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Abstract

Exploration and patrolling are central themes in distributed robotics. These de-
ployment scenarios have deep fundamental importance in robotics, beyond the most
obvious direct applications, as they can be used to model a wider range of seemingly
unrelated deployment objectives.

Deploying a group of robots, or any type of agent in general, to explore or patrol
in dynamic or unknown environments presents us with some fundamental conceptual
steps. Regardless of the problem domain or application, we are required to (a) under-
stand the environment that the agents are being deployed in; (b) encode the task as
a set of constraints and guarantees; and (c) derive an effective deployment strategy
for the operation of the agents. This thesis presents a coherent treatment of these
steps at the theoretical and practical level.

First, we address the problem of obtaining a concise description of a physical en-
vironment for robotic exploration. Specifically, we aim to determine the number of
robots required to be deployed to clear an environment using non-recontaminating
exploration. We introduce the medial axis as a configuration space and derive a
mathematical representation of a continuous environment that captures its under-
lying topology and geometry. We show that this representation provides a concise
description of arbitrary environments, and that reasoning about points in this rep-
resentation is equivalent to reasoning about robots in physical space. We leverage
this to derive a lower bound on the number of required pursuers. We provide a
transformation from this continuous representation into a symbolic representation.

We then present a Markov-based model that captures a pickup and delivery (PDP)
problem on a general graph. We present a mechanism by which a group of robots can
be deployed to patrol the graph in order to fulfill specific service tasks. In particular,
we examine the problem in the context of urban transportation, and establish a model
that captures the operation of a fleet of taxis in response to incident customer arrivals
throughout the city. We consider three different evaluation criteria: minimizing the
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number of transportation resources for urban planning; minimizing fuel consumption
for the drivers; and minimizing customer waiting time to increase the overall quality
of service.

Finally, we present two deployment algorithms for multi-robot exploration and
patrolling. The first is a generalized pursuit-evasion algorithm. Given an environ-
ment we can compute how many pursuers we need, and generate an optimal pursuit
strategy that will guarantee the evaders are detected with the minimum number of
pursuers. We then present a practical patrolling policy for a general graph. We
evaluate our policy using real-world data, by comparing against the actual observed
redistribution of taxi drivers in Singapore. Through large-scale simulations we show
that our proposed deployment strategy is stable and improves substantially upon the
default unmanaged redistribution of taxi drivers in Singapore.

Thesis Supervisor: Daniela Rus
Title: Professor

3



Acknowledgments

Deus é fiel
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Chapter 1

Introduction

1.1 Motivations and Goals

Exploration and patrolling are central themes in distributed robotics. The simple

task of deploying a robot to autonomously explore an unknown environment needs

little motivation. With the Curiosity Rover having just celebrated its first birthday

at the time of writing of this thesis, it would not be an overstatement to say that

exploration is one of the most enduring pursuits in robotics.

The goal of exploration is to inspect and obtain a representation of some region

under consideration. The goal of patrolling is to continuously inspect some region

under consideration, while performing certain actions or fulfilling certain problem con-

ditions. These deployment scenarios have obvious direct applications in surveillance,

disaster response, and military operations. But beyond such direct and practical ap-

plications, exploration and patrolling have even deeper fundamental importance in

robotics as they can be used to model an ever wider superset of seemingly unrelated

deployment objectives.

To elaborate, exploration is fundamentally the static acquisition of information

from an environment. In the most general sense, an agent or group of agents tra-

verse an environment and record some kind of sensory data. The objectives of an

exploration task can be different and will inevitably depend on the application in

question. We consider the canonical example, wherein a robot is tasked to traverse
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an unknown environment and record a physical map using sensor data. The task is

accomplished when data has been gathered from every part of the environment, and

the environment is fully mapped. This is the literal interpretation of exploration. But

this condition is loose and is malleable to interpretation.

In another example, a robot could be deployed on the battlefield in search of land

mines. In this case, the immediate physical environment may or may not be known;

the robot may need to clear a specific area, or may need to find a safe path through

a certain distance. Any combination of these and other parameters would result in

different problems, but all are easily encoded as exploration problems by adjusting

the conditions to express the requirements of the problem.

As a final example, we consider a special case of exploration considered in this

thesis, called pursuit-evasion. In this scenario, a group of robots are required to sweep

an unexplored environment and detect any intruders that are present. Pursuit-evasion

is an example of non-recontaminating exploration, whereby an initially unexplored

and contaminated region is cleared while ensuring that the cleared region does not

become contaminated again. There are interesting real-life applications of pursuit-

evasion. Aside from the literal interpretation (pursuing an evader), there are other

scenarios that motivate non-recontaminating exploration. For example, in a disaster

response scenario following an earthquake, a group of robots is required to locate

all survivors in inaccessible areas, while the survivors are possibly moving in the

environment. In the aftermath of the Tohoku Earthquake and Tsunami of 2011, the

KOHGA3 and Quince search and rescue robots were deployed under these kind of

circumstances (Figure 1-1).

Patrolling is an even more general abstraction of such deployment scenarios. Pa-

trolling can be interpreted as the dynamic acquisition of data from an environment.

In the most general sense, an agent or group of agents traverse an environment and

continuously record some kind of sensory data. It is not hard to see that patrolling is

a generalization of exploration. To motivate this, consider a special case of patrolling

where the information being gathered from the environment is constant. If the goal

of the task is to continuously acquire this information with time, then a single ac-
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(a) KOHGA3 robot (b) Quince robot

Figure 1-1: KOHGA3 and Quince search and rescue robots deployed in the aftermath of the
Tohoku Earthquake and Tsunami of 2011.

quisition is sufficient at all point, as we then have full knowledge of this information

thereafter. Thus we can see that this simply reduces to an exploration problem, and

exploration in the sense of static data acquisition is a special case of patrolling. If the

data source changes with time, acquisition needs to occur continuously, so patrolling

can be interpreted as ”persistent exploration”.

Once again, the goals of a patrolling task depend on the problem being modeled.

In the canonical example, a surveillance robot patrols for an intruder in a closed

environment. This is the most familiar interpretation of patrolling; in this scenario

perhaps the robots are required to patrol regions where intrusion activity is more

likely, and avoid safer regions. The task is never ”accomplished” as such, since the

patrolling is continuous, rather the objective now becomes to provide certain guaran-

tees, for example that no intruders enter the patrolled area over a period of time.

To consider another example, a group of autonomous robots may be deployed to

cater to an oil spill in the ocean. Following the Deepwater Horizon oil spill of 2010,

the Seaswarm oil absorbing robot was deployed for exactly this purpose (Figure 1-

2). Such robots may be required to patrol more frequently in regions where there

is oil, and avoid clean regions. We may have an estimate of the rate of expansion

of surfaced oil based on the hydraulic pressure at the source of the leak. However,

we do not know where in the region the oil will surface. The robots patrolling the
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(a) Horizon oil spill (b) Seaswarm oil absorbing robot

Figure 1-2: Aerial view of the Deepwater Horizon oil spill, 2010 (left) and the oil absorbing robot
deployed in the cleanup efforts (right).

region should cover the entire area at some minimum rate, in order to guarantee

that an oil spill will not be greater than a certain radius. Clearly this is a different

problem than the previous example, and the objective and criteria for success depend

on many different parameters. Nonetheless, these two examples and the previous

three exploration examples, can all be encoded as patrolling problems.

Deploying a group of robots, or any type of agent in general, to explore or patrol

in dynamic or unknown environments presents us with some fundamental conceptual

steps. Regardless of the problem domain or application, we can broadly categorize

these as follows. We are required to (a) understand the environment that the agents

are being deployed in; (b) encode the task as a set of constraints and guarantees; and

(c) derive an effective deployment strategy for the operation of the agents.

There are notable technical challenges involved in each step. In the first step (a),

we need to understand what kind of properties of the environment we are interested

in: for example, intuition tells is that width is important; and how they can affect the

deployment scenario: the width of the environment may affect the number of agents

required to explore it. This is difficult because even in trivial cases it is already unclear

how to interpret the simplest geometric parameters (for example in Figure 1-3a it is

already unclear how to define the ”width” of the environment). In more realistic

environments (e.g. Figure 1-3b) our intuition fails and we must be very precise about

what kind of metrics we need to obtain and how they relate to the specific scenario
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(a) Trivial environment (b) Non-trivial environment

Figure 1-3: A trivial example environment (left) and a more realistic non-trivial environment
(right). The free region is shown in white and the obstacle region is shown in black.

that is under consideration.

In the second step (b), the difficulty lies in identifying the right level of abstraction

for the model. On the one hand, a model that is too simple will not be general enough

to express the nuances that fully capture the problem requirements. The problem

constraints should be fully captured by the model, and the necessary guarantees

should be verifiable from the solution format. On the other hand, if the model is

too complicated, it may be difficult to develop a tractable solution and/or to encode

the solution as a deployment algorithm. Different levels of abstraction yield different

results: some are more general, some more efficient, some more elegant. Which level

of abstraction is most suitable depends on the particular requirements of the problem.

In the third step (c), the challenge is, put simply, to find a solution that works, and

to prove that it works in theory and in practice. The solution can be imperative – an

algorithm that directly dictates the deployment of the agents, or it can be passive – a

policy that defines a set of rules according to which the agents make decisions as the

deployment scenario unfolds. Generally speaking, a sound algorithm or policy should

at least guarantee progress and termination. Informally, we understand progress to

mean that the algorithm or policy evolves in some progressive manner towards its

objective, and we understand termination to mean that the algorithm will eventually

complete. Finally, proving that the solution is sound is the primary challenge on

the theory front. But equally important is that the solution actually works in a real
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application.

This thesis presents a coherent treatment of these steps at the theoretical and

practical level. In consideration of the first step (a), we present a novel methodology

for understanding an arbitrary continuous environment. We introduce tools for ana-

lyzing the environment’s underlying topology and geometry. We present an algorithm

for obtaining a concise configuration space representation of a physical environment.

We derive reasoning about this representation, and show how it can be transformed

into a discrete acyclic graph representation of the environment.

In consideration of the second step (b), first we consider a special case of explo-

ration called pursuit-evasion. We show how the problem constraints of this explo-

ration scenario can be encoded as rules within a discrete environment representation.

We establish a mechanism for deploying agents in the environment by casting these

rules as a game. We then consider the more general problem of patrolling. We show

how a patrolling problem can be set up on a general graph. We encode the prob-

lem constraints in a discrete Markov model that faithfully captures all the important

properties in problem domain.

In consideration of the final step (c) we present two deployment algorithms. First,

we present an exploration algorithm for pursuit-evasion. We show how our environ-

ment characterization can be used to derive an algorithm that will guarantee the

evaders are detected with the minimum number of pursuers. Second, we present a

policy for patrolling on a general graph, and show how this policy is used to solve an

important real-life problem in urban transportation. We extend our Markov model

to capture the operation of a fleet of service agents (taxis) patrolling the city in re-

sponse to incident requests (arriving customers) throughout the day. Our goal is to

compute a solution in the form of the required number of taxis in the system and

their patrolling policy. We encode the solution as a scalable optimization problem

and present a practical patrolling policy.

The thesis presents a coherent treatment of all the steps involved in developing a

deployment algorithm for robotic exploration and patrolling: (1) understanding the

problem specification, (2) characterizing and representing an arbitrary continuous
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environment, (3) transforming the problem into a discrete representation, (4) devel-

oping an effective algorithm to solve the problem, and (5) applying the algorithm to

a real-life application.

1.2 Contributions to Robotics

This thesis makes the following contributions:

• Environment characterization for non-recontaminating exploration.

The first part of this thesis addresses the problem of obtaining a concise descrip-

tion of a physical environment for robotic exploration. We aim to determine the

number of robots required to clear an environment using non-recontaminating

exploration. We introduce the medial axis as a configuration space and derive a

mathematical representation of a continuous environment that captures its un-

derlying topology and geometry. We show that this representation provides a

concise description of arbitrary environments, and that reasoning about points

in this representation is equivalent to reasoning about robots in physical space.

• Deployment strategy for non-recontaminating exploration. We lever-

age our continuous environment representation to derive a lower bound on the

number of required pursuers required to explore the environment using non-

recontaminating exploration. We provide a transformation from this continuous

representation into a symbolic representation. Finally, we present a generalized

pursuit-evasion algorithm. Given an environment we can compute how many

pursuers we need, and generate an optimal pursuit strategy that will guarantee

the evaders are detected with the minimum number of pursuers.

• Markov-Based Model for Urban Mobility Networks. In the second part

of this thesis we present a Markov-based urban transportation model that cap-

tures the operation of a fleet of taxis in response to incident customer arrivals

throughout the city. We leverage data from a fleet of 16,000 taxis in Singa-

pore to create a realistic model of taxi fleet operation in Singapore. We show
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that a standard undirected clique model is highly restrictive in terms of the

kind of transportation network that it can describe. We present an improved

model and discuss the steps taken to ensure that the model is realistic while

still complying with the Markov framework. We then present a mechanism by

which an optimization problem can be set up to handle a sparse network while

maintaining a computational complexity that is independent of the degree of

precision of the model.

