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c© Mihai Bădoiu, MMIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute
publicly paper and electronic copies of this thesis document in whole or in part.

Author. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

May 9, 2003

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Piotr Indyk

Assistant Professor
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Arthur C. Smith

Chairman, Department Committee on Graduate Students



Clustering in High Dimensions

by

Mihai Bădoiu
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Abstract

In this thesis we show that, for several clustering problems, we can extract a small set of points,
so that, using these core-sets, we can approximate clustering efficiently. The cardinality of these
core-sets is independent of the dimension.

Using these sets, we develop a (1 + ε)-approximation algorithm for the k-center clustering
problem (with or without outliers)and the k-median clustering problem in Euclidean space.
The running time of our algorithm has linear dependency on the number of points and in the
dimension, and exponential dependency on 1/ε and k. Our algorithm runs substantially faster
than the previously known algorithms.

We present a (1 + ε)-approximation algorithm for the 1-cylinder clustering problem.
We show how to quickly construct small core-sets and the existence of optimal core-sets. We

also present experimental results showing that in practice these core-sets are smaller than in the
worst case.
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Title: Assistant Professor
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Chapter 1

Introduction

The problem of clustering a set of points is one of the central problems in computer-science.

Clustering is related to unsupervised learning, classification, databases, spatial range-searching,

data-mining, and other problems. Clustering has received a lot of attention over the last twenty

years. There is a large literature on this topic, including numerous variants of clustering, see [7,

p. 517-601] and [14, p. 296-346].

In this thesis, we present several algorithms for clustering of a finite set of points P in Rd,

where d is large. We focus on the following variants of clustering:

• k-center: We want to find a set S of k points such that we minimize the maximum distance

from v ∈ P to its closest point in S.

• k-median: We want to find a set S of k points such that we minimize the sum of distances

from each point in P to its closest point in S.

• k-center with outliers: We want to solve the k-center problem in the case when we are

allowed to ignore α|P | points.

• 1-cylinder: We want to find a line l such that we minimize the maximum distance from

v ∈ P to l.

Our results rely on a new technique that extracts a small subset that “represents” this point

set ε-well, in the sense that solving the problem for this subset gives a solution for the original

problem of cost no more than a factor (1 + ε) away for given ε. An important property of these

sets is that their cardinality is independent of the dimension. The existence of similar subsets for
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various approximation problems was known before, but their cardinality depended polynomially

or exponentially on the dimension, see [19, 2, 12, 13, 17].

We show that, for any ε such that 0 < ε < 1, we can extract a subset of cardinality O(1/ε2), so

that the minimum enclosing ball of the subset approximates the minimum enclosing ball of a set

of points P ⊂ Rd by a factor of at most (1+ε). We call such a subset a core-set. Using this core-

set, we present a 2O((k log k)/ε2) ·dn-time algorithm that computes an (1 + ε)-approximate k-center

clustering of a point set P . No algorithm for this problem was known previously, although, as

pointed out in [16], by using the techniques of [20], we can achieve a much slower algorithm with

running time nO(k2/ε2). Agarwal and Procopiuc [1] developed a O(n log k) + (k/ε)O(dk1−1/d)-time

algorithm for this problem, but their algorithm is exponential in d, and it is very inefficient for

higher d.

For the special case where k = 1, the core-set technique yields an algorithm with running

time O
(
dn/ε2 + (1/ε)O(1)

)
. This time is significantly better than before. Previously, the best

running time was O(d 3n log(1/ε)), obtained by the ellipsoid algorithm, see [11].

We also present an (1+ε)-approximation algorithm for the problem of computing the cylinder

of minimum radius that covers P . The running time of our algorithm is nO(log(1/ε)/ε2). The fastest

algorithm previously ran in time O(n+1/εO(d)), which is exponential in d, see [13]. Our algorithm

uses a core-set for 1-center clustering, dimensionality reduction, and convex programming.

We also show that by using random sampling, one can find a O(1/εO(1))-size set of points

R, such that the flat spanned by those points contains a point ε-close to the 1-median of the

point-set. The only previous result of this type [17] used a sample of size linearly dependent

on the dimension. Using the sampling technique, we present a 2(k/ε)O(1)
dO(1)n logO(k) n expected

time algorithm that computes a (1 + ε)-approximation to the optimal k-median for P (i.e., finds

k points-medians in Rd, such that the sum of the distances from all points P to their closest

medians is minimized). Previously, the fastest known algorithm with polynomial dependence on

d was due to Ostrovsky and Rabani [20] and it ran in n(k+1/ε)O(1)
time. For relevant results, see

[3].

We also present an efficient algorithm for solving the k-center problem with outliers.

We prove the existence of optimal-sized core-sets for k-center clustering. We have also per-

formed experimental tests and observed that in practice the error is much lower than the error

that is guaranteed for a variety of core-set construction algorithms and the gradient-descent
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algorithm explained in [4].

In chapter 2 we present the k-center algorithm. In chapter 3 we present the algorithm for

the cylinder of minimum radius problem. In chapter 4 we present the k-median algorithm. In

chapter 5 we show how to construct small core-sets. In chapter 6 we show the existence of optimal

core-sets along with experimental results.
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Chapter 2

k-center clustering

2.1 Notation

We begin by defining some notions and notation.

Definition 2.1.1 For a minimization problem, an α-approximation algorithm is an algorithm

that, for any input, guarantees a solution of cost at most αc where c is the minimum cost possible.

Definition 2.1.2 A closed ball with center at c and radius r can be written as Ball(c, r).

Definition 2.1.3 For a finite set of points S ∈ R, let δ(S) = maxp,q∈S ||p− q||. We call δ(S) the

diameter of S.

Definition 2.1.4 A metric space is a pair (X, dist) where X is a set and

dist : X ×X → [0,∞)

is a function, called a metric satisfying dist(x, y) = 0 if and only if x = y, dist(x, y) = dist(y, x),

and dist(x, y) + dist(y, z) ≥ dist(x, z). For our purposes, dist(x, y) = ||x− y||.

Definition 2.1.5 Let f : X → Y be a mapping of metric spaces with metric dist and dist′. Let

α ≥ 1. Then f is called an α-distortion embedding if there exists a number r > 0 such that, for

all x, y ∈ X,

r · dist(x, y) ≤ dist′(f(x), f(y)) ≤ αr · dist(x, y)
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Definition 2.1.6 Given a finite set P ∈ Rd, an optimal k-center is defined to be a set S =

{c1, . . . , ck} that minimizes

rcen(P, k) = min
c1,... ,ck∈R

max
p∈P

min
i
||ci − p||.

Furthermore, rcen(P, k) is called the radius of the k-center clustering of P .

Definition 2.1.7 Given a finite set P ∈ Rd, a minimum enclosing closed ball is the ball with

radius rcen(P, 1) and center at c1 where {c1} is the optimal 1-center for P .

Definition 2.1.8 Given a finite set P ∈ Rd, its 1-cylinder is defined to be the closed cylinder of

minimum radius that encloses P .

2.2 k-center clustering

In this section, we present an efficient approximation algorithm for of finding an optimal k-center

clustering.

We start by restating the following lemma, proved originally in [9]. For the sake of complete-

ness, we give the proof here.

Lemma 2.2.1 Let B be a minimum enclosing closed ball of a finite point set P ⊂ Rd. Let cB

be the center of B, and r the radius of B. Let H be a closed half-space that contains cB. Then

H must also contain at least one point of P that is at distance r from cB.

Proof: Suppose H does not contain any common point of P and B. Since H is closed and P is

finite, there exists an ε > 0 such that the minimum distance between the points of P \H and H

is greater than ε. Fix ε such that the distance between any of the points in P
⋂
H and cB is at

most r − ε. We can translate the ball B in the direction perpendicular to H by ε/2 such that

the ball still encloses all the points of P . None of the points of P lie exactly on the boundary of

the translated ball. Thus we can shrink the radius of the ball, and we have a smaller ball that

contains P .

