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Abstract. Large-scale autonomic systems are required to self-optimize
with respect to high-level policies, that can differ in terms of their pri-
ority, as well as their spatial and temporal scope. Decentralized multi-
agent systems represent one approach to implementing the required self-
optimization capabilities. However, the presence of multiple heteroge-
neous policies leads to heterogeneity of the agents that implement them.
In this paper we evaluate the use of Reinforcement Learning techniques
to support the self-optimization of heterogeneous agents towards multi-
ple policies in decentralized systems. We evaluate these techniques in an
Urban Traffic Control simulation and compare two approaches to sup-
porting multiple policies. Our results suggest that approaches based on
We-learning, which learn separately for each policy and then select be-
tween nominated actions based on current action importance, perform
better than combining policies into a single learning process over a single
state space. The results also indicate that explicitly supporting multiple
policies simultaneously can improve waiting times over policies dedicated
to optimizing for a single vehicle type.

1 Autonomic Systems

Autonomic computing systems are systems that self-manage and self-adapt to
varying circumstances without human intervention [8]. The need for autonomic
capabilities arises due to the increasingly large scale, decentralization and com-
plexity of computing systems rendering the traditional manual, centralized and
hierarchical approaches to system management infeasible [21]. Autonomic sys-
tems are only given high-level objectives while the details of how to meet those
objectives are left up to the systems themselves. Therefore, autonomic systems
need to self-optimize their performance, even in the changing environment condi-
tions. Rather than being managed by a central component, an autonomic system
can be modelled as a group of autonomic elements, that are capable of sensing
their environment and making their own local decisions [8]. The optimal local
decisions cannot be predefined for each situation in which an autonomic element



might happen to be, but is often required to be learnt by the element itself. As
autonomous agents [17] have the capabilities required by autonomic elements,
it is believed that multi-agent systems are a suitable technique for the imple-
mentation of autonomic behaviour [21]. Examples of such techniques already
successfully applied in decentralized large-scale susyems include ant colony opti-
mization in load balancing [10], particle swarm optimization in wireless networks
[7], evolutionary computing in routing [5] and reinforcement learning (RL) in
load balancing [4].

1.1 Multi-policy optimization

The systems mentioned above focus on optimizing system performance with re-
spect to only a single high-level goal. However, autonomic systems might often
be required to meet multiple goals simultaneously. These goals can be expressed
as system policies, which are used to guide system behaviour. Therefore, opti-
mization techniques need to be able to address multiple goals (or policies) simul-
taneously. We hypothesize RL might be a suitable basis for the implementation
of such a technique, as it has already been successful as a learning technique
for optimization towards a single policy in decentralized systems, as well as a
learning technique for multiple policies on a single agent (see Section 2). We
test our hypothesis in a simulation of an Urban Traffic Control (UTC) system.
We believe UTC systems are representative of large-scale autonomic systems, as
existing centralized techniques are failing to deal with the pressure of high traffic
loads and new decentralized adaptive learning techniques are being investigated
to deal with increasing traffic congestion (see Section 2). UTC systems may also
need to optimize for multiple policies that have different characteristics. The
policies can often be conflicting, highly dependent on one another, have different
levels of priority, and different spatial and temporal scope.

Policy classification We use three main criteria to classify the characteristics of
policies in decentralized systems:

— priority - can range from low to high, based on how important it is for a
system to meet this particular goal in relation to meeting its other goals;

— spatial scope - can be local, regional, and global, based on the area of a
system over which a policy is implemented and its performance measured;

— temporal scope - can be continuous or temporary (sporadic), based on whether
a system is required to work towards this goal continuously during its oper-
ation, or only occasionally under a certain set of conditions.

We illustrate the classification with a few examples of policies from UTC. The
main task of a UTC system is to optimize global traffic flow in the system, by
minimizing travel and waiting times for all vehicles in the system. This policy is
classified as global (as it affects the whole system), continuous (as UTC systems
need to implement this policy as long as there are any vehicles present in the
system), and of a standard priority. Occasionally, emergency vehicles, such as



ambulances, fire engines, or police cars, appear in the UTC system, and the
system’s task is to give them priority over other vehicles in the system. This
policy that prioritizes emergency vehicles is said to be regional (as it affects only
the region in which the emergency vehicle is travelling, generally major traffic
routes), sporadic (as emergency vehicles are not always present in the system but
only when the need arises), and it has a high priority (since it is more important
to meet this policy than to minimize the travel time for other vehicles on non
time-critical journeys). Policies can also be local, where, for example, at a very
busy pedestrian crossing, pedestrians may be given priority over vehicles.

