Learning and Structural Uncertainty in Relational Probability Models

Brian Milch

MIT 9.66

November 29, 2007

Outline

- Learning relational probability models
- Structural uncertainty
 - Uncertainty about relations
 - Uncertainty about object existence and identity
- Applications of BLOG

Review: Relational Probability Models

Abstract probabilistic model for attributes

Relational skeleton: objects & relations

Graphical model

Reivew: Dependency Statements

```
RL Theory
                             BNs
Specialty(r) ~ TabularCPD[[0.5, 0.3, 0.2]];
                          BNs
                              RL Theory
                                                 BNs
Topic(p) \sim TabularCPD[[0.90, 0.01, 0.09],
                                                 RL
                        [0.02, 0.85, 0.13],
                                                 | Theory
                        [0.10, 0.10, 0.80]]
                (Specialty(FirstAuthor(p)));
                                  Bayesian reinforcement
                           the
                                                         BNs
WordAt(wp) ~ TabularCPD[[0.03,..., 0.02, 0.001,...],
                                                          RL
                          [0.03, \ldots, 0.001, 0.02, \ldots],
                          [0.03,..., 0.003, 0.003,...]] | Theory
                (Topic(Doc(wp)));
```

Learning

- Assume types, functions are given
- Straightforward task: given structure, learn parameters
 - Just like in BNs, but parameters are shared across variables for same function, e.g., Topic(Smith98a), Topic(Jones00), etc.
- Harder: learn abstract dependency structure

Structure Learning for BNs

- Find BN structure M that maximizes $p(M \mid \text{data}) \propto p(M) \int p(\text{data} \mid M, \theta) p(\theta \mid M) d\theta$
- Greedy local search over structures
 - Operators: add, delete, reverse edges
 - Exclude cyclic structures

Logical Structure Learning

- In RPM, want logical specification of each node's parent set
- Deterministic analogue: inductive logic programming (ILP)
 - [Dzeroski & Lavrac 2001; Flach and Lavrac 2002]
- Classic work on RPMs by Friedman, Getoor, Koller & Pfeffer [1999]
 - We'll call their models FGKP models
 (they call them "probabilistic relational models" (PRMs))

FGKP Models

Each dependency statement has form:

```
Func(x) ~ TabularCPD[...](s_1,...,s_k)
where s_1,...,s_k are slot chains
```

- Slot chains
 - Basically logical terms: Specialty(FirstAuthor(p))
 - But can also treat predicates as "multi-valued functions": Specialty(AuthorOf(p))

Structure Learning for FGKP Models

- Greedy search again
 - But add or remove whole slot chains
 - Start with chains of length 1, then 2, etc.
 - Check for acyclicity using symbol graph

Outline

- Learning relational probability models
- Structural uncertainty
 - Uncertainty about relations
 - Uncertainty about object existence and identity
- Applications of BLOG

Relational Uncertainty: Example

 Questions: Who will review my paper, and what will its average review score be?

Simplest Approach to Relational Uncertainty

- Add predicate Reviews(r, p)
- Can model this with existing syntax:

```
Reviews(r, p) ~ ReviewCPD(Specialty(r), Topic(p));
```

- Potential drawback:
 - Reviews(r, p) nodes are independent given specialties and topics
 - Expected number of reviews per paper grows with number of researchers in skeleton

Another Approach: Reference Uncertainty

- Say each paper gets k reviews
 - Can add Review objects to skeleton
 - For each paper p, include k review objects rev with PaperReviewed(rev) = p
- Uncertain about values of function

Models for Reviewer(*rev*)

- Explicit distribution over researchers?
 - No: won't generalize across skeletons
- Selection models:
 - Uniform sampling from researchers with certain attribute values [Getoor et al., JMLR 2002]
 - Weighted sampling, with weights determined by attributes [Pasula et al., IJCAI 2001]

Choosing Reviewer Based on Specialty

Context-Specific Dependencies

- Consequence of relational uncertainty: dependencies become context-specific
 - RevScore(Rev1) depends on Generosity(R1) only when Reviewer(Rev1) = R1

Semantics: Ground BN

- Can still define ground BN
- Parents of node X are all basic RVs whose values are potentially relevant in evaluating the right hand side of X's dependency statement
- Example: for RevScore(Rev1)...

```
RevScore(rev) ~ ScoreCPD(Generosity(Reviewer(rev)));
```

- Reviewer(Rev1) is always relevant
- Generosity(R) might be relevant for any researcher R