Lemma 2.2.2 Given a finite set P ⊂ R, and ε for which 1 > ε > 0, there exists a subset

of points S ⊆ P such that the distance between the center of the minimum enclosing ball of S
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and any point in P is at most (1 + ε) times the radius of the minimum enclosing ball of P and

|S| = O(1/ε2).

Proof: Start with an arbitrary point x ∈ P , and let y be a point in P farthest away from x.

By the triangle inequality, ‖x− y‖ ≥ diam /2 where diam = maxp,q∈P ||p− q||.

Set S0 = {x, y}. In the following, we maintain a set Si of points and its minimum enclosing

ball Bi = Ball(ci, ri). Clearly, r0 ≥ diam /4.

Let Bopt be the minimum enclosing ball of P with the center at copt and radius ropt. There

are two possibilities: First suppose there is no point p ∈ P such that ‖p− ci‖ ≥ (1 + ε)ri. Then

we are done. Indeed, the ball B = Ball(ci, (1 + ε)ri) encloses P , and has a radius of at most

(1 + ε)ropt. Hence B is a (1 + ε)-approximation.

Second, there exists a point p ∈ P such that ‖p− ci‖ ≥ (1 + ε)ri. In this case, we set

Si+1 = Si ∪ {p}.

We now prove that, for 0 < ε < 1, we have ri+1 ≥
(

1 +
ε2

16

)
ri. If

‖ci − ci+1‖ < (ε/2)ri,

then, by the triangle inequality, we have

||p− ci+1|| ≥ ||p− ci|| − ||ci − ci+1|| ≥ (1 + ε)ri −
ε

2
ri =

(
1 +

ε

2

)
ri.

Otherwise, let H be the hyperplane that passes through ci and is orthogonal to cici+1. Let

H− be the open half-space bounded by H and containing p. See Figure 2-1.

From Lemma 2.2.1, we know that there exists a point x ∈ Bi with x /∈ H−. Therefore, for

0 < ε < 1,

ri+1 ≥ ||ci+1 − x|| ≥
√
r2
i +

ε2

4
r2
i ≥

(
1 +

ε2

16

)
ri.

Since r0 ≥ diam /4, and at each step we increase the radius of our solution by at least

(diam /4)ε2/16 = diam ε2/64, it follows that we cannot encounter this case more than 64/ε2

times, as diam is an upper bound of the radius on the minimum enclosing ball of P .

Theorem 2.2.3 For any finite point set P ⊂ Rd and 1 > ε > 0, there is a subset S ⊂ P such

that |S| = O(1/ε2), and such that if o is the 1-center of S, then o is a (1 + ε)-approximate
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Figure 2-1: The ball B.

1-center of P . The set S can be found in time O
(
dn/ε2 + (1/ε)10 log (1/ε)

)
.

Proof: The proof of Lemma 2.2.2 is constructive, so it yields an algorithm for computing S.

The algorithm requires computing O(1/ε2) times a (1 + ε)-approximate enclosing ball of at most

O(1/ε2) points in RO(1/ε2). The algorithm also requires reading the points O(1/ε2) times, which

takes time O(nd/ε2). Thus, computing a (1 + ε)-approximate enclosing ball can be done in time

O(nd/ε2 + 1/ε10 log (1/ε)), using convex programming techniques [11].

Theorem 2.2.4 For any finite point set P ⊂ Rd and 1 > ε > 0, a (1 + ε)-approximate 2-center

for P can be found in 2O(1/ε2)dn time.

Proof: We start from two empty sets of points S1 and S2. At each stage, let B1 and B2

denote the smallest enclosing balls of S1 and S2. In the ith iteration of the algorithm, we pick

the point pi farthest from B1 and B2. To decide whether to put pi in S1 or in S2, we make a

guess. Clearly, if our guesses are correct, after O(1/ε2) iterations, we are done by Theorem 2.2.3.

Thus, the running time of this algorithm is O(dn/ε2 + (1/ε)10).

To eliminate the guessing, we exhaustively enumerate all possible guesses. Thus, the running

time of the algorithm 2O(1/ε2) for each guess sequence. The total running time of the algorithm

is dn2O(1/ε2).

Theorem 2.2.5 For any finite point set P ⊂ Rd and 1 > ε > 0, a (1 + ε)-approximate k-center

for P can be found in 2O((k log k)/ε2)dn time.

Proof: The algorithm is a straightforward extension of that of Theorem 2.2.4, where each
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guess now is a number between 1 and k, and we have to generate O(k/ε2) guesses.

2.3 k-center clustering with outliers

Definition 2.3.1 For a point-set P in Rd, let rcen(P, k) denote the radius of the k-center clus-

tering of P . This is the problem in which one wishes to find the k centers (i.e., points), so that

the maximum distance of a point to a center is minimized.

Let rcen(P, k, α) denote the minimal radius clustering with outliers; namely, we allow to throw

out α|P | outliers. Computing this value is the (k, α)-center problem. Formally,

rcen(P, k, α) = min
S⊆P,|S|≥(1−α)|P |

rcen(S, k).

The problem of computing k-center with outliers is interesting, as the standard k-center

clustering is very sensitive to outliers.

Theorem 2.3.2 For any point-set P ⊂ Rd, parameters 1 > ε, α > 0, µ > 0, a random sample

R of O(1/(εµ)) points from P spans a flat containing a (1 + ε, 1, µ + α)-approximate solution

for the 1-center with α-outliers for P . Namely, there is a point p ∈ span(R), such that a ball of

radius (1 + ε)rcen(P, 1, α) centered at p, contains (1− α− µ) points of P .

Furthermore, we can compute such a cluster in O(f(ε, µ)nd) time, where

f(ε, µ) = 2O(log2 1
εµ
/(εµ))

Proof: The proof follows closely the proof of Theorem 4.0.5. Let copt denote the center of the

optimal solution, ropt = rcen(P, 1, α) denote its radius, and Bopt = Ball(copt, ropt). Let s1, . . . , si

be our random sample, Fi = span(s1, . . . , si)4, and ci = proj(copt, Fi), and we set β =
√
ε, and

Ui =
{
x
∣∣∣ π/2− β ≤ ∠coptcix ≤ π/2 + β

}
be the complement of the cone of angle π − β emanating from ci, and having cicopt as its axis.

Let Pi = Ui ∩ P ∩Bopt. For any point p ∈ Pi, we have

‖pci‖ ≤
√
x2
p + y2

p ≤ ropt
√

1 + 4β2 = ropt(1 +O(ε)).

Namely, as far as the points of Pi are concerned, ci is a good enough solution.
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Let Qi = P \ Pi. As long as |Qi| ≥ (α + µ)|P |, we have a probability of 1/µ to sample a

random point that is in Qi and is not an outlier. Arguing as in the proof of Theorem 4.0.5, in

such a case, the distance of the current flat to copt shrank down by a factor of (1−β2/4). Thus, as

in the proof of Theorem 4.0.5, we perform the random sampling in rounds. In our case, we need

O((1/ε) log (1/ε)) rounds, and each round requires in expectation 1/µ random samples. Thus,

overall, if we sample M = O((1/(εµ)) log (1/ε)) points, we know that with constant probability,

span(s1, . . . , sM) contains a point in distance εropt from copt.

As for the algorithm, we observe that using random sampling, we can approximate ropt(P, 1, α)

up to a factor of two in o(dn) time. Once we have this approximation, we can generate a set of

candidates, as done in Theorem 4.0.7. This would result in

f(ε, µ) = O

((
10|R|
ε

)|R|
· |R|

)
= 2O((1/(εµ)) log2 (1/(εµ)))

candidates. For each candidate we have to spend O(nd) time on checking its quality. Overall,

we get f(ε, µ)nd running time.

Remark 2.3.3 Theorem 2.3.2 demonstrates the robustness of the sampling approach we use.

Although we might sample outliers into the sample set R, this does not matter, as in our argu-

mentation we concentrate only on the points that are sampled correctly. Essentially, ‖Ficopt‖ is

a monotone decreasing function, and the impact of outliers, is only on the size of the sample we

need to take.