Agent heterogeneity and dependency This wide variety of policies and their char-
acteristics leads immediately to heterogeneity of the agents that implement them.
For example, consider Figure 1. Agent A might be in charge of contributing to
the implementation of a global policy P,, together with all of the other agents
in the system. Agent B could also be in charge of contributing to the implemen-
tation of a policy P, , implemented only by agent B and its neighbours, while
agent C could also be in charge of a local policy P., being the only agent imple-
menting it. These policies can be concerned with addressing different parts of
the environment, e.g., P, might only be interested in optimizing travel time for
cars, while P, might only be dealing with pedestrians. In terms of RL, this will
cause the state spaces of agents A, B, and C to differ, as, for example, the infor-
mation required to be encoded in the state space of a policy optimizing for cars
will need to be different from the information relevant to the policy optimizing
for pedestrians.

Fig. 1. Agent heterogeneity

Furthermore, agent heterogeneity can also arise from the differences in the
agents’ environments and capabilities. For example, in a UTC system, the layout
of junctions can differ; each junction can have a different number of approaches
and exits, resulting in a different set of traffic-light phases being possible at that
junction. In an RL implementation this maps to agents having different state
spaces as well as different action sets. A junction with two approaches and one
exit will have a significantly smaller state space and action set than a junction
with four approaches and four exits. The size of the state space and the number
of possible actions directly influence the duration of a learning process, so agents
will significantly differ in the number of learning steps that it takes them to learn
what they consider to be the optimal action for each state visited.



Agents acting in a shared environment may potentially be highly dependent,
i.e. affected by each other’s actions. In UTC, agents share the same road network
with limited road space. Therefore, any decision that a traffic-light agent makes
might have direct consequences on its neighbouring agents, and by extension,
on most of the other agents in the system. For example, if a backlog of traffic is
left uncleared at an approach, the queue can spill over to the upstream junction.
The traffic will not be able to go through the upstream junction regardless of
the actions taken by an agent controlling it, as there is no road space available.

Such dependencies are particularly difficult to deal with in environment con-
trolled by heterogeneous agents. Some agents could be contributing towards
optimizing traffic flow, while others are contributing to prioritizing emergency
vehicles. However, cars and emergency vehicles share the same road network,
and therefore the performance of agents in implementing one policy will directly
influence the performance towards the other. For example, if an agent that is
implementing emergency vehicle prioritization releases an approach at which an
emergency vehicle is waiting, it might create a traffic backlog on one of its other
approaches, negatively affecting the junction upstream from that approach.

In summary, large-scale autonomic systems can consist of multiple agents,
implementing multiple, dependant, and potentially conflicting policies, where
these policies differ between agents, causing agents to have different state spaces
and different action sets. All of these issues will need to be addressed by RL
techniques that are to be applied to large-scale autonomic systems and UTC in
particular.

1.2 Reseach question

The goal of this study is to assess the suitability of multi-agent RL-based tech-
niques for optimization in autonomic systems. In order to do so, we have im-
plemented and evaluated several single and multi-policy UTC scenarios. We use
single-policy scenarios to evaluate the impact that policies targeted at one ve-
hicle type have on other vehicle types, as well as baselines for the evaluation of
multi-policy scenarios.

As policy heterogeneity is a central issue, for the initial evaluation we selected
two policies that differ in all three of our classification criteria: priority, temporal
scope, and spatial scope. The single-policy scenarios we implemented are as
follows:

1. Global Waiting time Only (GWO) - a global, continuous, standard-priority
policy that aims to optimize waiting time for all the vehicles in the system.

2. Emergency Vehicles Only (EVO) optimization - a regional, temporary, high-
priority policy that aims to prioritize emergency vehicles only.

We combined the policies above in two ways to implement the following multi-
policy scenarios:

1. Combined state space (GWEV-c), where GWO and EVO are combined into
a single learning process over a single state space.



