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Abstract— In this paper we present a Markov-based urban
transportation model that captures the operation of a fleet
of taxis in response to incident customer arrivals throughout
the city. We consider three different evaluation criteria: (1)
minimizing the number of transportation resources for urban
planning; (2) minimizing fuel consumption for the drivers;
and (3) minimizing customer waiting time increase the overall
quality of service. We present a practical policy and evaluate
it by comparing against the actual observed redistribution of
taxi drivers in Singapore. We show through simulation that our
proposed policy is stable and improves substantially upon the
default unmanaged redistribution of taxi drivers in Singapore
with respect to the three evaluation criteria.

I. INTRODUCTION

Understanding how to optimize transportation is critical
for urban planning. In this paper we describe the operation
of a fleet of service agents (taxis) in response to incident
requests (arriving customers) in a city. We establish a theoret-
ical Markov-based framework that describes an urban trans-
portation network. We assume that we have a road network
with discrete pickup and drop-off locations corresponding to
designated points in the city. The arrival rates of customers
at each location are known. A vehicle with a person on board
will drive to the customer’s goal destination. If a customer is
waiting at this location the vehicle picks up the customer; if
there are no waiting customers, the vehicle goes to a different
location according to a redistribution policy. Our goal is to
compute a solution in the form of the required number of
vehicles in the system and their redistribution policy. We
encode the solution as a scalable optimization problem and
present a practical redistribution policy.

We then consider the solution with respect to three
seemingly different optimization criteria. The first criterion
considers the customers, whose end goal is to minimize the
time spent waiting for a taxi. The second criterion considers
the urban planning authority whose goal is to minimize the
number of vehicles in the road network. The third criterion
considers the cost and environmental implications of fuel
consumption. Next, we leverage data from a fleet of 16,000
taxis in Singapore to create a realistic model of taxi fleet
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operation in Singapore, show how we can learn and interpret
the current default behavior of taxi drivers within our frame-
work, and prove that the current behavior is sub-optimal with
respect to the evaluation metrics. We evaluate our proposed
practical redistribution policy through simulation and show
that it performs favorably in light of all three of these
optimization criteria and improves substantially upon current
ground truth behavior employed collectively by the taxis
operating in Singapore.

A. Related Work

Urban mobility has been an active area of research since
the turn of the century. In the US, the annual congestion
cost is projected to grow to $133 billion by 2015 [6]. Not
surprisingly, social and municipal trends are changing in
favor of a modernized system of public transportation, and
the recent volume of research in the subject reflects this.

The Dynamic Traffic Assignment problem (DTA) dates
back as early as [8] and [4]. Generally speaking, the objective
of DTA problems is to optimize traffic flow while accounting
for congestion effects. DTA models commonly differ in
the representation of the supply and demand processes. A
thorough survey can be found in [13]. For example, the
problem is grounded in continuous time control theory in
[4], while [3] presents a variational inequality formulation.
A mathematical programming approach in used in [8], [16].
Another recent work [16] models the problem as a linear
program, and a simulation-based approach in [1] presents an
offline model for estimation of supply and demand.

Mobility-on-Demand (MOD) is an emerging paradigm for
handling traffic congestion. In MOD systems, the goal is to
provide users with on-demand rental facilities of convenient
and efficient modes of transportation [9]. Load balancing
in MOD systems is similar to the Pickup and Delivery
problem (PDP), whereby passengers arriving into a network
are transported to a delivery site by vehicles. For a review of
the state of the art see [2], [10] and the references therein.
Autonomous load rebalancing in MOD systems has recently
been studied in [11] and [12], where a fluid model was used
to represent supply and demand.

As well as system-level traffic flow optimizations, socially
motivated criteria have also been considered. Recent work
on traffic planning explored optimizing a drivers’s route
subject to congestion [7]. Social optimum planning models
for computing vehicle paths are presented in [14], [15].

Our work extends to encompass a broad scope of evalua-
tion criteria. We consider the interplay between global opti-
mization criteria typical of related studies of DTA and MOD
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systems, as well as social optimization criteria as motivated
by recent studies of congestion-aware traffic systems.

This paper is organized as follows. Section II presents the
problem formulation and Section III outlines the solution.
Section IV describes the challenges in creating a realistic
urban mobility model and presents the model formally.
Section V formulates the optimization problem and provides
an algorithm for a practical redistribution policy. We address
stability of the policy and discuss the trade-offs between
complexity and accuracy. Section VI discusses the optimiza-
tion criteria and provides metrics for evaluating policies
accordingly. Finally, Section VII describes experiments with
our proposed policy and discusses the results.