Ground BN

Inference

- Can still use ground BN, but it's often very highly connected
- Alternative: MCMC over possible worlds [Pasula & Russell, IJCAI 2001]
 - In each world, only certain dependencies are active

Metropolis-Hastings MCMC

- Metropolis-Hastings process: in world ω ,
 - sample new world ω' from proposal distribution $\mathbf{q}(\omega' \mid \omega)$
 - accept proposal with probability

$$\max\left(1, \frac{p(\omega')q(\omega \mid \omega')}{p(\omega)q(\omega' \mid \omega)}\right)$$

otherwise remain in ω

• Stationary distribution is $p(\omega)$

Computing Acceptance Ratio Efficiently

World probability is

$$p(\omega) = \prod_{X} P(X = x_{\omega} | \operatorname{pa}_{\omega}(X))$$

where $\mathbf{pa}_{\omega}(\mathbf{X})$ is inst. of \mathbf{X}' s active parents in ω

• If proposal changes only X, then all factors not containing X cancel in $p(\omega)$ and $p(\omega')$

Result: Time to compute acceptance ratio often doesn't depend on number of objects

Learning Models for Relations

Binary predicate approach:

```
Reviews(r, p) ~ ReviewCPD(Specialty(r), Topic(p));
```

Use existing search over slot chains

Selecting based on attributes

- Search over sets of attributes to look at
- Search over parent slot chains for choosing attribute values

Outline

- Learning relational probability models
- Structural uncertainty
 - Uncertainty about relations
 - Uncertainty about object existence and identity
- Applications of BLOG

Example 1: Bibliographies

Russell, Stuart and Norvig, Peter. Articial Intelligence. Prentice-Hall, 1995.

S. Russel and P. Norvig (1995). Artificial Intelligence: A Modern Approach. Upper Saddle River, NJ: Prentice Hall.

Example 2: Aircraft Tracking

Example 2: Aircraft Tracking

Handling Unknown Objects

- Fundamental task: given observations, make inferences about initially unknown objects
- But most RPM languages assume set of objects is fixed and known (Herbrand models)
- Bayesian logic (BLOG) lifts this assumption

Possible Worlds

(not showing attribute values)

How can we define a distribution over such outcomes?

Generative Process

- Imagine process that constructs worlds using two kinds of steps
 - Add some objects to the world
 - Set the value of a function on a tuple of arguments

BLOG Model for Citations

```
#Paper ~ NumPapersPrior();
                                                number statement
Title(p) ~ TitlePrior();
                                           part of skeleton:
                                           exhaustive list of distinct citations
guaranteed Citation Cit1, Cit2, Cit3, Cit4, Cit5, Cit6, Cit7;
                                                  familiar syntax for
PubCited(c) ~ Uniform({Paper p});
                                                  reference uncertainty
Text(c) ~ NoisyCitationGrammar(Title(PubCited(c)));
```

Adding Authors

Generative Process for Aircraft Tracking

BLOG Model for Aircraft Tracking

```
Source
                                                   Blips
#Aircraft ~ NumAircraftDistrib(
State(a, t)
  if t = 0 then ~ InitState()
                                            Time
  else ~ StateTransition(State(a,
#Blip(Source = a, Time = t)
  ~ NumDetectionsDistrib(State(a, t));
#Blip(Time = t)
  ~ NumFalseAlarmsDistrib();
ApparentPos(r)
  if (Source(r) = null) then
  else ~ ObsDistrib(State(Sou
                                        Time
```

Basic Random Variables (RVs)

- For each number statement and tuple of generating objects, have RV for number of objects generated
- For each function symbol and tuple of arguments, have RV for function value
- Lemma: Full instantiation of these RVs uniquely identifies a possible world

Contingent Bayesian Network

- Each BLOG model defines contingent Bayesian network (CBN) over basic RVs
 - Edges active only under certain conditions

Probability Distribution

- Through its CBN, BLOG model specifies:
 - Conditional distributions for basic RVs
 - Context-specific independence properties e.g., Text(Cit1) indep of Title((Pub, 1)) given PubCited(Cit1) = (Pub, 3)
- Theorem: Under certain "context-specific ordering" conditions, every BLOG model fully defines a distribution over possible worlds

Inference with Unknown Objects

- Does infinite set of basic RVs prevent inference?
- No: Sampling algorithms only need to instantiate finite set of relevant variables
- Generic algorithms:
 - Rejection sampling [Milch et al., IJCAI 2005]
 - Guided likelihood weighting [Milch et al., Al/Stats 2005]
- More practical: MCMC over partial worlds

