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Abstract— A dynamic patrolling policy is presented for a fleet
of service vehicles operating in response to incident requests
in an urban transportation network. We modify an existing
adaptive, informative path controller so that the fleet of vehicles
is driven to locally optimal service configurations within the
environment. These configurations, called patrolling loops, min-
imize the distance between the instantaneous vehicle position
and incident customer request. Our patrolling algorithm is
trained using one month of data from a fleet of 16,000 vehicles.
This historical dataset is used to learn the parameters required
to set up a representative urban mobility model. Using this
model we conduct large-scale simulations to show the global
stability of the patrolling policy and evaluate the performance
of our system by comparing it against a greedy service policy
and historical data.

I. INTRODUCTION

We are interested in developing optimized task allocation

algorithms for Mobility-on-Demand (MOD). In our previous

work [14], we showed how autonomous driving can be used

to mitigate the rebalancing problem current MOD systems

face. In this paper we consider the task allocation problem

in a MOD scenario. In MOD transportation we assume

historical knowledge of passenger arrival at discrete sets of

locations. The goal is to minimize the waiting time of the

passengers and the amount of time the vehicles in the system

drive empty. The critical question is where should each vehi-

cle go once a delivery is complete? In this work we present

a dynamic patrolling policy that allocates vehicles to pickup

and delivery tasks. Using historical arrival distributions, we

compute patrolling loops that minimize the distance driven

by the vehicles to get to the next request. These loops are

used to redistribute the vehicles along stationary virtual taxi

stand locations on the loop. The algorithm was trained using

one month of data from a fleet of 16,000 taxis. We compare

the policy computed by our algorithm against a greedy policy

as well as against the ground truth redistribution of taxis

observed on the same dates, and show an improvement

with respect to three key evaluation criteria: minimizing the

number of vehicles in the system, quality of service, and

distance traveled empty. We show that our policy is robust

by evaluating it on previous unseen test data.
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The main contributions of this paper are:

• patrolling loop and redistribution model of an unman-

aged fleet operation using historical data,

• provably stable dynamic redistribution policy for a large

number of vehicles using informative paths,

• centralized scheduling algorithm for request allocation

and vehicle redistribution,

• large-scale simulations and evaluations using real data

from a fleet of 16,000 vehicles.

A. Related Work

The dynamic traffic assignment problem (DTA) considers

the optimization of traffic flow while accounting for con-

gestion effects. The models often differ significantly in their

representation of the request arrival and service processes.

Work on this problem dates back to [9] and [4]. A thorough

review of DTA results can be found in [15]. Mobility-

on-demand (MOD) is a similar paradigm for dealing with

increasing urban congestion. Generally speaking, the ob-

jective of MOD problems is to provide on-demand rental

facilities of convenient and efficient modes of transportation

[10]. For a thorough survey of studies to date see [2],

[11] and the references therein. Load balancing in DTA

problems essentially reduces to the Pickup and Delivery

problem (PDP), whereby passengers arriving into a network

are transported to a delivery site by vehicles. Autonomous

load balancing in MOD systems has recently been studied

in [12] and [13], where a fluid model was used to represent

supply and demand. In this work we employ a PDP roblem

formulation to model an urban transportation network.

Socially-motivated optimization criteria have also been

considered in prior work. In [16], [23], social optimum plan-

ning models were used to compute vehicle paths. Optimiza-

tion of driving routes subject to congestion was considered

in [8]. In a broader context, [7] observed the effect that

multiple service policies had on logistic taxi optimization.

More recently, in [22] we studied both system-level and

social optimization criteria, showing a relationship between

urban planning, fuel consumption, and quality of service

metrics. In this work we consider similar evaluation models,

showing how we can achieve an improvement with respect

to all three of these aforementioned points of interest.

Adaptive path planning considers adapting paths to un-

known or dynamic environment states in continuous-time

systems. For example, in [3] the authors present a path

planning algorithm for deploying unmanned aerial vehicle

systems. In [21], an optimization for path planning was

presented for the case of partially known environments. In-

formative sensing extends adaptive path planning algorithms
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with an emphasis on efficiently measuring and monitoring a

dynamic environment. Such a method for computing paths

that provide the most information about an environment was

presented in [18], with the aim of adaptively learning and

traversing through regions of interest with multiple robots.