II. PROBLEM STATEMENT

We consider a pickup and delivery problem (PDP) on
an undirected graph. There are m nodes in the network,
subject to incident request arrivals. The graph is patrolled
by n mobile agents (taxis) that traverse it along its edges
and service requests (customers) as they arrive. Requests
arrive according to a Poisson process with an arrival rate of
λ requests per time unit τ and are distributed among nodes
according to an arrival distribution α = [α1 α2 . . . αm]. Thus
a request will arrive at each node with an arrival rate of
λαi. The destination of incident requests is determined by
a request transition matrix D, where di, j is the probability
that a request arriving at node i is destined for node j. Since
each row of D is a probability distribution over a node, we
require that the rows sum to 1, i.e. D is a Markov chain.

When a vehicle arrives at a node and encounters a request
it must service that request and when a vehicle delivers a
request to its destination node it is immediately available to
service new requests. A vehicle that does not encounter a
request transitions according to a redistribution policy tran-
sition matrix P. Each row of P is a probability distribution
over a node, i.e. P is also a Markov chain.

We consider the system to evolve according to a single
system transition matrix S so that for X ∼ hi

si, j = Pr(Xk+1 = j | Xk = i). (1)

Thus the system evolves according to D when a request is
being serviced and according to P when a request is not
being serviced. Denoting by βi the probability that a vehicle
leaving node i is servicing a request, we express (1) as

si, j = βi Pr(Xk+1 = j|Xk = i)+(1−βi)Pr(Xk+1 = j|Xk = i).
(2)

We introduce the m×m matrix B = diag([β1 β2 . . . βm]) so
that (2) can now be expressed in matrix form as

S = BD+(Im−B)P (3)

where Im is the identity matrix of size m.
The stationary distribution of a Markov chain P is a vector

q such that qP = q. For convenience we define the function

π : P 7−→ q | qP = q. (4)

In steady state the system will exhibit a stationary distribu-
tion φ = π(S) of agents among nodes. Given a number of

vehicles n and a stationary distribution φ , in steady state we
expect nφi vehicles to arrive at node i at a given time, and
to find each vehicle located at node i with probability φi.

III. OPTIMIZATION SETUP

Informally, we want to ensure stability in steady state. We
understand system stability to mean the condition whereby
the steady state service rate at each node in the system
exceeds the steady state arrival rate at that node. The solution
space is the number of taxis n and the redistribution policy
P. The objective of the problem is therefore to find a solution
(i.e. determine the number taxis n and a policy P) such that
the overall system is stable.

We formalize the problem as follows.

Find n,P

s.t. nφi > λαi, ∀i (5)
n≤ nmax (6)
0≤ pi, j ≤ 1, ∀i (7)

∑ j pi, j = 1, ∀i. (8)

The first constraint (stability constraint) states that the service
rate at each node must be greater than the arrival rate at each
node. The second constraint states that the solution space is
physically bounded by some maximum number of taxis. The
last two constraints ensure that P is a valid Markov chain.

A. Hastings-Metropolis Algorithm

The solution space of the optimization problem is the
number of taxis n and the redistribution policy P, while the
stability constraint of the problem is specified as a function
of the stationary distribution of the system transition matrix
φ = π(S). This presents a computational challenge since
the transformation from a Markov chain to its stationary
distribution is non-linear. Thus it is infeasible to consider
linear programming methods to find P directly.

Instead we propose a different approach, employing the
Hastings-Metropolis algorithm [5]. The HM algorithm is a
Markov chain Monte Carlo method that, given a station-
ary distribution, can be used to construct a Markov chain
with that stationary distribution. Using this method we may
simplify a potential optimization problem to that of finding
a desired stationary distribution and generating the policy
using HM. For convenience we denote the HM algorithm as

H : q 7−→ P | qP = q. (9)

However, using the HM algorithm poses another chal-
lenge: by solving for the stationary distribution, we cannot
enforce the zero constraints of the target redistribution policy
matrix (in other words we cannot enforce sparsity), which
implies an underlying undirected clique network. In the
following section, we show that an undirected clique model
is highly restrictive in terms of the kind of transportation
network that it can describe. We present a model for a real
urban mobility network, and discuss the steps taken to ensure
that the model is realistic while still complying with the
Markov framework. We then present a mechanism by which
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Fig. 1: The 42,000 Singapore nodes used in this study, color-coded
according to their k-means clustering.

the HM optimization can be set up to handle a sparse
network while maintaining a computational complexity that
is independent of the degree of precision of the model.

