sampling, key details may be missed simply because they are never 

observed.  Many of our perceptual channels have similar attentive mechanisms 

(Naeaetaenen et al. 2001), of which we are generally not consciously aware.   

Importantly for us, the cues which guide attentive focusing are frequently 

generated cross-modally (Driver et al. 2005). The role of attentive focusing in 

eliminating extraneous sensory detail appears to be a basic component of robust 

animal perception.  Representational and algorithmic incompatibilities make this 

type of cross-modal influence implausible in many engineered systems. 

4) The independence between sensory components in classical architectures 

precludes mutual bootstrapping, such as with the cross-modal clustering of 

Chapter 3.  Since these systems tend to be developed separately and connected 

only at their outputs, there is no possibility of perceptually grounding them based 

on naturally occurring temporal correspondences, to which they may remain 
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totally oblivious.  Furthermore, the derivation of common perceptual categories 

provided by cross-modal clustering would help alleviate the representational 

incompatibility raised above in (1).  Preventing this common grounding simply 

exacerbates the problem. 

We note that early integration (Figure 6.5a) would seem to bypass perceptual isolation by 

combining sensory streams at a low-level feature (or sometimes, even signal) level.  It 

does so, however, at the cost of losing the domain structuring, high-level feature 

extraction, and dimensional reduction explicitly provided by the abstraction-based, 

pipeline architectures that are ubiquitous in encephalized species.  Early integration has 

shown much promise with problems amenable to information theoretic and statistical 

approaches where there is little available domain knowledge.  However, the majority of 

multisensory problems of interest in this thesis do not appear to fit into this category.  

When combining sensory information, structured domain knowledge, as described by 

Wertheimer (1923), Chomsky and Halle (1968), and Marr (1982) along with many others 

– and as implied by the Ugly Duckling Theorem (Watanabe 1985) – is essential for 

reducing the size of perceptual search spaces.  It is doubtful that a wide range of 

interesting sensory phenomena can be detected without it, particularly given the roles of 

context and expectation in perceptual interpretation, even in relatively simple tasks 

(Bruner and Postman 1949), and the computational intractability of directly describing 

complex perceptual phenomena in terms of raw sensory input or low level features.  

Early integration generally also precludes the possibility of top-down processing models, 

such as with the visual sequence seeking approach in (Ullman 1996) or in various 

approaches to auditory scene analysis (e.g., Slaney 1995).   

The approach taken in this thesis is not motivated by the idea that computational systems 

should use biologically-inspired mechanisms simply for the sake of doing so.  Rather, 

there are two justifications for the path taken here: (1) the perceptual phenomena we are 

interested in computationally understanding are complex amalgams of mutually 

interacting sensory input streams – they are not end-state combinations of unimodal 

abstractions or features.  Therefore, they cannot be accurately represented or described by 

mechanisms that make this assumption; and (2) biological systems use low-level sensory 
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integration to handle a vast array of perceptual ambiguity and "errors."  In designing 

robust artificial perceptual systems, it would be a poor design to ignore Nature’s schema 

for interpretative stabilization.  This is all the more so given the relatively fragility and 

high degree of error in our best computational methods for processing unimodal data 

streams.  We believe that the current approach to building multimodal interfaces is an 

artifact of how people like to build symbol processing systems and not at all well-suited 

to dealing with the cross-modal interdependencies of perceptual understanding.  

Perception does not seem to be entirely amenable to the clear-cut abstraction barriers that 

computer scientists find so valuable for solving other problems, and approaching it as if it 

were has lead to the fragility of current multimodal systems. 

Modern multimodal systems tend towards being inflexible and unpredictable and require 

structured, typically scripted, interactions.  Each of these interactions is subject to what 

may be deemed the weakest link effect, in which every modality must receive input just 

so, i.e., exactly as expected, in order for the overall system to function.  The addition of 

new modalities tends to weaken, rather than strengthen interactive systems, as additional 

inputs simply offer new opportunities for interpretive errors and combinatorially increase 

the complexity of fusing perceptions.  From a biological perspective, this is exactly the 

opposite of what one should expect.  Additional modalities should strengthen perceptual 

systems by capitalizing on the inherent multimodal nature of events in the real world and 

the mutual reinforcement between interconnected sensory channels.  Modern multimodal 

systems suffer an unfortunate fate predicted by von Neumann (1956), where adding 

additional components reduces a system’s inherent stability. 