Theorem 2.3.4 For any point-set P ⊂ Rd, parameters 1 > ε, α > 0, µ > 0, k > 0, one can

compute a (k, α+µ)-center clustering with radius smaller than (1+ε)rcen(P, k, α) in 2(k/εµ)O(1)
nd

time. The result is correct with constant probability.

Proof: Let P ′ be the set of points of P covered by the optimal k-center clustering C1, . . . , Ck,

with αn outliers. Clearly, if any of the Cis contain less than (µ/k)n points of P ′, we can just

skip it altogether.

To apply Theorem 2.3.2, we need to sample O(k/(εµ)) points from each of those clusters

(we apply it with µ/k for the allowed fraction of outliers). Each such cluster, has size at least

(µ/k)n, which implies that a sample of size O(k2/(µ2ε)) would contain enough points from Ci.

To improve the probabilities, we would sample O(k3/(µ2ε)) points. Let R be this random sample.

13



With constant probability (by the Markov inequality), |R ∩ Ci| = Ω(k/(εµ)), for i = 1, . . . , k.

We exhaustively enumerate for each point of R to which cluster it belongs. For such partition

we apply the algorithm of Theorem 2.3.2. The overall running time is 2O((k/(εµ)O(1)))nd.
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Chapter 3

The 1-cylinder problem

3.1 Introduction

Let P be a set of n points in Rd. We are interested in finding a line that minimizes the maximum

distance from the line to the points. More specifically, we are interesting in finding a (1 + ε)-

approximation to this problem in polynomial time.

In the following, let `opt denote the axis of the optimal cylinder, ropt denote the radius

ropt = radius(P, `opt) = max
p∈P
||`opt − p||,

and Hopt denote the hyperplane perpendicular to `opt that passes through the origin.

In this chapter, we prove the following theorem.

Theorem 3.1.1 Given a set of n points in Rd, and a parameter ε > 0, we can compute, in

nO(log(1/ε)/ε2) time, a line l such that radius(P, l) ≤ (1 + ε)ropt where ropt is the radius of the

minimal 1-cylinder that contains P .

First, observe that we can compute a 2-approximation to the 1-cylinder problem by finding

two points p, q ∈ P that are farthest apart and by taking the minimum cylinder having pq as

its axis and containing P . It is easy to verify that the radius R of this cylinder is at most 2ropt

where ropt is the radius of the minimum cylinder. Let t be a point on the cylinder. The radius of

the minimum cylinder that encloses p, q and y, which constitutes a lower bound for ropt, is half

the radius of our cylinder. Computing R can be done in O(n2d) time.

Let l be the center line of a solution with cost ropt. Assume that we know the value of ropt
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up to a factor very close to 1, since we can enumerate all potential values of ropt in the range

R/2, . . . , R. The main idea of the algorithm is to compute a (1 + ε) distortion embedding of the

n points from R
d into Rlogn/ε2 , to guess the solution to the problem there, and then to pull back

the solution to the original space. However, a simple application of this method is known not

to work for clustering problems (and the 1-cylinder problem in particular), due to the following

difficulties:

1. The optimal solution found in the low-dimensional space does not have to correspond to

any solution in the original space.

2. Even if (1) were true, it would not be clear how to pull back the solution from the low-

dimensional one.

To overcome these difficulties, we proceed as follows:

1. In the first step, we find a point h lying on `opt. To be more precise, we guess h by

enumerating polynomially many candidates instead of finding h; moreover, h does not lie

on lopt, but only sufficiently close to it.

2. We remove from P all the points within a distance of (1 + ε)ropt from h. Since our final

line passes through h, it is sufficient to find a solution for the smaller set P .

3. We embed the whole space into a low-dimensional space, such that, with high probability

for all points p ∈ P , the angle between
−→
ph and `opt is approximately preserved.

As we discuss in Steps 3 and 4 of Section 3.1, such an embedding A is guaranteed by the

Johnson–Lindenstrauss Lemma.

4. We guess an approximate low-dimensional image Al of the line l by exploring polynomially

many possibilities. By the properties of the embedding A, we can detect which points in P

lie on one side of the hyperplane H passing through h and orthogonal to l. We modify the

set P by replacing each point p on the other side side of the hyperplane by its reflection

around h. Note that this operation increases the solution cost only by at most εropt.

5. It is now sufficient to find an optimal half-line beginning at h, which minimizes the maxi-

mum distance from p ∈ P to the half-line. Moreover, we know that the points are on the

same side of a hyperplane that passes through h. This problem can be solved using convex

programming tools.
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Thus, we use the low-dimensional image of l to discover the “structure” of the optimal

solution, namely, which points lie on which side of the hyperplane H. Knowing this structure

allows us to reduce our non convex problem to a convex one.

3.2 Computing the approximate 1-cylinder

In this section, we elaborate on each step in computing the cylinder of minimum radius containing

a given point set.

Step 1. Finding a point near the line.

Definition 3.2.1 Let U be any set of points in Rd, and ε > 0. Let CH(U) be the convex hull

of U . We say that a finite subset A of points is an ε-net for U if, for any line ` that intersects

CH(U), there is a v ∈ A such that dist(v, `) ≤ ε
2
ropt.

Lemma 3.2.2 Let U be a set of points in Rd, and ε > 0. We can compute an ε-net A(U) for U

in (|U |2.5/ε)O(|U |) time. The cardinality of A(U) is (|U |2.5/ε)O(|U |).

Proof: Let M = |U |. Let H be the (M − 1)-dimensional affine subspace spanned by U .

Note that M ≤ |U |. Let E ⊆ H be an ellipsoid such that E/(M + 1)2 ⊆ CH(U) ⊆ E where

E/(M+1)2 is E scaled down around its center by a factor of 1/(M+1)2. Such an ellipsoid exists,

and can be computed in polynomial time in |U |, see [11]. Let B be the minimum bounding

box of E that is parallel to the main axises of E . We claim that B/
√
M is contained inside

E . Indeed, there exists a linear transformation T that maps E to a unit ball S. The point

q = (1/
√
M, 1/

√
M, . . . , 1/

√
M) lies on the boundary of this sphere. Clearly, T −1(q) is a corner

of B/
√
M , and is on the boundary of E . In particular,

diam(B) =
√
M diam(B/

√
M) ≤

√
M diam(E)

≤
√
M(M + 1)2 diam(E/(M + 1)2) ≤

√
M(M + 1)2 diam(U).

17



Figure 3-1: “Helper” points in a convex body after the embedding.

For any line `, the same argument works for the projection of those objects in the hyperplane

perpendicular to `. Let T P` denote this projection. Then we have

diam(T P`(B)) ≤
√
M(M + 1)2 diam(T P`(U))

≤ 2
√
M(M + 1)2 dist(U, `).

Next, we partition B into a grid such that each cell is a translated copy of

Bε =
ε

2
B/(2

√
M(M + 1)2).

This grid has (M2.5/ε)O(M) vertices. Let A(U) denote this set of vertices.

Let ` be any flat intersecting CH(U). We claim that one of the points in A(U) is within

distance ε
2

dist(U, `) from `. Indeed, let z be any point in CH(U) ∩ `. Let B′′ε be the grid cell

containing z, and let v be one of its vertices. Clearly,

dist(v, `) ≤ ‖T P`(v)T P`(z)‖ ≤ diam(T P`(B′′ε ))

=
ε

2
· 1

2
√
M(M + 1)2

diam(T P`(B)) ≤ ε

2
dist(U, `).

Thus our assertion is established.

In order to find the point h, we need to add “helper” points. For each subset S of P with

|S| = O(1/ε2), we compute an ε-net on the interior of the convex body spanned by the points of

S, see Figure 3-1.
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Let A(S) be an ε-net for S. Clearly, |A(S)| = (|S|2.5/ε)O(|S|) where |S| = O(1/ε2). We have

|A(S)| = 2O(log(1/ε)/ε2).

Lemma 3.2.3 Under the conditions of Lemma 3.2.2, consider the points in G(S) for all sets S.

At least one point is at most εropt away from `opt.