2. W-Learning (GWEV-w), where GWO and EVO learn the best actions sep-
arately as two separate learning processes, but W-learning (see Section 2.1)
is used to determine which action is to be executed.

One important consideration when addressing the agent dependency and hetero-
geneity in large-scale autonomic systems is whether agents should act indepen-
dently (contributing only to implementing policies for which they are responsi-
ble), or whether they should collaborate with other agents (contributing to the
implementation of policies that they are not directly responsible for as well).
In the experiments we describe in this paper, we implement only independent
agents. The scenarios above are designed to evaluate approaches for dealing with
multiple heterogeneous policies, while in the future, we also plan to evaluate the
impact of collaboration in multi-agent multi-policy approaches.

The rest of this paper is organized as follows. In Section 2 we give back-
ground on RL as well as its applications in UTC system. Section 3 describes
our simulation environment. Section 4 describes the details of the scenarios that
we implemented and the design of the agents, followed by the results and their
analysis. Section 5 concludes the paper and outlines future work.

2 Background

Reinforcement Learning [20] is an unsupervised learning technique whereby an
agent learns how to meet its goal by interacting with the environment. Agents
sense their environment, map their observations to a state space representation,
execute an action and obtain a reward from the environment based on the suit-
ability of that action in the given state. Therefore, a reward is the only guidance
agents have when learning how to meet their objectives. We are particularly
interested in Q-learning implementations of RL [20], because, as we’ll see later
in this section, it has already been successfully applied to certain types of UTC
problems. In Q-learning, an agent uses a value function to estimate the accu-
mulated future reward. In this way, agents learn to perform the actions with
the highest long-term reward, rather than those that merely receive the highest
immediate reward. Performance of a Q-learning process depends on the action
selection strategy used. In our experiments we use Boltzmann [20] action selec-
tion, which uses a temperature parameter to determine the ratio of exploration
and exploitation in the Q-learning process. The speed of learning and the weight
given to recent vs. older actions are determined by two additional parameters,
the learning rate «, and a discount factor v, respectively.

2.1 Multi-goal Q-learning

Q-learning implementations can deal with the presence of multiple policies on a
single agent in several ways.

Humphrys [6] introduced W-learning, where policies not only learn appro-
priate actions for each state, but also how important it is to that policy for that



particular action to be executed, in comparison to an action that is best for some
other policy. The action with the highest relative importance gets executed.

In contrast to W-learning, multiple goals can also be combined into a single
learning process. However, on a larger scale this is prone to state explosion. One
way to deal with this is to reduce the state space by eliminating states that are
unlikely or impossible to occur, if there are any [3].

Nataraj et al. [11] deal with learning in the situations where relative weights
of policies change over time. Shelton provides a means to balance the incompa-
rable rewards received from multiple sources [19].

All of these multi-policy techniques have only been applied to a single agent.

2.2 Agent-Based Traffic Control Strategies

A large body of research exists showing the suitability of multi-agent systems,
in particular those implementing RL, for optimization of performance of UTC
systems. An increasing number of UTC systems are being managed by traffic-
responsive algorithms, such as SCATS [13], however research shows that use of
RL can outperform these algorithms as well.

In [22], cars estimate their projected waiting time, and make a decision about
their route based on this. Projected waiting time is communicated to the traffic
lights agents, modelled as Q-Learning agents, that then select the phase that
minimizes waiting times. Wiering’s experiments show improved performance of
his approach over a fixed-time controller. Abdulhai et al. [1] model traffic-lights
as Q-learning agents and conclude that Q-learning provides higher real-time
adaptivity than other state-of-the-art techniques. Pendrith [14] models vehicles
as Q-learning agents capable of sensing the speed and position of their neigh-
bouring vehicles. Based on this information, vehicles decide on their speed and
potential lane changes.

In the above examples, RL agents are implemented to act independently.
Bazzan introduces traffic-light agent coordination using evolutionary game the-
ory [2], while Salkham et al. [18] implement agent collaboration by a means of
Q-value exchange between neighbouring agents.