Informative sensing while maintaining periodic connectivity

for the robots to share information and synchronize was

examined in [6]. Our work considers adaptive path planning

and informative sensing in a similar context, by using sensor

measurements to compute informative paths for a network of

autonomous vehicles in a dynamic environment.

The controller used in this work generates informative

paths by optimizing the location of waypoints according to

a Voronoi-based coverage criterion in an unknown environ-

ment. This controller builds upon [20], [17] which defined

a robot’s path by a Voronoi decomposition, and used a

parameter adaptation law to learn where and how fast the

environment is changing.

II. PROBLEM FORMULATION

We consider a pickup and delivery problem (PDP) in a

convex bounded planar area Q ⊆ R
2. This area or service

environment is subject to incident request arrivals at continu-

ous points q∈Q. The environment is patrolled by N vehicles

that drive along closed loops at constant speed. Vehicles are

assigned to service requests by a centralized server, which is

assumed to know the locations of all vehicles at any time. A

vehicle vi that has been assigned a request q j will travel in

a straight line to q j to pick up the request, and then deliver

it to its destination s j ∈ Q. We assume a continuous time

model, i.e. time t ∈ R≥0.

A. Informative Paths

An informative path control algorithm takes as input sen-

sory information over a dynamically changing environment

and outputs locally optimal paths so that the trajectory of

a patrolling agent along each path covers the areas in the

environment where the sensory information is important.

In this work we modify an existing informative path

controller [20] and extend it to a pickup and delivery. We

observe that the regions of dynamic change are analogous to

regions of pickup demand, and the act of sampling to reduce

uncertainty in coverage is analogous to the act of picking up

delivering incident requests. The difference is that in PDP

problems we have discrete rather than continuous events,

and delivery is different to sampling in that the vehicle has

to deliver the request and return to the informative path.

In our model, the resulting informative path is a patrolling

loop whose route is locally optimized such that it traverses

along or very near the areas where pickup requests originate.

By utilizing waypoints along a patrolling loop, informative

paths can be visualized as method to locally optimize the

location of virtual taxi stands across the environment. The

goal is to compute the path and placement of the patrolling

loops so that the distance from the patrolling loop to the

requests is optimized. A mathematical description of this

algorithm for multiple agents follows.

B. Multi-Agent Controller

There are X ∈R>0 agents identified by r ∈ {1, . . . ,X} in a

compact, convex environment Q⊂R
2. In this derivation, note

that the number of agents represents the number of patrolling

loops that are computed by our patrolling policy. A point in

Q is denoted q. Agent r is positioned at pr ∈ Q and travels

along its closed path �r : [0,1] �→ R
2, consisting of a finite

number n of waypoints. The ith waypoint on �r is located at

pr
i , i ∈ {1, . . . ,n}. Define a vector P ∈PXn ⊂R

dim(P) as the

vector obtained by making an array of the agents’ waypoint

positions, P ={pr
i , . . . , pr

n} , where PXn is the state space of

the waypoints for all agents. Note that the controller for the

single agent is derived by setting X = 1.

Let V r
i be a Voronoi partition of Q, for the ith waypoint

position in agent r’s path, defined as

V r
i = {q ∈ Q : ‖q− pr

i‖ ≤ ‖q− pr′
i′ ‖, ∀(r′, i′) �= (r, i)},

where r,r′ ∈ {1, . . . ,X}, i ∈ {1, . . . ,n}
and i′ ∈ {1, . . . ,n′}. (1)

Agents can compute the Voronoi partitions based on their

waypoint positions. Because each path is closed, �r(0) =
�r(1), each waypoint i along the path has a corresponding

previous waypoint i− 1 and next waypoint i+ 1. An agent

travels between sequential waypoints in a straight line.

A scalar sensory function, defined as a map φ : Q �→ R≥0

determines the rate of change of the environment at point

q ∈ Q. The sensory function φ(q) is updated every fifteen

minutes over the course of 24 hours in order to reflect the

change in sensory information throughout the day. The agent

knows φ(q); however, it is equipped with a sensor with

sensing radius ρ , to make a point measurement of φ(pr)
at its position pr so that it ensures the stability criterion for

the persistent task [19].