• Deployment strategy for patrolling a Markov-based graph model,

with application to urban mobility systems. Using the above urban trans-

portation model, we show how we can learn and interpret the current default

behavior of taxi drivers within our framework, and prove that the current be-

havior is sub-optimal with respect to several evaluation criteria. We show how

to compute a solution in the form of the required number of vehicles in the sys-

tem and their redistribution policy. We then consider the solution with respect

to three seemingly different optimization criteria. The first criterion consid-

ers the customers, whose end goal is to minimize the time spent waiting for a

taxi. The second criterion considers the urban planning authority whose goal

is to minimize the number of vehicles in the road network. The third criterion

considers the cost and environmental implications of fuel consumption. We en-

code the solution as a scalable optimization problem and present a practical

redistribution policy.

• Experiments. We evaluate our policy by comparing it against the actual

observed redistribution of taxi drivers in Singapore. We present experimental

results via implementation in large-scale traffic simulations and consider the

extent to which optimization at different levels of abstraction can work together

as part of a complete urban mobility system. We show that our proposed policy

is stable and improves substantially upon the default unmanaged redistribution

of taxi drivers in Singapore with respect to the three optimization criteria.
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1.3 Relation to Previous Work

An important aim of our work is to bridge the different levels of abstraction that work

to date has been grounded in. This section elaborates on this claim, and highlights

the motivations for improvement over the existing state of the art. Chapter 2 provides

a comprehensive survey of related work.

Environment characterization for pursuit-evasion has been considered for polygo-

nal spaces. We highlight that these studies considered robots equipped with infinite

range visibility sensors deployed in polygonal spaces. Consequently the scope of en-

vironment characterization was limited. By contrast we consider limited visibility

sensors, and we do not require the environment to be polygonal.

The medial axis has previously been studied in the context of robotic navigation.

In this work, we use the medial axis to capture the underlying topological and ge-

ometric properties of our environment, and use it to transform the problem into a

graph formulation. In our work, we consider the medial axis in a completely novel way

– by treating it as a configuration space to derive a robust representation of a con-

tinuous environment that captures its underlying properties. We then use the medial

axis we then leverage existing exploration models to build a concise representation of

arbitrary environments in continuous two-dimensional space.

Visibility-based pursuit-evasion has been considered for continuous two-dimensional

spaces. Generally speaking, visibility-based algorithms do the correct thing locally,

but do not rely on, or make any guarantees for, a global description of an environment.

As such, they may not be guaranteed to terminate.

Pursuit-evasion on graphs that are representations of some environment date back

more than four decades. Although discrete graph-based models offer termination and

correctness guarantees, they assume the world is suitably characterized and make

no reference to the underlying physical geometry of the environment that is being

represented.

In our work, we make use of the medial axis to establish a transformation from

a continuous representation of an environment into the discrete domain. First, this
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allows us to calculate bounds on the number of robots required to clear an environ-

ment, and to provide termination guarantees for existing pursuit-evasion algorithms.

Second, this establishes an application platform for existing graph-based algorithms

making them applicable to continuous environment descriptions.

More generally, we establish techniques which can in principle be used to trans-

form a low-level continuous representation into a high-level graph-based discrete rep-

resentation, and thus offer a mechanism for transforming any low-level exploration or

patrolling problem into high-level problem.

Many different application scenarios of the exploration and patrolling model have

been studied, as motivated by the examples in the preceding discussion and in Figures

1-1 and 1-2. As an end point for our work we consider an application of some practical

significance – urban mobility has been an active area of research since the turn of the

century. In the US, the annual congestion cost is projected to grow to $133 billion

by 2015 [22]. Not surprisingly, social and municipal trends are changing in favor of

a modernized system of public transportation, and the recent volume of research in

the subject reflects this.

Dynamic Traffic Assignment problems generally aim to optimized traffic flow while

accounting for congestion effects. DTA models commonly differ widely in the rep-

resentation of the supply and demand processes. Mobility-on-Demand (MOD) is

a newer paradigm for handling traffic congestion. The Pickup and Delivery prob-

lem (PDP) is a paradigm for handling traffic congestion whereby passengers arriving

into a network are transported to a delivery site by vehicles. Load balancing in the

Mobility-on-Demand systems is a similar a problem. As well as system-level traffic

flow considerations, socially motivated objectives have also been considered, where

the collective optimization criteria of the entire system are incentivized in favor of

individual optima.

DTA and PDP problems are characterized by inherent mathematical intractabil-

ity and challenging complexities. One practical consequence of this is that research

has favored the development of heuristic solutions that emphasize effectiveness, ro-

bustness, and deployment efficiency over claims of uniqueness or global optimality
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that may not be essential or particularly meaningful in the practical applications. As

such, solutions tend to be less general, and are useful within narrow margins of the

problem context.

Our work extends to encompass a broad scope of optimization criteria. We con-

sider the interplay between global optimization criteria typical of related studies of

DTA and MOD systems, as well as social optimization criteria as motivated by recent

studies of congestion-aware traffic systems.

We believe that urban mobility is an exciting application scenario for robotics al-

gorithms, in particular for the following reason. Infrastructure and technology devel-

opments are resulting in MOD systems becoming ”smart” to varying degrees. Vehicles

can now drive themselves and human drivers often rely on automated navigation sys-

tems. The lines between what is a manned system and what is an autonomous system

are becoming blurred. Developments in distributed robotics are becoming ever more

pertinent to vehicle operation, navigation systems and traffic networks. The applica-

tion of our algorithms traditionally developed for autonomous robots to human taxi

drivers offers us new insights into transportation systems and sets precedent for the

urban mobility systems of the future.

1.4 Thesis Organization

This thesis is organized into eight chapters. Chapter 2 provides a comprehensive

survey of related work. Chapter 3 presents a mechanism for obtaining a concise

representation of a physical environment for robotic exploration. Chapter 4 presents

an optimal deployment algorithm for a group of robots engaged in distributed non-

recontaminating exploration. Chapter 5 presents a Markov-based urban mobility

model and a mechanism by which a group of robots can patrol the graph to service

persistent requests. Chapter 6 presents a practical deployment policy for patrolling

the urban mobility model and shows how our algorithm offers several improvements

over current ground truth behavior. We conclude the thesis in Chapter 7, reflect on

the contributions of the work and consider lessons learned for future work in this area.
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Chapter 2

Related Work

This thesis builds on ground-breaking prior research in robotic algorithms for explo-

ration, pursuit-evasion, and task allocation. The research also builds on prior research

on modeling and lower bounds for decentralized algorithms. In this chapter we detail

some of the key results.

2.1 Exploration, Pursuit-Evasion and Patrolling

Visibility-based pursuit-evasion in continuous two-dimensional space was first intro-

duced in [43]. Frontier-based exploration was introduced in [49] and extended to

multiple robots in [50]. In [10] the authors consider limited visibility frontier-based

pursuit-evasion in non-polygonal environments, making use of the fact that not al-

lowing recontamination means we do not need to store a map of the environment;

here a distributed algorithm is presented which works by locally updating the frontier

formed by the sensor footprints of the robots. Another distributed model was more

recently considered in [6]. Limited visibility was also considered in [41] which presents

an algorithm for clearing an unknown environment without localization. In [13] the

problem was considered for a single searcher in a known environment.

Environment characterization for pursuit-evasion has been considered for polygo-

nal spaces. In [15],[17] pursuit-evasion in connected polygonal spaces is investigated,

and tight bounds derived on the number of pursuers necessary based on the number of
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polygon edges and holes. In [29] basic environment characterization is established, by

means of a general decomposition concept based on a finite complex of conservative

cells. In [48] similar ideas were explored, and several metrics proposed for primitive

characterization of polygonal spaces.

The medial axis has previously been studied in the context of robotic navigation.

For example, in [16],[20],[47] the medial axis was used as a heuristic for probabilistic

roadmap planning. One of the key features that makes the medial axis attractive for

such applications is that it captures the connectivity of the free space.

Pursuit-evasion on graphs that are representations of some environment goes back

as early as [33],[35]. Randomized pursuit strategies on a graph are considered in [1].

Roadmap-based pursuit-evasion is considered in [24] and [39] where the pursuer and

evader share a map and act according to different rules. In [39] a graph-based repre-

sentation of the environment is used to derive heuristic policies in various scenarios.

More recently, [27] presents a graph-based approach to the pursuit-evasion problem

whereby robots use blocking or sweeping actions to detect all intruders in the envi-

ronment. In [25] and [26] the more general graph variant of the problem was reduced

to a tree by blocking edges.

Many other approaches and starting assumptions have been explored. Proba-

bilistic evader detection, where multiple searchers are tasked with efficiently locating

evaders is studied in [21], while [19] presents a greedy probabilistic policy for multiple

pursuers. Roadmap-based pursuit-evasion, where the pursuer and evader share a map

and act according to different rules is studied in [24] and [39]. Randomized pursuit

strategies under different conditions are investigated in [23]. An adaptive planning

strategy for pursuit-evasion in unknown environments is presented in [2].

2.2 Applications to Urban Mobility

The Dynamic Traffic Assignment problem (DTA) dates back as early as [31] and

[12]. Generally speaking, the objective of DTA problems is to optimize traffic flow

while accounting for congestion effects. A thorough survey can be found in [38]. For
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example, the problem is grounded in continuous time control theory in [12], while [11]

presents a variational inequality formulation. A mathematical programming approach

in used in [31], [51]. Another recent work [51] models the problem as a linear program,

and a simulation-based approach in [3] presents an offline model for estimation of

supply and demand.

Mobility-on-Demand (MOD) is an emerging paradigm for handling traffic conges-

tion. In MOD systems, the goal is to provide users with on-demand rental facilities

of convenient and efficient modes of transportation [32]. Load balancing in MOD

systems is similar to the Pickup and Delivery problem (PDP), whereby passengers

arriving into a network are transported to a delivery site by vehicles. For a review

of the state of the art see [4], [34] and the references therein. Autonomous load re-

balancing in MOD systems has recently been studied in [36] and [37], where a fluid

model was used to represent supply and demand.

As well as system-level traffic flow optimizations, socially motivated criteria have

also been considered. Recent work on traffic planning explored optimizing a drivers’s

route subject to congestion [30]. Social optimum planning models for computing

vehicle paths are presented in [40, 46].
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Chapter 3

Environment Characterization for

Non-Recontaminating Exploration

This chapter1 addresses the problem of obtaining a concise description of a physical

environment for robotic exploration. We aim to determine the number of robots re-

quired to clear an environment using non-recontaminating exploration. We introduce

the medial axis as a configuration space and derive a mathematical representation of a

continuous environment that captures its underlying topology and geometry. We show

that this representation provides a concise description of arbitrary environments, and

that reasoning about points in this representation is equivalent to reasoning about

robots in physical space. Finally, we leverage this representation to derive a lower

bound on the number of required pursuers.

This chapter of the thesis is organized as follows. In Section 3.1 we provide a

formal model for non-recontaminating exploration and state the problem that we are

addressing. In Section 3.2 we introduce the medial axis as a configuration space and

show that reasoning about points in this space is equivalent to reasoning about robots

in the physical world. We formalize the notion of width, corridors and junctions and

derive bounds on the number of robots required to traverse a junction.

1 The majority of this chapter was published in [45].
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3.1 Problem Formulation

We now present a formal model of the problem we are addressing. Our model builds

on the notation and terminology introduced in [10]. We have a team of n exploration

robots deployed in the Euclidean plane R2. Each robot is equipped with a holonomic

(uniform in all orientations) sensor that records a line of sight perception of the

environment within a maximum sensing radius r. We assume that two robots can

reliably communicate if they are within line of sight of each other and if the distance

between their positions is less than or equal to 2r.

The position of a robot is constrained to be within some free region Q, which is a

closed compact subset of R2. The obstacle region B makes up the rest of the world,

and is defined as the complement of Q. In this work we require both Q and B to

be connected spaces, which means there are no holes in the environment. We define

the obstacle boundary ∂B as the oriented boundary of the obstacle region (which by

definition is the oriented boundary of the free region).

We assume a continuous time model, i.e. time t ∈ R≥0. Let H i
t be the holonomic

sensor footprint of robot i at time t, which is defined as the subset of Q that is within

direct line of sight of robot i and within distance r of robot i. Formally, if p ∈ R2 is

the position of robot i at time t, then H i
t = {x ∈ Q | d(p, x) ≤ r ∧∀y ∈

[
px
]
, y ∈ Q}

where d(x, y) is the Euclidean distance between x and y (see Fig. 3-1a). Let Ht be the

union of the sensor footprints of all robots at some time t, given byHt =
⋃n
i=0H

i
t . This

corresponds to the region being sensed by the robots at time t. We define the inspected

region It ⊆ Q as the union at time t of all previously recorded sensor footprints,

given by It = {p ∈ R2 | ∃t0 ∈ [0, t] such that p ∈ Ht0}. The contaminated region (or

unexplored region) Ut is defined as the free space that has not been inspected by time

t, given by Ut = Q \ It (see Fig. 3-1b). Note that at time t = 0 the contaminated

region is given by Q\H0. We define the cleared region Ct ⊆ It as the inspected region

that is not currently being sensed, given by Ct = It\Ht. We say that recontamination

occurs at time t if the cleared region Ct comes in contact with the contaminated region

Ut (we understand two regions to be in contact if the intersection of their closure is
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(a) Sensor Footprint (b) Inspected region (c) Boundaries

Figure 3-1: Fig. 3-1a shows a robot located at some position p within the free region Q. The
sensor footprint H and its oriented boundary ∂H are shown on the right. Fig. 3-1b shows the
inspected region It and the contaminated region Ut at some time t. Fig. 3-1c shows the inspected
region boundary ∂I, the inspected obstacle boundary ∂IB and the frontier F .

non-empty, i.e. cl(Ct) ∩ cl(Ut) 6= ∅).

