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Outline

e Learning relational probability models

e Structural uncertainty
— Uncertainty about relations
— Uncertainty about object existence and identity

e Applications of BLOG



Review: Relational Probability Models

Abstract probabilistic model for attributes

=

Relational skeleton: objects & relations

U

Graphical model




Reivew: Dependency Statements

BNs RL  Theory
Specialty(r) ~ TabularCPD[[0.5, 0.3, 0.2]];

BNs RL Theory

Topic(p) ~ TabularCPD[[0.90, 0.01, 0.09], | BNs
[0.02, 0.85, 0.13], | RL
[0.10, 0.10, 0.80]] | Theory

(Specialty(FirstAuthor(p)));

the Bayesian  reinforcement

WordAt(wp) ~ TabularCPD[[0.03,..., 0.02, 0.001,...], !BNs
[0.03,..., 0.001, 0.02,...], IRt
[0.03,..., 0.003, 0.003,...]]! Theory
(Topic(Doc(wp)));



Learning

e Assume types, functions are given

e Straightforward task: given structure, learn
parameters

— Just like in BNs, but parameters are shared across
variables for same function, e.g.,

Topic(Smith98a), Topic(Jones00), etc.
 Harder: learn abstract dependency structure



Structure Learning for BNs

e Find BN structure M that maximizes

o(M |data) p(M)j p(data|M,8) p(@|M)d&
 Greedy local search over structures

— Operators: add, delete, reverse edges

— Exclude cyclic structures
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Logical Structure Learning

 In RPM, want logical specification of each
node’s parent set

e Deterministic analogue: inductive logic
programming (ILP)

[Dzeroski & Lavrac 2001; Flach and Lavrac 2002]

e Classic work on RPMs by Friedman, Getoor,
Koller & Pfeffer [1999]

— We'll call their models FGKP models
(they call them “probabilistic relational models” (PRMs))



FGKP Models

 Each dependency statement has form:
Func(x) ~ TabularCPD[...](S:{s---, S1)

where s,,...,s, are slot chains

e Slot chains
— Basically logical terms: Specialty(FirstAuthor(p))

— But can also treat predicates as “multi-valued
functions™: Specialty(AuthorOf(p))

Smith » BNs
AuthorOf Specialty
Smith&Jones01 \- aggregate
AuthorOf Jones > RL )

Specialty



Structure Learning for FGKP Models

* Greedy search again

— But add or remove whole slot chains
— Start with chains of length 1, then 2, etc.
— Check for acyclicity using symbol graph
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Outline

— Uncertainty about relations



Relational Uncertainty: Example

Specialty: RL Specialty: Prob. Models

Generosity: 2.9 % %\ % ;x ey 5
Reviews AuthorO AuthorOf Reviews
>
Topic: RL @ \ Topic: RL @
AvgScore: ? / AvgScore: ?

[ Topic: Prob Models
Reviews Reviews AVIO e Prob.
(&> Specialty: Theory g L
2oy Generosity: 1.8

 Questions: Who will review my paper, and what
will its average review score be?
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Simplest Approach to
Relational Uncertainty

e Add predicate Reviews(r, p)
 Can model this with existing syntax:

Reviews(r, p) ~ ReviewCPD(Specialty(r), Topic(p));

e Potential drawback:

— Reviews(r, p) nodes are independent given
specialties and topics

— Expected number of reviews per paper grows with
number of researchers in skeleton

[Getoor et al., IMLR 2002]



Another Approach:
Reference Uncertainty

e Say each paper gets k reviews
— Can add Review objects to skeleton

— For each paper p, include k review objects rev
with PaperReviewed(rev) = p

e Uncertain about values of function
Reviewer(rev)

A = Reviewe; 5 @
x =" & 9
PaperReviewe = — 9 @

[Getoor et al., IMLR 2002]



Models for Reviewer(rev)

e Explicit distribution over researchers?