C. Local Optimality

The cost incurred by the multi-agent system over the

environment Q is given as

H =
X

∑
r=1

n

∑
i=1

∫
V r

i

Ws

2
‖q− pr

i‖2φ(q)dq+
X

∑
r=1

n

∑
i=1

Wn

2
‖pr

i − pr
i+1‖2

(2)

where ‖q− pi‖ is a strictly increasing function that gives

the unreliability of the sensory function value φ(q) when

the agent is at pi, and ‖pi,i+1‖ is the cost of the distance

between two sequential waypoints. Ws ∈ Z
+ and Wn ∈ Z

+

are weights assigned to the sensing task and waypoint

neighbor distance, respectively. Note that unreliable sensing

and distance between neighboring waypoints are expensive.

The cost function is differentiable everywhere on PXn so

that its partial derivative with respect to every waypoint’s

position is well-defined. Additionally, ∂H/∂ pr
i is locally

Lipschitz which guarantees the existence of solutions in our

system. A formal definition of informative paths for multiple

agents follows.

We define a collection of informative paths for a multi-

agent system corresponds as a set of waypoint locations for
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each agent that locally minimize (2). The mass, first mass-

moment, and centroid of the Voronoi partitions for the system

are given by Mi =
∫

Vi
Wsφ(q)dq, Li =

∫
Vi

Wsqφ(q)dq, and

Ci = Li/Mi, respectively [17]. Note that f (‖q− pi‖) strictly

increasing and φ(q) strictly positive imply both MiVi > 0 ∀
Vi �= /0 and CiVi ∈Vi/∂Vi (CiVi is in the interior of Vi). Thus

MiVi and CiVi have properties intrinsic to physical masses

and centroids. Letting er
i =Cr

i − pr
i and, following the same

procedure in [20], we have

∂H
∂ pr

i
=−Mr

i er
i −Wn(pr

i+1 + pr
i−1−2pr

i ). (3)

An equilibrium is reached when ∂H
∂ pr

i
= 0. Assigning to each

waypoint integrator dynamics of the form ṗr
i = ur

i where ur
i is

the control input, we propose the following gradient descent

control law for the waypoints to converge to an equilibrium

configuration:

ur
i =

−Kr
i

β r
i

∂H
∂ pr

i
=

Ki(Mr
i er

i +αr
i )

β r
i

, (4)

where αr
i = Wn(pr

i+1 + pr
i−1− 2pr

i ),β r
i = Mr

i + 2Wn > 0,Kr
i

is a uniformly positive definite matrix. Note that β r
i >

0 normalizes the weight distribution between sensing and

staying close to neighboring waypoints.

Theorem 1 (Convergence Theorem for Multiple Agents)
The path will reach a locally optimal configuration for
sensing, as defined by ∂H/∂ pr

i = 0.

Proof: We define a Lyapunov-like function based on

the agent’s path and environment measurement. Because the

system is autonomous, we use LaSalle’s Invariance Principle

to prove asymptotic stability of the system to a locally

optimal equilibrium.

Let H be the Lyapunov function candidate. H is positive

definite, radially unbounded, and has continuous first par-

tial derivatives. Domain Q is bounded, therefore the state

space PXn is bounded, as is the Voronoi state space for

all agents Pr
v = {P = [(pr

1)
T . . .(pr

n)
T ]T | pr

i �= pr
j ∀i �=

j} ⊂ PXn. Let Ω = {P∗ | ḢP∗ = 0} ⊂ Pr
v . Let Ω =

{P∗ | ḢP∗ = 0} be the set of all critical points of H
over PXn. Taking the time derivative of H, we obtain

Ḣ = ∑X
r=1 ∑n

i=1− 1
β r

i
(Mr

i er
i +αr

i )
T Kr

i (M
r
i er

i +αr
i )≤ 0.

Therefore Ω is defined by the set of solutions of

∑X
r=1 ∑n

i=1 Mr
i er

i +αr
i = 0,∀i. Let S be the largest invariant set

within Ω. By definition ṗi = ∂H/∂ pr
i = Ki(Mr

i er
i +αr

i )/β r
i ,

from which it follows that S = Ω, the set of all critical points

of H. Thus Ω itself is an invariant set, and all trajectories

converge to Ω as t →∞ using LaSalle’s Invariance Principle.

From (4), Mr
i er

i +αr
i → 0 implies ∂H/∂ pr

i = 0.

D. Computational Complexity

At each iteration the controller must compute the Voronoi

cell for each waypoint and the spatial integrals over the

region. Thus the parameters affecting the computation time

are the number of agents X , the number of waypoints n, and

the number of grid squares in the integral computation m.