When time is clear from context, we understand I and U to mean the current

inspected region and the current contaminated region, respectively. We define the

inspected region boundary ∂I as the oriented boundary of the inspected region I. We

define the inspected obstacle boundary ∂IB as the intersection of the inspected region

boundary and the obstacle boundary, given by ∂IB = ∂I∩∂B. We define the frontier

F as the free (non-obstacle) boundary of the inspected region, given by F = ∂I \∂IB
(see Fig. 3-1c). Observe that by definition the frontier F separates the free region

Q into the inspected region I and the contaminated region U . Observe also that the

frontier need not be connected, and is in general the union of one or more disjoint

maximally connected arcs. We understand the frontier of a group of robots F ′ ⊆ F

to mean a single maximally connected arc of the total frontier formed by the exterior

boundary of the sensor footprints of that group of robots.

The goal of exploration algorithms is to inspect the entire free region. For non-

recontaminating exploration the goal is to inspect the entire fee region without ad-

mitting recontamination. In both cases we say that an environment has been suc-

cessfully explored if It = Q at some time t. In this thesis we deal specifically with

non-recontaminating exploration and present an algorithm that is guaranteed to ex-

plore a space without admitting recontamination.

An algorithm for exploration relies on robots to “expand” the frontier boundary

until the entire free region becomes inspected. However, in a non-recontaminating

exploration algorithm the goal is not only to expand, but also to “guard” the fron-
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tier, ensuring that the inspected region does not become contaminated again. This

difference makes non-recontaminating exploration more restrictive than conventional

exploration. For example, observe that regardless of the size of the sensing radius

of the robots (as long as r > 0), or the properties of the world (as long as Q is

a connected space), a single robot can always explore the world. However, in non-

recontaminating exploration this is not true in general. Informally speaking, if the

“width” of the corridors in the free region is larger than the sensing radius of a robot,

then it should appear obvious that a single robot cannot simultaneously expand and

guard the frontier to inspect the entire free region.

Consider the simple rectangular free region Q shown in Fig. 3-1b. We can reason

that if the width of Q is less than the sum of the sensor diameters of the n robots,

then the environment can be explored without admitting recontamination. However,

even in this simple example it is not completely clear what is meant by width. Notice

that if we consider width to be the distance from the left to the right border then this

reasoning fails — in this case width would specifically mean the smaller of the two

dimensions. So it is already non-trivial how to characterize a very simple environment,

and things become much more complicated in non-rectangular environments.

In this thesis we study the relationship between an environment Q, the sensor

radius r, and the number of robots n required for non-recontaminating exploration

of Q. Intuition tells us that corridor width and junctions are important features.

We formalize the notion of corridors and junctions and present a general method for

computing a configuration space representation of the environment that captures this

intuition. We show that this representation provides a concise description of arbitrary

environments.

A canonical example of non-recontaminating exploration is pursuit-evasion. In

this scenario there is a group of robot pursuers and a group of robot evaders deployed

in the free region Q. The evaders are assumed to be arbitrarily small and fast. The

goal of the pursuers is to catch the evaders (by detecting their presence within the

sensor footprint), and the goal of the evaders is to avoid getting caught. Whenever

part of the frontier is not being guarded by the pursuers, the evaders can move
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undetected from the contaminated region to the previously inspected region, thereby

recontaminating it.

3.2 Environment Analysis

In this section we present the medial axis as a configuration space and show that

reasoning about points in this configuration space is equivalent to reasoning about

robots in physical space. First, we establish the necessary geometric framework,

accompanied by a series of definitions and claims. Second, we introduce an exploration

model in this configuration space and justify that it allows us to reason about the

physical movement of the robots in the environment.

3.2.1 Environment Geometry

The distance transform is a mapping D : R2 → R where D(x) = miny∈B {d(x, y)}

and d(x, y) is the Euclidean distance between x and y (extending definition in [8] to

the continuous domain) (see Fig. 3-2b). Observe that by definition if x /∈ Q then

D(x) = 0. The distance transform of a point x ∈ Q captures the notion of “undirected

width” of a region around a point x in free space, that is we get a measure of how

wide or narrow a region is without being explicit about orientation.

The medial axis or skeleton S of a free space is defined as the locus of the centers

of all maximal inscribed circles in the free space [7] (see Fig. 3-2c). Equivalently, the

skeleton can be defined as the locus of quench points of a fire that has been set to

a grass meadow at all points along its boundary [5], [42]. The skeleton captures the

topology of the free space, and aids us in determining which parts of an environment

should be considered “corridors” and which parts should be considered “junctions”

of multiple corridors.

The degree of a point x ∈ S is given by the function θ : S → N>0 which maps

every point on the skeleton to a natural number k. Specifically, we define a point

x ∈ S to have degree θ(x) = k if there exists an a ∈ R>0 such that ∀ε ∈ (0, a] a circle

centered at x of radius ε intersects the skeleton S at exactly k points.
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(a) Environment image (b) Distance transform (c) Skeleton (d) Relief map

Figure 3-2: The environment is represented by a binary image in Fig. 3-2a. Fig. 3-2b shows the
distance transform D of the environment. Fig. 3-2c shows the skeleton S. Fig. 3-2d shows the relief
map quantization. The relief contours indicate multiples of the sensing radius r.

Borrowing notation from [9], we use the degree of a point x ∈ S to distinguish

between three types of points on the skeleton: corridor points, end points and junction

points. Specifically, for a point x ∈ S, we say x is an end point if θ(x) = 1, x is a

corridor point if θ(x) = 2, and x is a junction point if θ(x) > 2 (see Fig. 3-3a). We

refer to a continuous arc of corridor points on the skeleton simply as a corridor.

An alternative definition for θ(·) can be stated as follows. For a point x ∈ S let

C be the maximal inscribed circle centered at x, and let G be the intersection of this

circle with the obstacle boundary, given by G = C ∩ ∂B. (Observe that by definition

C has radius D(x) 6= 0, and since C is maximal, G is non-empty.) Then θ(x) is

defined as the number of maximally connected arcs in G. This definition for for θ(·)

is equivalent to the previous one [7], [14], [28].

Let G1, G2, . . . , Gθ(x) be the set of maximally connected arcs of G. Note that in

most cases these arcs are in fact just single points, which corresponds to the intuitive

notion of the circle being tangent to the boundary at these points. A cursory glance

reveals that this is the case for most corridor points and junction points. For end

points that lie on the obstacle boundary, the tangent point coincides with the end

point itself. However, the generality is necessary in a few special cases, such as end

points of regions that taper off in a sector. In these cases the maximal inscribed circle

C will be tangent to the obstacle boundary at a continuous arc segment of points. In

order to simplify the discussion we define the tangent points τ1(x), τ2(x), . . . , τθ(x)(x)

of a point x ∈ S as the midpoints of the tangent arcs G1, G2, . . . , Gθ(x) (see Fig. 3-3b).

We define a boundary wall as a maximally connected arc segment of the obstacle

boundary ∂B that does not contain a tangent point of any end point. Formally
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(a) Skeleton points (b) Dead end tangent point (c) Junction tangent points

Figure 3-3: Fig. 3-3a shows the three types of points on the skeleton: end points, corridor points,
and junction points. A corridor is a continuous arc of corridor points. Fig. 3-3b shows three points
on the skeleton e, e′, j and their respective tangent points. For end point e the tangent point τ1(e) is
the midpoint of the tangent arc segment shown (dotted outline). For end point e′ the tangent point
τ1(e′) coincides with the end point itself. For junction point j there are θ(j) = 3 tangent points
τ1, τ2, τ3. Fig. 3-3c shows a junction point j of degree θ(j) = 3. All 3 tangent points τ1, τ2, τ3 are
located on distinct boundary walls.

∂B0 ⊂ ∂B is a boundary wall if it is a maximally connected arc segment such that

∀e ∈ S | θ(e) = 1, τ(e) /∈ ∂B0.

Lemma 1. For a junction point j ∈ S, the θ(j) tangent points of j are located on

θ(j) distinct boundary walls.

Proof. A circle C of radius D(j) centered at a junction point j will be tangent to

the obstacle boundary at the θ(j) tangent points of j. Each pair of adjacent tangent

points τi, τi+1 ∈ C (in the sense of counter-clockwise orientation along C) will be on

opposite sides of one corridor. Consider the obstacle boundary arc segment [τi τi+1]

(in the sense of counter-clockwise orientation along ∂B). If e is the end point of the

corridor that straddles the interior of [τi τi+1], then τ(e) will lie on [τi τi+1]. Thus the

boundary wall containing τi is disjoint from the boundary wall containing τi+1 since

neither contains τ(e). Since this applies for each pair of adjacent tangent points, we

conclude that all θ(j) tangent points τ1, τ2, . . . , τθ(j) will be located on θ(j) distinct

boundary walls (see Fig. 3-3c).

3.2.2 Exploration Model

We now show how we can use the preceding definitions and geometric claims to form

a model for frontier-based exploration and establish an equivalence between the the

medial axis configuration space and the physical environment.
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We claim that reasoning about a single point moving along the skeleton allows us

to reason about a group of robots that form a frontier with their end to end sensor

footprints moving through physical space. We call this point the swarm locus. By

definition a corridor point x ∈ S has exactly two tangent points. For a swarm locus

stationed at x we call these two points the frontier anchor points. The frontier of a

group of robots is represented by a corresponding frontier formed by two line segments

joining the swarm locus to its anchor points. A group of robots engaged in non-

recontaminating exploration will form a frontier arc subtended between two obstacle

boundary walls in physical space; the frontier arc separates the inspected region on

one side from the contaminated region on the other side. Our abstraction allows us

to reason in similar terms: a swarm locus stationed at a point x on the corridor of the

skeleton will similarly form a frontier arc consisting of two line segments subtended

between two obstacle boundary walls; the frontier arc transposed onto Q likewise

separates the inspected region from the contaminated region (see Fig. 3-4a). We

understand the frontier of a swarm locus to mean the frontier F ′ ⊆ F of a group of

robots represented by a swarm locus stationed at a point x ∈ S.

Note that we are making a simplifying abstraction in representing the frontier

F ′ ⊆ F of a group of n0 robots by two end to end line segments subtended between

two obstacle boundary walls. Observe that as n grows, the abstraction becomes more

accurate as the periodic protrusion of the frontier due to the curvature of sensor

footprints becomes finer-grained and less prominent with respect to its length. In

general, this abstraction is justified as we are usually interested in characterizing

environments where n� 0.

For the purposes of introducing the exploration model we assume that the swarm

locus always begins at an end point. (Note that this assumption only serves to simplify

the discussion, and can be removed easily by introducing several special cases.) From

the definition of the degree of a point on the skeleton, a maximal inscribed circle C

centered at an end point e ∈ S will be tangent to the obstacle boundary at a single

point τ(e). Thus both anchor points are the same point τ(e) and the frontier F ′ ⊆ F

of a swarm locus stationed at e is formed by two identical line segments [e τ(e)]. In
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swarm locus

(a) Swarm locus (b) Initial frontier (c) Split frontier

Figure 3-4: Fig. 3-4a shows a group of robots at positions pi forming a frontier F ′ with the exterior
boundary of their sensor footprints. Superimposed is the corresponding swarm locus stationed at a
point x ∈ S forming a frontier F ′′ with two line segments subtended between two obstacle boundary
walls. Fig. 3-4b shows the initial frontier F ′ of a swarm locus stationed at an end point e, separating
the environment into I0 = ∅ and U0 = Q. As the swarm locus moves along the skeleton to reach a
point x ∈ S, it forms a frontier F ′′. The swarm locus has swept across the environment and cleared
the region to the left of F ′′. Fig. 3-4c shows the configuration of a split frontier. A swarm locus is
traversing a junction point j with θ(j) = 3. The ingoing frontier F ′

0 splits, producing 1 split point
s and 2 outgoing frontiers F ′

1,F ′
2.

this configuration, F ′ separates the environment Q into the inspected region I0 = ∅

and the contaminated region U0 = Q, corresponding to the fact that the swarm locus

has not yet explored any of the environment. As the swarm locus starts moving along

the skeleton, the anchor points will move along ∂B on either side of the corridor

and the frontier will “sweep” across the environment. The frontier now separates Q

into two disjoint nonempty regions. The inspected region begins growing, while the

contaminated region begins shrinking, corresponding to the fact that the robots have

begun clearing the environment (see Fig. 3-4b).

Moving Through Corridors

We define the relief map R : R2 → N as the quantization of the distance transform

using the sensing radius r, given by R(x) = dD(x)/re (see Fig. 3-2d). The relief map

uses the distance transform to similarly capture the notion of width, expressing the

same information in terms of the number of robots required at a point x to reach the

closest point on the obstacle boundary.

Lemma 2. A group of n0 robots represented by a swarm locus that reaches a corridor

point x ∈ S prevents recontamination if and only if n0 ≥ R(x).

Proof. In order to prevent recontamination, the group of robots must subtend a

frontier between two obstacle boundary walls in physical space. By definition, the
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distance between x ∈ S and the closest point to the obstacle boundary on either

side is exactly D(x) ≤ R(x). Thus we can always produce two lines l1, l2 from x

to the two closest points on the obstacle boundary of combined length L ≤ 2R(x).