All of the implementations mentioned are concerned with a single policy of
optimizing traffic in general, whether by increasing throughput or by minimizing
waiting time. Much less work is dedicated to the applicability of multi-agent
systems, and RL in particular, for optimization towards other UTC policies.
Oliveira and Duarte [12]| incorporate emergency vehicle priority into their UTC
system. Meignan et al. [9] simulate bus network performance, modelling both
buses and passenger behaviour. They account for the influence of other traffic
on the bus network, but do not account for the influence of public transport on
other vehicles, nor do they include traffic signal priority for public transport.

2.3 Summary

RL is a single-agent, single-policy learning technique. It has been extended to
deal with multiple policies on a single agent, as well as to multiple agents im-



plementing a single policy, either independently or collaboratively. However, no
RL technique deals with multiple policies on multiple agents simultaneously.
Existing RL applications in UTC also concentrate on a single policy only. Our
work has been inspired by the success of such applications in optimization of
traffic waiting times, emergency vehicle priority, and bus networks performance
individually, as well as by the lack of an integrated approach for optimizing for
all policies and vehicle types simultaneously. We evaluate the use of RL tech-
niques in multi-agent environments in dealing with multiple UTC policies, while
simultaneously modelling the influence that these policies have on one another’s
performance.

3 UTC Simulation Platform

In our experiments we use an urban traffic simulator developed in Trinity College
Dublin [15]. The simulator uses a microscopic traffic simulation approach, and
can simulate traffic over any road network defined by a map provided in an
XML format. The simulator can distinguish between multiple vehicle types, such
as cars, public transport vehicles, and emergency vehicles. Vehicles implement
different behaviours based on their type; e.g. emergency vehicles are capable of
driving above the allowed speed limit, as well as driving through red lights if it
is safe to do so.

The map we used for our initial experiments presented in this paper is shown
in Figure 2. The map is based on road layout details provided by Dublin City
Council and corresponds to one of the busiest areas of Dublin’s road network,
O’Connell Street, Dublin’s main street, and several side roads that feed traffic
onto this road. Using a real-world map provides a more realistic simulation; many
of the simulations used for evaluation of multi-agent systems in UTC covered in
Section 2.2 use either a single junction, or multiple junctions and road links that
have similar layouts, while the map that we use includes junctions of various
layouts (e.g. junctions with two, three, and four approaches and exits), roads of
differing width (e.g. two, three, and four lane roads), as well as one-way and two-
way roads. The map covers 8 junctions, 5 of which are signalised junctions and
are controlled by the agents described in the following section. Each agent has
a set of available phases, or combinations of compatible red and green settings
on all traffic lights controlling one intersection. Phases are generated based on
intersection layout and allowed traffic directions. Each phase is mapped to an
action agent is able to execute.

4 Traffic Light Agents

In this section we describe the agents that we designed to implement the policies
and study the RL approaches to be evaluated (as listed in Section 1.2), as well
as agents used as a basis for comparison.



Fig. 2. UTC Simulator

4.1 Baseline agents

Round robin As a baseline used for the evaluation of the performance of the RL
agents we ran experiments using a Round Robin (RR) junction controller. The
RR agent, at each junction, continuously loops through all available phases at
that junction. The duration of each phase is 20 seconds.

SAT We also compare the performance of the RL agents to a simple SCATS-
like traffic-responsive algorithm SAT, as defined by Richter [16], that adjusts
phase duration based on the degree of saturation at a junction. The degree of
saturation is defined as a ratio of the effectively used green time to the total
available green time. At each junction, SAT, similarly to SCATS, aims to keep
the junction saturation as close to 90% as possible, by shortening or lengthening
the phase duration. In our experiments the minimum duration for each phase is
set to 20 seconds.

4.2 Single-policy RL scenarios

GWO - Optimizing global waiting time The first policy we implemented, opti-
mizing Global Waiting time Only (GWO), optimizes vehicle waiting time in the
whole system. Since global waiting time is a sum of waiting times for all cars at
all junctions in the system, and we assume no collaboration between agents, we
aim to minimize the waiting times at each individual junction.