A decentralized algorithm for a single agent to compute

its Voronoi cell [5] runs in O(n) time. The time complexity

for computing a discretized integral is linear in the number

of grid squares, and at each grid square requires a check if

the center point is within the Voronoi cell, which is O(n).
Therefore the time complexity of the integral is in O(nm). If

the Voronoi cell is computed first, followed by the discretized

integral, the total time complexity O(n(m+1)) at each step

of the control loop. Therefore in the multi-agent case a single

Voronoi controller has time complexity O(n(Xm+1)).

E. Operational Stability

In addition to controller stability, a necessary condition for

a functional deployment of any fleet of service vehicles is

operational stability. Informally, we understand operational

stability to mean the condition whereby the number of out-

standing requests remains bounded in steady state. Formally,

we define operational stability as the condition

∫ τ

0
λ (t)dt < kλ , ∀ t ≥ 0, k < ∞ . (5)

To motivate this requirement, consider events arriving into

a queue according to a standard Poisson process with rate

parameter λ . Then the integral gives us the total number of

arrivals from the beginning of time until the current time

t. If the events are also being serviced at a sufficient rate

according to some other process then the number of events

in the queue will be less than some constant times the rate

parameter for any time window.

The service rate μ(t) is defined as the rate at which

incident customer requests are being serviced by vehicles.

In steady state, the stability requirement in (5) is satisfied by

the simplified expression μ(t) > λ (t), where λ (t) and μ(t)
denote the average arrival and service rates, respectively, over

the open interval (0,∞).

Lemma 1 Let C be a closed curve in Euclidean space,
Q⊆R

2, composed of n waypoints, {w1,w2, ...,wn}, that are
connected by straight lines. Let x and y be any two points
on C. Then d(x,y)≤ L(C)

2 , where L(C) is the arc length of C
and d(x,y) is the Euclidean distance between x and y .

Proof: The arc length of C is given by L(C) =

∑n
i=1 d(wi,wi + 1), where waypoint wn+1 = w1, and

d(wi,wi+1) is the Euclidean distance between consecutive

waypoints. Let A and B be unique segments of curve C
that connect point x to point y, such that L(A) + L(B) =
L(C). Without loss of generality, assume L(A)≤ L(B), which

implies that L(A)< L(C)
2 .

Assume for the sake of contradiction, d(x,y)≥ L(C)
2 . Be-

cause d(x,y) is by definition the minimum distance between

any two points in Q, there exists no path P ∈ Q, such that P≤
L(C)

2 . However, L(A)≤ L(C)
2 , thus giving the contradiction.

Theorem 2 (Steady State Stability) An informative path
service policy gives μ(t) > λ (t) if and only if X >

λ
(

L(C)
2 +ρ +2

√
2l
)
/v, where X is the number of service
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vehicles, ρ is the sensor radius of a service vehicle, l is the
dimension of the square environment Q, v is the constant
speed of the service vehicle.

Proof: (⇐) X > λ (L(C)
2 + ρ + 2

√
2l)/v ⇒ Xv/(L(C)

2 +

ρ + 2
√

2l) > λ . Let α = v/(L(C)
2 + ρ + 2

√
2l), which has

units s−1, assuming the time step τ of the experiment is

1s. Using the convergence stability of the informative path

controller from Sections II-C and II-E , no incident customer

request is located further than ρ from the informative path.

By Lemma 1, sup{d : d = ‖x− y‖, ∀x,y ∈ Q} = L(C)/2.

Thus, the maximum distance any vehicle on the path is from

an incident customer request located at q is L(C)/2 + ρ .

Because Q is a square environment, the maximum distance

it takes a service vehicle to drive the customer to its des-

tination, and return to the informative path is 2
√

2l. Thus

the maximum distance traveled by a service vehicle whose

trip originates on the informative path to service a request is

L(C)/2+ρ +2
√

2l. Therefore α is now the smallest rate at

which a vehicle can service a request, and hence Xα is the

smallest μ(t) that satisfies μ(t)> λ (t).
(⇒) By the contrapositve law, X < λ (L(C)

2 +ρ +2
√

2l)/v
⇒ Xv/(L(C)

2 + ρ + 2
√

2l) < λ . Again, by letting α denote

v/(L(C)2+ρ + 2
√

2l), the service rate for a single service

vehicle, we have Xα < λ , which implies μ(t)< λ (t).

This result shows that our approach to task allocation for

PDP in MOD systems is stable. Next we present a patrolling

policy for the delivery vehicles.