If n0 ≥ R(x) then the robots can always align themselves in physical space such

that their frontier passes through x in the same arrangement as l1, l2 of combined

length L ≥ 2R(x). Therefore a group of n0 ≥ R(x) robots can always form a frontier

that subtends between two obstacle boundary walls, and recontamination can always

be prevented. If n0 < R(x) then any arrangement of the robots in physical space

such that their frontier passes through x will always result in a frontier of length

L < 2R(x). Therefore a group of n0 < R(x) robots can never form a frontier

that subtends between two obstacle boundary walls, and recontamination will always

occur.

Corollary 1. A group of n0 robots represented by a swarm locus moving along a

corridor G = [a b] ⊂ S prevents recontamination at all points x ∈ G if and only if

n0 ≥ maxx∈G {R(x)}.

When a swarm locus reaches an end point, the situation is the reverse of that

at the beginning. From the definition of the degree of a point on the skeleton, a

maximal inscribed circle C centered at an end point e ∈ S will be tangent to the

obstacle boundary at a single point τ(e). Thus both anchor points are the same point

τ(e) and the frontier F ′ ⊆ F of a swarm locus stationed at e is formed by two identical

line segments [e τ(e)]. In this configuration, F ′ separates the environment Q into the

inspected region It and some part of the contaminated region ∅, corresponding to the

fact that the swarm locus has cleared a particular corridor. In the case where there

is only one swarm locus, F ′ separates the environment Q into the inspected region

It = Q and the entire contaminated region Ut = ∅, corresponding to the fact that the

entire environment has been cleared.
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Traversing Junctions

When a group of robots reaches a junction in physical space, they should split and

explore the outgoing junction corridors separately. If the robots do not split then

recontamination will occur due to any of the unattended outgoing corridors coming

in contact with the inspected region. Upon reaching a physical junction with some

number of outgoing corridors, a single group of robots forms more than one group of

robots with that number of disjoint maximally connected arcs making up the exterior

boundary of their sensor footprints. Correspondingly, we define the frontier F ′0 ⊆ F

of a group of robots to split when the exterior boundary of the sensor footprints of

the robots is no longer connected and becomes the union of two or more disjoint

maximally connected arcs. Thus a group of robots splits when their frontier splits.

For a junction point j with θ(j) − 1 outgoing corridors, the junction is considered

traversed when the frontier F ′0 ⊆ F of the group of robots splits to form θ(j) − 1

outgoing frontiers F ′1,F ′2, . . . ,F ′θ(j)−1 ⊂ F .

Observe that since the total frontier is at all times given by F = ∂I \∂IB, if one or

more new disjoint maximally connected frontier arcs form, then by necessity one or

more new disjoint maximally connected inspected obstacle boundary arcs also form.

At the time t0 that a frontier F ′0 ⊆ F of a group of robots splits to form θ(j) − 1

frontiers, it will have θ(j)−2 points of contact with the obstacle boundary. We call a

frontier F ′0 in such a configuration a split frontier and we call these points split points

(see Fig. 3-4c). For t > t0 the split points on the obstacle boundary grow into the

θ(j)− 2 new disjoint maximally connected inspected obstacle boundary arcs.

Split Frontier Bounds

We establish the lower bound as follows. To traverse a junction we require a split

frontier F ′s to be formed with θ(j)− 2 split points. The ingoing frontier F ′0 subtends

between two boundary walls ∂B1, ∂Bθ(j), intersecting them at the frontier anchor

points c1, c2. Therefore the split points s1, s2, . . . , sθ(j)−2 are located on each of the

other θ(j)− 2 boundary walls ∂B2, ∂B3, . . . , ∂Bθ(j)−1. Without a split point on each
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(a) Lower bound split frontier (b) Upper bound split frontier

Figure 3-5: Frontier configurations for lower and upper bound derivations.

of these boundary walls, the split frontier cannot be formed and the junction cannot

be traversed. Hence, a lower bound on the number of robots required to traverse a

junction is given by minimizing the length of the split frontier over all possible points

on the respective boundary walls. Thus we can never form a split frontier of total

length less than

∥∥F ′s,min∥∥ = min
{
‖c1 s1‖+ ‖s1 s2‖+ . . .+

∥∥sθ(j)−3 sθ(j)−2∥∥+
∥∥sθ(j)−2 c2∥∥} ,

for c1 ∈ ∂B1, s1 ∈ ∂B2, . . . , sθ(j)−2 ∈ ∂Bθ(j)−1, c2 ∈ ∂Bθ(j) . (3.1)

If the number of robots is insufficient to form a split frontier of the smallest possible

length, then it will certainly be insufficient to form a split frontier of any other length.

But a split frontier must be formed in order to traverse a junction, irrespective of

the exploration model. Thus no exploration model can dictate a configuration of

robots that is able to traverse a given junction with fewer than ‖F ′s,min‖ robots. This

establishes the lower bound (see Fig. 3-5a).

We establish the upper bound as follows. Assume we have some number of robots

at a junction of degree θ(j). The ingoing frontier F ′0 subtends between two boundary

walls ∂B1, ∂B2, intersecting them at the frontier anchor points c1, c2. The ingoing

frontier can always be aligned, without admitting recontamination, such that its

anchor points correspond to the tangent points τ1, τθ(j) on the two boundary walls

that it subtends. By Lemma 1, a junction of degree θ(j) will have tangent points on

θ(j) distinct boundary walls. Thereafter the ingoing frontier can always be extruded
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toward each of the other θ(j)− 2 tangent points in turn, likewise without admitting

recontamination. Thus for a junction j with tangent points τ1, τ2, . . . , τθ(j) we can

always form a split frontier of total length

∥∥F ′s,max∥∥ = ‖c1 s1‖+ ‖s1 s2‖+ . . .+
∥∥sθ(j)−3 sθ(j)−2∥∥+

∥∥sθ(j)−2 c2∥∥
= ‖τ1 τ2‖+ ‖τ2 τ3‖+ . . .+

∥∥τθ(j)−1 τθ(j)∥∥ . (3.2)

We can traverse any junction in this way, thus no junction will ever require more

than ‖F ′s,max‖ robots to traverse. This establishes the upper bound (see Fig. 3-

5b). Observe that since all the tangent points are on the boundary of a maximal

inscribed circle centered at j, the ingoing frontier F ′0, aligned such that its anchor

points correspond to τ1, τθ(j), is at most 2D(j) in length, i.e. the diameter of the circle.

For each of the θ(j) − 2 split points, the frontier gains an additional line segment,

likewise of at most 2D(j) in length. Thus we get a numeric upper bound on the

maximum length of the split frontier, given by

∥∥F ′s,max∥∥ ≤ 2
(
θ(j)− 1

)
D(j) . (3.3)

We have now established an equivalence between the medial axis configuration

space and the physical movement and frontier expansion of robots in physical space.

We introduced an exploration model whereby a swarm locus moving along the skeleton

allows us to reason about a group of robots moving through physical space. We defined

what it means for a frontier to split and for a group of robots to traverse a junction,

and derived lower and upper bounds on the number of robots required to traverse a

junction.
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3.3 Implementation

From photograph to graph

The environment characterization algorithm was implemented in MATLAB. The pro-

cedure takes as an input a binary image W representing the environment under con-

sideration. The binary image distinguishes the free region Q (encoded in white) from

the obstacle region B (encoded in black).

For illustration we will present results continuing from the real-world example

presented in Figure 1-2, which depicts an aerial view of the Deepwater Horizon oil

spill. In order to provide this environment as input to our environment character-

ization algorithm, it was necessary pre-process the aerial photograph into a binary

image representation. (Note that for the purposes of this example as motivate by

the Seaswarm oil absorbing robot, the free region is considered to be the body of

water, while the land mass makes up the obstacle region.) The discretization of the

binary image W is arbitrary, but for ease of illustration we assume it to be determined

pixel-wise by the resolution of the aerial photograph.

The preprocessing step consists of a standard cascade of image processing tech-

niques. First, colors were adjusted to accentuate the difference between greens and

blues by remapping them onto a gray scale color map. Next we applied Canny edge

detection and thresholding operations. This provides us with a single pixel outline of

the coastline. Finally, judicious application of morphological opening and smoothing

was carried out to remove noise. The exact technical details of the pre-processing

step depend on the image being used, and are not directly part of the algorithm,

but it worth noting that this step can also be automated and incorporated into the

environment characterization algorithm, provided that assumptions are specified be-

forehand and satisfied by the input image. The preprocessing step was implemented

in MATLAB using image processing toolbox.

The resulting binary image W is shown in in Figure 3-6a. Note that although

the pursuit-evasion algorithm described in this chapter requires both Q and B to be

connected spaces, there is no such requirement for the environment characterization
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(a) Aerial photograph of a typical real-world environment

(b) Binary image representation of the envi-

ronment in Figure 3-6a

(c) Distance transform of the environment in

Figure 3-6b

(d) Medial axis of the environment in Figure

3-6b

(e) Relief map of the environment in Figure

3-6b

Figure 3-6: Example of implementation results for a typical real-world environment.
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procedure. The configuration space representation generalizes to arbitrary environ-

ments, which means that the free region can have holes and can itself be disjoint.

The environment encoded by W illustrates both of these cases.

We now compute the two main configuration space components, the relief map R

and the medial axis or skeleton S. The relief map was computed as follows. First,

the distance transform of W is computed, as described in Section 3.2.1. This was

done using the MATLAB method bwdist. Note that distance is understood to be

Euclidean distance from the boundary, and not the pixel-wise (Manhattan) distance.

This is an important point of clarification when it comes to implementation, as several

morphological and image processing techniques have counterparts defined as pixel set

operations. The distance transform of W is shown in Figure 3-6c.

The relief map was then computed by labeling each point in the input binary

image with the distance transform value at that point divided by the sensing radius

r. The relief map R is shown in Figure 3-6e. To compute the skeleton, we make use

of the MATLAB method bwmorph to apply successive morphological thinning to W .

This is repeated until the next iteration does not change from the previous one; the

resulting structure is the skeleton of the binary image. The skeleton S is shown in

Figure 3-6b.

Finally, we need to convert the continuous configuration space representation into

the symbolic graph representation. This was computed as follows. First, the end-

points and branch points of the skeleton were computed in MATLAB using the bwmorph

function. The endpoints identify ends of line segments on the skeleton, and brach

points identify junctions of two or more line segments (using the same definitions

as described in Section 3.2.1. Next, we disconnect all line segments by removing all

branch points from the skeleton, and assign a labeling b1, b2, . . . to each branch point

and a labeling l1, l2, . . . to each unique line segment. Next, for each branch point

bi removed in this manner, we replace it on the skeleton, and then recompute the

modified set of unique line segments l′1, l
′
2, . . .. The general graph G representing the

environment is then obtained as follows. The subset of line segments lu, lv, . . . that

becomes a single line segment l′w due to the replacement of a branch point bi consti-
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tutes the set of edges eu, ev, . . . connected to a vertex vi on G. The resulting graph

G is shown in Figure 3-7.

Figure 3-7: Image depicting the topology graph of the environment represented by the binary

image in Figure 1-3b. Brach point are colored in cyan and endpoints are colored in red.

3.4 Summary

In this chapter the problem of obtaining a concise characterization of a physical

environment in the context of frontier-based non-recontaminating exploration was

considered. We introduced the medial axis as a configuration space and showed

that reasoning about points in this configuration space is equivalent to reasoning

about robots in physical space. We formalized the notion of width, corridors and

junctions. We introduced an exploration model whereby a swarm locus moving along

the skeleton allows us to reason about a group of robots moving through physical

space. We defined what it means for a frontier to split and for a group of robots to

traverse a junction, and derived lower and upper bounds on the number of robots

required to traverse a junction.
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Chapter 4

Deployment Algorithm for

Non-Recontaminating Exploration

In this chapter1 we present a series of steps that will transform our continuous con-

figuration space into a symbolic representation of the environment in the discrete

domain. We establish a set of rules for navigating the environment in this discrete

representation, that allow us to develop an algorithmic pursuit strategy. Using the

junction lower bound from Result (3.1) we derive a lower bound on the total num-

ber of pursuers necessary to clear the environment, showing that no fewer than this

number can possibly clear the environment regardless of the exploration model or

pursuit strategy. Using the junction upper bound from Result (3.2) we develop an

upper bound on the total number of pursuers that will always be sufficient to clear the

environment, for any pursuit strategy. Finally, we derive an optimal pursuit strategy

and prove that it guarantees we can clear the environment with the minimum number

of pursuers for a given exploration model.

In Section 4.1 we present a transformation from this continuous configuration

space into a symbolic representation in the discrete domain. In Section 4.1.1 we

establish a set of rules for navigating the environment. In Section 4.1.2 we derive

bounds in the number of pursuers required to clear the environment. Finally, in

1 The majority of this chapter was published in [45].
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Section 4.1.3 we present a pursuit-evasion algorithm, and prove that the algorithm is

optimal.

4.1 Topology Tree

The most natural representation of the skeleton of an environment where both Q and

B are connected is a tree. Since we are also given a starting point on the skeleton,

we consider a directed rooted tree (rooted at the start node). We refer to this as

the environment topology tree, denoted by T = (V,E), where V is the set of vertices

(nodes) and E is the set of edges of T . Let s ∈ V be the root node of T . Nodes

correspond to end points and junction points, and edges correspond to corridors

connecting these points on the skeleton.

