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Task for Intelligent Agents
� Given observations, make inferences 

about underlying real-world objects
� But no list of objects is given in advance

Example 1: Bibliographies

Mitchell, Tom (1997). Machine Learning. NY: McGraw Hill.

Tom Mitchell

Machine Learning

Andrew McCallum

WebKB…

John Lafferty

Kernels… Ranking…

Reinforcement Learning…

Example 2: Drawing Balls from 
an Urn (in the Dark)
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Example 3: Tracking Aircraft
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Today’s Lecture
� BLOG: language for representing 

scenarios with unknown objects
� Evidence about unknown objects
� Sampling-based inference algorithm

Why Not PRMs?
� Unknown objects handled only by 

various extensions:
� number uncertainty [Koller & Pfeffer, 1998]
� existence uncertainty [Getoor et al., 2002]
� identity uncertainty [Pasula et al., 2003]

� Attributes apply only to single objects
� can’t have Position(a, t)

BLOG Approach
� BLOG model defines probability 

distribution over model structures of a 
typed first-order language 
[Gaifman 1964; Halpern 1990]

� Unique distribution, not just constraints 
on the distribution

Typed First-Order Language 
for Urn and Balls

Return TypeArg TypesSymbol

Types: Ball, Draw, Color

Color(Draw)ObsColor(d)

Draw()Draw1, …, Draw4

Color()Black, White

Ball(Draw)BallDrawn(d)

Color(Ball)TrueColor(b)
Return TypeArg TypesSymbol

Model Structure

Color1Ball 2 3

Draw 1 2 3 4

4 5
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Generative Probability Model

4321

Draws

Black White



3

BLOG Model for Urn and Balls
type Color;  type Ball;  type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Black, White;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;

#Ball: () -> () 
~ Poisson[6]();

TrueColor(b) 
~ TabularCPD[[0.5, 0.5]]();

BallDrawn(d) 
~ UniformChoice[]({Ball b});

ObsColor(d) 
if !(BallDrawn(d) = null) then 

~ TabularCPD[[0.8, 0.2], [0.2, 0.8]](TrueColor(BallDrawn(d)));

Number statement

Dependency statements

1 2

Generative Model for 
Aircraft Tracking

1
2

t=0

t=1

t=2

B1

B2
B3
B4

Dest=1

Dest=1

Dest=2

Dest=2

BLOG Model for Aircraft 
Tracking: Header
type AirBase; type Aircraft; type RadarBlip;

random R2Vector Location(AirBase);
random Boolean TakesOff(Aircraft, Integer);
random Boolean Lands(Aircraft, Integer);
random AirBase CurBase(Aircraft, Integer);
random Boolean InFlight(Aircraft, Integer);
random R6Vector State(Aircraft, Integer);
random AirBase Dest(Aircraft, Integer);
random R3Vector ApparentPos(RadarBlip);

generating AirBase HomeBase(Aircraft);
generating Aircraft BlipSource(RadarBlip);
generating Integer BlipTime(RadarBlip);

nonrandom Integer Pred(Integer) = PredFunction;
nonrandom Boolean Greater(Integer, Integer) = GreaterThanPredicate;

values determined 
when object is 
generated

Tracking Aircraft: 
Dependency Statements

Location(b)
~ UniformOnRectangle();

TakesOff(a, t)
if Greater(t, 0) & !InFlight(a, t) then ~ TakeoffDistrib();

Lands(a, t)
if Greater(t, 0) & InFlight(a, t) then ~ LandDistrib(State(a, t), Location(Dest(a, t)));

CurBase(a, t)
if (t = 0) then = HomeBase(a)
elseif TakesOff(a, t) then = null
elseif Lands(a, t) then = Dest(a, Pred(t))
elseif Greater(t, 0) then = CurBase(a, Pred(t));

InFlight(a, t)
if Greater(t, 0) then = (CurBase(a, t) = null);

State(a, t)
if TakesOff(a, t) then ~ InitialStateDistrib(Location(CurBase(a, Pred(t)))
elseif InFlight(a, t) then ~ StateTransition(State(a, Pred(t)), Location(Dest(a, t)));

Dest(a, t)
if TakesOff(a, t) then ~ UniformChoice({AirBase b})
elseif InFlight(a, t) then = Dest(a, Pred(t));