Proof: Project all the points into a hyperplane Hopt that is orthogonal to `opt, and denote

this set of points by P ′. Let o be the point of intersection of `opt with Hopt. Since all the points

are at distance at most ropt from `opt, all the points projected into H are at distance at most

ropt from o. Compute the minimum enclosing ball of the point set P ′. It is easy to see that, if

the origin of the minimum enclosing ball is not o, then we can come up with a solution for the

minimum fitting line of cost lower than ropt by just translating l to intersect the center of the

ball. Therefore, the minimum enclosing ball of P ′ has the origin in o.

By Theorem 2.2.3, there exists a set S ⊂ P ′ such that |S| = O(1/ε2), and such that the

minimum enclosing ball of the S is at most (ε/2)ropt away from o and since the center of any

minimum enclosing ball of a set of points can be written as a convex combination of the points,

we conclude that there exists a point p, a convex combination of the points of S such that

D(p, o) ≤ εropt. Also, distance from p to the closest point of G(S) is at most (ε/2)ropt. Therefore,

there exists a point in our ε-net that is at most εropt away from the optimal fitting line.

Step 2. Removing the points near h. For simplicity of exposition, from now on, we

assume that h lies on the optimal line `opt. We remove from P all the points within distance

(1 + ε)ropt from h.

Clearly, the removal step can be implemented in linear time in the input size. Observe that,

after this step, for all points p, the angle between
−→
ph and `opt is in the range [0, π/2 − ε/2] ∪

[π/2 + ε/2, π] for small enough ε. As we will see next, this property implies that the angles do

not change in value from less than π/2 to greater than π/2 after the dimensionality reduction is

applied.

Step 3. Random projection. We show how to find a mapping A : Rd → R
d′ for d′ =

O(log n/ε2) that preserves all angles ∠
−→
hp`opt for p ∈ P up to an additive factor of ε/3. For this

purpose, we use the Johnson–Lindenstrauss Lemma. It is not difficult to verify (see [8]) that if

we set the error parameter of the lemma to ε/C for large enough constant C, then all the angles

are preserved up to an additive factor of, say, ε/4. Hence, for each p ∈ P , the image of p is
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on the same side of the image of the hyperplane H as the original points p. Moreover, for any

p ∈ P , the angle ∠(
−→
hp, `opt) is in the range [0, π/2− ε/4] ∪ [π/2 + ε/4, π].

Step 4. Guessing the image of l. We now need to approximate the image A`opt where

A is the mapping generated by the Johnson–Lindenstrauss Lemma. For this purpose, we need

to know the direction of l, since we already know one point through which the line A`opt passes.

Our approach is to enumerate all the different directions of a line A`opt. Obviously, the number of

such directions is infinite. However, since we use the line exclusively for the purpose of separating

the points p ∈ P according to their angle ∠
−→
hp`opt, and those angles are separated from π/2 by

ε/4, it is sufficient to find a direction vector that is within angular distance ε/4 from the direction

of l. Thus, it is sufficient to enumerate all directions from an ε/4-net for the set of all directions.

It is known that such spaces of cardinality nO(log(1/ε)/ε2) exist, and are constructible. Thus, we

can find the right partition of points in P by enumerating a polynomial number of directions.

After finding the right partition of P , say, into PL and PR, we replace each point in PL by

its reflection through h; say the resulting set is P ′L = {2h − p
∣∣∣ p ∈ P }. Note that there is a

one-to-one correspondence between the 1-cylinder solutions for P that pass through h and the

1-half-line solutions for P ′ = P ′L ∪PR. By definition, the 1-half-line problem is to find a half-line

r that has an endpoint at h and minimizes the maximum, over all input points p, of the distance

from p to r. Thus, it remains to solve the 1-half-line problem for P ′.

Step 5. Solving the 1-half-line problem using convex programming. We focus on

the decision version of this problem. Assume we want to check if there is a solution with cost at

most T . For each point p, let Cp be the cone of all half-lines with endpoints in h and that are

within distance T from p. Clearly, Cp is convex. The problem is now to check if an intersection

of all cones Cp is nonempty. This problem is one in convex programming, and thus can be solved

up to arbitrary precision in polynomial time [11].
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Chapter 4

k-median clustering

In this chapter, we present an efficient approximation algorithm for the k-median problem.

Definition 4.0.4 For a set P of n points in Rd, let medopt(P, k) = minK⊆Rd,|K|=k
∑

p∈P dist(K, p)

denote the optimal price of the k-median problem, where dist(K, p) = minx∈K ‖xp‖. Let

AvgMed(P, k) = medopt(P, k)/|P | denote the average radius of the k-median clustering.

For any sets A,B ⊂ P , we use the notation cost(A,B) =
∑

a∈A,b∈B ‖ab‖. If A = {a},

we write cost(a, ·) instead of cost({a}, ·), similarly for b. Moreover, we define cost(x ∨ y, A) =∑
a∈A min (‖ax‖ , ‖ay‖).

For a set of points X ⊆ Rd, let span(X) denote the affine subspace spanned by the points of

X. We refer to span(X) as the flat spanned by X.

Theorem 4.0.5 Let P be a point-set in Rd, 1 > ε > 0, and let X be a random sample of

O(1/ε3 log 1/ε) points from P . Then with constant probability, the following two events happen:

(i) The flat span(X) contains a (1 + ε)-approximate 1-median for P , and (ii) X contains a point

in distance ≤ 2 AvgMed(P, 1) from the center of the optimal solution.

Proof: Let medopt = medopt(P, 1) be the price of the optimal 1-median, R = AvgMed(P, 1),

and let s1, . . . , su be our random sample. In the following, we are going to partition the random

sample into rounds: A round continues until we sample a point that has some required property.

The first round continues till we encounter a point si, such that ‖sicopt‖ ≤ 2R, where copt is

the center of the optimal 1-median. By the Markov inequality, ‖sicopt‖ ≤ 2R, with probability

≥ 1/2.
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Figure 4-1: A round terminates as soon as we pick a point outside Ui.

Let’s assume that si is a sample that just terminated a round, and we start a new sampling

round. Let Fi be the flat spanned by the first i points in our sample: s1, . . . , si. Observe that if

‖Ficopt‖ ≤ εR, then we are done, as the point proj(copt, Fi) is the required approximation, where

proj(copt, Fi) denotes the projection of copt into Fi.

Note that the distance from copt to Fi is monotone decreasing. That is di+1 = ‖Fi+1copt‖ ≤

di = ‖Ficopt‖. We would next argue that either after taking enough sample points, di is small

enough so that we can stop, or otherwise almost all the points of P lie very close to our spanned

subspace, and we can use P to find our solution.

Indeed, let ci = proj(copt, Fi), and let

Ui =
{
x
∣∣∣ x ∈ Rd s.t. π/2− β ≤ ∠coptcix ≤ π/2 + β

}
be the complement of the cone of angle π − β emanating from ci, and having cicopt as its axis,

where β ≤ ε/16. See Figure 4-1. Let Hi be the (d− 1)-dimensional hyperplane passing through

ci and perpendicular to cicopt. For a point p ∈ P , let xp be the distance of p to the line `i passing

through copt and ci, and let yp be the distance between p and Hi.

If p ∈ Ui, then yp ≤ xp tan β ≤ xp
sin β

cos β
≤ 4βxp ≤

εxp
4
≤ ε

4
‖pcopt‖ , as β < 1/16. In

particular,

‖pci‖ ≤ xp + yp ≤ (1 + ε/4) ‖pcopt‖ .

Namely, if we move our center from copt to ci, the error generated by points inside Ui is smaller

than medoptε/4.

Thus, if the number of points in Qi = P \ Ui is smaller than nε/4, then we are done. As the

maximum error encountered for a point of Qi when moving the center from copt to ci is at most

2R.
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Thus, it must be that |Qi| ≥ nε/4. We now perform a round of random sampling until we pick

a point that is in Qi. Let sj ∈ Qi be this sample point, where j > i. Clearly, the line l connecting

ci to sj must belong to Fj, as ci ∈ Hi ⊂ Hj. Now, the angle between l and `i = line(ci, copt) is

smaller than π/2− β. Namely,

‖coptl‖ ≤ ‖coptci‖ sin(π/2− β) = ‖coptci‖ cos(β) ≤ (1− β2/4) ‖coptci‖ .