III. DYNAMIC PATROLLING POLICY

Our case study for this work is a PDP in a MOD system

and uses real data provided by a fleet of 16,000 taxis in

Singapore. We will refer to vehicles as taxis for the rest of

the paper. We illustrate the operation of our algorithm for the

Central Business District (CBD) and extend it for the entire

island of Singapore. We evaluate how effective our solution

is at minimizing the amount of time taxis drive empty by

comparing against a greedy policy as well as what actual

taxi drivers do based on historical data.

A. Solution Outline

The service region is subject to incident customer requests

located at points q∈Q and is patrolled by N taxis whose task

is to service these requests in a manner that will minimize

the distance driven to every request. Requests arrive at a rate

λ , representing the sensory function φ(q). Each patrol loop

is defined by a fixed number of waypoints whose positions

are using historical customer request distributions. Our pa-

trolling policy is adaptive in time and benefits from a finer

discretization time period. In this work we use 15-minute

time periods to compute 96 patrol loops for simulations over

a 24-hour period (Figures 1b, 1c).

The simplest scheduling and path planning protocols are

used to ensure that performance is attributable to the pa-

trolling policy only. We emphasize that neither of these

elements are crucial to the operation of the patrolling policy.

Algorithm 1 Informative Path Controller Pseudocode

Parameters: arrival distribution Zα , patrol loop �, waypoints

W � = {w1,w2, . . . ,wn} located at P� = {p1, p2, . . . , pn},
vector of taxis S� = {s1,s2, . . . ,sm}

1: loop
2: while

(
∂H/∂P� > 0

)
do

3: Compute Voronoi partition V �
w from Zα

4: Compute centroid C�
w by integrating over V �

w
5: Compute neighbor waypoint locations p�w−1, p�w+1

6: Compute control input uw according to (4)

7: Update waypoint position p�w according to ṗ�w = u�w
8: end while
9: Check for incoming requests R = {r1,r2, . . . ,rk}

10: Assign requests R� ⊆ R within ∪V �
w to �

11: Assign nearest taxis S∗ ⊆ S� to requests R�

12: Rebalance remaining S� \S∗ taxis s.t. ∑n
i=1 Φ̄(wi) = 0

13: end loop

In Section V-A we present control experiments that evaluate

our policy against another with identical scheduling and path

planning, but using greedy redistribution.

B. Algorithm Description

Algorithm 1 contains the pseudocode for the informative

path patrolling policy.

The first stage of the patrolling algorithm describes how

the patrol loop waypoints reposition themselves in locally op-

timal locations. The algorithm calculates the Voronoi region

for each waypoint, computes the centroid of the region based

on Zα , and subsequently repositions the waypoints based

on (4). This algorithm can be implemented in a distributed

way such that it can be computed for each waypoint inde-

pendently, only sharing information with their neighboring

waypoints and enough information for all waypoints to

compute their Voronoi regions.

Once the waypoints have converged to a locally optimum

configuration, the second stage of the algorithm assigns

requests to taxis and rebalances taxis within each patrol loop.

Each taxi is initially assigned a home patrol loop in round

robin manner. Taxis cycle through through four successive

modes of operation: FREE, ONCALL, POB (“passenger on

board”) and RETURN. The service model assumes a dispatch

center that controls all incoming requests. Scheduling is

performed by matching incoming requests with the nearest

available taxis. Once assigned a request, the taxi picks up

the customer (ONCALL), delivers them to their destination

(POB), and returns to its home loop (RETURN).

Taxis flagged FREE use an intra-loop redistribution policy

that is analogous to flow equilibrium at waypoints. Taxis

patrol around their home loop until such time that every

waypoint is serviced by a taxi. Thereafter taxis remain

stationed at their waypoints (treating them as virtual taxi

stands), with any remainder of taxis (modulo the number of

waypoints) continuing to patrol around the loop. This ensures

that all waypoints receive equal service in steady state, while

also ensuring that taxis do not waste fuel unnecessarily.
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(a) Arrival distribution Zα
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(b) CBD loops
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(c) Singapore loops

Fig. 1: Figure 1a shows a surface plot of an example arrival distribution Zα for the CBD, overlayed on a map of the region; the destination distribution
Zδ has a similar format. Figures 1b-1c show the temporal progression of the patrol loops, overlayed on longitude/latitude plots of the GPS coordinates
that form the service region. Patrol loops are shown changing dynamically in 15-minute time periods throughout the day (for a total of 96 iterations for
each loop), with a darker shade indicating the most recent configuration.