Closeup of Dependency 
Statement

� For a given assignment of objects to a, t:
� Find first clause whose condition is satisfied
� Evaluate CPD arguments (terms, formulas, or sets)
� Pass them to CPD, get distribution over child variable

State(a, t)
if TakesOff(a, t) then 

~ InitialStateDistrib(Location(CurBase(a, Pred(t)))
elseif InFlight(a, t) then 

~ StateTransition(State(a, Pred(t)), 
Location(Dest(a, t)));clauses

child variable

Aircraft Tracking: 
Number Statements
#AirBase: () -> ()

~ NumBasesDistrib();

#Aircraft: (HomeBase) -> (b)
~ NumAircraftDistrib();

#RadarBlip: (BlipSource, BlipTime) -> (a, t)
if InFlight(a, t) then ~ NumDetectionsDistrib();

#RadarBlip: (BlipTime) -> (t)
~ NumFalseAlarmsDistrib();

Potential object 
patterns (POPs)
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Summary of BLOG Basics
� Defining distribution over model 

structures of typed first-order language
� Generative process with two kinds of 

steps:
� Generate objects, possibly from existing 

objects (described by number statement)
� Set value of function on tuple of objects 

(described by dependency statement) 

Advanced Topics in BLOG
� Semantic issues

� What exactly are the objects?
� When is a BLOG model well-defined?

� Asserting evidence
� Approximate inference

What Exactly Are the Objects?

� Substituting other objects yields isomorphic 
world – same formulas satisfied

� Must define distribution over specific set of 
possible worlds containing particular objects

Color1Ball 2 3

Draw

4 5 Black White

Draw1 Draw2 Draw3 Draw4

Can We Avoid Representing 
Unobserved Objects?

4321

Draws

Can We Avoid Representing 
Unobserved Objects?

4321

Draws
2

3

Multiset

Labeled partition

Yes, but it’s not obvious how to:
• Define distributions over multisets, partitions
• Handle relations among unobserved objects

Letting Unobserved Objects Be 
Natural Numbers

� Problem: Too many possible worlds
� Infinitely many possible worlds isomorphic to any 

given world
� Can’t define uniform distribution over them

Ball 4 18 3629 75 Color Black White

Draw Draw1 Draw2 Draw3 Draw4
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Letting Unobserved Objects Be 
Consecutive Natural Numbers

� Still have isomorphic worlds obtained by 
permuting {0, 1, 2, 3, 4}

� But only finitely many for each given world
� Is this always true?

Ball 0 1 32 4 Color Black White

Draw Draw1 Draw2 Draw3 Draw4

Representations for Radar Blips
� Infinitely many 

isomorphic worlds 
that differ in mapping 
from blip numbers to 
time steps

� Need more structured 
representation…

RadarBlip 0, 1, 2, …

BlipTime

0

1

2

417

312

920… …

Objects as Tuples

AirBase

(type, (genfunc1, genobj1), …, (genfunck, genobjk), n)

(AirBase, 1), (AirBase, 2), …

Aircraft
(Aircraft, (HomeBase, (AirBase, 1)), 1), …
(Aircraft, (HomeBase, (AirBase, 2)), 1), …

…
RadarBlip

(RadarBlip, (BlipSource, (Aircraft, (HomeBase, (AirBase, 2)), 1)),

(BlipTime, 8), 1)

…
…

Advantage of Tuple-Based 
Semantics

� Possible world is uniquely identified by 
instantiation of basic random variables:

� Variable for each function and tuple of 
arguments – yields value

� Variable for each POP and tuple of 
generating objects – yields number of 
objects generated

� So BLOG model just needs to define 
joint distribution over these variables

Graphical Representation of 
BLOG Model

� Like a BN, but:
� Edges are only active 

in certain contexts
� Ignoring contexts, 

ObsColor(d) has 
infinitely many 
parents

� In other models, 
graph may be cyclic 
if you ignore contexts

TrueColor(b)

K

BallDrawn(d)

ObsColor(d)

#Ball

∞∞∞∞

BallDrawn(d) = b

Well-Defined BLOG Models
� BLOG model defines not ordinary BN, 

but contingent Bayesian network (CBN)
[Milch et al., AI/Stats 2005]

� If this CBN satisfies certain context-
specific finiteness and acyclicity 
conditions, then BLOG model defines 
unique distribution – it is well-defined
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Checking Well-Definedness
� CBN for BLOG model is infinite
� Can we check well-definedness just by 

inspecting the (finite) BLOG model?
� Yes, by drawing abstract graph where 

nodes correspond to functions/POPs 
rather than individual variables

� sound, but not complete
� kind of like proving program termination

Evidence and Unknown Objects
� Evidence for urn and balls:

� Can use constant symbols for draws 
because they are guaranteed objects

� Evidence for aircraft tracking:
� Want to assert number of radar blips at 

time t, ApparentPos value for each blip
� But no symbols for radar blips!