Each agent is capable of sensing the number of vehicles at each of its ap-
proaches, and maps that to a state space that orders approaches according to
their congestion. For example, on a junction with two approaches, a; and as, a
state could be “Congestion order: a;, as”, meaning that approach a; has more
traffic waiting than ao. Note that, since junctions have different layouts, the size
of the state space will depend on the number of approaches. The state space does
not encode how many vehicles are waiting at which approach as the numbers are
relative to overall congestion in the system. It also contains information about



whether the total number of vehicles waiting at the junction is more or less than
at the previous phase change (e.g. “Congestion order: aj, ag, less vehicles than
before”). Note that arrival rates are assumed to be uniform in this experiment,
so a change in numbers of vehicle waiting is caused only by an agent’s action.
Such a state space is created to facilitate rewarding an agent (100 points in our
experiments) for being in a state with less traffic waiting than at the previous
decision point, i.e. to motivate it to execute actions that clear more traffic than
arrives at the junction during the action execution. Agents learn to reduce the
number of vehicles waiting at the junction’s approaches, thus reducing global
waiting time for the system.

EVO - Prioritizing emergency vehicles The other single RL policy that we im-
plemented minimizes waiting times for Emergency Vehicles Only (EVO). The
agents’ state space encodes information about which approach(es), if any, have
emergency vehicles waiting. Agents receive a reward (200 points in our experi-
ments) for being in a state where there is no emergency vehicle present at any
of the approaches. This encourages agents to, as soon as possible, return to the
state with no emergency vehicle present, by enabling emergency vehicles to pass.
This policy does not address any other vehicle types and only takes emergency
vehicles into account when making action decisions.

4.3 Multi-policy RL scenarios

GWEYV-c: Merging RL processes One way to combine multiple policies on a
single agent is to encode all the information relevant for all the policies into a
single state space and a single learning process. We combined GWO and EVO
into a single policy, GWEV-combined (GWEV-c). The state space of GWEV-c
consists of the cross product of the state spaces for GWO and EVO. An agent
receives 100 points reward for being in any of the states with less traffic than
in the previous phases (i.e. states for which GWO receives a reward for), a 200
points reward for any of the states with no emergency vehicles present (i.e. states
for which EVO receives a reward for), and the sum of both rewards for being in a
state that satisfies both criteria. We acknowledge that as the number of policies
to be combined increases this approach will not be scalable due to state space
explosion, but we believe that comparing its performance to other techniques
can give us a useful insight into how multiple policies should be dealt with.

GWEV-w: W-learning W-Learning is a multi-goal technique proposed in [6]
that builds on Q-Learning. First, each agent runs separate Q-Learning process
for each policy that it is implementing. In our experiments, we ran the two
individual single goal policies described in the previous section, GWO and EVO,
and on top of them implement W-learning (GWEV-w). After GWO and EVO
have learnt Q-values for their state-action pairs, the process of W-learning starts.
In W-learning, an agent learns how important it is that, for each of its policies
and for each state in which an agent could be, the action a policy nominates is in
fact executed, i.e. what weight that action carries. W-values are updated based on



the reward received, and further action selection is based on these W-values. Each
policy nominates an action, based on its Q-values, together with an associated
Wh-value for the state in which the agent is currently. The action proposed by a
policy with the highest W-value is executed. In our experiments, since EVO is
a temporary policy, we deem it inactive when there are no emergency vehicles
present, and set the weight of the action that the EVO policy nominates in that
state to zero.

4.4 Simulation setup

Cars enter the simulation at four different points (A, B, C, D) and exit the
system at two different points (A, B), following 1 of 4 paths: A to B, B to A, C
to A, and D to B (see Figure 2). Emergency vehicles tend to use major routes
wherever possible, so in our simulation they only travel on paths A to B, and B
to A. Therefore, the EVO policy is only deployed on agents A, B, E, and F. All
vehicles follow the shortest path from source to destination. Vehicle routes are
the same for all of the experiments we ran.

Agent performance is tested for three different traffic loads to simulate differ-
ent traffic conditions. The loads are as follows: low load (a total of 28,140 vehicles
are inserted, 7,000 cars on each of the car routes and 70 ambulances on each of
the emergency vehicle routes), medium load (a total of 56,280 vehicles, 14,000
cars on each of the car routes and 140 ambulances on each of the emergency
vehicle routes) and high load (a total of 100,500 vehicles, 25,000 cars on each of
the car routes and 250 ambulances on each of the emergency vehicle routes).