Research on perceptual computing has focused almost entirely on unimodal perception: 

the isolated analysis of auditory, linguistic, visual, haptic, and to a lesser degree biometric 

data.  It seems to put the proverbial cart before the horse to ponder how information from 

different modalities can be merged while the perceptory mechanisms in the sensory 

channels are themselves largely unknown.  Is it not paradoxical to suggest we should or 

even could study integration without thoroughly understanding the individual systems to 

be integrated?  Nonetheless, that is the course taken here.  We argue that while trying to 

understand the processing performed within individual sensory channels, we must 
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simultaneously ask how their intermediary results and final products are merged into an 

integrated perceptual system.  We believe that because perceptual systems within a given 

species coevolved to interoperate, compatibility pressures existed on their choices of 

internal representations and processing mechanisms.  In other words, to explain the types 

of intersensory influences that have been discovered experimentally, disparate perceptual 

mechanisms must have some degree of overall representational and algorithmic 

compatibility that makes this influence possible.   

Our approach is gestalt, not only from a Gibsonian (1986) perspective, but also because 

there are few, if any, known examples of complex unimodal sensory systems evolving in 

isolation.  Even the relatively simple perceptual mechanisms in paramecium (Stein and 

Meredith 1994, Chapter 2) and sponges (Mackie and Singla 1983) have substantial cross-

sensory interactions.  It seems that perceptual interoperation is a prerequisite for the 

development of complex perceptual systems.  Thus, rather than study any single 

perceptual system in depth – the traditional approach – we prefer to study them in 

breadth, by elucidating and analyzing interactions between different sensory systems.  

We believe these interactions make possible the co-evolution that leads to complex 

perceptual mechanisms, without which, they would not otherwise arise.  This approach is 

similar in spirit to the work of (Atkeson et al. 2000, Brooks et al. 1998, Cheng and 

Kuniyoshi 2000, Ferrell 1996, and Sandini et al. 1997).  Although they are primarily 

concerned with motor coordination, there is a common biological inspiration and long-

term goal to use knowledge of human and animal neurophysiology to design more 

sophisticated artificial systems. 

 

6.4 Our Direct Motivation 

 
The examples for our discussion of multimodal interactions will be drawn from a 

previous research project known as the Intelligent Room, as described in (Coen 1998, 

1999).  The Intelligent Room provided a framework for examining fundamental issues in 

multimodal integration – most importantly for this thesis: how can independently 
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designed perceptual systems be made to work together?  This question proved 

surprisingly difficult to answer.  To see why, we now examine two simple multimodal 

interactions that were implemented in the room.  Much of this section previously 

appeared in (Coen 2001). 

The Intelligent Room had multiple perceptual user interfaces to connect with some of the 

ordinary human-level events going on within it.  The goal of the room was to support 

people engaged in everyday, traditionally non-computational activity in both work and 

leisure contexts.  The room contained nine video cameras, three of which it could actively 

steer, several microphones, and a large number of computer-interfaced devices.  Its 

computational infrastructure (Coen et al. 1999), consisting of over 120 software agents 

running on a network of ten workstations, was housed in an adjacent laboratory to 

enhance the room’s appeal as a naturally interactive space. 

Before exploring how novel intersensory influences might have been incorporated into a 

system such as the Intelligent Room, we first examine a traditional and explicit 

multimodal interaction, with the resolution of a deictic reference, e.g., use of a word such 

as this in referring to a member of some class of objects.  Suppose, for example, someone 

inside the room said, “Computer, dim this lamp.”  The room used its ability to track its 

occupants, in conjunction with a map of its own layout, to dim the lamp closest to the 

speaker when the verbal command was uttered.  This kind of interaction was 

implemented with a simple, post-perceptual integration mechanism that reconciled 

location information obtained from the person tracker with the output of a speech 

recognition system.  Here, multimodal integration of positional and speech information 

allowed straightforward disambiguation of the deictic lamp reference.  Given the 

simplicity of this example, it seems far from obvious that a more complex integration 

mechanism might have been called for.  To motivate a more involved treatment, we start 

by examining some of the problems with current approaches to perceptual computing. 

Despite many recent and significant advances, computer vision and speech 

understanding, along with many other perceptual research areas (Picard 1997, 

Oviatt 2002) are still infant sciences.  The non-trivial perceptual components of 
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multimodal systems are therefore never perfect and are subject to a wide variety of failure 

modes.  For example, the Intelligent Room sometimes "lost" people while visually 

tracking them, due to occlusion, coincidental color matches between fore and background 

objects, unfavorable lighting conditions, etc.  Perceptual components can also dictate sets 

of environmental conditions that are required for proper operation.  For vision systems, 

these may include assumptions about brightness levels, object size, image backgrounds, 

scene complexity, pose, etc.  Although the particular failure modes of computational 

perceptual systems varies with them individually, one may assume that under a wide 

variety of conditions any one of them may temporarily stop working as desired.  How 

these systems manifest this undesired operation is itself highly idiosyncratic.  Some may 

simply provide no information, for example, a speech recognition system confused by a 

foreign accent.  Far more troublesome are those that continue to operate as if nothing 

were amiss but simply provide incorrect data, such as a vision-based tracking system that 

mistakes a floor lamp for a person and reports that he is standing remarkably still.   