Assuming we have N� taxis and n waypoints along loop �,
we require that the net flux (rate of inflow and outflow) Φ
of taxis at waypoints converge to zero over the entire loop,

i.e. ∑n
i=1 Φ̄i = 0. The following three scenarios serve as the

basis for all possible taxi dynamics along loop �:

1) N� < n: each taxi continuously patrols along the loop.

2) N� = n: taxis redistribute to the nearest waypoint until

there are N�/n taxis at each waypoint, and remain

stationary queueing for a customer request.

3) N� > n: N�−(N� mod n) taxis queue at their respective

waypoints waiting for a customer, while the remaining

N� mod n taxis continue to patrol around the loop

ensuring that ∑n
i=1 Φ̄i = 0.

Our service policy ensures that each patrolling loop is in a

locally optimal configuration within the environment while

bounding the number of outstanding customer requests. In

this work we do not allow taxis to exchange home loops, as

this could lead to scenarios whereby a patrolling loop loses

all of its taxis to neighboring loops. We solve this by ensuring

that requests are assigned to the loop whose Voronoi region

they originate in.

IV. DATA

We use data collected by a fleet of 16,000 taxis in

Singapore. The dataset is one month (August 2010) of

trips, consisting of millions data points at thousands of

GPS locations. Each entry records time, location, ID, etc.,

as well as the status (FREE, ONCALL, POB, etc.). The

data serves several purposes. First, we use a subset of the

data to train our dynamic patrolling algorithm. Second, we

use two subsets of the dataset as test data for conducting

simulations. We use the same day (Monday, August 16)

for real-time data simulations which do not require training

and the same day of the following week (Monday, August

23) for unseen data simulations. Finally, we use the data to

quantify ground truth redistribution of taxis in Singapore.

Since the actual taxi operation is unmanaged, there is no

direct comparison against an existing policy. Instead, we

analyze the distribution of the fleet throughout the day and

record statistics such as odometry, status of operation, etc.

that can be used as quantifiable metrics in our analysis.

A. Arrival and Destination Distributions

Training the policy and conducting simulations both re-

quire knowledge of customer arrivals and destinations. His-

torical data is used to compute spatial arrival and destination

distribution surfaces, denoted by Zα and Zδ respectively. The

region is discretized into a 50×50 grid, with the height of the

surface at each location representing the probability of either

a customer arrival (α) or request destination (δ ). We use a

15-minute discretization to construct the surfaces. Figure 1a

shows an example of the arrival surface Zα .).

Data sparsity is almost always an issue in statistical

modeling. Considering that the one month dataset spans a

50×50×96×31 space, we see that even a large amount of

data will be very sparse. Two stages of smoothing were used

to improve performance of our model. First, each 24-hour

dataset was smoothed temporally using a simple averaging

filter to reduce noise caused by temporal discretization.

The resulting surfaces for each time window were then

normalized and smoothed using a Gaussian filter to reduce

noise caused by the 50×50 spatial discretization.

V. EXPERIMENTS

A simulation framework was implemented in MATLAB.

The model implements the spatial PDP formulation presented

in Section II. Customer requests arrive in a Poisson process

with rate parameter λ (t) and are distributed according to

Zα(t). Taxis traverse the space in straight lines and at

constant speed. As the simulation evolves, customers are

serviced by N(t) taxis that respond to the incoming pickup

requests. Customer destinations are distributed according to

the destination distribution surface Zδ (t). Figure 2 shows

annotated screenshots of a typical simulation.

Our simulation engine can incorporate any path planning

mechanism that maps the locomotion of the taxi onto the

road network. This additional complexity was omitted in

this work in order to evaluate the effect of the informative
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Fig. 2: Figures 2a-2c show screenshots of the simulator in action. Taxis are indicated by a colored triangle. A taxi can be in one of four states: traveling
along patrol loop (FREE, black), servicing a pickup request (ONCALL, yellow), driving a passenger to their destination (POB, red or cyan), returning to
the patrol loop (RETURN, blue). Pending requests are shown with a yellow ⊗, and outstanding requests are shown with a circled red ⊗.

path policy in isolation. Since the recorded data from the

Singapore taxi fleet use the underlying road network, there

is clearly a cost associated with assuming a straight line

path planner. We evaluate this cost by leveraging Google’s

extensive geocoding API. For a given pair of coordinates p1

and p2 we can calculate the driving distance from p1 to p2,

taking into account the time, day, road conditions and road

directionality. Generally, distances recorded in simulation in-

cur a cost function β (p1, p2, t)= ‖p1, p2‖/d(p1, p2, t)drive by

which the recorded distance scales the true driving distance.

