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* Dependency models are repeated at each node

e Graphical model is specific to Smith98a and Smith00




Abstract Knowledge

e Humans have abstract knowledge that can be
applied to any individuals

— Within a scenario
— ACross scenarios

e How can such knowledge be:

— Represented?
— Learned?
— Used in reasoning?



Outline

Logic: first-order versus propositional

Relational probability models (RPMs):
first-order logic meets probability

Relational uncertainty in RPMs
Thursday: models with unknown objects



Kinds of possible worlds

: each possible world is an atom or token with
no internal structure. E.g., Heads or Tails
: each possible world defined by values

assigned to variables. E.g., propositional logic,
graphical models

: each possible world defined by objects
and relations

[Slide credit: Stuart Russell]



Specialties and Topics

Propositional

Spec_Smith_BNs — Topic_Smith98a_ BNs
Spec_Smith_Theory — Topic_Smith98a_Theory
Spec_Smith_Learning — Topic_Smith98a_Learning

Spec_Smith_BNs — Topic_SmithOO_BNs
Spec_Smith_Theory — Topic_SmithO0_Theory
Spec_Smith_Learning — Topic_Smith00_Learning

First-Order

VrVtVp
[(Spec(r, t) A AuthorOf(r, p))
— Topic(p, t)]

AuthorOf(Smith, Smith00)
AuthorOf(Smith, Smith98a)



Expressiveness matters

* Expressive language => concise models

=> fast learning, sometimes fast reasoning
E.g., rules of chess:

1 page in first-order logic,

~100000 pages in propositional logic,

~100000000000000000000000000000000000000
pages as atomic-state model

(Note: chess is a teeny problem)

[Slide credit: Stuart Russell]



Brief history of expressiveness

A
probabilistic histogram Probabilistic logic First-order probabilistic
17th—18th centuries [Nilsson 1986], languages (FOPLs)
Graphical models 20th-21st centuries
late 20th century
Boolean logic First-order logic

deterministic 5th century B.C. 19th - early 20th century

- 19th century

>
atomic propositional first-order
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First-Order Logic Syntax

e Constants: Brian, 2, AIMA2e, MIT,...
e Predicates: AuthorOf, >,...

* Functions: PuincationYear,\/,...

e Variables: x,y,3,b,...

e Connectives: AV — — <>
e Equality: =
e Quantifiers: V 3

[Slide credit: Stuart Russell]
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Terms

e Aterm refers (according to a given possible
world) to an object in that world

e Term =
— function(term,,...,term ) or
— constant symbol or
— variable

e E.g., PublicationYear(AIMA2e)
* Arbitrary nesting = infinitely many terms

[Slide credit: Stuart Russell]
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Atomic sentences

 Atomic sentence =
— predicate(term,,...,term_) or
— terml=term?2
e E.g,,
— AuthorOf(Norvig,AIMA2e)
— NthAuthor(AIMA2e,2) = Norvig

e Can be combined using connectives, e.g.,
(Peter=Norvig) =(NthAuthor(AIMAZ2e,2) = Peter)

[Slide credit: Stuart Russell]
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Semantics: Truth in a world

e Each possible world contains 21 objects (domain
elements), and maps...
— Constant symbols - objects

— Predicate symbols = relations (sets of tuples of objects
satisfying the predicate)

— Function symbols = functional relations
* An atomic sentence predicate(term,,...,term_) is true

iff the objects referred to by term,...,term_ are in the
relation referred to by predicate

[Slide credit: Stuart Russell] 14



Example

Newell Simon
S &
AuthorMuthorOf

HumanProblemSolving

AuthorOf(Newell,HumanProblemSolving) is true in this world

[Slide credit: Stuart Russell]
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Outline

e Relational probability models (RPMs):
first-order logic meets probability



Relational Probability Models

Abstract probabilistic model for attributes

=

Relational skeleton: objects & relations

U

Graphical model

17



Representation

* Have to represent

—~
— Set of variables
) All depend on
— DependenC|eS >' relational skeleton
— Conditional probability
distributions (CPDs) —

e Many proposed languages
e We'll use Bayesian logic (BLOG)