Let γ : V → N denote the out-degree of a node. There are four types of nodes

on the topology tree. The swarm locus starts at an end point on the skeleton which

corresponds to the root node s of out-degree γ(s) = 1. Every other end point corre-

sponds to a leaf node w of out-degree γ(w) = 0. Each junction point j is represented

by a unique junction entry node u of out-degree γ(u) = θ(j) − 1, connected to an

associated set of distinct junction exit nodes {v1, v2, . . . , vγ(u)} of out-degree γ(v) = 1.

(Observe that since T is a directed rooted tree, every node has in-degree 1, except

for the root node s which has in-degree 0.)

The root node is connected to some junction entry node, while junction exit nodes

are connected to leaf nodes and other junction entry nodes, as determined by the

corridors connecting these points on the skeleton. Every edge e ∈ E on the topology

tree is assigned a weight α : E → N. There are two fundamentally different types of

edges: edges that represent a corridor on the skeleton and edges that represent the

split frontier at a junction point.

Motivated by Corollary 1, for an edge e connecting node u of out-degree γ(u) = 1

to a node v, the edge weight α(e) is determined by the number of robots necessary

and sufficient to advance from u to v, given by the maximum relief value R(x) at

some point x ∈ S amongst the points along that corridor.
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Motivated by the reasoning in Section 3.2.2, for junction nodes the representation

is as follows. For each junction entry node u ∈ V let Eu ⊂ E be the set of edges

{e1, e2, . . . , eγ(u)} connecting u to its associated set of junction exit nodes {v1, v2, . . . ,

vγ(u)}. For each junction, we define a traversal function δ : Eu → N, where
∑

i δ(ei)

is the number of robots required to traverse the junction. This corresponds to the

minimum number of robots required to form a split frontier at the junction, given by

its ceiling length d‖F ′s‖e. Since we do not have tight bounds on the length of the split

frontier, the traversal function depends on the the context of the analysis. Namely,

if the goal is to derive a lower bound on the number of robots required to clear an

environment, then we consider the length of the split frontier d‖F ′s,min‖e given by

Result (3.1). If the goal is to derive an upper bound then we consider the length of

the split frontier d‖F ′s,max‖e given by Result (3.2). Each edge ei is assigned weight

α(ei) = δ(ei) which corresponds to the number of robots ni that are are required

to form a frontier F ′i at each outgoing corridor, given by the ceiling length of each

outgoing frontier d‖F ′i‖e.

4.1.1 Exploration Rules

We consider exploration of the topology tree to be a game. We start the game

with a single group of n0 robots stationed at the root node s. Every node v ∈ V

on the topology tree is marked with a label λ, which can have one of three values:

CONTAMINATED, EXPLORED and CLEARED. Initially, the root node is marked

EXPLORED and all other nodes are marked CONTAMINATED.

We play the game in rounds, each round moving some number of robots from one

node to another. If a group of robots is unable to move from one node to another on

some round, then the robots are “stuck” at that node. This corresponds to the fact

that if there are insufficient robots to clear a corridor, they will remain stuck guarding

the corridor, unable to retreat without allowing recontamination. Let λk(v) denote

the labeling of a node v ∈ V on round k. We win the game if the tree is cleared on

some round k0, that is if ∃k0 ∈ N | ∀k > k0 ∀v ∈ V, λk(v) = CLEARED. We lose the

game if all robots are stuck at some node but the tree has not been cleared by some
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round k0, that is if ∃k0 ∈ N | ∀k > k0 ∃v ∈ V, λk(v) 6= CLEARED.

Robots can split into smaller groups and join to form larger groups. In general,

we are free to choose how we move the robots on the topology tree, provided that we

obey the following transition rules.

1. If a group of n0 robots reaches a node u where γ(u) > 0, then the group

splits into some permutation of γ(u) groups of ni robots advancing to each of

the children nodes {v1, v2, . . . , vγ(u)}. We are free to choose this permutation,

subject to the following restrictions:

(a) If λ(vi) = CONTAMINATED, then ni ≥ α(ei(u)).

(b) If λ(vi) = EXPLORED, then ni ≥ 0.

(c) If λ(vi) = CLEARED, then ni = 0.

If no such permutation exists, then the group remains stuck at node u.

2. If a group of robots is stationed at a node u where λ(u) = CLEARED, then the

group backtracks to the parent node.

3. If a group of robots reaches a node u that is marked CONTAMINATED, then u

is marked EXPLORED.

4. If a group of robots reaches a leaf node u or a node u where all children of u

are marked CLEARED, then u is also marked CLEARED.

5. If two or more groups of n1, n2, . . . , nk groups of robots are stationed at the

same node, then they form a single group of n1 + n2 + . . .+ nk robots.

The reasoning behind these rules follows from the problem formulation and results

in Section 3.2. Rule 1(a) enforces that our exploration is non-recontaminating. Rule

1(b) allows robots to move to explored nodes and join other robots. Rules 3 and 4

define the progression of the game, and Rules 1(c) and 2 ensure that exploration is

always progressive (the latter ensures a group of robots leaves a region once it has

been cleared, while the former ensures that no group of robots re-enters that region

unnecessarily). Rule 5 ensures that robots always act in a single group when stationed

at a node.
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We understand a state of the topology tree to mean the labeling of each node and

the number of robots stationed at each node on a given round. We call a sequence

of transitions between states of the topology tree a pursuit strategy. (We omit a

formal definition for brevity.) A pursuit strategy is like a written record of a game of

chess that allows the game to be replayed by carrying out the recorded sequence of

transitions. Observe that the only degree of freedom in choosing a pursuit strategy is

what to do at a given junction entry node u. We can always choose what junction exit

node to send a group of robots to as long as it is not marked CLEARED. If the junction

exit nodes are marked CONTAMINATED then the group traverses the junction if and

only if n0 ≥
∑

i α(ei(u)). If the junction is traversed, then the group splits into some

permutation of γ(u) groups of ni robots advancing to each of the associated junction

exit nodes {v1, v2, . . . , vγ(u)}. We are free to choose this permutation, provided that

∀i, ni ≥ α(ei(u)). The choice we make in selecting this permutation may affect the

outcome of the game. (Note also that a node u is only marked CLEARED once

the entire subtree T (u) is marked cleared. Thus robots are forced to clear subtrees

recursively, and can only backtrack once a given subtree is cleared.)

We also note that because n0 and |V | are finite, there are a finite number of

possible pursuit strategies for a given topology tree. Intuition tells us that if n0 is too

low, every pursuit strategy will be a losing strategy, whereas if n0 is sufficiently high

then any pursuit strategy will be a winning strategy. We now formalize this intuition,

and derive lower and upper bounds on the total number of robots that can clear the

topology tree.

4.1.2 Environment Bounds

Consider the topology tree T with root node s. Let T (q) be the tree obtained by

considering node q as the root node and removing nodes that are not descendants of

q. Let n(T (q)) be the number of robots required to clear T (q). Let P (v) be the set of

nodes {p1, p2, . . . , pγ(v)} that are children of v ∈ V , enumerated in order of ascending

n(T (pi)).

We motivate the lower bound as follows. At each node s we consider whether
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more robots are required to advance to the child node p1 than are required to clear

the rest of the subtree T (p1), and apply this recursively for the entire tree. At each

junction entry node we consider the maximum number of robots required to clear a

given subtree T (pi) while guarding the remaining junction exit nodes that have not

been cleared. Formally, let nmin(T (s)) be the total number of robots necessary to

clear the environment with topology tree T , given by

nmin(T (s)) =


0 if γ(s) = 0

max

{
γ(s)∑
i=1

α
(
ei(s)

)
, max
i=1,...,γ(s)

{
nmin

(
T (pi)

)
+

γ(s)∑
j=i+1

α
(
ej(s)

)}}
otherwise .

(4.1)

Lemma 3. nmin(T (s)) robots are necessary to clear an environment with topology

tree T , regardless of exploration model or pursuit strategy.

Proof. We begin at the root node s, which has out-degree γ(s) = 1. If α(e1(s)) >

n(T (p1)), i.e. if more robots are required to advance to the child node p1 ∈ P (s) than

to clear the rest of the tree T (p1), then nmin(T (s)) = α(e1(s)). (The second term in

the outer max expression is not evaluated if γ(s) = 1.) This applies recursively for

any node of out-degree γ(s) = 1. Leaf nodes provide the recursion base case, where

n(T (w)) = 0 for w ∈ V if γ(w) = 0.

For junctions the logic is as follows. For a junction entry node u ∈ V , each

associated junction exit node pi ∈ P (u) is the root node of a subtree T (pi). By Rules

1 and 2, a group of robots that reaches a leaf node w will backtrack until it reaches a

node with previously unexplored children. By induction a group of robots that clears

T (pi) will backtrack until it returns to v and advance to a different junction exit

node pj 6=i. By Rule 5, this group of robots will join with any other group of robots

stationed at pj. When a group of robots reaches a junction, at least n0 >
∑

i α(ei(u))
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robots are required to traverse it thus stationing ni = α(ei(u)) robots at the γ(u)

junction exit nodes pi. Thereafter n0 must be at least enough to clear the subtree

with smallest n(T (pi)) while holding station at the remaining γ(u) − 1 exit nodes.

This subtree is T (p1) since pi ∈ P (u) are enumerated in order of ascending n(T (pi)).

If n0 robots is not enough to clear T (p1), then it will certainly not be enough to clear

any other subtree, and thus the junction cannot be traversed. If n0 robots is enough

to clear T (p1) then n(T (p1)) robots are now able to join one of the groups guarding

the remaining γ(u)− 1 junction exit nodes. We apply this iteratively for all subtrees

T (pi), each time gaining the services of the group that cleared the previous subtree.

The final subtree simply requires n(T (pγ(u))) robots, since all other subtrees have

been cleared and do not require any robots to guard the junction exit nodes. (Note

that all ni groups of robots will actually clear their subtrees simultaneously, in which

case two given groups may not join at the junction exit nodes, but elsewhere along a

given subtree. However, considering each group to clear its subtree in stages with the

other groups guarding the junction exit nodes simplifies the abstraction.) We now

consider the maximum of the number of robots required to traverse the junction (the

first term in the outer max expression) and the maximum number of robots required

to clear a given subtree T (pi) and guard the remaining γ(u) − i junction exit nodes

(the second term in the outer max expression, itself a maximum over γ(u) stages).

The maximum of these two outer terms is the minimum number of robots required

to clear the subtree T (u). We apply this logic recursively for all junctions.

Thus no fewer than nmin(T (s)) robots can clear an environment with topology

tree T , for a given exploration model. Using the junction lower bound from Result

(3.1) to obtain the traversal function δmin for each junction, we know that no fewer

than
∑

i δmin(ei(u)) robots can traverse the junction point j corresponding to the

junction entry node u. Thus, using α(ei(u)) = δmin(ei(u)) for each junction entry

point u, nmin(T (s)) gives a lower bound on the number of robots that is necessary to

clear an environment with topology tree T , regardless of exploration model or pursuit

strategy.

We motivate the upper bound as follows. We imagine an adversary that dictates
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the pursuit strategy of a number of robots, with the goal of placing the maximum

number of them on the topology tree T , while preventing T from being cleared. Then

we argue that given any such adversarial configuration of n?(T (s)) robots, n?(T (s))+1

robots will always be able to clear T , regardless of the pursuit strategy chosen by the

adversary. Formally, let nmax(T (s)) be the total number of robots sufficient to clear

the environment with topology tree T , given by

nmax(T (s)) = n?(T (s)) + 1 ,

n?(T (s)) =


0 if γ(s) = 0

max

{( γ(s)∑
i=1

α
(
ei(s)

))
− 1 ,

γ(s)∑
i=1

n?
(
T (pi)

)}
otherwise .

(4.2)

Lemma 4. nmax(T (s)) robots are sufficient to clear an environment with topology

tree T , for a given exploration model, regardless of pursuit strategy.

Proof. The adversary begins at the root node s, which has out-degree γ(s) = 1. If

α(e1(s)) > n(T (p1)), i.e. if more robots are required to advance to the child node

p1 ∈ P (s) than to clear the rest of the tree T (p1), then n?(T (s)) simply equals

α(e1(s))− 1 since adding one more robot will result in the entire tree being cleared.

This applies recursively for any node of out-degree γ(s) = 1. Leaf nodes provide the

recursion base case, where n(T (w)) = 0 for w ∈ V if γ(w) = 0.

For junctions the logic is as follows. For a junction entry node u ∈ V , each

associated junction exit node pi ∈ P (u) is the root node of a subtree T (pi). The

adversary can choose one of two options: either place
(∑γ(s)

i=1 α(ei(s))
)
− 1 robots at

u such that the junction cannot be traversed, or traverse the current junction with∑γ(s)
i=1 n

?
(
T (pi)

)
robots knowing that they will not be able to clear the rest of the

tree. The adversary chooses the maximum of these two values since she is trying to

maximize the number of robots on the tree. We apply this logic recursively for all

junctions.