IV. MODELING URBAN MOBILITY

In this study we use transportation data from Singapore.
The dataset is one month (August 2010) of taxi data from a
fleet of 16,000 taxis. This data amounts to approximately 500
million data points at 42,000 GPS locations in Singapore.
Each record contains the taxi and driver ID, time stamp,
GPS coordinates, and status of operation. We partitioned the
space of nodes from the Singapore taxi dataset with a k-
means clustering into 27 regions (Fig. 1). The clustering was
based on previous work, and the number of clusters chosen
such that the clustering aligns well with the postal regions
of Singapore. We also derived an extensive set of statistics
for these regions from the Singapore taxi data.

A. Extended Network

A true Markov chain is a discrete probabilistic state
machine, meaning that each transition occurs in one time
step. This presents a challenge, as we can assign a real
travel time to correspond to each transition, but in the
current formulation there is no way to enforce varying travel
times. We present an extended framework that captures this
information. First, we derive a base network that considers
each cluster as an individual base node. The base network
is an undirected clique graph G = (V,E) of size m. The
Singapore dataset was used to calculate the average travel
time ti, j from cluster i to cluster j. Trips within clusters
are also considered, so there is no requirement that i 6= j.
Also note that in general ti, j 6= t j,i, which reflects traffic
inhomogeneity caused by congestion throughout the day. A
discretization parameter τ specifies the the shortest travel
time between 2 nodes represented by a single transition in
the extended model. A travel time matrix T encodes the
discretized travel times, where τi, j = max

{
round(ti, j/τ),1

}
.

We use this information to derive the extended network G′.
Starting with the base network G, for each pair of nodes i, j∈
V we remove the edge connecting i and j by setting G′i, j = 0
and create two auxiliary connections between i and j, one
for each direction of travel. Each such auxiliary connection
consists of ` = τi, j − 1 auxiliary nodes x1, x2, . . . x`. New
edges are added by daisy-chaining node i to node j through
the ` auxiliary nodes by setting G′i,x1

= G′x1,x2
= . . .= G′x`, j =

1. We refer to the first auxiliary node x1 as the proxy node
of i to j, denoted by θ(i, j). If τi, j = 1, node i is simply
connected to node j. Finally, for i = j, a single auxiliary
connection is created in this way, representing the average
travel time within cluster i. The resulting extended network
is a sparse network G′ = (V ′,E ′) of size m′.

We make the assumption that customers arrive only at and
travel to base nodes and are not picked up on the side of the
road. Although in reality taxi drivers may divert from any
prescribed policy, this is a reasonable model corresponding
to the intuition of base nodes representing taxi stations for
example. As a result, the extended arrival distribution is
simply given by α ′ = [α1 α2 . . . αm 0 . . . 0]. This greatly
simplifies the optimization problem since we do not need to
satisfy stability constraints at auxiliary nodes.

B. Extended Redistribution Policy
Given an m × m redistribution policy P for the base

network, we extend this policy to an m′ ×m′ policy ma-
trix P′ that incorporates the transitional logic of P while
still maintaining the mathematical properties of a Markov
chain. We derive P′ as follows. For each pi, j corresponding
to a connection gi, j = 1 in the base network, there is a
corresponding auxiliary connection consisting of a set of
` = τi, j− 1 auxiliary nodes G′i,x1

= G′x1,x2
= . . . = G′x`, j = 1

in the extended network. We set p′i,θ(i, j) = pi, j, i.e. the
proxy node of i to j serves to ensure that the probability
of transition from i eventually leading to j remains the
same. We set p′x1,x2

= . . . = p′x`, j = 1, i.e. once the taxi is
en route from node i to j (corresponding to a single discrete
transition in the base network), it will arrive at node j with
probability 1 in exactly τi, j transitions. For convenience we
denote this transformation from a base transition matrix to
an extended transition matrix by P′ = extend(P). (The same
transformation also applies to the customer transition matrix
D.) The following example illustrates extending a simple
base network with m = 2 to 3 nodes.

