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1. Introduction 

 
My primary academic interests are developing biologically-inspired approaches to machine 

learning and reciprocally, to using these approaches to better understand learning in biological 

systems.   My research has been motivated by the observation that animals routinely solve 

extremely difficult, nonparametric learning problems during development.  The goal of my work 

is to create more sophisticated computational systems by understanding how animals can solve 

such problems.  In my work, these two issues are inexorably linked.  

 

My doctoral thesis presented a new form of self-supervised machine learning.  This work, which 

received MIT’s Sprowls Award for best dissertation in Computer Science, was inspired by the 

observation that the sensory information gathered by animals is inherently redundant.  This 

redundancy can enable learning without requiring explicit teaching (as in supervised learning) or 

statistical modeling (as in unsupervised learning).  In Nature, these are frequently unavailable and 

yet animals learn anyway.  In other words, redundancy allows animals to supervise their own 

learning, hence the designation self-supervised learning.  It also enables a powerful computational 

framework to provide this ability to machines. 

 

My current research builds on my doctoral work to enable self-supervised segmentation of human 

functional MRI (fMRI) data.  The framework of my thesis offers a new way to identify functional 

regions in the brain without knowing of their existence a priori.  This is an especially attractive 

approach to this problem, because we lack any detailed functional models of modular brain 

structure.  Not having such models makes it difficult to apply standard machine learning 

techniques to elucidate functional regions within the brain, which are almost entirely unknown.  

Among my future research goals is the generation of a distributed, geographic atlas of modular 

brain functions, using self-supervised learning techniques.  Figure 1 presents very recent results 

demonstrating the automatic detection of the fusiform face area (FFA) using this approach, which 

  

Figure 1 – Self-supervised learning of the fusiform face area (FFA) in functional MRI data.  The red ellipses 

outline the FFA voxels.  The blue lines indicate Hebbian co-occurrence linkages between the voxels, which are used by 

the learning algorithm.  This is joint work with N. Kanwisher and L. Reddy, Department of Brain and Cognitive 

Sciences, MIT, and C. Baker, NIH. 



only uses fMRI data and not the actual experimental inputs describing the images or their 

categories. 

 

Because of its biological motivation, my doctoral work approached machine learning as a 

perceptual problem, even in non-perceptual domains.  In doing so, it makes a number of 

predictions about the spectrum of sensory integrative disorders in animals and people, commonly 

grouped under the rubric of autism.  These address the consequences of information not being 

properly shared, which would interfere with the self-supervision necessary for learning.  These 

hypotheses are testable using the fMRI framework described above and can suggest treatments 

for overcoming clinical deficits, by relying on alternative strategies for deriving proxy 

information which would otherwise be unavailable.  Connecting my research to real-world, 

socially valuable problems is a fundamental interest of mine and provides opportunities for 

obtaining funding outside of traditional computer science channels.    These include the NIH, 

NIMH, PHS, NSF, and especially private foundations. 

 

Although I am primarily a computer scientist, I have a very strong interest in the formulation of 

biologically plausible theories of learning and development and evaluating their empirical 

plausibility in close collaboration with neuroscientists. 

 

2. Foundational Work 
 

I briefly outline my doctoral work, which provides the foundation for the research agenda 

described above.  We begin with a simple thought experiment. 

 

Consider how a human infant acquires the phonemes in her native language.  This is a classic 

problem in nonparametric clustering.  The child has no knowledge of either the number or 

identities of the phonemes (which varies from approximately 10 to 140, out of an enormous set of 

possible alternatives) nor does she know their sensory input distributions, i.e., the frequencies of 

her exposure to them.  Examples of this kind of distribution-free, nonparametric learning are 

commonplace in the animal world.  Many of the classification problems that juvenile animals and 

children routinely face present severe challenges for traditional machine learning approaches. 

 

My doctoral dissertation presented a new mathematical framework for solving such learning 

problems called cross-modal clustering.  This approach is applicable to a broad range of 

questions that do not fit neatly into the classic supervised vs. unsupervised partitioning of 

traditional machine learning.  For example, infants are not in a position to understand labeled 

data, and their auditory inputs are limited, unsegmented, and statistically irregular; nonetheless, 

by approximately three months of age, they start babbling in their native tongues.  Thus, neither 

supervised nor unsupervised learning techniques appear plausible mechanisms for explaining this 

phonetic acquisition and related developmental phenomena.  How then do children learn so 

readily? 