A series of Monte Carlo simulations were carried out to

approximate β under steady-state conditions by sampling

points and computing the driving distance. The average value

was calculated to be β = 1.974. Thus on average a taxi

would drive approximatley twice the distance quoted by

the simulation if it had made the same journey along the

Singapore road network.

Three different types of simulation were conducted: (A)

greedy policy simulations establish the benefit of the pa-

trolling policy as a benchmark against a simplistic redis-

tribution strategy, (B) ground truth simulations, which use

the same number of taxis N that were recorded for a cor-

responding scenario from historical data, and (C) stability-

based simulations, which aim to find the minimum number

of taxis Nmin that ensure a k-tight stability guarantee defined

by (5). A stability margin of k = 0.01 (i.e. 1 percent) was

chosen for our experiments.

A. Greedy Policy Experiments

We first show the utility of our policy by comparing it

against a simplistic patrolling policy implemented in the

same simulation framework. This “like to like” comparison is

important for any simulation-based work if the assumptions

made in the simulation engine can affect the generality

of the results. Further, these simulations serve as control

experiments: if a greedy policy performs poorly then we can

conclude that the improvement was due to the informative

path redistribution (the only difference between the two

policies) and not due to path-planning or scheduling sim-

plifications, which are trivial by comparison. Greedy policy

simulations were carried out for the CBD, and for the whole

of Singapore. Different numbers of loops (5,10,15,20,25)

were used for multi-loop experiments as a benchmark for

the best number of loops to use in the main experiments.

B. Single Loop Experiments

The CBD was chosen for the single-loop experiments

because (1) it has a high volume of customer requests

throughout the day and thus presents a lot of scope for

optimization, (2) the CBD is representative of Singapore

as a whole in terms of request arrival and destination flow

throughout the day, and (3) an area the size of the CBD is

an appropriate service region to consider for a single loop.

Both ground truth and stability-based simulations were

carried out for the CBD. We use a 15-minute discretization

epoch both for updating the patrol loops, and for determining

the corresponding number of taxis N and arrival rate λ . Due

to a fine discretization and a relatively small arrival rate, we

add smoothing to reduce noise in the results.

C. Multi-Loop Experiments

Our multi-loop experiments scale up to consider the whole

of Singapore. We use a larger time discretization for ar-

rival rate λ and for the number of taxis in ground truth

simulations. This gives us 6 four-hour epochs to consider

throughout the course of the day, which are representative

of different time periods throughout a typical day (night,

early morning, morning, afternoon, evening, late evening).

We maintain the 15-minute discretization for updating the

patrol loops to ensure that the loops can adapt to changing

arrival rate (also discretized into 15-minute time steps).

Both ground truth and stability-based simulations were

carried out for the whole of Singapore. Based on preliminary

results we consider 25 loops as the optimal choice for our

experiments. There are 28 postal districts in Singapore, so

the 25-loop case gives us an approximation for scaling up

a single-loop policy in the case of the CBD (which covers

around 1-2 postal regions).
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Fig. 3: Single-loop (CBD) simulation results
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Fig. 4: Multi-loop (Singapore-wide) simulation results

D. Unseen Test Data

In previous work [1] we demonstrate how to accurately

infer traffic volume from historical data collected on dif-

ferent days. To determine if our policy is still useful in

the absence of real-time data we conduct simulations using

unseen historical test data. Our algorithm was first trained

by pre-constructing dynamic patrolling loops using historical

data from the same day (August 16). Experiments were then

carried out using historical data from the same day in the

following week (August 23). A full replication of all the

preceding experiments was conducted for both the CBD and

Singapore-wide multi-loop scenarios.

VI. RESULTS

First, we consider the implications of the greedy policy

simulations. Figures 3a and 4a show the greedy simulation

results. In the case of the CBD we observe an overall increase

in ONCALL distance per trip by a factor of 1.42. For the

entire region of Singapore, the greedy policy performs even

worse, increasing the overall ONCALL distance by a factor

of 3.71. This supports our intuition that our policy is useful:

since the control experiments employing a simple policy

performed much worse using the same simulation engine,

the increase in performance is due to patrolling policy only.