Toward General-Purpose MCMC with Unknown Objects

- Successful applications of MCMC with domain-specific proposal distributions:
 - Citation matching [Pasula et al., 2003]
 - Multi-target tracking [Oh et al., 2004]
- But each application requires new code for:
 - Proposing moves
 - Representing MCMC states
 - Computing acceptance probabilities
- Goal:
 - User specifies model and proposal distribution
 - General-purpose code does the rest

Proposer for Citations

[Pasula et al., NIPS 2002]

Split-merge moves:

- Propose titles and author names for affected publications based on citation strings
- Other moves change total number of publications

MCMC States

- Not complete instantiations!
 - No titles, author names for uncited publications
- States are partial instantiations of random variables

```
#Pub = 100, PubCited(Cit1) = (Pub, 37), Title((Pub, 37)) = "Calculus"
```

 Each state corresponds to an event: set of outcomes satisfying description

MCMC over Events

- Markov chain over events σ, with stationary distrib. proportional to p(σ)
- Theorem: Fraction of visited events in Q converges to p(Q|E) if:
 - Each σ is either subset of \boldsymbol{Q} or disjoint from \boldsymbol{Q}
 - Events form partition of *E*

Computing Probabilities of Events

- Engine needs to compute $P(\sigma') / P(\sigma_n)$ efficiently (without summations)
- Use instantiations that include all active parents of the variables they instantiate

Then probability is product of CPDs:

$$P(\sigma) = \prod_{X \in \text{vars}(\sigma)} p_X (\sigma(X) | \sigma(\text{Pa}_{\sigma}(X)))$$

States That Are Even More Abstract

Typical partial instantiation:

```
#Pub = 100, PubCited(Cit1) = (Pub, 37), Title((Pub, 37)) = "Calculus", PubCited(Cit2) = (Pub, 14), Title((Pub, 14)) = "Psych"
```

- Specifies particular publications, even though publications are interchangeable
- Let states be abstract partial instantiations:

```
\exists x \exists y \neq x  [#Pub = 100, PubCited(Cit1) = x, Title(x) = "Calculus", PubCited(Cit2) = y, Title(y) = "Psych"]
```

 There are conditions under which we can compute probabilities of such events

Outline

- Learning relational probability models
- Structural uncertainty
 - Uncertainty about relations
 - Uncertainty about object existence and identity
- Applications of BLOG

Citation Matching

- Elaboration of generative model shown earlier
- Parameter estimation
 - Priors for names, titles, citation formats learned offline from labeled data
 - String corruption parameters learned with Monte Carlo
 EM
- Inference
 - MCMC with split-merge proposals
 - Guided by "canopies" of similar citations
 - Accuracy stabilizes after ~20 minutes

Citation Matching Results

Four data sets of ~300-500 citations, referring to ~150-300 papers

Cross-Citation Disambiguation

```
Wauchope, K. Eucalyptus: Integrating Natural Language Input with a Graphical User Interface. NRL Report NRL/FR/5510-94-9711 (1994).
```

Is "Eucalyptus" part of the title, or is the author named K. Eucalyptus Wauchope?

```
Kenneth Wauchope (1994). Eucalyptus: Integrating natural language input with a graphical user interface. NRL Report NRL/FR/5510-94-9711, Naval Research Laboratory, Washington, DC, 39pp.
```

Second citation makes it clear how to parse the first one

Preliminary Experiments: Information Extraction

- P(citation text | title, author names) modeled with simple HMM
- For each paper: recover title, author surnames and given names
- Fraction whose attributes are recovered perfectly in last MCMC state:
 - among papers with one citation: 36.1%
 - among papers with multiple citations: 62.6%

Can use inferred knowledge for disambiguation

Multi-Object Tracking

State Estimation for "Aircraft"

```
#Aircraft ~ NumAircraftPrior();
State(a, t)
   if t = 0 then ~ InitState()
   else ~ StateTransition(State(a, Pred(t)));
#Blip(Source = a, Time = t)
        ~ NumDetectionsCPD(State(a, t));
#Blip(Time = t)
        ~ NumFalseAlarmsPrior();
ApparentPos(r)
   if (Source(r) = null) then ~ FalseAlarmDistrib()
   else ~ ObsCPD(State(Source(r), Time(r)));
```