Thus, after each round, the distance between Fi and copt shrinks by a factor of (1−β2/4). Namely,

either we are close to the optimal center, or alternatively, we make reasonable progress in each

round.

In the first round, we picked a point su such that ‖sucopt‖ ≤ 2R. Either during our sampling,

we had ‖Ficopt‖ ≤ εR, or alternatively, we had reduced in each round the distance between our

sample flat and copt by a factor of (1−β2/4). On the other hand, once this distance drops below

εR, we stop, as we had found a point that belongs to Hi and provide a (1 + ε)-approximate

solution. Furthermore, as long as |Qi| ≥ εn/4, the probability of success is at least ε/4. Thus,

the expected number of samples in a round until we pick a point of Qi (and thus terminating

the i-th round) is d4/εe. The number of rounds we need is

M =
⌈
log1−β2/4

ε

2

⌉
=

⌈
log(ε/2)

log (1− β2/4)

⌉
= O

(
1

ε2
log

2

ε

)
.

Let X be the random variable which is the number of random samples till we get M successes.

Clearly, E[X] = O(1/ε3 log 1/ε). It follows, by the Markov inequality, that with constant prob-

ability, if we sample O(1/ε3 log(1/ε)) points, then those points span a subspace that contains a

(1 + ε)-approximate 1-median center.

We are next interested in solving the k-median problem for a set of points in Rd. We first

normalize the point-set.

Lemma 4.0.6 Given a point-set P in Rd, and a parameter k, one can can scale-up space and

compute a point-set P ′, such that: (i) The distance between any two points in P ′ is at least one.

(ii) The optimal k-median cost of the modified data set is at most nb for b = O(1), where n = |P |.

(iii) The costs of any k-median solutions in both (old and modified) data sets are the same up to

a factor of (1 + ε/5). This can be done in O(nkd) time.

23



Proof: Observe that by using Gonzalez [10] 2-approximation algorithm for the k-center clus-

tering, we can compute in O(nkd) time a value L (the radius of the approximate k-center clus-

tering), such that L/2 ≤ medopt(P, k) ≤ nL.

We cover space by a grid of size Lε/(5nd), and snap the points of P to this grid. After

scaling, this is the required point-set.

From this point on, we assume that the given point-set is normalized.

Theorem 4.0.7 Let P be a normalized set of n points in Rd, 1 > ε > 0, and let R be a random

sample of O(1/ε3 log 1/ε) points from P . Then one can compute, in O
(
d2O(1/ε4) log n

)
time, a

point-set S(P,R) of cardinality O
(

2O(1/ε4) log n
)

, such that with constant probability (over the

choice of R), there is a point q ∈ S(P,R) such that cost(q, P ) ≤ (1 + ε)medopt(P, 1).

Proof: Let’s assume that we had found a t such that t/2 ≤ AvgMed(P, 1) ≤ t. Clearly, we

can find such a t by checking all possible values of t = 2i, for i = 0, . . . , O(log n), as P is a

normalized point-set (see Lemma 4.0.6).

Next, by Theorem 4.0.5, we know that with constant probability, there is a point of R with

distance ≤ 2 AvgMed(P, 1) ≤ 2t from the optimal 1-median center copt of P . Let H = span(R)

denote the affine subspace spanned by R. For each point of p ∈ R, we construct a grid Gp(t)

of side εt/(10|R|) = O(tε4 log(1/ε)) centered at p on H, and let B(p, 3t) be a ball of radius 2t

centered at p. Finally, let S ′(p, t) = Gp(t) ∩ B(p, 3t). Clearly, if t/2 ≤ AvgMed(P, 1) ≤ t, and

‖pcopt‖ ≤ 2t, then there is a point q ∈ S ′(p, t) such that cost(q, P ) ≤ (1 + ε)medopt(P, 1).

Let S(P,R) =

O(logn)⋃
i=0

⋃
p∈R

S ′(p, 2i). Clearly, S(P,R) is the required point-set, and furthermore,

|S(P,R)| = O

(
(log n) |R|

(
1

ε4
log

1

ε

)O(|R|)
)

= O
(

2O(1/ε3 log2 1
ε

) log n
)

= O
(

2O(1/ε4) log n
)
.

Theorem 4.0.8 For any point-set P ⊂ Rd and 0 < ε < 1, a (1 + ε)-approximate 2-median for

P can be found in O(2(1/ε)O(1)
dO(1)n logO(1) n) expected time, with high-probability.

Proof: In the following, we assume that the solution is irreducible, i.e., removing a median

creates a solution with cost at least 1 + Ω(ε) times the optimal. Otherwise, we can focus on

solving the 1-median instead.

Let c1, c2 be the optimal centers and P1, P2 be the optimal clusters. Without loss of generality

we assume that |P1| ≥ |P2|. The algorithm proceeds by considering whether P2 is large or small
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when compared with the size of P1. In both cases the algorithm returns an approximate solution

with constant probability. By exploring both cases in parallel and repeating the computation

several times we can achieve an arbitrarily large probability of success.

Case 1: |P1| ≥ |P2| ≥ |P1|ε. In this case we sample a random set of points R of cardinality

O(1/ε4 log 1/ε). We now exhaustively check all possible partitions of R into R1 = P1 ∩ R

and R2 = P2 ∩ R (there are O(2O(1/ε4 log 1/ε)) such possibilities). For the right such parti-

tion, Ri is a random sample of points in Pi of cardinality Ω(1/ε3 log 1/ε) (since E[|R ∩ Pi|] =

Ω(1/ε3 log 1/ε)). By Theorem 4.0.7, we can generate point-sets S1, S2 that with constant prob-

ability contain c′1 ∈ S1, c
′
2 ∈ S2, such that cost(c′1 ∨ c′2, P ) ≤ (1 + ε)medopt(P, 2). Checking each

such pair c′1, c
′
2 takes O(nd) time, and we have O(|S1||S2|) pairs. Thus the total running time is

O
(
nd2O(1/ε4 log 1/ε) log2 n

)
.

Case 2: |P1|ε > |P2|. In this case we proceed as follows. First, we sample a set R of λ =

O(1/ε3 log 1/ε) points from P1. This can be done just by sampling λ points from P , since with

probability 2−O(1/ε3 log 1/ε) such a sample contains only points from P1; we can repeat the whole

algorithm several times to obtain a constant probability of success. Next, using Theorem 4.0.7,

we generate a set C1 of candidates to be center points of the cluster P1. In the following, we

check all possible centers c′1 ∈ C1. With constant probability, there exists c′1 ∈ C1 such that

cost(c′1, P1) ≤ (1 + ε/3)cost(c1, P1).

Let (P ′1, P
′
2) denote optimal 2-median clustering induced by median c′1 (as above), and let

c′2 denote the corresponding center of P ′2. We need to find c′′2 such that cost(c′1 ∨ c′′2, P ) ≤

(1 + ε/3)cost(c′1 ∨ c′2, P ) ≤ (1 + ε)medopt(P, 2). In order to do that, we first remove some

elements from P1, in order to facilitate random sampling from P2.

First, observe that cost(c′1, P
′
2) ≤ |P ′2| · ‖c′2c′1‖+ cost(c′2, P

′
2) and therefore we can focus on the

case when |P ′2| · ‖c′2c′1‖ is greater than O(ε) · cost(c′1 ∨ c′2, P ), since otherwise c′2 = c′1 would be a

good enough solution.

We exhaustively search for the value of two parameters (guesses) t,U , such that t/2 ≤

‖c′1c′2‖ ≤ t and U/2 ≤ medopt(P, 2) ≤ U . Since P is normalized this would require checking

O(log2 n) possible values for t and U . If t > 4U , then t > 4medopt(P, 2) and for any p, q ∈ Pi we

have ‖pq‖ ≤ U . Moreover, for any p ∈ P1, q ∈ P2 we have ‖pq‖ ≥ ‖c′1c′2‖ − ‖c′1p‖ − ‖c′1q‖ > 2U .