We are interested in examining solutions from three differ-

ent points of view: customer, taxi driver and urban planning.

1) Customer (quality of service): Quality of service is

represented by customer waiting time, which is equivalent

to the ONCALL distance of individual taxi trips. Figure 3b

shows the average ONCALL per trip distance for our single-

loop policy in the CBD. The average ONCALL per trip

distance for August 16 is 0.45km, as compared to 1.2km
from the historical data. Thus our single-loop policy reduces

the total customer waiting time by a factor of 2.66. Figure

4b shows the ONCALL per trip distance for the multi-loop

case. The total average ONCALL per trip distance computed

using our model is 0.13 km as compared to 1.7 km from the

historical data. With a distance cost factor β ≈ 2, we see that

our 25-loop patrolling policy in Singapore reduces the total

customer waiting time by a factor of 6.84.

2) Taxi Driver (distance traveled empty): We assume that

the goal of the taxi driver is to minimize the amount of

time driving empty. Figure 3c shows the ONCALL per taxi

distance for our single-loop policy in the CBD. The average

total ONCALL per taxi distance for August 16 is 0.06 km,

as compared to 0.18 km from the historical data. Our single-

loop policy reduces the average total distance driven empty

by a factor of 3. Figure 4c shows the ONCALL per taxi

distance for the multi-loop case. The total average ONCALL
per taxi distance computed using our model is 0.12 km as

compared to 1.6 km from the historical data. With a distance

cost factor β ≈ 2, we see that our 25-loop patrolling policy
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in Singapore reduces the average total distance driven empty

by a factor of 6.74.

3) Urban Planning (reducing congestion): We assume

that the goal of the municipal authority is to reduce con-

gestion by reducing the number of taxis on the road. The

minimum number of taxis Nmin that are necessary to maintain

stability is given by (5) for some stability margin k. For any

number of taxis N > Nmin we define the utilization factor as

η = Nmin/N. (6)

The utilization factor η is the fraction of those N taxis that

can service all requests while maintaining stability for a

given λ . The total utilization factor on August 16th in the

CBD using our model is η = 0.05, thus our model requires

only 5 percent of the total taxis available throughout the day

to maintain stability. The total utilization factor for the multi-

loop case is η = 0.14, similarly implying that our the taxi

network is over-utilized by an order of magnitude.

CBD Singapore

Aug. 16 Aug. 23 Aug. 16 Aug. 23

On-call per taxi (km) 0.06 0.06 0.12 0.13
On-call per trip (km) 0.45 0.44 0.13 0.13
Utilization factor η 0.05 0.07 0.14 0.14

TABLE I: Total patrolling policy ONCALL distance ratios and
utilization factor over 24-hour simulations.

A. Unseen Test Data Results

All of the preceding experiments were conducted on

unseen test data, as described in Section V-D. By evaluating

it on previously unseen test data from August 23, we see

that our model performs well and maintains its robustness

in the absence of real-time data. Figures 3 and 4 show the

corresponding results for August 23 overlayed in green. We

see that the ONCALL distance results maintain nearly the

same magnitude and provide the same caliber of improve-

ment over the historical data as described in Section V-D. We

conclude that our policy results in a comparable improvement

in performance in the absence of real-time data.

VII. CONCLUSIONS

In this paper we presented a novel patrolling policy for

a fleet of service vehicles responding to requests in a PDP

scenario. Our policy uses patrol loops based on informative

path planning to minimize the distance driven by the vehicles

to an incident request. We formalized the notion of stability

in our problem context, and proved guarantees for our

policy. We used historical data from a fleet 16,000 taxis

in Singapore to (1) infer the current ground truth behavior

of the unmanaged taxi fleet, (2) to train our algorithm,

and (3) to conduct simulations using both real-time and

unseen test data. We evaluated the performance of our

policy by evaluating customer waiting time, distance driven

emtpty, and congestion. The experiments show that we can

achieve substantial improvement in customer waiting time

and expected distance driving empty. Further, we observe that

the taxi network is over-utilized by showing that a similar

level of service is possible with much fewer taxis. Finally,

we show that our policy generalizes well to unseen test data,

offering an improvement in performance that is on par with

results from real-time simulations.
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