T =

[
1 1
2 1

]
, P=

[
0.5 0.5
0.2 0.8

]
, P′=

 0.5 0.5 0
0 0.8 0.2
1 0 0

 .
In this example the discretized travel time from node i = 2
to node j = 1 is τ2,1 = 2. A single auxiliary node is created
corresponding to τ2,1−1 = 1. In extending a policy P to P′

we maintain the transition probabilities from every node i
to the corresponding eventual destination node j in the base
network as transitions to the proxy node θ(i, j) of i to j. So,
since τ2,1 > 1, we set p′2,1 = 0 and set p′2,3 = p2,1 instead.
Once a taxi has made the transition to node 3, it transitions
to node 1 with probability 1.
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C. Extended Stability Condition

Extending the network by incorporating travel times yields
an extended system transition matrix S′. However the as-
sociated stationary distribution φ ′ = π(S′) does not relate
linearly to φ , and depends on the varying ingoing travel
times from each node j 6= i to i. Thus a stable policy for the
base network may not be stable for the extended network.
To ensure that the stability condition is correctly translated,
we introduce a scaling vector ζ that accounts for the travel
times between nodes in the extended network by considering
transitions through auxiliary nodes en route to node i as
counting towards the fraction of time that the vehicle spends
at node i in steady state. We denote by Z ∈ V ′ the set of
auxiliary nodes that lead to base node i. Then ζ is given by:

ζi =
φ ′i

φ ′i +∑k φ ′Zk,i
. (10)

Then the stationary distribution of the base network φ

is given by φ = [φ ′1/ζ1 φ ′2/ζ2 . . . φ ′m/ζm], and the stability
constraint (5) becomes

nζiφi > λαi, ∀i (11)

V. PRACTICAL HM POLICY

The solution space of the optimization problem is the
number of taxis n and the redistribution policy P. To simplify
the solution, we fix n constant. This eliminates variable
product terms in the stability constraint and allows us to
formulate the problem as a linear program. Since n is discreet
we solve successive linear programs for increasing values of
n until a feasible solution is found and the system is stable.
Stability is determined experimentally by running a series of
bootstrap simulations to check if the request queues remain
bounded. We denote by nmin the minimum number of taxis
that admits a feasible solution that is stable. We set up the
linear program as follows:

Minimize 0 (i.e. find q)
s.t. nζiqi > λαi, ∀i (12)

0≤ qi ≤ 1, ∀i (13)

∑i qi = 1 (14)
n≥ nmin. (15)

Algorithm 1 describes the procedure for calculating the
practical HM redistribution policy PHM. There is no cost
function to minimize n, i.e. the optimization problem reduces
to a search problem to find a stationary distribution q that
satisfies the stability condition. The stability condition is
evaluated by running a number of bootstrap simulations with
redistribution policy PHM and checking the stability of the
system transition matrix S′ at the end of the simulation, as
dictated by nζiφi > λαi, ∀i. nmin is then given by the smallest
n that yields experimental stability for S′. The practical
HM policy is obtained by applying the Hastings-Metropolis
transformation to q giving PHM = H(q).

Algorithm 1 Practical HM Policy Optimization Algorithm

Data: n: proposed number of taxis
λ : customer arrival rate
α: customer arrival distribution
D: customer transition matrix
ζ : stationary distribution scaling vector
nmin: minimum required number of taxis (optional)

Result: PHM: redistribution policy
1: find q s.t. nζiqi > λαi, ∀i
2: P := H(q)
3: P′ := extend(P)
4: φ ′ := π(S′) {simulation}
5: φ := [φ ′1/ζ1 φ ′2/ζ2 . . . φ ′m/ζm]
6: if ∃ nmin, n≥ nmin then
7: PHM := P
8: else
9: if nζiφi > λαi, ∀i then

10: nmin := n
11: else
12: n := n+1
13: end if
14: restart 1
15: end if
16: return PHM

A. Accuracy and Complexity

The extended network is parametrized by the travel time
discretization τ . This presents a trade-off between two
degrees of accuracy in our urban mobility model. For a
base network of size m, this determines the number of
auxiliary nodes that will be added to the extended network.
Assuming an average travel time of t0 between two clusters,
each base node inherits 2(m−1) auxiliary connections with
τ0 = max{round(t0/τ),1} auxiliary nodes connecting it to
other base nodes and one self-loop with τ0 auxiliary nodes.
This yields a total of m [2(m−1)+1]τ0 =O(m2)τ0 auxiliary
nodes. Thus a smaller discretization τ means a larger ratio τ0,
which increases the size of the extended network as O(m2).