Unimodal systems also suffer from what might be deemed perceptual impoverishment.  

They implement single, highly specific perceptual capabilities, such as locating people 

within a room, using individual (or far less often, a small number of) recognition 

paradigms, such as looking for their faces.  They are oblivious to phenomena outside of 

their perceptual scope, even if these phenomena are indicative of events or conditions 

they are intended to recognize.   

That perceptual systems have a variety of failure modes is not confined to their artificial 

instantiations.  Biological systems also display a wide range of pathological conditions, 

many of which are so engrained that they are difficult to notice.  These include 

limitations in innate sensory capability, as with visual blind spots on the human retina, 

and limited resources while processing sensory input, as with our linguistic difficultly 

understanding nested embedded clauses (Miller and Chomsky 1963).  Cross-modal 

perceptual mechanisms have evolved to cope both with innate physiological limitations 

and specific environmental constraints.  Stein and Meredith (1994) argue for the 

evolutionary advantages of overlapping and reinforcing sensory abilities; they reduce 

dependence on specific environmental conditions and reliance on unique perceptual 
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pathways and thereby provide clear survival advantages.   The facial vision of the blind 

discussed earlier is an extreme example of this kind of reinforcement.  Generally, the 

influences are more subtle, never bringing themselves to our attention, but demonstrably 

a fundamental component of perception nonetheless. 

Given their role in biological systems, one might assume cross-modal influences could 

provide similar benefit in artificial systems such as an Intelligent Room.  How then 

should we go about incorporating them?  Answering this question is a two-step process.  

Because the Intelligent Room was an engineered as opposed to an evolved system, we 

would first needed to explicitly find potential synergies between its modalities that could 

have been exploited.  Ideally, these influences would be learned, an approach the 

influence network model enables, but here we examine how this would be done in the 

absence of a such a model, where the synergies must be identified manually.  Once 

identified, these synergies must then somehow be incorporated (i.e., reverse engineered) 

into the overall system.  At the time, this emerged as the primary obstacle to integrating 

cross-modal influences into the Intelligent Room and more generally, into other types of 

engineered interactive systems.  Reverse-engineering intersensory influences into 

systems not designed with them in mind can be convoluted at best and impossible at 

worst. 

 

6.4.1 Two Examples of Cross-Modal Influence 

To examine these issues in more detail, we start with the following empirical and 

complementary observations: 

1) People tend to talk about objects they are near. (Figure 6.6a)  
2) People tend to be near objects they talk about.  (Figure 6.6b) 

 

These heuristics reflect a relationship between a person’s location and what that person is 

referring to when he speaks; knowing something about one of them provides some degree 

of information about the other.  For example, someone walking up to a video display of a 

map is potentially likely to speak about the map, as in Figure 6a; here, person location 
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data can inform a speech model.  Conversely, someone who speaks about a displayed 

map is likely to be in a position to see it, as illustrated in Figure 6b; here, speech data can 

inform a location model.  Of course, it is easy to imagine situations where these heuristics 

are wrong.  Nonetheless, in our experience they are empirically valid, so how could we 

have incorporated influences based on them into a system such as an Intelligent Room?   

Mechanistically, we might imagine the person tracking system exchanging information 

with the speech recognition system.  For example, the tracking system might provide 

hints to the speech recognition system to preferentially expect utterances involving 

objects the person is near, such as a displayed map.  Conversely, we could also imagine 

that the speech recognition system would send hints to the person tracking system to be 

especially observant looking for someone in indicated sections of the room, based on 

what that person is referring to in his speech. 

a) 

MapMap

 
 

b) 

MapMap

 
 
 
Figure 6.6a (top) – People talk about objects they are near.  Someone approaching a projected display 
showing a map, for example, is more likely to make a geographical utterance.  Here, location information 
can augment speech recognition. 
 

Figure 6.6b (bottom) – People are near objects they talk about.  Someone speaking about the contents of a 
video display is likely to be located somewhere (delineated by the triangle) from which the display is 
viewable.  Here, speech information can augment person tracking. 
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This seems reasonable until we try to build a system that works this way.  There are both 

representational and algorithmic stumbling blocks that make this conceptually 

straightforward cross-modal information sharing difficult to implement.  These are due 

not only to post-perceptual architectural integration, but also to how the perceptual are 

themselves typically created for use in post-perceptual systems.  We first examine issues 

of representational compatibility, the interlingua used to represent shared information, 

and then address how the systems could incorporate hints they receive in this interlingua 

into their algorithmic models.   