— No: won’t generalize across skeletons

e Selection models:

— Uniform sampling from researchers with certain
attribute values [Getoor et al., IMLR 2002]

— Weighted sampling, with weights determined by
attributes [pasula et al., 1JCAI 2001]



Choosing Reviewer Based on Specialty

ReviewerSpecialty(rev) ~ SpecSelectionCPD
(Topic(PaperReviewed(rev)));

Reviewer(rev) ~ Uniform({Researcher r :
Specialty(r) = ReviewerSpecialty(rev)});



Context-Specific Dependencies

RevScore(rev) ~ ScoreCPD(Generosity(Reviewer(rev)));

~"

///)'

AvgScore(p) = Mean({RevScore(rev) for Review rev :
PaperReviewed(Rev) = p});

 Consequence of relational uncertainty:
dependencies become context-specific

random object

— RevScore(Revl) depends on Generosity(R1) only
when Reviewer(Revl) = R1
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Semantics: Ground BN

Can still define ground BN

Parents of node X are all basic RVs whose values are

potentially relevant in evaluating the right hand side
of X’s dependency statement

Example: for RevScore(Revl)...

RevScore(rev) ~ ScoreCPD(Generosity(Reviewer(rev)));

— Reviewer(Rev1) is always relevant

— Generosity(R) might be relevant for any researcher R



Ground BN

Topic(P1)

Specialty(R1) RevSpecialty(Rev2)

Specialty(R2) G

Specialty(R3)

Reviewer(Rev1) Reviewer(Rev2)

RevScore(Revl) RevScore(Rev2)

Generosity(R1) Generosity(R3)
Generosity(R2)



Inference

e Can still use ground BN, but it’s often very
highly connected

e Alternative: MCMC over possible worlds
[Pasula & Russell, JCAI 2001]

— In each world, only certain dependencies are
active



Metropolis-Hastings MCMC

e Metropolis-Hastings process: in world o,

— sample new world @' from proposal distribution
q(o' | )
— accept proposal with probability

max( (w)q(wm)j
p(@)a(@' | )

otherwise remain in @

e Stationary distribution is p(w)



Computing Acceptance Ratio Efficiently

 World probability is

p(@) =] [P(X =x,pa, (X))

where pa_(X) is inst. of X's active parents in ®

e |If proposal changes only X, then all factors not
containing X cancel in p(w) and p(@')

Result: Time to compute acceptance ratio often
doesn’t depend on number of objects

[Pasula et al., IJICAI 2001]

21



Learning Models for Relations

* Binary predicate approach:
Reviews(r, p) ~ ReviewCPD(Specialty(r), Topic(p));

— Use existing search over slot chains

e Selecting based on attributes

ReviewerSpecialty(rev) ~ SpecSelectionCPD
(Topic(PaperReviewed(rev)));

Reviewer(rev) ~ Uniform({Researcher r :
Specialty(r) = ReviewerSpecialty(rev)});

— Search over sets of attributes to look at

— Search over parent slot chains for choosing
attribute values

[Getoor et al., IMLR 2002]
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Outline

— Uncertainty about object existence and identity



Example 1: Bibliographies

@ @ Title: ...

PubCited

Russell, Stuart and Norvig, Peter. Articial Intelligence. Prentice-Hall, 1995.

\ T~

S. Russel and P. Norvig (1995). Artificial Intelligence: A Modern Approach.
Upper Saddle River, NJ: Prentice Hall.




Example 2: Aircraft Tracking

\ Detection
\Failure




Example 2: Aircraft Tracking

A

//Unobserved
¢ Object
/

/

@
|
@) |
False | /
Detection é




Handling Unknown Objects

Fundamental task: given observations, make
inferences about initially unknown objects

But most RPM languages assume set of objects is
fixed and known (Herbrand models)

Bayesian logic (BLOG) lifts this assumption

[Milch et al., IJCAI 2005. See also MEBN: Laskey & da Costa, UAI 2005;

Dynamical Grammars: Mjolsness & Yosiphon, AMAI to appear] .