A smaller τ means a more accurate representation of the
road network. However, the increase in accuracy comes at the
cost of generality. Since customers arrive only at base nodes,
a greater increase in the number of nodes in the extended
network means a coarser granularity of customer origins and
destinations. Conversely, for a given extended network size
m′, a larger base network size m and smaller travel time
discretization ratio means a larger fraction of the m′ nodes
are considered as origins and destinations.

Finally, as discussed in Section IV-A, restricting arrivals
to base nodes allows us to formulate the search problem for
the base network and transform the result to the extended
network. Thus the complexity of the linear program depends
only on m and there is no penalty incurred with finer travel
time discretization. This means that for a given base network
size, we can achieve arbitrary travel time granularity for a
fixed computational cost.
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(a) Experimental Stability (b) Quality of Service (c) Fuel Consumption

Fig. 2: Simulation Results. Fig. 2a shows the percentage of requests serviced for each policy with increasing n. Fig. 2b shows the decrease in service
time for each policy with increasing n (QOS metric). Fig. 2c shows the improvement in fuel consumption for each policy with increasing n (FC metric).

VI. POLICY CRITERIA

We are interested in examining feasible solutions from
three independent objectives: urban planning (UP), quality of
service (QOS), and fuel consumption (FC). In order to mean-
ingfully evaluate a proposed solution, we establish metrics
that correspond to the three criteria under consideration.

1) Urban Planning: We assume that the main goal of
the municipal authority is to reduce congestion in the city
by minimizing the number of vehicles on the streets. From
the UP perspective, the redistribution policy is irrelevant: the
objective is simply to employ the minimum number of taxis
that yields a valid solution. We define the UP metric as

LUP = n/nmin (16)

i.e. the metric expresses the degree by which more taxis are
employed in a given solution than is strictly necessary for
stability. Note that LUP ∈ [1,∞), and LUP = 1 when n = nmin,
i.e. the ideal UP policy is any solution that uses nmin taxis.

2) Quality of Service: Since the stability condition is
satisfied for feasible solutions, and all customers in the
system are being serviced, we reason that the net revenue
from all customers is constant, regardless of the redistribution
policy P. Thus we assume that the main incentive of the taxi
company is to provide the best possible service quality. QOS
is measured as the average service time (the queueing time
plus the time waiting for a taxi) for a customer in the system.
We define the QOS metric as

LQOS = ∑
i

αiRi (17)

where Ri is the average service time for a customer waiting
at node i. Note that LQOS ∈ [0,∞), and LQOS = 0 when Ri =
0, ∀i, i.e. the ideal QOS policy is a solution where the service
time at all nodes is zero.

3) Fuel Consumption: We assume that it is in the interests
of the taxi driver to minimize the fuel costs associated with
the operation of their vehicle, and that the fuel consumption
of a vehicle is reasonably characterized by its total daily
mileage. We define the FC metric as

LFC = ∑
i

φi(1−βi)∑
j 6=i

pi, j. (18)

i.e. fuel consumption is minimized by maximizing the
amount of time that the redistribution policy dictates the
vehicle to remain on standby and wait for a customer at
its current location. Note that LFC ∈ [0,1], and LFC = 0
when S = Im, i.e. the ideal FC policy is the solution where
all vehicles remain at their current locations and do not
redistribute to other nodes.

VII. EXPERIMENTS

A simulation framework was implemented in MATLAB.
A base cluster network of 27 clusters was created from
the Singapore taxi dataset according to the methodology
described in Section IV. With a discretization of τ = 60s,
this yields an extended network of size m′ = 8615. A one
hour epoch was chosen for parameter measurements. The
customer arrival rate λ was learned by recording the number
of trips made by a taxi with a customer on board; this
was calculated to be approximately 48 arrivals per minute.
The customer transition matrix D was learned by recording
the distribution of destination nodes of taxis leaving each
node with a customer on board. In order to evaluate our
proposed policy within the context of the actual taxi system
in Singapore, simulations were conduction in comparison
with the following two test policies.