Aircraft Entering and Exiting

```
#Aircraft(EntryTime = t) ~ NumAircraftPrior();
Exits(a, t)
  if InFlight(a, t) then ~ Bernoulli(0.1);
InFlight(a, t)
  if t < EntryTime(a) then = false
  elseif t = EntryTime(a) then = true
  else = (InFlight(a, Pred(t)) & !Exits(a, Pred(t)));
State(a, t)
  if t = EntryTime(a) then ~ InitState()
  elseif InFlight(a, t) then
      ~ StateTransition(State(a, Pred(t)));
#Blip(Source = a, Time = t)
  if InFlight(a, t) then
      ~ NumDetectionsCPD(State(a, t));
```

...plus last two statements from previous slide

MCMC for Aircraft Tracking

- Uses generative model from previous slide (although not with BLOG syntax)
- Examples of Metropolis-Hastings proposals:

Aircraft Tracking Results

MCMC has smallest error, hardly degrades at all as tracks get dense

MCMC is nearly as fast as greedy algorithm; much faster than MHT

BLOG Software

Bayesian Logic inference engine available:

http://people.csail.mit.edu/milch/blog

References

- Friedman, N., Getoor, L., Koller, D., and Pfeffer, A. (1999) "Learning probabilistic relational models". In *Proc.* 16th Int'l Joint Conf. on AI, pages 1300-1307.
- Taskar, B., Segal, E., and Koller, D. (2001) "Probabilistic classification and clustering in relational data". In *Proc.* 17th Int'l Joint Conf. on AI, pages 870-878.
- Getoor, L., Friedman, N., Koller, D., and Taskar, B. (2002) "Learning probabilistic models of link structure". *J. Machine Learning Res.* 3:679-707.
- Taskar, B., Abbeel, P., and Koller, D. (2002) "Discriminative probabilistic models for relational data". In *Proc.* 18th Conf. on Uncertainty in AI, pages 485-492.
- Dzeroski, S. and Lavrac, N., eds. (2001) Relational Data Mining. Springer.
- Flach, P. and Lavrac, N. (2002) "Learning in Clausal Logic: A Perspective on Inductive Logic Programming". In *Computational Logic: Logic Programming and Beyond (Essays in Honour of Robert A. Kowalski)*, Springer Lecture Notes in AI volume 2407, pages 437-471.
- Pasula, H. and Russell, S. (2001) "Approximate inference for first-order probabilistic languages". In *Proc. 17th Int'l Joint Conf. on AI*, pages 741-748.
- Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D. L., and Kolobov, A. (2005) "BLOG: Probabilistic Models with Unknown Objects". In *Proc. 19th Int'l Joint Conf. on AI*, pages 1352-1359.

References

- Milch, B., Marthi, B., Russell, S., Sontag, D., Ong, D. L., and Kolobov, A. (2005) "BLOG: Probabilistic Models with Unknown Objects". In *Proc. 19th Int'l Joint Conf. on AI*, pages 1352-1359.
- Milch, B., Marthi, B., Sontag, D., Russell, S., Ong, D. L., and Kolobov, A. (2005) "Approximate inference for infinite contingent Bayesian networks". In *Proc.* 10th Int'l Workshop on Al and Statistics.
- Milch, B. and Russell, S. (2006) "General-purpose MCMC inference over relational structures". In *Proc. 22nd Conf. on Uncertainty in AI*, pages 349-358.
- Pasula, H., Marthi, B., Milch, B., Russell, S., and Shpitser, I. (2003) "Identity uncertainty and citation matching". In *Advances in Neural Information Processing Systems 15*, MIT Press, pages 1401-1408.
- Lawrence, S., Giles, C. L., and Bollacker, K. D. (1999) "Autonomous citation matching". In *Proc.* 3rd Int'l Conf. on Autonomous Agents, pages 392-393.
- Wellner, B., McCallum, A., Feng, P., and Hay, M. (2004) "An integrated, conditional model of information extraction and coreference with application to citation matching". In *Proc.* 20th *Conf. on Uncertainty in AI*, pages 593-601.

References

- Pasula, H., Russell, S. J., Ostland, M., and Ritov, Y. (1999) "Tracking many objects with many sensors". In *Proc.* 16th Int'l Joint Conf. on AI, pages 1160-1171.
- Oh, S., Russell, S. and Sastry, S. (2004) "Markov chain Monte Carlo data association for general multi-target tracking problems". In *Proc. 43rd IEEE Conf. on Decision and Control*, pages 734-742.