Thus, take all the points in distance ≤ 2U from c′1 to be in P ′1, and take all the other points to
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be in P ′2. The problem is thus solved, as we partitioned the points into the correct clusters, and

can compute an approximated 1-median for each one of them directly.

Otherwise, t ≤ 4U and let S =
{
p
∣∣∣ ‖pc′1‖ ≤ t/4

}
. Clearly, S ⊂ P ′1. Moreover, we claim that

|P ′2| ≥ ε|P ′1 \ S|, since otherwise we would have

|P ′2| ‖c′2c′1‖ ≤ ε|P ′1 \ S| ‖c′2c′1‖

and

cost(c′1, P
′
1 \ S) ≥ t

4
|P ′1 \ S| ≥

‖c′2c′1‖
8
|P ′1 \ S|.

Thus, |P ′2| ‖c′2c′1‖ ≤ 8εcost(c′1, P
′
1 − S) and thus cost(c′1, P ) ≤ (1 + 8ε)cost(c′1 ∨ c′2, P ). This

implies that we can solve the problem in this case by solving the 1-median problem on P , thus

contradicting our assumption.

Thus, |P ′2| ≥ ε|P ′1 \ S|. We create P ′ = P \ S = P ′′1 ∪ P ′2, where P ′′1 = P ′1 \ S. Although P ′′1

might now be considerably smaller than P ′′2 , and as such case 1 does not apply directly. We can

overcome this by adding enough copies of c′1 into P ′′1 , so that it would be of size similar to P ′2.

To carry that out, we again perform an exhaustive enumeration of the possible cardinality of

P ′2 (up to a factor of 2). This requires checking O(log n) possibilities. Let V be the guess for the

cardinality of P ′2, such that V ≤ |P ′2| ≤ 2V .

We add V copies of c′1 to P ′′1 . We can now apply the algorithm for the case when the

cardinalities of both clusters are comparable, as long as we ensure that the algorithm reports c′1

as one of the medians. To this end, it is not difficult to see that by adding copies of c′1 to P ′′1

we also ensured that for any 2 medians x and y, replacing at least one of them by c′1 yields a

better solution. Therefore, without loss of generality we can assume that the algorithm described

above, when applied to P ′, reports c′1 as one of the medians. The complexity of the algorithm is

as stated.

Theorem 4.0.9 For any point-set P ⊂ Rd, ε < 1, and a parameter k, a (1 + ε)-approximate

k-median for P can be found in 2(k/ε)O(1)
dO(1)n logO(k) n expected time, with high-probability.

Proof: We only sketch the extension of the algorithm of Theorem 4.0.8 for k > 2. As before,

we observe that large clusters of cardinality ≥ εn/k can be handled directly by random sampling
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and exhaustive enumeration of all partitions of the samples into the different clusters, and using

Theorem 4.0.7. Thus, we can focus on the case when there is at least one small cluster.

Let C1, . . . , Ck be the clusters in the optimal solutions, with corresponding centers c1, . . . , ck.

Let C1, . . . , Ci be the heavy clusters, and let Ci+1 be a small cluster, such that its center ci+1 is

the closest one to c1, . . . , ci.

We use an argument, similar to the argument used in Theorem 4.0.8, to show that we can

shrink C1, . . . , Ci to make their sizes comparable to Ci+1.

• Let AvgMed = AvgMed(C1 ∪ . . . ∪ Ci, i). If the distance from any cj, j > i to the nearest

c1, . . . , ci is less than t ≤ AvgMed ≤ 2t, then we can remove all such medians cj without

incurring much cost, as |Cj| ≤ nε/k.

• Otherwise, this means the medians cj, j > i, are at least at distance AvgMed /2 from

c1, . . . , ci.

• On the other hand, ci+1 cannot be too far from c1, . . . , ci, because then we could easily

separate the points of C1, . . . , Ci from the points of Ci+1, . . . , Ck.

• Thus, we can “guess” (i.e., enumerate O(log n) possibilities), up to a factor of two, the

distance between ci+1 and its closest neighbor in c1, . . . , ci. Let t be this guess.

• We can assume that all points within distance < t/2 to c1, . . . , ci belong to clusters

C1, . . . , Ci, and focus on clustering the remaining set of points.

• The number of points with distance > t/2 from c1, . . . , ck is comparable to the size of Ci+1.

Thus we can proceed with sampling.

This yields a recursive algorithm that gets rid of one cluster in each recursive call. It performs

2(k/ε)O(1)
logO(1) n recursive calls in each node, and the recursion depth is k. Thus, the algorithm

has the running time stated. Note that we need to rerun this algorithm O
(
2O(k) log n

)
times to

get high probability results.
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Chapter 5

Smaller Core-Sets for Balls

5.1 Introduction

Given a set of points P ⊂ Rd and value ε > 0, a core-set S ⊂ P has the property that the

smallest ball containing S is within ε of the smallest ball containing P . That is, if the smallest

ball containing S is expanded by 1 + ε, then the expanded ball contains P . It is a surprising fact

that for any given ε there is a core-set whose size is independent of d, depending only on ε. This

is was shown by Bădoiu et al.[6], where applications to clustering were found, and the results

have been extended to k-flat clustering.[13].

While the previous result was that a core-set has size O(1/ε2), where the constant hidden in

the O-notation was at least 64, here we show that there are core-sets of size at most 2/ε. This is

not so far from a lower bound of 1/ε, which is easily shown by considering a regular simplex in

1/ε dimensions. Such a bound is of particular interest for k-center clustering, where the core-set

size appears as an exponent in the running time.

Our proof is a simple effective construction. We also give a simple algorithm for computing

smallest balls, that looks something like gradient descent; this algorithm serves to prove a core-

set bound, and can also be used to prove a somewhat better core-set bound for k-flats. Also, by

combining this algorithm with the construction of the core-sets, we can compute a 1-center in

time O(dn/ε+ (1/ε)5).

In the next section, we prove the core-set bound for 1-centers, and then describe the gradient-

descent algorithm.
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5.2 Core-sets for 1-centers

Given a ball B, let cB and rB denote its center and radius, respectively. Let B(P ) denote the

1-center of P , the smallest ball containing it.

We restate the following lemma, proved in [9]:

Lemma 5.2.1 If B(P ) is the minimum enclosing ball of P ⊂ Rd, then any closed half-space

that contains the center cB(P ) also contains a point of P that is at distance rB(P ) from cB(P ).

Theorem 5.2.2 There exists a set S ⊆ P of size at most 2/ε such that the distance between

cB(S) and any point p of P is at most (1 + ε)rB(P ).

Proof: We proceed in the same manner as in [6]: we start with an arbitrary point p ∈ P and

set S0 = {p}. Let ri ≡ rB(Si) and ci ≡ cB(Si). Take the point q ∈ P which is furthest away from

ci and add it to the set: Si+1 ← Si
⋃
{q}. Repeat this step 2/ε times. It is enough to show that

the maximum distance from one of the centers ci to the points of P is at most R̂.

Let c ≡ cB(P ), R ≡ rB(P ), R̂ ≡ (1 + ε)R, λi ≡ ri/R, di ≡ ||c − ci|| and Ki ≡ ||ci+1 − ci||.

Since the radius of the minimum enclosing ball is R, there is at least one point q ∈ P such that

||q− ci|| ≥ R. If Ki = 0 then we are done, since the maximum distance from ci to any point is at

most R. If Ki > 0, let H be the hyperplane that contains ci and is orthogonal to (ci, ci+1). Let

H+ be the closed half-space bounded by H that does not contain ci+1. By Lemma 6.3.1, there

must be a point p ∈ Si
⋂
H+ such that ||ci − p|| = ri = λiR, and so ||ci+1 − p|| ≥

√
λ2
iR

2 +K2
i .

