BLOG: Probabilistic Models
with Unknown Objects

Brian Milch

CS 289
12/6/04

Joint work with Bhaskara Marthi, David Sontag,
Daniel Ong, Andrey Kolobov, and Stuart Russell

Task for Intelligent Agents
|

= Given observations, make inferences
about underlying real-world objects

= But no list of objects is given in advance

| Example 1: Bibliographies
[

Tom Mitchell %; %

< @ Andrew McCallum
fferty

W
R

Machine Learnint
£y
2

Mtchell, Tom (1997).

e e e e
ebKB... Ranking..,

einforcement Learning...

Machi ne Learning. NY: McGaw Hill.

Example 2: Drawing Balls from
an Urn (in the Dark)

Example 3: Tracking Aircraft

(19,90,2.1)
(1.8,7.4,2.3) (1.9,6.1,2.2)
09,5831 | o 5132) [0.6,5.9, 3.2)
t=1 t=2 t=3

| Levels of Uncertainty

I

A A A -
Attribute B<\00 B<.'\o° B<<’\.° <.'\o°
Uncertainty D D D D

A A A s A
Relational Bg\oc Bo\. 3 Bc\.o>.c \I\OC
Uncertainty D D D D

c c B8

Unknown 2P . I . I/O <\<§: e
Objects ' B,D B,D

Today’s Lecture

|
= BLOG: language for representing

scenarios with unknown objects
= Evidence about unknown objects
= Sampling-based inference algorithm

Why Not PRMs?

= Unknown objects handled only by
various extensions:
= number uncertainty [Koller & Pfeffer, 1998]
= existence uncertainty [Getoor et al., 2002]
= identity uncertainty [Pasula et al., 2003]

» Attributes apply only to single objects
= can’t have Position(a, t)

BLOG Approach

|
= BLOG model defines probability

distribution over model structures of a

typed first-order language
[Gaifman 1964; Halpern 1990]

= Unique distribution, not just constraints
on the distribution

Typed First-Order Language
for Urn and Balls

Types: Ball, Draw, Color

Symbol Arg Types |Return Type
TrueColor(b) (Ball) Color
BallDrawn(d) (Draw) Ball
ObsColor(d) (Draw) Color

Black, White 0 Color
Drawl, ..., Draw4 | () Draw

| Model Structure

I
Bal (@@@®@®| Coor (M|

Draw { E} Black Draw2

(- (-H

TrueColor BallDrawn

Obs
@)-0O [EJ_,@ [J_,. White Draw3
e f e @o 0 H
@-0 (H-® (H)-O obrawt praws
©o-® H-e [H-m -H -H

Generative Probability Model

I
Black White
Draws
2|34
O 0@

BLOG Model for Urn and Balls

type Color; type Ball; type Draw
random Col or TrueCol or (Bal 1) ;
random Bal | Bal | Drawn(Dr aw) ;
random Col or CbsCol or (Dr aw) ;

guaranteed Color Black, Wite;
guaranteed Draw Drawl, Draw2, Drawd, Drawd;

“Ba”!m(w) ‘:‘>’H‘Q; 0 <— Number statement

Tr ueCol or (b;

)
~ Tabul ar CPD{[0.5, 0.5]](); \
Bal | Drawn(d

) Dependency statements
ZUni fornthoi cel] ((Ball b)); ——

—

n
[0.2, 0.8]](TrueCol or (Bal | Drawn(d)));

CbsCol or (d)
it 1(BallDrawn(d) = null) the
~ Tabul arCPD{[0. 8, 0.2]