Possible Worlds
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How can we define a distribution over such outcomes?
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Generative Process

* Imagine process that constructs worlds
using two kinds of steps
— Add some objects to the world

— Set the value of a function on a tuple of
arguments



BLOG Model for Citations

#Paper ~ NumPapersPrior(); <+—— number statement

Title(p) ~ TitlePrior();

part of skeleton:

exhaustive list of distinct citations
A

guaranteed Citation Citl, Cit2, Cit3, Cit4, Cit5, Cit6, Cit7;

PubCited(c) ~ Uniform({Paper p}); <«— ramiliarsyntaxifor
reference uncertainty

Text(c) ~ NoisyCitationGrammar(Title(PubCited(c)));
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Adding Authors

#Researcher ~ NumResearchersPrior();
Name(r) ~ NamePrior();

#Paper ~ NumPapersPrior();

FirstAuthor(p) ~ Uniform({Researcher r});
Title(p) ~ TitlePrior(Q);

PubCited(c) ~ Uniform({Paper p});

Text(c) ~ NoisyCitationGrammar
(Name(FirstAuthor(PubCited(c))), Title(PubCited(c)));
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Generative Process for
Aircraft Tracking

Existence of radar blips depends on
existence and locations of aircraft




BLOG Model for Aircraft Tracking

Source

#Blip(Source = a, Time = t)
~ NumDetectionsDistrib(State(a, t));

o
OO t 2 _,98I|ps
».

Time



Basic Random Variables (RVs)

 For each number statement and tuple of
generating objects, have RV for
number of objects generated

* For each function symbol and tuple of
arguments, have RV for function value

e [lemma: Full instantiation of these RVs
uniquely identifies a possible world



Contingent Bayesian Network

 Each BLOG model defines contingent
Bayesian network (CBN) over basic RVs

— Edges active only under certain conditions

infinitely many nodes!

Title((Pub, 3))) -

PubCited(Cit1) PubCited(Cit1)

Title((Pub, 2))

Title((Pub, 1))

PubCited(Cit1)

(Pub, 2) = (Pub, 1) v (Pub.2) - (Pub, 3)
Pubc:ited(@

[Milch et al., Al/Stats 2005] 35



Probability Distribution
e Through its CBN, BLOG model specifies:

— Conditional distributions for basic RVs

— Context-specific independence properties e.q.,
Text(Citl) indep of Title((Pub, 1))
given PubCited(Cit1) = (Pub, 3)
e Theorem: Under certain “context-specific
ordering” conditions, every BLOG model fully
defines a distribution over possible worlds

[Milch et al., IJCAI 2005]
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Inference with Unknown Objects

Does infinite set of basic RVs prevent inference?

No: Sampling algorithms only need to instantiate
finite set of relevant variables

Generic algorithmes:
— Rejection sampling [Milch et al., IICAI 2005]
— Guided likelihood weighting [Mmilch et al., Al/Stats 2005]

More practical: MCMC over partial worlds



Toward General-Purpose MCMC
with Unknown Objects

e Successful applications of MCMC with
domain-specific proposal distributions:

— Citation matching [Pasula et al., 2003]
— Multi-target tracking [Oh et al., 2004]

* But each application requires new code for:
— Proposing moves
— Representing MCMC states
— Computing acceptance probabilities

e Goal:

— User specifies model and proposal distribution
— General-purpose code does the rest




Proposer for Citations

[Pasula et al., NIPS 2002]

* Split-merge moves:

A RN T A

— Propose titles and author names for affected
publications based on citation strings

 Other moves change total number of
publications



MCMC States

* Not complete instantiations!
— No titles, author names for uncited publications
e States are partial instantiations of random

variables
#Pub = 100, PubCited(Cit1) = (Pub, 37), Title((Pub, 37)) = “Calculus”

— Each state corresponds to an event: set of
outcomes satisfying description



MCMC over Events

 Markov chain over
events o, with stationary
distrib. proportional to p(o)

e Theorem: Fraction of visited
events in Q converges to
p(Q|E) if:

— Each o is either subset of Q or
disjoint from Q

— Events form partition of E
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Computing Probabilities of Events

* Engine needs to compute P(c’) / P(c,,)
efficiently (without summations)

e Use instantiations that
include all active parents /CD
of the variables they
Instantiate

 Then probability is product of CPDs:
P(@)= []px(a(X)|a(Pa, (X))

Xevars(o)



States That Are Even More Abstract

e Typical partial instantiation:
#Pub = 100, PubCited(Cit1) = (Pub, 37), Title((Pub, 37)) = “Calculus”,

PubCited(Cit2) = (Pub, 14), Title((Pub, 14)) = “Psych”