Consider any such configuration of n?(T (s)) robots. We now introduce one addi-
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tional robot at the root node s. The robot must navigate the tree according to the

exploration rules, but the adversary is still free to choose its pursuit strategy. By

Rule 5, whenever the robot reaches any node u with n?(T (u)) robots stationed at the

node, a single group of n?(T (u)) + 1 robots forms at u which is sufficient to clear the

subtree T (u). By Rule 2, any group of robots that clears a subtree will backtrack

along the tree until it reaches a previously unexplored part of the tree. This group

of robots will join other groups of n?(T (v)) robots similarly stationed at other nodes

v ∈ V . This will continue recursively until the entire tree is cleared. Thus placing

an additional robot at s causes a “chain reaction” that results in T being cleared re-

gardless of the pursuit strategy that the adversary chooses for any of the n?(T (s))+1

robots.

Thus no more than nmax(T (s)) = n?(T (s)) + 1 robots will ever be required to

clear an environment with topology tree T , regardless of pursuit strategy. Using

the junction upper bound from Result (3.2) to obtain the traversal function δmax

for each junction, we know that no more than δmax(ei(u)) robots are required to

traverse the junction point j corresponding to the junction entry node u for the given

exploration model. Thus, using α(ei(u)) = δmax(ei(u)) for each junction entry point

u, nmax(T (s)) gives an upper bound on the number of robots that is sufficient to

clear an environment with topology tree T , for a given exploration model, regardless

of pursuit strategy.

4.1.3 Optimal Pursuit Strategy

We now present an optimal pursuit strategy that guarantees that the environment is

cleared with the minimum number of robots for a given exploration model. Consider

the topology tree T with root node s. We know that nmin(T (s)) robots are neces-

sary to clear T , given by Result (4.1). The following algorithm guarantees that T

will be cleared with nmin(T (s)) robots. (We use the same notation as in Section 4.1.2.)

Lemma 5. nmin(T (s)) robots are necessary and sufficient to clear an environment
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Algorithm 1 Clear Algorithm

Given n0 robots located at root node s of topology tree T = (V,E):

1. If s is a leaf node or if all children of s are marked CLEARED, then:

(a) mark s← CLEARED.

(b) Backtrack to parent node. If parent node does not exist, terminate.

2. If λ(s) = CONTAMINATED, mark s← EXPLORED.

3. If γ(s) = 1, Clear
(
T (p1), n0

)
.

4. If γ(s) > 1 and if all children of s are marked CONTAMINATED, then:

(a) for i = 2, . . . , γ(s): Clear
(
T (pi), α(ei(s))

)
.

(b) Clear
(
T (p1), n0−

∑γ(s)
i=2 α(ei(s))

)
.

5. If γ(s) > 1 and if all children of s are not marked CONTAMINATED, then:

(a) let i = min2,...,γ(s)

{
i | λ(pi) 6= CLEARED

}
.

(b) Clear
(
T (pi), n0

)
.

with topology tree T , for a given exploration model.

Proof. Given nmin(T (s)) robots we prove that we can use the Clear algorithm to clear

the environment. Let n0 = nmin(T (s)). We begin at the root node s, which has out-

degree γ(s) = 1. A group of robots can always advance to the child node p1 since

we have n0 = nmin(T (s)) robots. This applies for all nodes of out-degree γ(s) = 1.

When a group of robots reaches a leaf node it is marked CLEARED. A group of robots

stationed at a node that is marked CLEARED will backtrack until it reaches a node

with children that are not marked CLEARED.

For junctions, the logic is as follows. The first time a group of robots reaches

a given junction entry node u, all children of u are marked CONTAMINATED. We

send ni = α
(
ei(s)

)
robots to each of the γ(s)− 1 junction exit nodes pi, and use the

remaining n1 = n0 −
∑γ(s)

i=2+1 α
(
ei(s)

)
robots to clear the subtree T (p1). By proof

to Lemma 3, we know that the entire subtree T (p1) can be cleared with n1 robots,

and therefore n1 robots will eventually backtrack to u. Thereafter, all children of u

are either EXPLORED or CLEARED. Each group of robots reaching u in this way is

sent to clear T (pi) where i is the smallest number such that λ(i) 6= CLEARED. We

do this iteratively for each subtree, each time gaining the services of the group that
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cleared the previous subtree. We can always clear each subtree T (pi) in this manner

because {p1, p2, . . . , pγ(v)} are enumerated in order of ascending n(T (pi)), and by proof

to Lemma 3 we know that n(T (u)) robots is enough to clear every subtree in this

way. For each subtree T (pi) cleared in this way, pi is marked CLEARED. When

all subtrees have been cleared, u will be marked CLEARED, and the entire group of

robots will backtrack to the parent node. This applies recursively recursively for all

junctions.

Using the junction upper bound from Result (3.2) to obtain the traversal function

δmax for each junction, we know that no more than δmax(ei(u)) robots are required to

traverse the junction point j corresponding to the junction entry node u for the given

exploration model. Thus, using α(ei(u)) = δmax(ei(u)) for each junction entry point

u, the Clear algorithm gives an optimal pursuit strategy for clearing an environment

with topology tree T , for a given exploration model.

4.2 Implementation

Numerical simulations were carried out in MATLAB to verify the correctness and

guarantees of the optimal pursuit strategy. In this section we aim to elucidate the

operation of the algorithm by presenting a example case pursuit evasion deployment

scenario.

It is clear from Figure 3-7 that environments of modest complexity may have a lot

of endpoints and branch points. In-fact, it can be shown that the degree to which the

skeleton fractalizes is a function of how ”smooth” the wall contours are. Having a lot

of branching in a topology tree does not necessarily imply that many more robots will

be required to explore the corresponding environment, since a lot of the branching

be reveled to be redundant when considered in the context of the sensing radius

of the robots. Furthermore, the optimal pursuit strategy presented in Algorithm 1

is highly recursive by nature. For these reasons it is neither essential nor helpful

to consider such an expansive tree for our example case scenario. We will consider

a minimal subtree that is part of a larger topology tree, and is illustrative of the
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algorithm as a whole. We show how we can numerically evaluate a pursuit evasion

deployment scenario on this subtree, and convince the reader that the correctness

extends recursively to our deployment strategy on any scale.

The minimal subtree is shown in Figure 4-1a. Note that there is not much struc-

tural variation possible in a topology tree, and this example is enough to cover the

different types of nodes and edges. The topology tree is further characterized by the

edge weights alpha indicating the number of robots required to traverse the junction

to reach the junction exit nodes. Figures 4-1b and 4-1c show an example weighting.

We first consider the environment upper bound policy as described in Section

4.1.2, i.e. a suboptimal policy. The recursive logic is to compute the maximum of

either one less than the number of robots required to reach a given junction node or

the recursive sum of the number of robots required to clear the subtree of each child

node. Observing the edge weights leading to the leaf nodes, we assign one less than

that number to the parent nodes of the leaves, in accordance with the upper bound

proof. This yields 6 robots at the left junction entry node as the sum of v1 and v2

and 5 robots at the right junction entry node. Recursively this yields 11 robots at

s, and hence 12 robots will clear the environment by Lemma 4. The action of the

robots is irrelevant, as the lemma guarantees that they will clear the environment.

Let us now consider our optimal deployment strategy under this example case

scenario as described in Section 4.1.3. By Lemma 5 we compute that 7 robots is

necessary and sufficient to clear the environment. The robots begin at the start node

and proceed as follows: 2 robots advance to the right junction entry node and the

other 5 robots advance to the left junction entry node, in accordance with the fact

that the left subtree requires less total robots to clear than the right subtree. At the

left junction entry node, the 5 robots split according to the same recursive logic – 1

robot advances to v2 and the remaining 4 robots clear the subtree with root node v1.

Once the recursive steps are complete, the algorithm unwinds. 4 robots return from

v1 and join with the 1 robot at v2, clearing the subtree with root node v1; and then

all 5 robots return to s and join with the remaining 2 robots to clear the rest of the

tree.
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(a) Subtree used in our deployment case scenario. The diagram shows the possible types

of nodes and edges. The junction is highlighted by the oval.

(b) Example weight assignment for the sub-

tree, showing the associated α. The numbers

in orange show the upper bound on the num-

ber of pursuers necessary to clear the subtree.

(c) Optimal pursuit strategy that clears the

environment with the minimum number of

robots. The numbers in orange show the re-

cursive solution for optimal pursuit strategy.

Figure 4-1: Minimal subtree that illustrates the mechanics of the optimal pursuit strategy. Such

a subtree would typically be a small part of a large tree that represents a real-world environment.

In this way we can recursively compute and simulate the deployment of robots

in any large-scale environment. A numerical simulator was developed in MATLAB

which computes the suboptimal upper bound strategy as well as the optimal pursuit
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strategy. This allows us to compute an optimal deployment strategy for any topology

tree representing an arbitrary continuous environment.

4.3 Summary

In this chapter we presented a transformation from a continuous configuration space

representation of an environment into a symbolic representation in the discrete do-

main. We cast the exploration problem as a game, established rules for playing this

game, and derived bounds on the number of robots necessary and sufficient to clear

the environment. Finally we presented an optimal pursuit strategy that guarantees

that we can clear the environment with the minimum number of robots. Finally, we

discussed implementation and presented a numerical simulation of an example case

deployment scenario.
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Chapter 5

Markov-based Model for Future

Urban Mobility Networks

In this chapter1 we extend on the idea of modeling exploration deployment on a graph

to the more general case of patrolling. For our application scenario, we consider

optimization of an urban transportation network. Understanding how to optimize

transportation is critical for urban planning.

We leverage data from a fleet of 16,000 taxis in Singapore to create a Markov-

based urban transportation model that realistically describes the operation of a fleet

of service agents (taxis) in response to incident requests (arriving customers) in the

city. We establish a theoretical Markov-based framework that describes an urban

transportation network. We assume that we have a road network with discrete pickup

and drop-off locations corresponding to designated points in the city. The arrival rates

of customers at each location are known. A vehicle with a person on board will drive

to the customer’s goal destination. If a customer is waiting at this location the vehicle

picks up the customer; if there are no waiting customers, the vehicle goes to a different

location according to a redistribution policy.

Our goal is to compute a solution in the form of the required number of vehicles

in the system and their redistribution policy. We encode the solution as a scalable

1 The majority of this chapter was published in [44].
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optimization problem. We develop a mechanism for this model by which a group of

agents can patrol the graph to persistently service these requests.

This chapter is organized as follows. Section 5.1 states the problem and presents

the model formally. Section5.2 outlines the format of the solution and sets up the

optimization problem. Section 5.3 describes the challenges in creating a realistic

urban mobility model and presents the detailed steps to do so.

5.1 Problem Statement

We consider a pickup and delivery problem (PDP) on an undirected graph. There are

m nodes in the network, subject to incident request arrivals. The graph is patrolled by

nmobile agents (taxis) that traverse it along its edges and service requests (customers)

as they arrive. Requests arrive according to a Poisson process with an arrival rate of

λ requests per time unit τ and are distributed among nodes according to an arrival

distribution α = [α1 α2 . . . αm]. Thus a request will arrive at each node with an

arrival rate of λαi. The destination of incident requests is determined by a request

transition matrix D, where di,j is the probability that a request arriving at node i is

destined for node j. Since each row of D is a probability distribution over a node, we

require that the rows sum to 1, i.e. D is a Markov chain.

When a vehicle arrives at a node and encounters a request it must service that

request and when a vehicle delivers a request to its destination node it is immedi-

ately available to service new requests. A vehicle that does not encounter a request

transitions according to a redistribution policy transition matrix P . Each row of P is

a probability distribution over a node, i.e. P is also a Markov chain.

We consider the system to evolve according to a single system transition matrix

S so that for X ∼ hi

si,j = Pr(Xk+1 = j | Xk = i). (5.1)

Thus the system evolves according toD when a request is being serviced and according

to P when a request is not being serviced. Denoting by βi the probability that a
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vehicle leaving node i is servicing a request, we express (5.1) as

si,j = βi Pr(Xk+1 = j|Xk = i) + (1− βi) Pr(Xk+1 = j|Xk = i). (5.2)

We introduce the m×m matrix B = diag ([β1 β2 . . . βm]) so that (5.2) can now be

expressed in matrix form as

S = BD + (Im −B)P (5.3)

where Im is the identity matrix of size m.

The stationary distribution of a Markov chain P is a vector q such that qP = q.

For convenience we define the function

π : P 7−→ q | qP = q. (5.4)

In steady state the system will exhibit a stationary distribution φ = π(S) of agents

among nodes. Given a number of vehicles n and a stationary distribution φ, in steady

state we expect nφi vehicles to arrive at node i at a given time, and to find each vehicle

located at node i with probability φi.

5.2 Optimization Setup

Informally, we want to ensure stability in steady state. We understand system stabil-

ity to mean the condition whereby the steady state service rate at each node in the

system exceeds the steady state arrival rate at that node. The solution space is the

number of taxis n and the redistribution policy P . The objective of the problem is

therefore to find a solution (i.e. determine the number taxis n and a policy P ) such

that the overall system is stable.
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We formalize the problem as follows.

Find n, P

s.t. nφi > λαi, ∀i (5.5)

n ≤ nmax (5.6)

0 ≤ pi,j ≤ 1, ∀i (5.7)∑
j
pi,j = 1, ∀i. (5.8)

The first constraint (stability constraint) states that the service rate at each node

must be greater than the arrival rate at each node. The second constraint states that

the solution space is physically bounded by some maximum number of taxis. The

last two constraints ensure that P is a valid Markov chain.

5.2.1 Hastings-Metropolis Algorithm

The solution space of the optimization problem is the number of taxis n and the

redistribution policy P , while the stability constraint of the problem is specified as

a function of the stationary distribution of the system transition matrix φ = π(S).

