
Fleye on the Car:
Big Data meets the Internet Of Things

[Extended Abstract]

Soliman Nasser
University of Haifa

Andew Barry
MIT

Marek Doniec
MIT

Guy Peled
University of Haifa

Guy Rosman
MIT

Daniela Rus
MIT

Mikhail Volkov
MIT

Dan Feldman
University of Haifa.

ABSTRACT
Vehicle-based vision algorithms, such as the collision alert
systems [4], are able to interpret a scene in real-time and
provide drivers with immediate feedback. However, such
technologies are based on cameras on the car, limited to the
vicinity of the car, severely limiting their potential. They
cannot find empty parking slots, bypass traffic jams, or warn
about dangers outside the car’s immediate surrounding. An
intelligent driving system augmented with additional sensors
and network inputs may significantly reduce the number of
accidents, improve traffic congestion, and care for the safety
and quality of people’s lives .

We propose an open-code system, called Fleye, that con-
sists of an autonomous drone (nano quadrotor) that carries
a radio camera and flies few meters in front and above the
car. The streaming video is transmitted in real time from
the quadcopter to Amazon’s EC2 cloud together with in-
formation about the driver, the drone, and the car’s state.
The output is then transmitted to the “smart glasses” of the
driver. The control of the drone, as well as the sensor data
collection from the driver, is done by low cost (<30$) mini-
computer. Most computation is done in the cloud, allow-
ing straightforward integration of multiple vehicle behaviour
and additional sensors, as well as greater computational ca-
pability.

Keywords
Quadrotors, collision alert system, internet of things, video
streaming

1. INTRODUCTION
Autonomous and robotic cars hold a great promise to help

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN 2015, Seattle, WA, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

human life by both reducing accident rate, and releaving us
of the need to drive. A major component in such cars is
based on Advanced Driver Assistance Systems (ADAS) [4].
These provide collision prevention and offer a wide range
of driver safety solutions combining computer vision, plan-
ning/AI, and control, with databases for local information,
and a user interface.

However, current systems are based on cameras that are
positioned on the car itself, limiting their field of view to that
of the car’s surrounding. In order to explore the next gener-
ation of such systems, we extend these in two dimensions: by
incorporating data from detached sensors and cloud-based
data, and by streaming the data directly to the driver’s sen-
sory input.

In order to easily allow technology developers to explore
human-computer interface, and system design, and in order
to make this system available to the the makers and robotics
communities, we propose a system of this kind that is based
solely on off-the-shelf, cost effective components.

2. SYSTEM OVERVIEW
Our system, Fleye, provides the driver a real-time stream-

ing video from the view of a hovering quadcopter above the
car, and combines additional sensors. Video and sensor data
is first sent to the cloud to demonstrate further processing
and incorporation with additional sources. The output video
from the cloud is then projected to the smart glasses of the
driver. The driver can also control the quadcopter using a
dictionary of voice commands. We chose a quadcopter that
is very low-cost, small, safe, and legally provided by popular
toy stores. This, in turn, required us to augment the system
with componenets to remote-control the quad.

Applications of such a system include: scouting traffic (for
example, to avoid traffic jams), taking landscape pictures,
detecting obstacles on the road ahead, and tracing empty
parking spaces in the street or parking lots. Such a system
may also save the driver’s life if, for example, it detects a
crossing car around the corner (out of the drivers’s view)
that went through a red light and is about to hit the driver.
Our main contribution is to build an open platform for the
Fleye system, that is based on low-cost Internet of Things
(IoT) hardware, and algorithms that run on the cloud. The
cost of each item in the system, except for the smart glasses,



is roughly $40.
The open software that we developed for our system

can be freely uploaded from our web site (Will be added
in the final version). The software includes: (a) A novel
tracking algorithm, for localizing the quadcopter using reg-
ular web-cameras. (b) PID controller for the quadrotor. (c)
quadrotor PPM encoding code on the Arduino. (d) Video
stabilization OpenCV code. The video output is uploaded
via http streamingto the smart glasses. (e) Communication
code for sending the data from the wearable board to the
cloud in real-time. (f) Code for adding more voice recog-
nition commands to our system, based on the Sphinx [3]
system.