Consider a person tracking system that provides the coordinates of people within a room 

in real-time, relative to some real-world origin; the system outputs the actual locations of 

the room’s occupants.  We will refer to the tracking system in the Intelligent Room as a 

representative example of other such systems (e.g., Wren et al. 1997, Gross et al. 2000).  

Its only inputs were stereo video cameras and its sole output were sets of (x,y,z) tuples 

representing occupants’ centroid head coordinates, which were generated at 20Hz.  

Contrast this with the room’s speech recognition system, which was based upon the Java 

Speech API (Sun 2001) using IBM’s ViaVoice platform and was typical of similar 

hidden Markov model based spoken language systems (Jelinek 1997).  Its inputs were 

audio voice signals and a formal linguistic model of expected utterances, which were 

represented as probabilistically weighted context free grammars.  Its outputs were sets of 

parse trees representing what was heard, along with the system’s confidence levels that 

the spoken utterances were interpreted correctly.  

How then should these two systems have exchanged information?  It does not seem 

plausible from an engineering perspective, whether in natural or artificial systems, to 

have provided each modality with access to the internal representations of the other.   

Thus, we do not expect that a tracking system would know anything about linguistic 

models nor we do expect the language system would be skilled in spatial reasoning and 

representation.  Even were we to suppose the speech recognition system could somehow 

represent spatial coordinates, the example in Figure 6b above involves regions of space, 

not isolated point coordinates.  From an external point of view, it is not obvious how the 

tracking system internally represents regions, presuming it even has that capability in the 
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first place.  The complementary example of how the tracking system might refer to 

classes of linguistic utterances is similarly convoluted. 

Unfortunately, even were this interlingua problem easily solved and the subsystems had a 

common language for representing information, the way perceptual subsystems are 

generally implemented would make incorporation of cross-modal data difficult or 

impossible.  For example, in the case of a person tracking system, the real-world body 

coordinates are generated via three-dimensional spatial reconstruction based on 

correspondences between sets of image coordinates.  The common techniques for 

computing the reconstructed coordinates, such as neural networks or fit polynomials, are 

in a sense closed – once the appropriate coordinate transform has been learned, there is 

generally no way to bias the transformation in favor of particular points or spatial 

regions.  Thus, there is no way to incorporate the influence, even if the systems had a 

common way of encoding it.  Here again, the complementary situation with influencing 

speech recognition from a tracking system can be similarly intractable.  For example, not 

all linguistic recognition models support dynamic, preferential weightings for classes of 

commonly themed utterances.  So, even if the tracking system could somehow 

communicate what the speech recognition system should expect to hear, the speech 

recognition system might not be able to do anything useful with this information. 

We see that not only are the individual modal representations incompatible, the 

perceptual algorithms (i.e., the computations that occur in the sensory pipelines) are 

incompatible as well.  This comes as no surprise given that these systems were 

engineered primarily for unimodal applications.  Unlike natural perceptual systems 

within an individual species, artificial perceptual systems do not co-evolve, and therefore, 

have had no evolutionary pressure to force representational and algorithmic 

compatibility.  These engineered systems are intended to be data sources feeding into 

other systems, such as the ones performing multimodal integration, that are intended to 

be data sinks.  There is no reason to expect that these perceptual subsystems would or 

even could directly interoperate. 
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6.5 Speculation on an Intersensory Model 

For disparate perceptual systems to interact, there must be some agreement – implicit or 

explicit – as to how they represent and process perceptual data.  The goal of this section 

is to motivate and briefly outline a model of intersensory perception that formalizes this 

notion of “agreement.”  The intent of the model is to allow us: (1) to formalize an 

understanding of cross-modal phenomena; and (2) to design artificial systems that exploit 

intersensory phenomena to increase the scope of their perceptual capabilities.  It provides 

the theoretical framework for evaluating influence networks and other approaches to 

intersensory integration, by describing essential phenomena that any integration scheme 

must somehow address.  In this sense, it also provides for the development of a 

competency test for the influence network approach described above.    

During the past century, research in intersensory processing has proceeded along two 

main avenues.  The first has been the design of experimental scenarios that reveal what 

are usually hidden cross-modal influences at the behavioral, and with adult humans, 

sometimes the conscious level.  The second has been based on intrusive physiologic 

examinations in animals that elucidate the cellular (in primitive organisms) and the 

neurological (in encephalized species) substrates of intersensory function.  Thus, a wide 

range of phenomenological cross-modal interactions has been described and some of the 

physiology behind them has been identified.  What has not been addressed in a general 

framework are the processes enabling intersensory influence and their implications to our 

understanding of the individual senses themselves. 