Therefore,

λi+1R ≥ max(R−Ki,
√
λ2
iR

2 +K2
i ) (5.1)

We want a lower bound on λi+1 that depends only on λi. Observe that the bound on λi+1 is

smallest with respect to Ki when

R−Ki =
√
λ2
iR

2 +K2
i

R2 − 2KiR +K2
i = λ2

iR
2 +K2

i

Ki =
(1− λ2

i )R

2
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Using (5.1) we get that

λi+1 ≥
R− (1−λ2

i )R

2

R
=

1 + λ2
i

2
(5.2)

Substituting γi = 1
1−λi in the recurrence (5.2), we get γi+1 = γi

1−1/(2γi)
= γi(1 + 1

2γi
+ 1

4γ2
i
. . . ) ≥

γi + 1/2. Since λ0 = 0, we have γ0 = 1, so γi ≥ 1 + i/2 and λi ≥ 1 − 1
1+i/2

. That is, to get

λi > 1− ε, it’s enough that 1 + i/2 ≥ 1/ε, or enough that i ≥ 2/ε.

5.3 Simple algorithm for 1-center

The algorithm is the following: start with an arbitrary point c1 ∈ P . Repeat the following step

1/ε2 times: at step i find the point p ∈ P farthest away from ci, and move toward p as follows:

ci+1 ← ci + (p− ci) 1
i+1

.

Claim 5.3.1 If B(P ) is the 1-center of P with center cB(P ) and radius rB(P ), then ||cB(P )−ci|| ≤

rB(P )/
√
i for all i.

Proof: Proof by induction: Let c ≡ cB(P ). Since we pick c1 from P , we have that ||c − c1|| ≤

R ≡ rB(P ). Assume that ||c − ci|| ≤ R/
√
i. If c = ci then in step i we move away from c by

at most R/(i + 1) ≤ R/
√
i+ 1, so in that case ||c − ci+1|| ≤ R/

√
i+ 1. Otherwise, let H be

the hyperplane orthogonal to (c, ci) which contains c. Let H+ be the closed half-space bounded

by H that does not contain ci and let H− = R \ H+. Note that the furthest point from ci in

B(P )
⋂
H− is at distance less than

√
||ci − c||2 +R2 and we can conclude that for every point

q ∈ P
⋂
H−, ||ci − q|| <

√
||ci − c||2 +R2. By Lemma 6.3.1 there exists a point q ∈ P

⋂
H+

such that ||ci − q|| ≥
√
||ci − c||2 +R2. This implies that p ∈ P

⋂
H+. We have two cases to

consider:

• if ci+1 ∈ H+, by moving ci towards c we only increase ||ci+1 − c||, and as noted before if

ci = c we have ||ci+1 − c|| ≤ R/(i+ 1) ≤ R/
√
i+ 1. Thus, ||ci+1 − c|| ≤ R/

√
i+ 1

• if ci+1 ∈ H−, by moving ci as far away from c and p on the sphere as close as possible to

H−, we only increase ||ci+1 − c||. But in this case, (c, ci+1) is orthogonal to (ci, p) and we

have ||ci+1 − c|| = R2/
√
i

R
√

1+1/i
= R/

√
i+ 1.
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Chapter 6

Optimal Core-Sets for Balls

6.1 Introduction

In the previous chapter we showed that there are core-sets of size at most 2/ε, but the worst-case

lower bound, easily shown by considering regular simplices, is only d1/εe.[4] In this chapter we

show that the lower bound is tight: there are always ε-core-sets of size d1/εe. A key lemma in

the proof of the upper bound is the fact that the bound for Löwner-John ellipsoid pairs is tight

for simplices.

The existence proof for these optimal core-sets is an algorithm that repeatedly tries to improve

an existing core-set by local improvement: given S ⊂ P of size k, it tries to swap a point out of S,

and another in from P , to improve the approximation made by S. Our proof shows that a 1/k-

approximate ball can be produced by this procedure. (That is, if the smallest ball containing the

output set is expanded by 1 + 1/k, the resulting ball contains the whole set.) While it is possible

to bound the number of iterations of the procedure for a slightly sub-optimal bound, such as

1/(k−1), no such bound was found for the optimal case. However, we give experimental evidence

that for random pointsets, the algorithm makes no change at all in the core-sets produced by

the authors’ previous procedure, whose guaranteed accuracy is only 2/k. That is, the algorithm

given here serves as a fast way of verifying that the approximation ε is 1/k, and not just 2/k.

We also consider an alternative local improvement procedure, with no performance guar-

antees, that gives a better approximation accuracy, at the cost of considerably longer running

time.

Some notation: Given a ball B, let cB and rB denote its center and radius, respectively. Let
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B(P ) denote the 1-center of P , the smallest ball containing it.

The next two sections give the lower and upper bounds, respectively; The experimental results

are given in the last section.

6.2 A Lower Bound for Core-Sets

Theorem 6.2.1 Given ε > 0, there is a pointset P such that any ε-core-set of P has size at

least d1/εe.

Proof: We can take P to be a regular simplex with d + 1 vertices, where d ≡ b1/εc. A

convenient representation for such a simplex has vertices that are the natural basis vectors

e1, e2, . . . , ed+1 of IRd+1, where ei has the i’th coordinate equal to 1, and the remaining coordinates

zero. Let core-set S contain all the points of P except one point, say e1. The circumcenter of

the simplex is (1/(d+ 1), 1/(d+ 1), . . . , 1/(d+ 1)), and its circumradius is

R ≡
√

(1− 1/(d+ 1))2 + d/(d+ 1)2 =
√
d/(d+ 1).

The circumcenter of the remaining points is (0, 1/d, 1/d, . . . , 1/d), and the distance R′ of that

circumcenter to e1 is

R′ =
√

1 + d/d2 =
√

1 + 1/d.

Thus

R′/R = 1 + 1/d = 1 + 1/ b1/εc ≥ 1 + ε,

with equality only if 1/ε is an integer. The theorem follows.

6.3 Optimal Core-Sets

In this section, we show that there are ε-core-sets of size at most d1/εe. The basic idea is to show

that the pointset for the lower bound, the set of vertices of a regular simplex, is the worst case

for core-set construction.
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We can assume, without loss of generality, that the input set is the set of vertices of a simplex;

this follows from the condition that the 1-center of P is determined by a subset P ′ ⊂ P of size at

most d+ 1: that is, the minimum enclosing ball of P is bounded by the circumscribed sphere of

P ′. Moreover, the circumcenter of P ′ is contained in the convex hull of P . That is, the problem

of core-set construction for P is reduced to the problem of core-set construction for a simplex

T = convP ′, where the minimum enclosing ball B(T ) is its circumscribed sphere.

We will need the following lemma, proven in [9].

Lemma 6.3.1 If B(P ) is the minimum enclosing ball of P ⊂ Rd, then any closed half-space

that contains the center cB(P ) also contains a point of P that is at distance rB(P ) from cB(P ). It

follows that for any point q at distance K from cB(P ), there is a point q′ of P at distance at least√
r2
B(P ) +K2 from q.

Lemma 6.3.2 Let B′ be the largest ball contained in a simplex T , such that B′ has the same

center as the minimum enclosing ball B(T ). Then

rB′ ≤ rB(T )/d.

Proof: We want an upper bound on the ratio rB′/rB(T ); consider a similar problem related

to ellipsoids: let e(T ) be the maximum volume ellipsoid inside T , and E(T ) be the minimum

volume ellipsoid containing T . Then plainly

rdB′

rdB(T )

≤ Vol(e(T ))

Vol(E(T ))
,

since the volume of a ball B is proportional to rdB, and Vol(e(T )) ≥ Vol(B′), while Vol(E(T )) ≤

Vol(B(T )). Since affine mappings preserve volume ratios, we can assume that T is a regular

simplex when bounding Vol(e(T ))/Vol(E(T )). When T is a regular simplex, the maximum

enclosed ellipsoid and minimum enclosing ellipsoid are both balls, and the ratio of the radii

of those balls is 1/d. [15] (In other words, any simplex shows that the well-known bound for

Löwner-John ellipsoid pairs is tight.[18]) Thus,

rdB′

rdB(T )

≤ Vol(e(T ))

Vol(E(T ))
≤ 1

dd
,
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and so

rB′

rB(T )

≤ 1

d
,

as stated.