Each signalised junction in the simulation has a different set of available
phases, automatically generated based on junction layout. For this set of ex-
periments, the duration of each phase is set to 20 seconds. Junctions can cycle
through their available phases using RR, or can be controlled by SAT or one of
the RL agents described in the previous section.

4.5 Experiment Parameters

Each of our RL experiments is run in two parts: 2010 simulation minutes of
exploration, and 2010 minutes of exploitation. The duration of 2000 minutes
enables Q-learning to execute 6000 learning steps (as our actions are 20 seconds
duration each) which, we consider sufficient for agents to learn the Q-values for
their state-action pairs. Additional 10 minutes were added to allow a chance
for last inserted vehicles to leave the system. GWEV-c has a much larger state
space than the other policies and therefore was given a longer exploration phase
of 20000 minutes to enable a larger portion of the state space to be visited a
sufficient number of times. Each experiments is repeated three times, and average
results from exploitation phase are presented in this paper.

Each RL process has been run multiple times to determine the best combi-
nation of a and « . The final combinations used for the experiments presented
are, for GWO: a = 0.1 and v = 0.3, for EVO: a = 0.9 and v = 0.1, for GWEV-c:
a = 0.1 and v = 0.1 and for GWEV-w: o = 0.1 and v = 0.7.



The performance of SAT also varies based on the size of the steps in which
the phase duration can be incremented or decremented, as well as the maximum
duration of the cycle factor. The actual maximum duration of the cycle for
a junction is a function of this factor and the number of available phases for
that junction. The best parameters determined for SAT performance with a
minimum action duration of 20 seconds are 10 for the increment step, and 1.2
for the maximum duration of the cycle factor.

4.6 Results and Analysis

Metrics We compared the performance of the RL agents based on the following
metrics:

— Density - measured as the ratio of occupied road space to available road
space [2]. For the same traffic arrival rate, higher density means worse agent
performance, since traffic that is not successfully cleared and is still in the
system is creating higher density.

— Waiting time - average waiting time per vehicle for the duration of the ex-
periment. We separate waiting times per vehicle type, so we can measure
performance towards each of individual policies described in Section 4.2.

Density Density results are summarized in Table 1.

| | RR | SAT [ GWO | EVO [GWEV-c[GWEV-w
Low 2.96 2.76 1.66 12.30 1.60 1.49
Medium 5.60 5.20 3.31 11.37 3.47 3.09
High 11.04 9.50 5.84 15.85 6.03 5.06

Table 1. Average density per load level ratio

We see that GWEV-w has the lowest density across all three loads, indicating
that it is the most successful approach to managing the general traffic flow.
GWO and GWEV-c have similar densities, with GWEV-c being better at the
low load, and GWO at all other loads. We believe this is due to GWO addressing
cars, which make up 99.5% of the total traffic, so its performance is very close
to GWEV-c, which addresses all traffic. At the low loads, SAT and RR perform
similarly, while the difference becomes more obvious at high load, where SAT
performs better.

EVO has by far the highest density for all three loads. We believe this is due
to the fact that this policy addresses only emergency vehicles, which make up
only 0.5% of traffic in our simulation. Cars, which make up remaining 99.5% of
the traffic, are not addressed, and create a backlog in the system. In Figure 3 we
see an example of the effect of this backlog on the density. In the EVO imple-
mentation of the UTC system fills up with the traffic not adequately addressed
by the policy, creating higher density and worse performance. This confirms



the high dependency between policies due to the shared infrastructure, i.e. road
space.

Traffic density
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Fig. 3. Density during low load

Emergency-vehicle waiting time Our initial expectations were that EVO, whose
only goal is to prioritize for emergency vehicles, would yield the best waiting
times for emergency vehicles. However, this approach turned out to have the
worst performance due to the high dependency between emergency vehicle per-
formance and the performance of private vehicles which are not addressed by
this policy. Not only do emergency vehicles suffer high waiting times, but a large
number of vehicles had to be turned away, as the system was backlogged and
there was no available road space for them to join. For this reason, EVO wait-
ing time results are not comparable to other results and we exclude them from
subsequent graphs.

average car waiting time average emergency vehicle waiting time
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Fig. 4. Average waiting time per vehicle type