This chapter started by examining evidence that our senses are more interdependent than 

they seem on the surface.  Contrary to the understanding arrived at by introspection,  

perceptions are the products of complex interactions between our sensory channels.  

What, however, are the contents of these channels?  Returning to a question we asked in 

Chapter 1, how exactly should we understand what a sense is?  The common notion 

might be that a sense is the perceptual ability to interpret impressions received via a 

single sensory organ.  For example, vision is the ability to interpret waves of light 

impacting upon the retinas.  Viewed this way, each sense is defined by a wide gamut of 

sensitivities and abilities tied to a particular biological organ.  This view, however, is 
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misleading.  It appears instead that each sense is composed of a multitude of capabilities, 

some of which may be absent in particular individuals (e.g., loss of color perception or 

depth sensitivity in visual perception) and many of which operate independently.  The 

most persuasive case studies are drawn from experiments with the blind; even though 

they cannot see, their eyes can still respond to visual cues.  For example, people with 

cerebral cortex injuries rendering them perceptually blind are able to direct their eyes 

towards spots of light, even though they cannot consciously see these spots and think 

they are simply guessing (Poppel et al. 1981).  Their loss of visual perception has not 

hindered other unconscious visual processes, which have also been demonstrated in the 

normally sighted (Wolfe 1983).   

The blind can even experience visual cross-modal phenomena.  For example, a 

congenitally blind child has been shown to have convergence of the eyes in response to 

approaching sounds (Butterworth 1981), even though this convergence has no practical 

benefit.  The existence of independent visual processes has led to a more complex view 

of visual perception and makes it difficult to view vision as a monolithic capability; it 

seems instead to be an assortment of somewhat independent processes that have a single 

sensory organ, the eye, in common.  For this reason, although the modes (i.e., perceptual 

primitives) in multimodal perception are generally understood to correspond to different 

gross senses, e.g., vision, audition, proprioception, etc., we have found a finer grained 

definition more useful, in which the different perceptual capabilities of each sensory 

organ are treated as the individual modes, rather than taking the abstract function of that 

organ as a whole.  Aside from providing a clearer engineering viewpoint, this perspective 

allows us to make explicit what we will call the cross-modal influences between different 

perceptual pathways that start from the same sensory organ and would traditionally be 

considered to be within a single modality.   

Given this minimalist view of unimodal perception, we now outline the three types of 

cross-modal influence to be covered by the model.  This type of categorization has not 

been made in the multisensory literature, but it is well motivated by both 

phenomenological and neurological data.  Although the influences listed below appear to 

cover a variety of different phenomena, we will argue their primary distinction is 
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temporal and a single mechanism could account for many such influences within an 

artificial system.  Our categories of cross-modal influence are cueing, mutual influence, 

and resolution: 

 

1. Cueing occurs when a sensory system is biased in some way before a perceptual event 

due to cross-modal influences.  The most studied form of cueing is priming (Meyer and 

Schvaneveldt 1971), which is an increase in the speed or accuracy of a perceptual 

decision task, based on previous exposure to some of its content.  Although not 

necessarily intersensory, many priming experiments are conducted cross-modally.4    

Cueing is distinguished from priming because cueing removes any notion of perceptual 

correctness – influences that simply bias perceptual interpretation are included – and 

because cueing covers inhibitory, not just excitatory, influences.  Thus, accommodation 

experiments (Kohler 1964, Blake et al. 1981), in which prolonged or repeated exposures 

to sensory stimuli lead to modification in baseline perceptual responses, are also 

examples of cueing.  Kohler’s work is perhaps the best known example of these 

experiments, in which subjects gradually acclimate to the effects of wearing distortive 

spectacles, e.g., ones in which the left halves of the lens are blue and right halves are 

yellow.  Cueing is important for artificial perceptual systems because they rarely have 

any notion of how what they should expect to perceive changes over time and with 

contextual circumstances.   

 

2. Mutual influence occurs when a set of modalities interact in a dynamic feedback process 

during percept formation.  A wide range of interactions, particularly between the 

vestibular, visual, auditory, and proprioceptive systems have been studied, many of these 

investigated in depth because of the unusual effects of gravity on perception to pilots and 

astronauts.  For example, during high acceleration takeoffs, pilots can experience the 

sensation that their body is tilted backwards and their instrument panel is rising too 

quickly (Graybiel 1952).  They must learn to ignore these perceptions, because reacting 

to them could be life threatening.  In influences that have a visual component, it is not 

uncommon for the visual input to dominate the joint perceptual interpretation (Warren at 

al. 1981), as with the “ventriloquism effect” (Howard and Templeton 1966), where a 
                                                 