[Milch et al. 2005]



Typed First-Order Logic

e Objects divided into types

Boolean, Researcher, Paper, WordPos, Word, Topic

* Express attributes and relations with functions

(predicates are just Boolean functions)
FirstAuthor(paper) — Researcher (non-random)

Specialty(researcher) — Topic (random)
Topic(paper) — Topic (random)
Doc(wordpos) — Paper (non-random)

WordAt(wordpos) — Word (random)
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Set of Random Variables

e For random functions, have random variable

for each tuple of argument objects

Researcher: Smith, Jones Paper: Smith98a, Smith00, Jones00
WordPos: Smith98a 1, ..., Smith98a 3212, Smith00 1, etc.

WordAt: @rdAt(Smith%aD WordAt(Smith98a_321D
> WordAt(SmithOO_27D

QordAt(SmithOO_l)
QordAt(JonesOO_D . WordAt(JonesOO_48®

ATAR




Dependency Statements

BNs RL  Theory
Specialty(r) ~ TabularCPD[[0.5, 0.3, 0.2]];

BNs RL Theory

Topic(p) ~ TabularCPD[[0.90, 0.01, 0.09], | BNs
[0.02, 0.85, 0.13], | RL
[0.10, 0.10, 0.80]] | Theory

(Specialty(FirstAuthor(p)));

\ Logical term identifying parent node

the Bayesian  reinforcement

WordAt(wp) ~ TabularCPD[[0.03,..., 0.02, 0.001,...], !BNs

[0.03,..., 0.001, 0.02,...7, IRt

[0.03,..., 0.003, 0.003,...]]! Theory
(Topic(Doc(wp)));
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Variable Numbers of Parents

e What if we allow multiple authors?
— Let skeleton specify predicate AuthorOf(r, p)

e Topic(p) now depends on specialties of
multiple authors

Number of parents depends on skeleton




Aggregation

e Aggregate distributions

multiset defined by formula

.,
- N

Topic(p) ~ TopicAggCPD({Speciralty(r) for Researcher r :
t\\ AuthorOf(r, p)});

mixture of distributions conditioned on individual
elements of multiset [Taskar et al., IJCAI 2001]

e Aggregate values
<«—— 2agdgregation function

Topic(p) ~ TopicCPD(Mode({Specialty(r) for Researcher r :
AuthorOf(r, p)}));
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Semantics: Ground BN
R1<’\,. <> R2

S ke|et0n / \ FlrstAuthor
FirstAuthor  rirstAuthor
\ P3
3212 words 2774 words @ 4893 words

Ground BN

Topic(P1)

W(P1 1) W(P1 3212)  W(P2_1) W(P2_2774) W(P3_1) W(P3_4893)



When Is Ground BN Acyclic?

[Koller & Pfeffer, AAAI 1998]

e Look at symbol graph

— Node for each random function w

— Read off edges from

dependency statements
Topic

e Theorem: If symbol graph

is acyclic, then ground BN ‘
is acyclic for every skeleton @




Inference: Knowledge-Based Model
Construction (KBMC)

e Construct relevant portion of ground BN
Skeleton: R1 <, R2

Pt AN A
Pl P2 @ P3

Constructed BN:
Spec(R1)

Topic(P1) Topic(P2)
opic

W(P1 1) W(P1 3212) W(P3_1) W(P3_4893)

[Breese 1992; Ngo & Haddawy 1997]



Inference on Constructed Network

e Run standard BN inference algorithm

— Exact: variable elimination/junction tree

— Approx: Gibbs sampling, loopy belief propagation
* Exploit some repeated structure with lifted

inference [Pfeffer et al., UAI 1999; Poole, 1JCAI 2003; de Salvo Braz et al.,
IJCAI 2005]
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