Figure 4 shows average waiting times for both cars and emergency vehi-
cles for the medium traffic load for all the policies we implemented apart from
EVO. For the moment, we focus on the emergency vehicle waiting times. On the
graph shown, GWEV-w is the best policy for emergency vehicles, but at low and
high loads, GWO slightly outperforms this policy. The similar performance of
single-policy GWO and multi-policy GWEV-w suggests the high dependency be-
tween the performance of different vehicle types. It emphasises the importance
of clearing general traffic, as GWO does, to free up the road space for emer-
gency vehicles, and suggests a high dependency between a policy that addresses
emergency vehicles and one that addresses private vehicles.

GWEV-w clearly outperforms GWEV-c at all loads, reducing emergency
vehicle waiting time to between ~40% and ~80% of their waiting time in GWEV-
c. We believe that worse performance of GWEV-c is caused by the size of the
agents’ state spaces. These results suggest that GWEV-c, even though it still
outperforms SAT and RR, is not effective even for combinations of only two
policies and would not be scalable to the addition of any further policies.

GWEV-w also outperforms our baselines, reducing average emergency vehicle
waiting time to between ~7% and “50% of their waiting time in SAT, and
between 7% and ~20% of their waiting time in RR. These results suggest that
GWEV-w is a suitable technique for multi-policy optimization in UTC, as it
outperforms the other evaluated multi-policy technique GWEV-c, single policy
EVO, as well as both of our baselines.

Car waiting time GWO, GWEV-w and GWEV-c have similar performance for
all loads in terms of average car waiting time, with GWEV-w slightly outper-
forming GWEV-c, and GWO slightly outperforming both of the multi-policy
approaches (see Figure 4). From this we conclude that the best waiting times
for cars are achieved when the system optimizes only for cars (GWO), but in
the presence of multiple policies, specifically one with a higher priority such as
emergency vehicles, GWEV-w is the best approach. GWEV-w also outperforms
our baselines, and reduces waiting time for cars to between ~32% and ~42% of
their waiting time in SAT and between ~26% and ~38% of car waiting time in
RR.

It is also interesting to observe the performance of our baselines, SAT and
RR, in relation to each other, both in terms of car waiting time and emergency-
vehicle waiting time. At the medium load (see Figure 4) and at the high load,
the adaptive SAT algorithm performs better, as we expected, but at the low load
RR actually performs better. This indicates that when the loads in the system
are very low, running an adaptive algorithm, SAT, might have adverse effects
on traffic performance, possibly due to extending phase times to longer than it
is required and creating larger backlogs. However, these results also emphasize
the importance of adaptation at higher loads.

Overall analysis From the experiments we performed we have made following
main observations. Both RL-based techniques, GWEV-w and GWEV-c, outper-
form our baselines, both in terms of emergency vehicle and car waiting times,



showing that RIL-based techniques are promising approaches to multi-policy op-
timization in autonomic systems. GWEV-w performs better than GWEV-c, in-
dicating that W-learning-based approach is a more suitable approach for multi-
policy optimization than combining learning processes into a single learning
process. We also observe high dependency between the policies reflected in their
performance. The policy that addresses only emergency vehicles (EVO) gener-
ates a backlog of other vehicles, and as a result performs very badly both in
terms of car and emergency-vehicle waiting times. GWO, which addresses only
cars, also performs well in terms of emergency vehicle waiting times, as clear-
ing cars creates less congested roads and enables emergency vehicles to proceed.
Our results also show that the importance of the optimization increases with the
traffic load, where the gap between the performance of adaptive techniques (e.g.
SAT) and nonadaptive techniques (e.g. RR) grows larger.

5 Conclusions and Future Work

In this paper we presented the challenges of multi-policy optimization in decen-
tralized autonomic systems. We have evaluated several proposed multi-policy
optimization RL techniques in UTC and our results indicate that W-learning
is a suitable approach for optimization towards multiple policies in multi-agent
heterogeneous autonomic environments. In future work, we will extend the scope
of our experiments to additional policies with different characteristics, to estab-
lish wider applicability of W-learning-based techniques. We will also investigate
potential for performance improvement by agent collaboration by enabling W-
learning agents to cooperate with each other in order to meet system goals.
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