4 A mechanism accounting for priming, spreading activation (Collins and Loftus 1975, Collins and 
Quillian 1969), has been very influential in the development of the theory of semantic networks (e.g., 
Fahlman 1979) and in later perceptual theories, such as sequence seeking (Ullman 1996). 
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ventriloquist’s voice appears to emanate from a dummy’s mouth because its lips are 

moving rather than his.  However, the dominant modality in mutual influence is generally 

the one perceived most strongly (Welch and Warren 1986), and circumstances can 

uniquely exaggerate any modality to the point of perceptual dominance.   The McGurk 

effect discussed earlier is an unusual example of mutual influence where neither involved 

modality is dominant.  Evidence for mutual influence interactions has been found 

neurologically; in the thalamus, superior colliculus, and cerebral cortex, neurons respond 

to and integrate multisensory information in a time frame of 10s of milliseconds 

following stimulus presentation.  Therefore, components of multisensory processing 

occur long before perceptual and cognitive effects even begin (Meredith 2001).  Mutual 

influence is important for artificial perceptual systems because it allows unimodal 

systems to overcome perceptual impoverishment by supplementing their sensory input 

with indicative cross-modal data. 

 

3. Resolution occurs when a potentially ambiguous sensory input is crosschecked among 

parallel sensory input streams and potentially changed after percept formation.  

Resolution influences are reflexive and reactionary, as in those demonstrated in 

nociception (i.e., pain response) in rodents (Stein and Dixon 1978, Aury et al. 1991).   

Resolution influences specifically do not involve ratiocination; they are confined to 

perceptual channels and are therefore unconscious and automatic.  There is no direct 

awareness of the influence itself and it is not subject to willful control.  Many post-

perceptual intersensory influences do not meet these criteria, including explicit memory 

tests (Jacoby 1983) and cross-modal matching, and will not be considered here.  

Resolution is important for artificial perceptual systems because it can increase or 

decrease confidence in perceptions based on cross-modal agreement or conflict.  Modern 

interactive systems rarely have any way to self-validate their own operation or to adjust 

internal mechanisms (e.g., threshold values) without external supervision.  Biological 

systems have self-supervised plasticity, which provides a dynamic, adaptive fluidity 

unknown in artificial perception. 

 

How might these influences be effected in a perceptual system?  Even though the 

perceptual channels are themselves highly specialized, we argue that the mechanisms 

behind intersensory influence can be amodal to a far greater extent – there is less of a 

need for them to be dedicated to specific perceptual modes.  This position at first glance 



 178 

is also hard to support.  Mechanistic specialization is so commonplace in biological 

systems, one can make the case that general-purpose, non-specific mechanisms need 

justification more so than do ad hoc ones (Gazzaniga 2000, Chomsky 2000).  Why then 

suppose there is an amodal component to intersensory influence?   

This question is somewhat misleading.  The brain, does, in fact, use amodal codings in 

perception, the most well known of these being the spatial representations in the sensory 

and motor maps of the superior colliculus, discussed in more detail below.  The superior 

colliculus is the only known region of the brain where auditory information is represented 

spatially, as opposed to tonotopically, and one may argue that the extraordinary 

specialization in this case is actually in the neurological mechanisms that determine 

spatial localization based on interaural time delays.  This elaborate calculation allows 

representation of auditory information in the superior colliculus’ common, amodal 

coordinate system.  It is precisely the mechanistic perceptual specialization here that 

allows a general-purpose, amodal system, such as the superior colliculus to exist. This 

can be seen identically with other specialized perceptory capabilities unique to given 

species that provide spatial localization, such as echolocation (bats), whisker 

displacement (rats and mice), acute audition (owls), infrared detection (rattlesnakes), and 

electroreception (fish) (Stein and Meredith, Chapter 6).  Perceptions in each of these 

animals are represented in common, amodal coordinate systems and support the view that 

perceptual specialization in no way precludes the existence of amodal representations. 

One may also more tentatively propose strong evolutionary advantages to amodal 

intersensory perception.  It allows incorporation of newly evolved or modified perceptual 

capabilities without requiring the development of specialized mechanisms that enable 

their participation in an intersensory perceptual system.  More generally, were the 

mechanisms for intersensory influence between each pair of modalities uniquely 

specified, there would be 2( )O n  of them required for a set of n modalities.  General-

purpose amodal mechanisms for effecting cross-modal influence would simplify this 

integration problem.  For this reason, one can take the position that regardless of how 

Nature proceeds, from an engineering perspective, the benefit provided by amodally 

effected intersensory influence is clear.  A general purpose mechanism for incorporating 
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individual sensory components into integrated, artificial perceptual systems would be 

very useful when building them.  This raises the question, however, of how does Nature 

proceed?  What is known about neural substrates of intersensory influence? 