This presents a computational challenge since the transformation from a Markov

chain to its stationary distribution is non-linear. Thus it is infeasible to consider

linear programming methods to find P directly.

Instead we propose a different approach, employing the Hastings-Metropolis algo-

rithm [18]. The HM algorithm is a Markov chain Monte Carlo method that, given a

stationary distribution, can be used to construct a Markov chain with that stationary

distribution. Using this method we may simplify a potential optimization problem to

that of finding a desired stationary distribution and generating the policy using HM.

For convenience we denote the HM algorithm as

H : q 7−→ P | qP = q. (5.9)

However, using the HM algorithm poses another challenge: by solving for the
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stationary distribution, we cannot enforce the zero constraints of the target redis-

tribution policy matrix (in other words we cannot enforce sparsity), which implies

an underlying undirected clique network. In the following section, we show that an

undirected clique model is highly restrictive in terms of the kind of transportation

network that it can describe. We present a model for a real urban mobility network,

and discuss the steps taken to ensure that the model is realistic while still complying

with the Markov framework. We then present a mechanism by which

the HM optimization can be set up to handle a sparse network while maintaining a

computational complexity that is independent of the degree of precision of the model.

5.3 Modeling Urban Mobility

In this study we use transportation data from Singapore. The dataset is one month

(August 2010) of taxi data from a fleet of 16,000 taxis. This data amounts to ap-

proximately 500 million data points at 42,000 GPS locations in Singapore. Each

record contains the taxi and driver ID, time stamp, GPS coordinates, and status of

operation. We partitioned the space of nodes from the Singapore taxi dataset with a

k-means clustering into 27 regions (Fig. 5-1). The clustering was based on previous

work, and the number of clusters chosen such that the clustering aligns well with the

postal regions of Singapore. We also derived an extensive set of statistics for these

regions from the Singapore taxi data.

5.3.1 Extended Network

A true Markov chain is a discrete probabilistic state machine, meaning that each

transition occurs in one time step. This presents a challenge, as we can assign a real

travel time to correspond to each transition, but in the current formulation there is no

way to enforce varying travel times. We present an extended framework that captures

this information. First, we derive a base network that considers each cluster as an

individual base node. The base network is an undirected clique graph G = (V,E)

of size m. The Singapore dataset was used to calculate the average travel time ti,j
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Figure 5-1: The 42,000 Singapore nodes used in this study, color-coded according to their k-means
clustering. (The computed clusters align well with postal regions in Singapore.)

from cluster i to cluster j. Trips within clusters are also considered, so there is

no requirement that i 6= j. Also note that in general ti,j 6= tj,i, which reflects traffic

inhomogeneity caused by congestion throughout the day. A discretization parameter τ

specifies the the shortest travel time between 2 nodes represented by a single transition

in the extended model. A travel time matrix T encodes the discretized travel times,

where τi,j = max {round(ti,j/τ), 1}.

We use this information to derive the extended network G′. Starting with the

base network G, for each pair of nodes i, j ∈ V we remove the edge connecting i

and j by setting G′i,j = 0 and create two auxiliary connections between i and j, one

for each direction of travel. Each such auxiliary connection consists of ` = τi,j − 1

auxiliary nodes x1, x2, . . . x`. New edges are added by daisy-chaining node i to node

j through the ` auxiliary nodes by setting G′i,x1 = G′x1,x2 = . . . = G′x`,j = 1. We
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refer to the first auxiliary node x1 as the proxy node of i to j, denoted by θ(i, j). If

τi,j = 1, node i is simply connected to node j. Finally, for i = j, a single auxiliary

connection is created in this way, representing the average travel time within cluster

i. The resulting extended network is a sparse network G′ = (V ′, E ′) of size m′.

We make the assumption that customers arrive only at and travel to base nodes

and are not picked up on the side of the road. Although in reality taxi drivers

may divert from any prescribed policy, this is a reasonable model corresponding to

the intuition of base nodes representing taxi stations for example. As a result, the

extended arrival distribution is simply given by α′ = [α1 α2 . . . αm 0 . . . 0]. This

greatly simplifies the optimization problem since we do not need to satisfy stability

constraints at auxiliary nodes.

5.3.2 Extended Redistribution Policy

Given an m×m redistribution policy P for the base network, we extend this policy

to an m′×m′ policy matrix P ′ that incorporates the transitional logic of P while still

maintaining the mathematical properties of a Markov chain. We derive P ′ as follows.

For each pi,j corresponding to a connection gi,j = 1 in the base network, there is a

corresponding auxiliary connection consisting of a set of ` = τi,j − 1 auxiliary nodes

G′i,x1 = G′x1,x2 = . . . = G′x`,j = 1 in the extended network. We set p′i,θ(i,j) = pi,j, i.e.

the proxy node of i to j serves to ensure that the probability of transition from i

eventually leading to j remains the same. We set p′x1,x2 = . . . = p′x`,j = 1, i.e. once

the taxi is en route from node i to j (corresponding to a single discrete transition in

the base network), it will arrive at node j with probability 1 in exactly τi,j transitions.

For convenience we denote this transformation from a base transition matrix to an ex-

tended transition matrix by P ′ = extend(P ). (The same transformation also applies

to the customer transition matrix D.) The following example illustrates extending a
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simple base network with m = 2 to 3 nodes.

T =

 1 1

2 1

 , P =

 0.5 0.5

0.2 0.8

 , P ′ =


0.5 0.5 0

0 0.8 0.2

1 0 0

 .

In this example the discretized travel time from node i = 2 to node j = 1 is τ2,1 = 2. A

single auxiliary node is created corresponding to τ2,1−1 = 1. In extending a policy P

to P ′ we maintain the transition probabilities from every node i to the corresponding

eventual destination node j in the base network as transitions to the proxy node

θ(i, j) of i to j. So, since τ2,1 > 1, we set p′2,1 = 0 and set p′2,3 = p2,1 instead. Once a

taxi has made the transition to node 3, it transitions to node 1 with probability 1.

5.3.3 Extended Stability Condition

Extending the network by incorporating travel times yields an extended system tran-

sition matrix S ′. However the associated stationary distribution φ′ = π(S ′) does not

relate linearly to φ, and depends on the varying ingoing travel times from each node

j 6= i to i. Thus a stable policy for the base network may not be stable for the

extended network. To ensure that the stability condition is correctly translated, we

introduce a scaling vector ζ that accounts for the travel times between nodes in the

extended network by considering transitions through auxiliary nodes en route to node

i as counting towards the fraction of time that the vehicle spends at node i in steady

state. We denote by Z ∈ V ′ the set of auxiliary nodes that lead to base node i. Then

ζ is given by:

ζi =
φ′i

φ′i +
∑

k φ
′
Zk,i

. (5.10)

Then the stationary distribution of the base network φ is given by φ = [φ′1/ζ1 φ
′
2/ζ2 . . . φ′m/ζm],

and the stability constraint (5) becomes

nζiφi > λαi, ∀i (5.11)
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5.4 Summary

In this chapter we presented a Markov-based model for patrolling on a general graph.

We presented the model formally and develop a mechanism for this model by which

a group of agents can patrol the graph to persistently service these requests. We

established our solution objective in the form of the required number of agents in the

system and their patrolling policy. We derived a mechanism for encoding a patrolling

policy in the network as a solution to a scalable optimization problem.

As an application scenario we modeled an urban transportation network that

captures the operation of a fleet of taxis in a city. We leveraged data from a fleet

of 16,000 taxis in Singapore to construct our model, discussed the challenges and

described the steps taken to ensure that the model is realistic while still complying

with a true Markov framework.
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Chapter 6

Deployment Algorithm for

Patrolling an Urban Mobility

Network

In this chapter1 we present a deployment algorithm for patrolling a Markov-based

graph model, and demonstrate its application to the urban mobility scenario presented

in Chapter 5. We consider the solution with respect to three seemingly different

optimization criteria. The first criterion considers the customers, whose end goal

is to minimize the time spent waiting for a taxi. The second criterion considers the

urban planning authority whose goal is to minimize the number of vehicles in the road

network. The third criterion considers the cost and environmental implications of fuel

consumption. We leverage data from a fleet of 16,000 taxis in Singapore to show how

we can learn and interpret the current default behavior of taxi drivers within our

framework, and prove that the current behavior is sub-optimal with respect to the

evaluation metrics.

We evaluate our practical patrolling policy through simulation and show that our

proposed policy is stable and improves substantially upon the default unmanaged

redistribution of taxi drivers in Singapore with respect to the three evaluation criteria.

1 The majority of this chapter was published in [44].
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This chapter is organized as follows. Section 6.1 formulates the optimization

problem and provides an algorithm for a practical redistribution policy. We address

stability of the policy and discuss the trade-offs between complexity and accuracy.

Section 6.2 discusses the optimization criteria and provides metrics for evaluating

policies accordingly. Finally, Section 6.3 describes experiments using our patrolling

policy and discusses the results.

6.1 Practical HM Policy

The solution space of the optimization problem is the number of taxis n and the

redistribution policy P . To simplify the solution, we fix n constant. This eliminates

variable product terms in the stability constraint and allows us to formulate the

problem as a linear program. Since n is discreet we solve successive linear programs

for increasing values of n until a feasible solution is found and the system is stable.

Stability is determined experimentally by running a series of bootstrap simulations

to check if the request queues remain bounded. We denote by nmin the minimum

number of taxis that admits a feasible solution that is stable. We set up the linear

program as follows:

Minimize 0 (i.e. find q)

s.t. nζiqi > λαi, ∀i (6.1)

0 ≤ qi ≤ 1, ∀i (6.2)∑
i
qi = 1 (6.3)

n ≥ nmin. (6.4)

Algorithm 2 describes the procedure for calculating the practical HM redistribu-

tion policy PHM. There is no cost function to minimize n, i.e. the optimization prob-

lem reduces to a search problem to find a stationary distribution q that satisfies the

stability condition. The stability condition is evaluated by running a number of boot-

strap simulations with redistribution policy PHM and checking the stability of the sys-
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Algorithm 2 Practical HM Policy Optimization Algorithm

Data: n: proposed number of taxis
λ: customer arrival rate
α: customer arrival distribution
D: customer transition matrix
ζ: stationary distribution scaling vector
nmin: minimum required number of taxis (optional)

Result: PHM: redistribution policy
1: find q s.t. nζiqi > λαi, ∀i
2: P := H(q)
3: P ′ := extend(P )
4: φ′ := π(S ′) {simulation}
5: φ := [φ′1/ζ1 φ

′
2/ζ2 . . . φ′m/ζm]

6: if ∃ nmin, n ≥ nmin then
7: PHM := P
8: else
9: if nζiφi > λαi, ∀i then

10: nmin := n
11: else
12: n := n+ 1
13: end if
14: restart 1
15: end if
16: return PHM

tem transition matrix S ′ at the end of the simulation, as dictated by nζiφi > λαi, ∀i.

nmin is then given by the smallest n that yields experimental stability for S ′. The

practical HM policy is obtained by applying the Hastings-Metropolis transformation

to q giving PHM = H(q).

6.1.1 Accuracy and Complexity

The extended network is parametrized by the travel time discretization τ . This

presents a trade-off between two degrees of accuracy in our urban mobility model.

For a base network of size m, this determines the number of auxiliary nodes that

will be added to the extended network. Assuming an average travel time of t0

between two clusters, each base node inherits 2(m − 1) auxiliary connections with

τ0 = max {round(t0/τ), 1} auxiliary nodes connecting it to other base nodes and one
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(a) Experimental Stability

(b) Quality of Service (c) Fuel Consumption

Figure 6-1: Simulation Results. Fig. 6-1a shows the percentage of requests serviced for each policy
with increasing n. Fig. 6-1b shows the decrease in service time for each policy with increasing n
(QOS metric). Fig. 6-1c shows the improvement in fuel consumption for each policy with increasing
n (FC metric).

self-loop with τ0 auxiliary nodes. This yields a total of m [2 (m− 1) + 1] τ0 = O(m2)τ0

auxiliary nodes. Thus a smaller discretization τ means a larger ratio τ0, which in-

creases the size of the extended network as O(m2).

A smaller τ means a more accurate representation of the road network. However,

the increase in accuracy comes at the cost of generality. Since customers arrive only

at base nodes, a greater increase in the number of nodes in the extended network

means a coarser granularity of customer origins and destinations. Conversely, for a

given extended network size m′, a larger base network size m and smaller travel time

discretization ratio means a larger fraction of the m′ nodes are considered as origins

and destinations.
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Finally, as discussed in Section 5.3.1, restricting arrivals to base nodes allows us

to formulate the search problem for the base network and transform the result to the

extended network. Thus the complexity of the linear program depends only on m and

there is no penalty incurred with finer travel time discretization. This means that for

a given base network size, we can achieve arbitrary travel time granularity for a fixed

computational cost.

6.2 Policy Criteria

We are interested in examining feasible solutions from three independent objectives:

urban planning (UP), quality of service (QOS), and fuel consumption (FC). In order

to meaningfully evaluate a proposed solution, we establish metrics that correspond

to the three criteria under consideration.