 

My approach has been to formalize an insight of Aristotle: differences in the world are only 

detectable because different senses perceive the same world events differently.  In other words, 

redundancy can be used in lieu of explicit supervision to autonomously derive supervisory 

signals.  Building on this, my doctoral thesis presented a framework for learning based upon 

correlations in different sensory modalities.  This draws upon an enormous body of neurological 

and phenomenological evidence gathered in the past half century demonstrating the extraordinary 

degree of interaction between sensory modalities during the course of ordinary perception.  

Although it is tempting to view these complexities as artifacts of biological "implementations," I 

have provided evidence these interactions are critical to solving some of the difficult learning 

problems animals face.  (This approach is conceptually similar to work known as biclustering, but 



it applies to a structurally broader set of problems and uses an entirely different mathematical 

framework.) 

 

My doctoral work demonstrated that a biologically-inspired approach can help answer what are 

historically difficult computational problems, for example, how to cluster nonparametric data 

corresponding to an unknown number of categories.  This is an important problem in computer 

science, cognitive science, and neuroscience, and the first half of my thesis provided a solution in 

many perceptual and sensorimotor domains. 

 

 

3. Applications 

 

The framework described above has been tested on a number of non-trivial applications.   

 

The first of these is a system that learns the formant structure of American English – i.e., the 

number of vowels and their phonetic structures – simply by watching and listening to someone 

speak.  It is entirely non-parametric, knowing neither the number of categories (vowels) nor their 

distributions in advance, and it also has no prior linguistic knowledge.  This work is the first 

example of unsupervised phonetic acquisition of which we are aware, outside of that done by 

human infants, who solve this problem readily.  The results of cross-modally clustering auditory 

and visual inputs are shown in Figure 2.   

 

I intend to extend this result to cover a complete set of phonemes in English to develop a deeper 

understanding of protolanguage – the poorly studied prelexical states through which infants pass 

as they acquire word usage. 

 
Figure 2 – Acquiring vowels through cross-modal clustering.  This figure shows we can learn the number and 

structure of vowels (i.e., the 10 monopthongs) in American English by simultaneously watching and listening to 

someone speak.  Auditory formant data is displayed on the top place and visual lip data – corresponding to major and 

minor axes of an ellipse fit on the mouth – are on the bottom.  Initially, nothing is known about the events these 

systems perceive.  Cross-modal clustering lets them mutually structure their perceptual representations and thereby 

learn the event categories that generated their sensory inputs.  The colors show the region correspondences obtained 

from cross-modal clustering.  Red lines connect corresponding vowels between the two datasets and black lines show 

neighboring regions within each dataset.  The phonetic labels were manually added to show identity.  The data are from 

a real speaker and were normalized. 



 

To demonstrate sensorimotor learning within this framework, I have also constructed a system 

that learns to sing like a real zebra finch looking for a mate, following the developmental stages 

of a fledgling zebra finch.  It first learns the song of an adult male corresponding to its “father” 

and then listens to its own initially nascent attempts at mimicry through an articulatory 

synthesizer.  By recursively reapplying the cross-modal clustering framework described above, 

the system demonstrates the acquisition of sensorimotor control through what was initially a 

perceptual framework.   Spectrograms displaying the vocalizations of the real bird used to train 

this system and the resulting learned output of its artificial “son” are shown in Figure 3. 

 

I propose to extend this system for learning vocal mimicry in a range of other species, including 

dolphins, elephants, and mice, which have all recently been shown to been shown to capable of 

vocal learning.   I am particularly interested in looking for indications of combinatorial, nested 

syntax in the vocalizations of non-human species, which has long been assumed to be in the 

exclusive purview of human beings. 
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Figure 3 – Birdsong mimicry.  On the top is a sample of the zebra finch song used as the "parent" for our system.  On 

the bottom is the system's learned imitation, where the acquired songemes have been fit to the template of the parent’s 

song and smoothed. 

“Parent” 

(Real zebra finch) 

“Child” 

(Artificial zebra finch) 