Lemma 6.3.3 Any simplex T has a facet F such that r2
B(F ) ≥ (1− 1/d2)r2

B(T ).

Proof: Consider the ball B′ of the previous lemma. Let F be a facet of T such that B′ touches

F . Then that point of contact p is the center of B(F ), since p is the intersection of F with the

line through cB(T ) that is perpendicular to F . Therefore

r2
B(T ) = r2

B′ + r2
B(F ),

and the result follows using the previous lemma.

Next we describe a procedure for constructing a core-set of size d1/εe.

As noted, we can assume that P is the set of vertices of a simplex T , such that the circumcenter

cB(T ) is in T . We pick an arbitrary subset P ′ of P of size d1/εe. (We might also run the algorithm

of [4] until a set of size d1/εe has been picked, but such a step would only provide a heuristic

speedup.) Let R ≡ rB(P ). Repeat the following until done:

• find the point a of P farthest from cB(P ′);

• if a is no farther than R(1 + ε) from cB(P ′), then return P ′ as a core-set;

• Let P ′′ be P ∪ {a};

• find the facet F of convP ′′ with the largest circumscribed ball;

• Let P ′ be the vertex set of F .

The first step (adding the farthest point a) will give an increased radius to B(P ′′), while the

second step (deleting the point P ′′ \ vertF ) makes the set P ′ more “efficient”.

Theorem 6.3.4 Any point set P ⊂ IRd has an ε-core-set of size at most d1/εe.

Proof: Let r be the radius of B(P ′) at the beginning of an iteration, and let r′ be the radius

of B(P ′) if the iteration completes. We will show that r′ > r.

34



Note that if r ≥ R(1− ε2), the iteration will exit successfully: applying Lemma 6.3.1 to cB(P ′)

and cB(P ) (with the latter in the role of “q”), we obtain that there is a point q′ ∈ P ′ such that

R2 ≥ ||cB(P ) − q′||2 ≥ r2 + ||cB(P ′) − cB(P )||2,

so that

ε2R2 ≥ R2 − r2 ≥ ||cB(P ′) − cB(P )||2,

implying that cB(P ′) is no farther than εR to cB(P ), and so cB(P ′) is no farther than R(1 + ε) from

any point of P , by the triangle inequality. We have, if the iteration completes, that

r2 < R(1− ε2) ≤ R̂2 1− ε2

(1 + ε)2

= R̂2 1− ε
1 + ε

, (6.1)

where R̂ ≡ R(1 + ε).

By reasoning as for the proof of Theorem 2.2 of chapter 5 [4], we have

rB(P ′′) ≥
R̂ + r2/R̂

2
. (6.2)

For completeness, the proof of this bound is the following: since a is at least R̂ from the center

c(P ′), we know that

R̂ = ||a− c(P ′)||

≤ ||c(P ′′)− a||+ ||c(P ′′)− c(P ′)||

≤ rB(P ′′) +K,

where K ≡ ||c(P ′′)− c(P ′)||, and by Lemma 6.3.1, there is a point q′ ∈ P ′ such that

||c(P ′′)− q′|| ≥
√
r2
B(P ) +K2.

Combining these two lower bounds on rB(P ′′) and minimizing with respect to K gives the bound

(6.2).
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We use (6.2) and the lower bound of the previous lemma on the size of B(F ) to obtain

r′ ≥ R̂ + r2/R̂

2

√
1− 1

d1/εe2
,

and so

r′

r
≥ R̂/r + r/R̂

2

√
1− ε2.

The right-hand side is decreasing in r/R̂, and so, since from (6.1), r < R̂
√

(1− ε)/(1 + ε), we

have

r′

r
>

√
1−ε
1+ε

+
√

1+ε
1−ε

2

√
1− ε2 = 1.

Therefore r′ > r when an iteration completes. Since there are only finitely many possible values

for r, we conclude that the algorithm successfully terminates with an ε-core-set of size d1/εe.

6.4 Experimental Results

Some experimental results on the approximation ratios are shown in Figures 6-1 through 6-8,

each for different dimensional random data and distributions. The ordinates are the sizes of the

core-sets considered, and the abscissas are the percentage increase in radius needed to enclose

the whole set, relative to the smallest enclosing sphere.

In the plots,

• (hot start) a plain line shows results for the algorithm given here, starting from the output

of the previous algorithm guaranteeing a 2/k-core-set;

• (old) a dashed line is for the previous algorithm guaranteeing a 2/k-core-set;

• (random start) a bullet (•) is for the algorithm given here, starting from a random subset;

• (1-swap) a dot (.) is for an algorithm that is like the one given here, but that works a

little harder: it attempts local improvement by swapping a point into the core-set, and

another point out of the core-set. The possible points considered for swapping in are the

three farthest from the circumcenter of the current core-set, while the points considered for
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swapping out are those three whose individual deletion leaves the circumradius as large as

possible.

Figures 6-9 through 6-16 show the number of iterations needed for the algorithms, using the

same graphing scheme.

Note that the random-start algorithm often does as well or better as hot-start algorithm,

although a small but non-trivial number of iterations are required, while often the hot-start

algorithm needs few or no iterations: the optimal algorithm serves as a confirmation that the

“old” algorithm returns a better result than guaranteed.

We also performed tests of the gradient-descent method described in [4]. The algorithm is

quite simple: start with an arbitrary point c1 ∈ p. Repeat the following step K times: at step

i find the point p ∈ P farthest away from the current center ci and move towards p as follows:

ci+1 ← ci + (p − ci) 1
i+1

. For K = 1/ε2, this algorithm produces a point which is at distance at

most ε away from the true center. For this requirement, it can be shown that this algorithm is

tight on the worst case for the case of a simplex. However, if we require that the farthest away

point from the point produced is at distance at most (1+ ε)R, it is not clear if the analysis of the

algorithm is tight. In fact, to our surprise, in our experiments the distance between the point

produced and the farthest away point is 99.999% of the time under (1+1/K)R and always under

(1 + 1.1/K)R. We tested the algorithm under normal and uniform distributions. An empiric

argument to try to explain this unexpected behaviour is the following: it has been noted that

the algorithm picks most (but not all) of the points from a small subset in a repetitive way, i.e.,

for example one point can appear every 5− 10 iterations. Now, if you only pick 2 points A and

B in an alternate way (A, B, A, B, ...), (i.e., subcase of the case when the solution is given by 2

points), the solution will converge quickly to the subspace spanned by A and B and it’s easy to

see that the error within the subspace will be at most 1/K after K steps. This empiric argument

seems to give some intuition on why the algorithm give so much better error in practice. It may

also be possible to prove this algorithm converges much faster theoretically.

Figures 6-17 through ?? show convergence results for the “gradient descent” algorithm. They

show the percentage overestimate of the radius of the minimum enclosing ball, as a function of

the number of iterations i. The first two figures show results for d = 2, 3, 10, 100, and 200, and

the final figure shows the results for point distributed in an annulus with d = 10. Note that the

error is often less than 1/i and never more than a small multiple of it.
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Figure 6-1: d = 3, normal
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Figure 6-2: d = 3, uniform
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Figure 6-3: d = 10, normal
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Figure 6-4: d = 10, uniform
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Figure 6-5: d = 100, normal
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Figure 6-6: d = 100, uniform
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Figure 6-7: d = 200, normal
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Figure 6-8: d = 200, uniform
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Figure 6-9: d = 3, normal
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Figure 6-10: d = 3, uniform

42



•

• •
•
•
•
•
•
• • •

•

•
•

•

• •

. . . . . .

. . . . . . . .

5 10 15 20

0

2

4

6

8

10

core-set size k

number
of
iterations

Figure 6-11: d = 10, normal
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Figure 6-12: d = 10, uniform
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Figure 6-13: d = 100, normal
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Figure 6-14: d = 100, uniform
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Figure 6-15: d = 200, normal
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Figure 6-16: d = 200, uniform
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