ObsColor(Draw1) = Black;

Existential Evidence
� To say there are exactly 2 blips at time 8, with certain 

apparent positions:

� But this is awkward, doesn’t allow queries about, say, 
State(BlipSource(b1), 8) 
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Skolemization
� Introduce Skolem constants B1, B2

� Now can query State(BlipSource(B1), 8)
� But what is distribution over interpretations of B1, B2?
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Exhaustive Observations
� Our evidence asserts that B1, B2 

exhaust {RadarBlip b : BlipTime(b) = 8}
� Theorem: If evidence asserts B1, …, BK 

exhaust S, then conditioning on evidence is 
equivalent to:

� assuming values of B1, …, BK are sampled 
uniformly without replacement from S

� conditioning on atomic sentences with B1, …, BK 
(e.g., ApparentPos(B1) = (9.6, 1.2, 32.8))

Existential Evidence versus 
Sampling in General

� Suppose you’re in a wine shop, want to know 
whether it’s fancy or not

� Existential evidence (not exhaustive!):

� Evidence from sampling:

� Sampling $40 bottle is strong evidence that 
shop is fancy; knowing there is a $40 bottle 
tells you almost nothing

( )40)(Price)ThisShop,(InWineBottle =∧∃ bbb

B() ~ UniformChoice[]({WineBottle b : In(b, ThisShop)});
Price(B) = 40;
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Skolemization in BLOG
� Only allow Skolemization for exhaustive 

observations
� Skolem constant introduction syntax:

{RadarBlip b : BlipTime(b) = 8} = {B1, B2};

Sampling-Based Approximate 
Inference in BLOG

� Infinite CBN
� For inference, only need 

ancestors of query and 
evidence nodes

� But until we condition on 
BallDrawn(d), 
ObsColor(d) has 
infinitely many parents

� Solution: interleave 
sampling and relevance 
determination

TrueColor(b)

K

BallDrawn(d)

ObsColor(d)

#Ball

∞∞∞∞

BallDrawn(d) = b

Likelihood Weighting (LW)
� Sample non-evidence 

nodes top-down
� Weight each sample by 

product of probabilities 
of evidence nodes 
given their parents

� Provably converges to 
correct posterior

Q

Likelihood Weighting for BLOG

#Ball: () -> () ~ Poisson();
TrueColor(b) ~ TabularCPD();
BallDrawn(d) ~ UniformChoice({Ball b});
ObsColor(d) 

if !(BallDrawn(d) = null) then 
~ TabularCPD(TrueColor(BallDrawn(d)));

StackInstantiation
Evidence:
ObsColor(Draw1) = Black;
ObsColor(Draw2) = White;

Query:
#Ball

Weight: 1 #Ball

#Ball = 7

ObsColor(Draw1)

BallDrawn(Draw1)

BallDrawn(Draw1) = (Ball, 3)

TrueColor((Ball, 3))

TrueColor((Ball, 3) = Black

x 0.8 ObsColor(Draw2)

BallDrawn(Draw2)

BallDrawn(Draw2) = (Ball, 3)

x 0.2

ObsColor(Draw1) = Black;

ObsColor(Draw2) = White;

Algorithm Correctness
� Thm: If the BLOG model satisfies the 

finiteness and acyclicity conditions that 
guarantee it’s well-defined, then:

� LW algorithm generates each sample in 
finite time

� Algorithm output converges to posterior 
defined by model as num samples → �

� Holds even if infinitely many variables

Experiment: Approximating 
Posterior over #Ball
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Convergence Rate
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Convergence with Deterministic 
Observations
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Current Work
� Application: Building bibliographic 

database with human-level accuracy
� Represent authors, topics, venues

� Inference algorithm that operates on 
objects, not just variables

� Based on MCMC
� Provide framework for hand-designed 

proposal distributions [Pasula et al. 2003]