— Specifies particular publications, even though publications
are interchangeable

e Let states be abstract partial instantiations:
4 x 3 y#x [#Pub = 100, PubCited(Citl) = x, Title(x) = “Calculus”,
PubCited(Cit2) =y, Title(y) = “Psych”]

e There are conditions under which we can compute
probabilities of such events



Outline

e Applications of BLOG



Citation Matching

* Elaboration of generative model shown earlier
 Parameter estimation

— Priors for names, titles, citation formats learned offline
from labeled data

— String corruption parameters learned with Monte Carlo
EM

* Inference
— MCMC with split-merge proposals
— Guided by “canopies” of similar citations
— Accuracy stabilizes after ~20 minutes

[Pasula et al., NIPS 2002]



Citation Matching Results

0.25

0.2 -

0.15 |
S |
LIl

0.1 -

0.05 -

(Fraction of Clusters Not Recovered Correctly)

@ Phrase Matching
[Lawrence et al. 1999]

m Generative Model + MCMC
[Pasula et al. 2002]

O Conditional Random Field
[Wellner et al. 2004]

Reinforce

Face

Reason

Constraint

Four data sets of ~300-500 citations, referring to ~150-300 papers
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Cross-Citation Disambiguation

Wauchope, K. Eucalyptus: Integrating Natural Language
Input with a Graphical User Interface. NRL Report
NRL/FR/5510-94-9711 (1994).

|s "Eucalyptus" part of the title, or is the author
named K. Eucalyptus Wauchope?

Kenneth Wauchope (1994). Eucalyptus: Integrating
natural language i1nput with a graphical user
interface. NRL Report NRL/FR/5510-94-9711, Naval

Research Laboratory, Washington, DC, 39pp.

Second citation makes it clear how to parse the first one



Preliminary Experiments:
Information Extraction

e P(citation text | title, author names) modeled
with simple HMM

 For each paper: recover title, author surnames
and given names

* Fraction whose attributes are recovered
perfectly in last MCMC state:

— among papers with one citation: 36.1%
— among papers with multiple citations: 62.6%

Can use inferred knowledge for disambiguation




Multi-Object Tracking

A
//Unobserved
¢ Object
/

@

|

@) |

False | /
Detection é /



State Estimation for “Aircraft”

#A1rcraft ~ NumAilrcraftPrior();

State(a, t)
iIT t = 0 then ~ InitState()
else ~ StateTransition(State(a, Pred(t)));

#Blip(Source = a, Time = t)
~ NumDetectionsCPD(State(a, t));

#Blip(Time = t)
~ NumFalseAlarmsPrior();

ApparentPos(r)
iIT (Source(r) = null) then ~ FalseAlarmDistrib()
else ~ ObsCPD(State(Source(r), Time(r)));



Aircraft Entering and Exiting

#Aircraft(EntryTime = t) ~ NumAircraftPrior();

Exits(a, t)
1T InFlight(a, t) then ~ Bernoulli1(0.1);

InFlight(a, t©)
iIT t < EntryTime(a) then = false
elseif t = EntryTime(a) then = true
else = (InFlight(a, Pred(t)) & !Exits(a, Pred(t)));

State(a, t)
iIT t = EntryTime(a) then ~ InitState()
elseift InFlight(a, t) then
~ StateTransition(State(a, Pred(t)));

#Blip(Source = a, Time = t)
iT InFlight(a, t) then
~ NumDetectionsCPD(State(a, t));

...plus last two statements from previous slide



MCMC for Aircraft Tracking

e Uses generative model from previous slide (although
not with BLOG syntax)

e Examples of Metropolis-Hastings proposals:

- -
--..'

.'-'

birth

death

split

merge

[Figures by Songhwai Oh]

[Oh et al., CDC 2004]
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Aircraft Tracking Results

Estimation Error
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MCMC has smallest error,
hardly degrades at all as
tracks get dense

[Figures by Songhwai Oh]
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MCMC is nearly as fast as
greedy algorithm;
much faster than MHT

[Oh et al., CDC 2004] =



BLOG Software

* Bayesian Logic inference engine available:

http://people.csail.mit.edu/milch/blog
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