Urban Planning

We assume that the main goal of the municipal authority is to reduce congestion in the

city by minimizing the number of vehicles on the streets. From the UP perspective,

the redistribution policy is irrelevant: the objective is simply to employ the minimum

number of taxis that yields a valid solution. We define the UP metric as

LUP = n/nmin (6.5)

i.e. the metric expresses the degree by which more taxis are employed in a given

solution than is strictly necessary for stability. Note that LUP ∈ [1,∞), and LUP = 1

when n = nmin, i.e. the ideal UP policy is any solution that uses nmin taxis.

Quality of Service

Since the stability condition is satisfied for feasible solutions, and all customers in

the system are being serviced, we reason that the net revenue from all customers is

constant, regardless of the redistribution policy P . Thus we assume that the main
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incentive of the taxi company is to provide the best possible service quality. QOS is

measured as the average service time (the queueing time plus the time waiting for a

taxi) for a customer in the system. We define the QOS metric as

LQOS =
∑
i

αiRi (6.6)

where Ri is the average service time for a customer waiting at node i. Note that

LQOS ∈ [0,∞), and LQOS = 0 when Ri = 0, ∀i, i.e. the ideal QOS policy is a solution

where the service time at all nodes is zero.

Fuel Consumption

We assume that it is in the interests of the taxi driver to minimize the fuel costs

associated with the operation of their vehicle, and that the fuel consumption of a

vehicle is reasonably characterized by its total daily mileage. We define the FC metric

as

LFC =
∑
i

φi(1− βi)
∑
j 6=i

pi,j. (6.7)

i.e. fuel consumption is minimized by maximizing the amount of time that the redis-

tribution policy dictates the vehicle to remain on standby and wait for a customer at

its current location. Note that LFC ∈ [0, 1], and LFC = 0 when S = Im, i.e. the ideal

FC policy is the solution where all vehicles remain at their current locations and do

not redistribute to other nodes.

6.3 Experiments

A simulation framework was implemented in MATLAB. A base cluster network of 27

clusters was created from the Singapore taxi dataset according to the methodology

described in Section 5.3. With a discretization of τ = 60s, this yields an extended

network of size m′ = 8615. A one hour epoch was chosen for parameter measurements.

The customer arrival rate λ was learned by recording the number of trips made by a
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taxi with a customer on board; this was calculated to be approximately 48 arrivals per

minute. The customer transition matrix D was learned by recording the distribution

of destination nodes of taxis leaving each node with a customer on board. In order to

evaluate our proposed policy within the context of the actual taxi system in Singapore,

simulations were conduction in comparison with the following two test policies.

Observed Policy

Pobs is the actual redistribution policy derived from the Singapore taxi data. This was

learned by analyzing the distribution of taxis leaving each node without a customer

on board. This is the “ground truth” policy and represents the actual redistribution

behavior of an unmanaged taxi fleet. This is the policy that is of most interest to

us because it provides an insight into the effectiveness of unmanaged redistribution.

Further, the number of taxis nobs that was actually observed to be in operation on

Singapore roads was estimated by recording the number of individual taxi IDs that

registered journeys within the given epoch.

Arrival Policy

Parr is a “smart” but naive policy that provides a reasonable model for individual

taxi driver behavior. The arrival policy is defined by pi,j = αj, i.e. the taxi driver

will choose his next location based on the chances that a customer will arrive there.

Simulations were carried out for 8 simulation hours each (at τ = 60s). Each

simulation was carried out 5 times for each policy and for each value of n, and the

results aggregated. First, nmin was determined by means of bootstrap simulations

as described in Section 6.1. Then the main test simulations were carried out (105

in total) employing Pobs, Parr and PHM policies with n set to increasing multiples of

nmin. Results were evaluated using the metrics described in Section 6.2.
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Policy n LUP LQOS LFC % serviced

PHM nmin 1 0.40 0.94 99.96
Pobs 1 0.67 0.99 99.91
Parr 1 0.55 0.99 99.94

PHM nmin × 1.2 1.2 0.17 0.92 99.99
Pobs 1.2 0.40 0.99 99.95
Parr 1.2 0.32 0.98 99.98

PHM nmin × 1.4 1.4 0.11 0.91 99.99
Pobs 1.4 0.26 0.99 99.97
Parr 1.4 0.18 0.99 99.99

PHM nmin × 1.6 1.6 0.05 0.89 99.99
Pobs 1.6 0.19 0.99 99.98
Parr 1.6 0.12 0.98 99.99

PHM nmin × 1.8 1.8 0.03 0.88 99.99
Pobs 1.8 0.15 0.99 99.99
Parr 1.8 0.09 0.98 99.99

PHM nmin × 2 2 0.03 0.87 99.99
Pobs 2 0.12 0.99 99.99
Parr 2 0.07 0.99 99.99

PHM nmin × 4 4 0.01 0.83 99.99
Pobs 4 0.05 0.99 99.99
Parr 4 0.02 0.97 99.99

Table 6.1: Simulation Results. A lower metric indicates better performance. The best policy is
highlighted for each n.

6.3.1 Results

Table 6.1 summarizes the simulation results. The optimization algorithm yielded

nmin = 1000 (rounded to the nearest 100 vehicles) for λ = 48. The number of taxis

that was actually observed to be in operation on Singapore roads was recorded from

the taxi data as nobs = 10, 088. This clearly suggests that there are many more taxis

in operation in Singapore than strictly necessary to service all customers without a

buildup of queues. Since simulations were carried out for fixed n, the UP metric is the

same for all policies for a given n. Fig. 6-1a shows a plot of the average percentage

of customers serviced for different values of n. Observe that for n = nmin the policies

marginally satisfy stability constraints, and for n > nmin all policies achieve almost
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full service.

The rightmost columns of Table 6.1 summarize the results for the QOS and FC

metrics. Fig. 6-1b shows the calculated average waiting time of customers for in-

creasing n. We see the HM policy improves substantially over the both test policies

for the same number of taxis. Fig. 6-1c shows the average fuel consumption of taxis

for increasing n. Again, the HM policy shows an improvement over both test policies.

These results confirm that the unmanaged redistribution behavior is indeed sub-

optimal. The fact that the HM policy shows a significant improvement for both

QOS and FC metrics is intriguing as it indicates that the interests of the taxi driver

and the customer may in fact be aligned, and suggests the potential for a natural

incentive-based redistribution model for drivers that also improves quality of service.

6.4 Summary

In this chapter we develop a practical deployment policy for a Markov-based model of

an urban transportation network. We considered three optimization criteria: urban

planning, fuel consumption, and quality of service. We presented a solution that can

be computed efficiently. We compared the computed policy to the activity of a fleet

of 16,000 taxis in Singapore. Simulation experiments show that there we achieve a

significant improvement with respect to all three optimization criteria, and that there

is great potential to improve the efficiency of the current deployment strategy.
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Chapter 7

Conclusions and Lessons Learned

In this thesis, we presented a complete analysis of the steps involved in develop-

ing a deployment algorithm for robotic exploration and patrolling. Specifically, we

addressed the motivation behind exploration and patrolling algorithms and their im-

portance within robots in general. We motivated the importance of a clear prob-

lem specification and how it can impact our understanding of the environment in

an exploration or patrolling scenario. We addressed the problem of characterizing

and representing an arbitrary continuous environment, and presented techniques for

transforming the problem into a discrete representation. We introduce two novel de-

ployment algorithms: an exploration algorithm for pursuit-evasion and more general

policy for patrolling on a graph. Finally, we implemented our patrolling policy to

an urban mobility network, and used real historical data to compare it against the

actual observed redistribution of taxi drivers in Singapore. We conducted large-scale

simulations and presented our results. In this chapter, we summarize the key contri-

butions of each chapter and offer reflections, ideas for future work, and concluding

remarks.

In Chapter 3 we considered the problem of obtaining a concise characterization of

a physical environment in the context of frontier-based non-recontaminating explo-

ration. We examined the relationship between an environment Q, the sensor radius

r, and the number of robots n required for non-recontaminating exploration of Q.

Guided by the intuition that corridor width and junctions are important features,
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we formalized these notions and presented a general method for computing a con-

figuration space representation of the environment that captures this intuition. We

introduced the medial axis as a configuration space and showed that reasoning about

points in this configuration space is equivalent to reasoning about robots in physical

space. We introduced an exploration model whereby a swarm locus moving along the

skeleton allows us to reason about a group of robots moving through physical space.

We defined what it means for a frontier to split and for a group of robots to traverse

a junction, and derived lower and upper bounds on the number of robots required to

traverse a junction.

Reflecting on this part of our work, we express that environment characterization

is a very rich and challenging problem. Fundamentally, we want to understand the

world. But even within the specific problem domain of deployment algorithms for

robotics, the understanding we seek to gain is intrinsically related to the problem

that we are trying to solve. Thus it is difficult to develop a general characterization of

an environment, just as it is difficult to talk about deployment algorithms in general.

In our work, exploration provided us with a model that generalizes well to a lot of

deployment scenarios, and yielded results that are general enough to be applied to a

wide scope of problem domains.

We would consider the lessons learned from this part of our work to be two-

fold. First, considering different deployment models can yield different properties

of the environment that can turn out to be useful in general. For example, the

interpretation the ”undirected width” of an environment was motivated by the very

specific problem requirements of non-recontaminating exploration, but is indeed a

very useful property for environment characterization in general – combined with the

medial axis, we have a terse and complete representation of an environment. Second,

techniques from seemingly unrelated disciplines may prove useful. For example, the

distance transform is primarily used in computer vision, and the medial axis is a

theoretical principle from mathematical morphology. When the intuition is already

present, and one is looking for methods to capture it, thinking outside the box can

be fruitful.
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In Chapter 4 we presented a transformation from our continuous configuration

space environment representation into a symbolic representation in the discrete do-

main. We cast the exploration problem as a game, established rules for playing this

game, and derived bounds on the number of robots necessary and sufficient to clear

the environment. Using the junction lower bound result we derived a lower bound

on the total number of pursuers necessary to clear the environment, showing that

no fewer than this number can possibly clear the environment regardless of the ex-

ploration model or pursuit strategy. Using the junction upper bound we derived an

upper bound on the total number of pursuers that will always be sufficient to clear the

environment, for any pursuit strategy. Finally, we derive an optimal pursuit strategy

and prove that it guarantees we can clear the environment with the minimum number

of pursuers for a given exploration model.

There are a number of interesting future lines of research for this work. First, the

establishment of tight bounds on the number of robots required to traverse a junction

– we suspect that the lower bound given by Result (3.1) in Section 3.2.2 is in-fact

necessary and sufficient. A rigorous proof of this fact would have to generalize to

accommodate a number of special cases.

Second, the extension of this work to environments with holes would be a signifi-

cant contribution. The medial axis configuration space was chosen with this in mind,

and the model presented in Section 3.2 soundly generalizes the characterization to

arbitrary connected environments. A number of issues need to be addressed in trans-

forming this representation into the discrete domain. One would need to consider

an undirected graph and junctions would need to be represented accordingly. It is

known that computing the number of searchers required to clear a general graph is

NP-hard [35], so suitable heuristics or approximations would need to be employed.

Alternatively, the graph could be converted into a tree such as in [25],[26]; however

the non-isotropic nature of the junction transition function would demand a judicious

approach to blocking cycles.

We believe that this work marks an important foundation for the characteriza-

tion of environments in general. We presented several techniques that can help us

77



understand the capabilities of a group of robots deployed in an environment with

complicated and seemingly arbitrary structural features. We treated a challenging

robotic exploration scenario and showed how environment characterization can relate

to the number of robots required to guarantee progress and termination. We believe

the techniques presented in this work can be applied more generally, and integrated

into online exploration algorithms.

In Chapter 5 we extended on the idea of modeling exploration deployment on a

graph to the more general case of patrolling. We presented a Markov-based model

for an urban transportation network. We showed the steps taken to ensure that the

model is realistic while still complying with a Markov framework. We presented a

mechanism by which a group of robots can be deployed to patrol the network and

showed how such a deployment strategy can be encoded within a Markov model. We

presented a scalable optimization framework for computing such a strategy.

In Chapter 6 we proposed a deployment strategy for patrolling the urban mobility

network that can be computed efficiently. We considered three evaluation criteria:

urban planning, fuel consumption, and quality of service. We conducted large-scale

experiments that compared our computed algorithm to the activity of a fleet of 16,000

taxis in Singapore.

We believe that this work marked an important step toward understanding the

basic trade-offs between the number of transportation vehicles in the system, vehicle

fuel consumption, and the overall quality of service provided by the transportation

system. We believe that a Markov model is a useful high-level abstraction of a supply-

and-demand chain, offering a simple and robust mechanism for encoding optimization

requirements, and a sound platform for more sophisticated solutions. Our practical

patrolling policy demonstrates the effectiveness of a Markov model in encoding pa-

trolling strategies that meet challenging optimization criteria. More importantly, we

believe that our work shows the effectiveness of patrolling as a general approach to

solving real urban mobility problems.

In reflection, a more general problem and deployment model does have some ad-

vantages but also some drawbacks. Being able to express an entire deployment policy
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in a single Markov chain is an elegant solution to a complicated problem. However,

proving the necessary guarantees about this problem was challenging. Ultimately the

patrolling policy relied on experimental verification of its effectiveness.

The authors agree with the sentiments expressed in the thorough survey of pre-

vious work in [38] that theoretical completeness of proposed solutions is often not

essential or even particularly meaningful in the real world. Some of the problems in

the application domain of urban mobility are fundamentally intractable. We express

that future work should seek to embrace the development of heuristic solutions that

may not be optimal, but are effective, robust and efficient.
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