1) Observed Policy: Pobs is the actual redistribution policy
derived from the Singapore taxi data. This was learned by
analyzing the distribution of taxis leaving each node without
a customer on board. This is the “ground truth” policy and
represents the actual redistribution behavior of an unmanaged
taxi fleet. This is the policy that is of most interest to
us because it provides an insight into the effectiveness of
unmanaged redistribution. Further, the number of taxis nobs
that was actually observed to be in operation on Singapore
roads was estimated by recording the number of individual
taxi IDs that registered journeys within the given epoch.

2) Arrival Policy: Parr is a “smart” but naive policy
that provides a reasonable model for individual taxi driver
behavior. The arrival policy is defined by pi, j = α j, i.e. the
taxi driver will choose his next location based on the chances
that a customer will arrive there.
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Policy n LUP LQOS LFC % serviced
PHM nmin 1 0.40 0.94 99.96
Pobs 1 0.67 0.99 99.91
Parr 1 0.55 0.99 99.94
PHM nmin×1.2 1.2 0.17 0.92 99.99
Pobs 1.2 0.40 0.99 99.95
Parr 1.2 0.32 0.98 99.98
PHM nmin×1.4 1.4 0.11 0.91 99.99
Pobs 1.4 0.26 0.99 99.97
Parr 1.4 0.18 0.99 99.99
PHM nmin×1.6 1.6 0.05 0.89 99.99
Pobs 1.6 0.19 0.99 99.98
Parr 1.6 0.12 0.98 99.99
PHM nmin×1.8 1.8 0.03 0.88 99.99
Pobs 1.8 0.15 0.99 99.99
Parr 1.8 0.09 0.98 99.99
PHM nmin×2 2 0.03 0.87 99.99
Pobs 2 0.12 0.99 99.99
Parr 2 0.07 0.99 99.99
PHM nmin×4 4 0.01 0.83 99.99
Pobs 4 0.05 0.99 99.99
Parr 4 0.02 0.97 99.99

TABLE I: Simulation Results. A lower metric indicates better
performance. The best policy is highlighted for each n.

Simulations were carried out for 8 simulation hours each
(at τ = 60s). Each simulation was carried out 5 times for each
policy and for each value of n, and the results aggregated.
First, nmin was determined by means of bootstrap simulations
as described in Section V. Then the main test simulations
were carried out (105 in total) employing Pobs,Parr and PHM
policies with n set to increasing multiples of nmin. Results
were evaluated using the metrics described in Section VI.

A. Results

Table I summarizes the simulation results. The optimiza-
tion algorithm yielded nmin = 1000 (rounded to the nearest
100 vehicles) for λ = 48. The number of taxis that was
actually observed to be in operation on Singapore roads was
recorded from the taxi data as nobs = 10,088. This clearly
suggests that there are many more taxis in operation in
Singapore than strictly necessary to service all customers
without a buildup of queues. Since simulations were carried
out for fixed n, the UP metric is the same for all policies for
a given n. Fig. 2a shows a plot of the average percentage of
customers serviced for different values of n. Observe that for
n = nmin the policies marginally satisfy stability constraints,
and for n > nmin all policies achieve almost full service.

The rightmost columns of Table I summarize the results
for the QOS and FC metrics. Fig. 2b shows the calculated
average waiting time of customers for increasing n. We see
the HM policy improves substantially over the both test
policies for the same number of taxis. Fig. 2c shows the
average fuel consumption of taxis for increasing n. Again,
the HM policy shows an improvement over both test policies.

These results confirm that the unmanaged redistribution
behavior is indeed suboptimal. The fact that the HM policy
shows a significant improvement for both QOS and FC
metrics is intriguing as it indicates that the interests of

the taxi driver and the customer may in fact be aligned,
and suggests the potential for a natural incentive-based
redistribution model for drivers that also improves quality
of service.

VIII. CONCLUSIONS

In this paper we presented a Markov-based model for an
urban transportation network. We considered three evaluation
criteria: urban planning, fuel consumption, and quality of
service. We presented a scalable optimization framework
and proposed a solution that can be computed efficiently.
We compared the computed policy to the activity of a fleet
of 16,000 taxis in Singapore. The simulation experiments
show that there is potential to improve the efficiency of the
physical transportation system. We believe that this study is
an important step toward understanding the basic trade-offs
between the number of transportation vehicles in the system,
vehicle fuel consumption, and the overall quality of service
provided by the transportation system. Our next steps are
to characterize these trade-offs, do extensive case studies in
simulation and in the context of taxi systems in real urban
settings, and to derive specific policies that optimize each of
these individual criteria.
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