Generative Model for
Aircraft Tracking

_Dest=2

A \ Dest=2

BLOG Model for Aircraft
Tracking: Header

type AirBase; type Aircraft; type RadarBlip;

random R2Vector Locati on(Ai rBase) ;

random Bool ean TakesCOff (Aircraft, Integer);
random Bool ean Lands(Aircraft, Integer);
random Ai r Base CurBase(Aircraft, Integer);
random Bool ean I nFlight(Aircraft, Integer);
random R6Vector State(Aircraft, Integer);
random AirBase Dest(Aircraft, Integer);
random R3Vect or Apparent Pos(Radar Bl i p);

generating AirBase HoneBase(Aircraft);
generating Aircraft BlipSource(RadarBlip);

values determined
g A oy poRour ool radar B when object is
generating |nteger i pTi me(ar Bl i p); generated

nonrandom | nteger Pred(lnteger) = PredFunction;
nonr andom Bool ean Greater(Integer, Integer) = G eater ThanPredicate;

=0
t=1 Bl
B2
t=2 B3
B4
Tracking Aircraft:
Dependency Statements
Locat i on(b)
~ Uni f or nnRect angl e() ;
TakesOf f (a, t)
if Geater(t, 0) &!InFlight(a, t) then ~ TakeoffD strib();
Lands(a, t)
if Greater(t, 0) & InFlight(a, t) then ~ LandDistrib(State(a, t), Location(Dest(a, t)));

CurBase(a, t)
if (t =0) then = HoneBase(a)
elseif TakesGff(a, t) then = null
elseif Lands(a, t) then - Dest(a, Pred(t))
elseif Geater(t, 0) then = CurBase(a, Pred(t));

InFlight (a, t)
if Geater(t, 0) then = (QurBase(a, t) = null);

State(a, t)
i TakesOif (a, t) then ~ Initial
elseif InFlight(a, t) then -

ateD strib(Locati on(Cur Base(a, Pred(t)))
nsition(State(a, Pred(t)), Location(Dest(a, t))):

Dest(a, t)
i TakesOif (a, t) then ~ UnifornChol ce({AirBase b))
elseif InFlight(a, t) then = Dest(a, Pred(t));

Closeup of Dependency
Statement

child variable

State(a, t)

clauses

if TakesOif(a, t) then
~ Initial StateDi strib(Location(CurBase(a, Pred(t)))
el seif InFlight(a, t) then
~ StateTransition(State(a, Pred(t)),
Location(Dest(a, t)));

= For a given assignment of objects to a, t:
= Find first clause whose condition is satisfied
= Evaluate CPD arguments (terms, formulas, or sets)
= Pass them to CPD, get distribution over child variable

Aircraft Tracking:
Number Statements

#AirBase: () -> ()
~ NunBasesDi strib();

Potential object
patterns (POPs)
#Aircraft: (HoneBase) -> (b)

~ NumAircraftDistrib();

: ime) -> (a t)
if InFlight(a, t) then ~ NunbDetectionsDistrib();

#RadarBlip: (BlipTime) -> (t)
~ Nunfal seAl arnmsDi strib();

Summary of BLOG Basics

= Defining distribution over model
structures of typed first-order language
= Generative process with two kinds of
steps:
= Generate objects, possibly from existing
objects (described by number statement)

= Set value of function on tuple of objects
(described by dependency statement)

Advanced Topics in BLOG

|
= Semantic issues
= What exactly are the objects?
= When is a BLOG model well-defined?

= Asserting evidence
= Approximate inference

| What Exactly Are the Objects?

[
Ball { MaR & } Color { Black White }

Draw { Drawl Draw2 Draw3 Draw4}

= Substituting other objects yields isomorphic
world — same formulas satisfied

= Must define distribution over specific set of
possible worlds containing particular objects

Can We Avoid Representing
Unobserved Objects?

Can We Avoid Representing
Unobserved Objects?