Consider the effect of touching someone and having his eyes turn to determine the source 

of the stimulus.  This is an example of cross-modal influence – the position of the touch 

determines the foveation of the eyes – but it is different from the interaction described in 

the McGurk effect above.  The touch scenario leads to behavioral effects that center the 

stimulus with respect to the body and peripheral sensory organs.  In contrast, the McGurk 

effect is an example of sensory influence solely within perceptual channels and has no 

behavioral component.  Is this difference important?   

Motor influences – i.e., ones that cause attentive and orientation behaviors – are by far 

the more understood of the two.  The primary neurological substrate behind them is the 

superior colliculus (or optic tectum in non-mammalian vertebrates), a small region of the 

brain that produces signals that cross-modally orient peripheral sensory organs based on 

sensory input.  The superior colliculus contains layered, topographic sensory and motor 

maps that share a common rostral-caudal vs. medial-lateral coordinate system.  The maps 

so far elucidated are in register; that is, co-located positions in the real world – in the 

sensory case representing derived locations of perceptual inputs and in the motor case 

representing peripheral sensory organ motor coordinates that focus on those regions – are 

essentially vertically overlapping.  The actual mechanisms that use these maps to effect 

intersensory motor influence are currently unknown – variants on spreading vertical 

activation are suspected – but there is little doubt the maps’ organization is a fundamental 

component of that mechanism. 

Far less is known neurologically about semantic influences – i.e., ones that have internal 

effects confined to perceptual channels.  The superior colliculus itself has been directly 

approachable from a research perspective because the brain has dedicated inner space, 

namely, the tissue of the topographic maps, to representing the outer space of the real-

world.  The representation is both isomorphic and perspicacious and has made the 

superior colliculus uniquely amenable to study.  The perceptual, as opposed to spatial, 
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representations of the senses are far more elusive because they are specialized to the 

individual modalities and the organs that perceive them.  For example, the auditory 

system is organized at both the thalamic and cortical levels according to sound frequency 

whereas the retina organizes visual input spatiotopically (in retinocentric coordinates) and 

maintains this representation into the visual cortex.   

Although many of their neuroanatomical interconnections have been elucidated, how 

these systems actually share non-spatial perceptual information during intersensory 

influence is unknown.  The approach in this thesis has been to introduce the slice data 

structure in Chapter 3, which was inspired by the role of cortical topographic maps in 

equivalently organizing both sensory and motor information in animals.  Slices are 

inherently amodal and independent of the features they represent.  This, for example, 

enables them to freely share information between sensory and motor systems in learning 

birdsong, without requiring the development of new formalisms or representations.  

By treating slices as state spaces, we can model activations in these maps that correspond 

to dynamic sensory and motor processes.  This allows us to incorporate the temporal 

intersensory influences described above.  For example, in our model, cueing corresponds 

to pre-activation of a region within one slice through the prior activation of another.  

Mutual influence corresponds to two slices cooperatively cross-activating each another 

while they are in the midst of perceiving.  These temporal interactions also allow us to 

use lower dimensional representations for modeling sensory and motor data because they 

in essence trade space (or dimensionality) for time.  In other words, our data need not be 

completely separable if we can find can find ways of avoiding ambiguity during the 

temporal window of percept formation.  Thus, we believe that cross-modal influence not 

only provides perceptual stability, it makes sensory systems more computationally 

efficient in doing so. 
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6.6 Summary 

This chapter has examined the connections between the computational framework 

presented in this thesis and perception in biological systems.  Our goal was to motivate 

our approach and to provide a context for evaluating related work in multimodal 

integration.  We also examined the representational and algorithmic challenges in 

engineering biologically realistic perceptual systems.  These systems do not co-evolve 

and may be grossly incompatible with one another, even when external relationships 

between their perceptions are readily apparent.   Finally, we speculated on a number of 

theoretical issues in intersensory perception and examined how the work in this thesis 

addresses them. 
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Chapter 7  

Conclusions 

The primary contribution of this thesis has been to identify how artificial systems can use 

cross-modal correspondences to learn without supervision.  Building systems that 

develop by interacting with the world around them has been a dream of artificial 

intelligence researchers since the days of Turing, and this thesis marks a step forward 

towards that goal. This work has also demonstrated that a biologically-inspired approach 

can help answer what are historically difficult computational problems, for example, how 

to cluster non-parametric data corresponding to an unknown number of categories and 

how to learn motor control through self-observation.   

We have also identified cross-modal cooperation as a central problem in theoretical and 

applied artificial intelligence.  In doing so, we have introduced three key formalisms: 

1. Slices, which represent and share information amodally between different 

subsystems.  They can be used to model sensory and motor data and have wide 

applications for modeling static and dynamic inputs. 