Components The hardware of our system consists of
the following off-the-shelf products: (a) Controllers: Intel’s
Galileo, Arduino UNO R3. (b) Quadrotor: Walkera’s La-
dybird, w/o sensors or transmitters, only a receiver. (c)
Walkera DEVO 7E quadrotoc transmitter. Comes in the
same package of the quadcopter. (d) Video transmission:
TX5805: analog radio low-weight FPV (first pilot view)
camera that is mounted on the quadcopter and sends radio
5.8GHz video signal. Shipped together with the Ladybird
FPV version. RC5805: 5.8Ghz Video receiver. (e) Diamond
VC500: analog to USB video grabber[1]. (f) Amazon’s web
services: for running computer vision algorithms on the EC2
cloud. (g) Cameras (Optitrack Flex 3 or Logitech C920 Web-
cam): for tracking the quadcopter. (h) VUZIX m100: smart
glasses for the driver[2].

Hardware Setup The setup of our system is sketched
in the poster. Camera on the quadcopter. The analog
camera, carried by the quadcopter, is connected to a video-
transmitter unit which transmits the video to the video-
receiver via 5.8Ghz radio signal. The video-receiver is con-
nected to an Analog-to-Digial converter (video capture de-
vice) which outputs a digital video to the IOT-board via a
USB connection. The video is uploaded to the Internet via
the computation unit to the cloud (Amazon EC2).

Cameras on the car. We use a pair of cameras that
are mounted on front of the car; see Fig. ??. In our test
both Optitrack’s Flex 3 tracker, and our own tracking with
Logitech C920 webcam. We used a simple launch pole in
front of the car to assure the quad is in the cameras’ field of
view at take-off.

In the car there is the Galileo board and the smart
glasses that the driver wears. The Galileo collects infor-
mation from the driver and the car, such as temperature
and speed of vehicle, as well as the video stream from the
video capture device. The glasses download the streaming
video and presents it to the driver.

Localization and Tracking Tracking Algorithm. We
implemented particle filtering algorithm in pose-space (6DOF),
adding colored markers to reduce mis-identifications, and
track the quadrotor in a RGB input image from a regular
web-camera.

Control Algorithm. The control of the quad is in the
form of a PPM signal, formed on the arduino.

Given the current vehicle position x ∈ R3 and desired
vehicle position x̄ ∈ R3 from the tracking sub-system, we
compute the desired roll uψ, pitch uθ, yaw uφ, and throttle
ut control outputs using four separate PID loops.
The final throttle output is computed by adding combining
A gravity compensation value u0 is added to the throttle
output, finally scaling the thrust according to the pitch and

roll of the quadcopter. The yaw control output uφ can be
set to 0 if yaw control is not desired or necessary.

Finally, all outputs uθ, uψ, uφ, ut are capped to remain
within the physically possible values.

3. CLOUD PROCESSING
The streaming video data from the camera on the hovering

quadcopter, the cameras on the car, the glasses, and the
sensors on the Galileo board are transmitted to Amazon’s
EC2 cloud for high performance computation. The result is
a processed video image, possibly with additional markers
and text, that is uploaded in real time to an http address.
The glasses project this http content to the driver.

As a sample application, we provide an algorithm and its
implementation that runs on the cloud and stabilizes the
input video from the tilting quadcopter. The algorithm also
gets sensors data, such as temperature, from the Galileo
board and add it to the output video. We give more details
in this section.

Due to various reasons like: winds, hovering accuracy and
more - the video captured from the quadcopter’s camera is
unstable and shaky. Therefore, instead of directly displaying
the video on the smart glasses, we run video stabilization
code and present the output video stream to the driver for
a better experience.

4. EXPERIMENTS
In order to test the effect of high latency in low-compute

devices on quad control stability, we added an artificial de-
lay and measured the average error from a desired target
position, as shown in the poster. The minimum update rate
was roughly 10 iterations per second. Longer delay in the
loop caused the quadcopter control to be unstable. When
the delay decreased too much (around 90 iterations per sec-
onds), the error actually gets larger, due to PID calibration
paremeters.

5. REFERENCES
[1] http://www.amazon.com/easycap-audio-video-capture-

adapter/dp/b0019sssmy.

[2] http://www.vuzix.com/consumer/products m100/.

[3] K.-F. Lee. Automatic Speech Recognition: The
Development of the Sphinx Recognition System,
volume 62. Springer, 1989.

[4] E. Raphael, R. Kiefer, P. Reisman, and G. Hayon.
Development of a camera-based forward collision alert
system. SAE, 2011.