) Yes, but it's not obvious how to:
Multiset « Define distributions over multisets, partitions
+ Handle relations among unobserved objects

Labeled partition
Draws

1| 2.3/ 4

PN <

Letting Unobserved Objects Be
Natural Numbers

|
Ball {4 18 29 36 75} Color { Black White }

Draw { Drawl Draw2 Draw3 Draw4}

= Problem: Too many possible worlds

= Infinitely many possible worlds isomorphic to any
given world

= Can't define uniform distribution over them

Letting Unobserved Objects Be
Consecutive Natural Numbers

[
Ball {0 1 2 3 4 } Color { Black White }

Draw { Drawl Draw2 Draw3 Draw4}

= Still have isomorphic worlds obtained by
permuting {0, 1, 2, 3, 4}

= But only finitely many for each given world

= Is this always true?

| Representations for Radar Blips

T
RadarBlip { 0,1, 2, ... | ® Infinitely many
isomorphic worlds

BlipTime that differ in mapping

0 — 417 from blip numbers to
1 — 312 time steps

2920 = Need more structured
o representation...

| Objects as Tuples

[
|(type, (genfunc,, genobyj,), ..., (genfunc,, genobj,), n)|

AirBase { (arBase, 1), (AirBase, 2), .. |

(Aircraft, (HomeBase, (AirBase, 1)), 1), ...
Aircraft (Aircraft, (HomeBase, (AirBase, 2)), 1), ...

. (RadarBlip, (BlipSource, (Aircraft, (HomeBase, (AirBase, 2)), 1)),
RadarBlip { (BlipTime, 8), 1) }

Advantage of Tuple-Based
Semantics

= Possible world is uniquely identified by
instantiation of basic random variables:
= Variable for each function and tuple of
arguments — yields value
= Variable for each POP and tuple of
generating objects — yields number of
objects generated
= S0 BLOG model just needs to define
joint distribution over these variables

Graphical Representation of
BLOG Model

= Like a BN, but:

TrueColor(b) #Ball . Edges are only active
Q o in certain contexts
= Ignoring contexts,
BallDrawn(d) = b\ ObsColor(d) has
infinitely many
parents

In other models,
graph may be cyclic
K if you ignore contexts

BallDrawn(d)

ObsColor(d)

Well-Defined BLOG Models

= BLOG model defines not ordinary BN,
but contingent Bayesian network (CBN)
[Milch et al., Al/Stats 2005]

= If this CBN satisfies certain context-
specific finiteness and acyclicity
conditions, then BLOG model defines
unique distribution — it is well-defined

Checking Well-Definedness

= CBN for BLOG model is infinite

= Can we check well-definedness just by
inspecting the (finite) BLOG model?

= Yes, by drawing abstract graph where
nodes correspond to functions/POPs
rather than individual variables
= sound, but not complete
= kind of like proving program termination

Evidence and Unknown Objects

= Evidence for urn and balls:
ObsCol or (Drawl) = Bl ack;

= Can use constant symbols for draws
because they are guaranteed objects
= Evidence for aircraft tracking:

= Want to assert number of radar blips at
time t, ApparentPos value for each blip

= But no symbols for radar blips!

Existential Evidence

= To say there are exactly 2 blips at time 8, with certain
apparent positions:
(BlipTime(ty) =8) O(BlipTime(b,) =8)
Ol #b,)
[RadarBliph, b, 0= Ch,((BlipTime(b,) =8)0(b, # b) (b, # b,))
OApparentPos(b) =(9.6 1.2 328)
OApparentPos(b,) = (29 1.6 3.3)

= But this is awkward, doesn't allow queries about, say,
State(BlipSource(b,), 8)

Skolemization

I
= Introduce Skolem constants B1, B2

(BlipTime(B1) =8)C(BlipTime(B2) = 8)
(B12B2)

- b, ((BlipTime(b,) =8) 0(b, # B1)O(b, # B2))
ApparentPos(B1) = (9.6 1.2 32.8)
ApparentPos(B2) = (2.9 1.6 3.3)

= Now can query State(BlipSource(B1), 8)
= But what is distribution over interpretations of B1, B2?