2. Cross-modal clustering, which learns categories in slices without supervision, based 

on how they co-occur with other slices. 

3. Influence networks, which spread influence among different slices and provide 

perceptual and interpretative stability. 

We demonstrated the power of cross-modal cooperation and clustering by learning the 

vowel structure of American English, simply by watching and listening to someone 

speak.  This is the first self-supervised computational approach to this problem of which 

we are aware.  We further demonstrated that this framework can equivalently be applied 

to sensorimotor learning, by acquiring birdsong according to the developmental stages of 

a juvenile zebra finch.  In this, we have shown that this work can be applied recursively 

to learn higher-level knowledge.  In the example given in Chapter 5, we recursively 
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grounded motor control in self-acquired sensory categories, thereby demonstrating 

afferent and efferent equivalence in sensorimotor learning, which in itself is a very 

surprising result.  It further suggests how to carry this work forward towards more 

complex, higher-level learning tasks, as we discuss below. 

 

7.1 Future Work 

Our immediate plans are to apply the birdsong learning framework in Chapter 5 towards 

learning human babbling and the entire phonetic set of American English.  Early 

protolinguistic behavior in humans is not a well studied nor understood phenomenon.  

We intend to create a system that learns to babble at the level of an eight month old child, 

in a developmentally realistic way.  We believe examining the earliest intellectual 

development in people provides a path to understanding fundamental issues in knowledge 

acquisition and to building a new generation of intelligent machines.  Along these lines, 

we plan to extend this work to hierarchical clustering and address issues in concept 

formation based on perceptual grounding.  We would particularly like to apply the ideas 

of Lakoff (1987) for grounding internal mental activity using external, real world 

metaphors and observations, which is a basic feature of human cognition. 

We would also like to embed this framework in a robotic platform or an interactive 

environment, to provide a real-time environment for visual and motor development. 

We are also interested in non-perceptual applications of the work presented here.  The 

mathematical framework in this thesis can be applied to problems with similar structures.  

For example, by treating the messages passed between human or software agents as 

perceptual events, we can categorize both the messages and the agents passing them.  

This has applications both in software engineering and in understanding cells of 

interacting people.  It also is applicable to learning how to detect events within 

distributed sensor networks.  This work also has applications in separating non-ergodic 

Markov chains into their ergodic components, which has applications in probability 

theory and statistical physics. 
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Appendix 1 

Glossary 
 
Amodal – Not relating to any particular sense directly.  For example, intensity is amodal, because 

different senses can have their inputs described as being intense, whereas purple is not an 
amodal attribute because it applies only to visual inputs. 

 
Artificial perceptual system – A computational system that perceives real-world phenomena.  

For example, speech recognition and computer vision systems are examples of artificial 
perceptual systems. 

 
Cross-Modal – Any phenomenon that involves information being shared between seemingly 

disparate perceptual channels.  In this thesis, these channels may fall within the same 
gross modality, such as vision, as long as different modes are involved. 

 
Intersensory – Used interchangeably with cross-modal. 
 
Modality – A sense or perceptory capability, such as touch, vision, etc.  Generally refers to an 

entire class of such capabilities, such as the vision modality, which is comprised of a 
range of individual visual capabilities, such as color sensitivity, peripheral vision, motion 

detection, etc., all of which share a common sensory organ. 
 
Mode – A highly specific sense or perceptory capability.  Unlike modality, modes refer to the 

specific capabilities of particular senses, e.g., the sweetness mode of taste or the color 

sensitivity mode of vision, etc.  This definition is elaborated upon in §1.5. 
 

Multimodal – A perceptory phenomenon involving multiple modes simultaneously.  For 
example, hand clapping is multimodal, because it can be both seen and heard.  For that 
matter, most real-world events are multimodal, because they generate multiple types of 
energy simultaneously to which different sensory channels are receptive.  Also used to 
describe artificial perceptual systems that are sensitive to multiple modalities; these are 
typically called multimodal systems. 

 

Sense – In this thesis, a sense is used equivalently with a mode, as defined above.  In other words, 
a sense refers to a highly specific perceptual capability. 

 

System – A computer system unless context indicates biological. 
 

Unimodal – A perceptory phenomenon or quality involving only a single modality.  For example, 
speech recognition systems are generally considered unimodal, because they only 
perceive spoken language inputs.  The designation can be confusing, however, because 
many unimodal systems have traditional graphical user interfaces (GUI) that provide 
inputs outside of their perceptual channel.  They are nonetheless still deemed unimodal, 
because GUI inputs are non-perceptual. 

 

 