Exhaustive Observations

= Our evidence asserts that B1, B2
exhaust {RadarBlip b : BlipTime(b) = 8}
= Theorem: If evidence asserts B1, ..., BK
exhaust S, then conditioning on evidence is
equivalent to:
= assuming values of B1, ..., BK are sampled
uniformly without replacement from S
= conditioning on atomic sentences with B1, ..., BK
(e.g., ApparentPos(B1) = (9.6, 1.2, 32.8))

Existential Evidence versus
Sampling in General

= Suppose you're in a wine shop, want to know
whether it's fancy or not
= Existential evidence (not exhaustive!):
CWineBottle b(In(b, ThisShop) C Price(b) = 40)
= Evidence from sampling:
B() ~ UnifornChoice[]({WneBottle b : In(b, ThisShop)});
Price(B) = 40;
= Sampling $40 bottle is strong evidence that
shop is fancy; knowing there is a $40 bottle
tells you almost nothing

Skolemization in BLOG

= Only allow Skolemization for exhaustive
observations

= Skolem constant introduction syntax:
{RadarBlip b : BlipTime(b) = 8 = {Bl, B2};

Sampling-Based Approximate
Inference in BLOG

= Infinite CBN

= For inference, only need
TrueColor(b) Q(—_ #Ball ancestors of query and
® evidence nodes

= But until we condition on
BallDrawn(d) = b BallDrawn(d),
ObsColor(d) has
infinitely many parents
BallDrawn(d) = Solution: interleave
sampling and relevance
K determination

ObsColor(d)

Likelihood Weighting (LW)

= Sample non-evidence
nodes top-down

= Weight each sample by
product of probabilities
of evidence nodes
given their parents

= Provably converges to
correct posterior

Likelihood Weighting for BLOG

Instantiation Stack
Evidence: #Ball = 7
) BallDrawn(Draw1) = (Ball, 3)
\/ObsCoIor(Drawl) f Black,. TrueColor((Ball, 3) = Black
\/ ObsColor(Draw?) = White; ObsColor(Drawl) = Black;
BallDrawn(Draw2) = (Ball, 3)
Query: ObsColor(Draw2) = White;
\/#8all TBadDrioni(Bativa)

Weight: 1 x 0.8 x 0.2 ObsGtitai(Drawz)

#Ball: () -> () ~ Poisson();
TrueCol or(b) ~ Tabul ar CPI();
Bal | Drawn(d) ~ Uni fornChoi ce({Ball b});
ObsCol or (d)
if !'(BallDrawn(d) = null) then
~ Tabul ar CPD(TrueCol or (Bal | Drawn(d)));

Algorithm Correctness

= Thm: If the BLOG model satisfies the
finiteness and acyclicity conditions that
guarantee it's well-defined, then:
= LW algorithm generates each sample in
finite time
= Algorithm output converges to posterior
defined by model as num samples - «

= Holds even if infinitely many variables

Experiment: Approximating
Posterior over #Ball

0.18
0.16
0.14

0.12
0.1
0.08

Probability

0.06
0.04
0.02

0

2 4 6 8 10 12 14
Number of Balls

Given 10 draws, half black, half white

Results from 5 runs of 5,000,000 samples

Convergence Rate

0.08

0.07
0.06
0.05

0.04

Probability

003 RS

Convergence with Deterministic
Observations

0.08

0.07

006,

Probability

002 F+"

0.01 |+

0

005 |, +

0.04 3—

0.03 | *

le+06 2e+06 3e+06 4e+06 5e+06
Number of Samples

P(#Ball = 2 | observations)

0.02
0.01
0
0 1e+06 2e+06 3e+06 4e+06 5e+06
Number of Samples
P(#Ball = 2 | observations)
Current Work

= Application: Building bibliographic
database with human-level accuracy
= Represent authors, topics, venues

= Inference algorithm that operates on
objects, not just variables
= Based on MCMC

= Provide framework for hand-designed
proposal distributions [Pasula et al. 2003]

