
1

BLOG: Probabilistic Models
with Unknown Objects

Brian Milch
CS 289
12/6/04

Joint work with Bhaskara Marthi, David Sontag,
Daniel Ong, Andrey Kolobov, and Stuart Russell

Task for Intelligent Agents
� Given observations, make inferences

about underlying real-world objects
� But no list of objects is given in advance

Example 1: Bibliographies

Mitchell, Tom (1997). Machine Learning. NY: McGraw Hill.

Tom Mitchell

Machine Learning

Andrew McCallum

WebKB…

John Lafferty

Kernels… Ranking…

Reinforcement Learning…

Example 2: Drawing Balls from
an Urn (in the Dark)

4321

Draws

Example 3: Tracking Aircraft

t=1 t=2 t=3

(1.8, 7.4, 2.3)
(1.9, 9.0, 2.1)

(1.9, 6.1, 2.2)

(0.9, 5.8, 3.1)

(0.7, 5.1, 3.2)
(0.6, 5.9, 3.2)

Levels of Uncertainty
A

CB

D

A
CB

D

A
CB

D

A
C

B

D

Attribute
Uncertainty

A
CB

D

A
CB

D

A
CB

D

A
C

B

D

Relational
Uncertainty

A, C

B, D

Unknown
Objects

A, B,
C, D

A, C

B, D

A
C, D

B

2

Today’s Lecture
� BLOG: language for representing

scenarios with unknown objects
� Evidence about unknown objects
� Sampling-based inference algorithm

Why Not PRMs?
� Unknown objects handled only by

various extensions:
� number uncertainty [Koller & Pfeffer, 1998]
� existence uncertainty [Getoor et al., 2002]
� identity uncertainty [Pasula et al., 2003]

� Attributes apply only to single objects
� can’t have Position(a, t)

BLOG Approach
� BLOG model defines probability

distribution over model structures of a
typed first-order language
[Gaifman 1964; Halpern 1990]

� Unique distribution, not just constraints
on the distribution

Typed First-Order Language
for Urn and Balls

Return TypeArg TypesSymbol

Types: Ball, Draw, Color

Color(Draw)ObsColor(d)

Draw()Draw1, …, Draw4

Color()Black, White

Ball(Draw)BallDrawn(d)

Color(Ball)TrueColor(b)
Return TypeArg TypesSymbol

Model Structure

Color1Ball 2 3

Draw 1 2 3 4

4 5

TrueColor
1

3
2

4
5

BallDrawn
1

2

3

4

5

3

3

4

ObsColor
1

2

3

4

Black

White

Draw1
1

Draw2
2

Draw3
3

Draw4
4

Generative Probability Model

4321

Draws

Black White

3

BLOG Model for Urn and Balls
type Color; type Ball; type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Black, White;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;

#Ball: () -> ()
~ Poisson[6]();

TrueColor(b)
~ TabularCPD[[0.5, 0.5]]();

BallDrawn(d)
~ UniformChoice[]({Ball b});

ObsColor(d)
if !(BallDrawn(d) = null) then

~ TabularCPD[[0.8, 0.2], [0.2, 0.8]](TrueColor(BallDrawn(d)));

Number statement

Dependency statements

1 2

Generative Model for
Aircraft Tracking

1
2

t=0

t=1

t=2

B1

B2
B3
B4

Dest=1

Dest=1

Dest=2

Dest=2

BLOG Model for Aircraft
Tracking: Header
type AirBase; type Aircraft; type RadarBlip;

random R2Vector Location(AirBase);
random Boolean TakesOff(Aircraft, Integer);
random Boolean Lands(Aircraft, Integer);
random AirBase CurBase(Aircraft, Integer);
random Boolean InFlight(Aircraft, Integer);
random R6Vector State(Aircraft, Integer);
random AirBase Dest(Aircraft, Integer);
random R3Vector ApparentPos(RadarBlip);

generating AirBase HomeBase(Aircraft);
generating Aircraft BlipSource(RadarBlip);
generating Integer BlipTime(RadarBlip);

nonrandom Integer Pred(Integer) = PredFunction;
nonrandom Boolean Greater(Integer, Integer) = GreaterThanPredicate;

values determined
when object is
generated

Tracking Aircraft:
Dependency Statements

Location(b)
~ UniformOnRectangle();

TakesOff(a, t)
if Greater(t, 0) & !InFlight(a, t) then ~ TakeoffDistrib();

Lands(a, t)
if Greater(t, 0) & InFlight(a, t) then ~ LandDistrib(State(a, t), Location(Dest(a, t)));

CurBase(a, t)
if (t = 0) then = HomeBase(a)
elseif TakesOff(a, t) then = null
elseif Lands(a, t) then = Dest(a, Pred(t))
elseif Greater(t, 0) then = CurBase(a, Pred(t));

InFlight(a, t)
if Greater(t, 0) then = (CurBase(a, t) = null);

State(a, t)
if TakesOff(a, t) then ~ InitialStateDistrib(Location(CurBase(a, Pred(t)))
elseif InFlight(a, t) then ~ StateTransition(State(a, Pred(t)), Location(Dest(a, t)));

Dest(a, t)
if TakesOff(a, t) then ~ UniformChoice({AirBase b})
elseif InFlight(a, t) then = Dest(a, Pred(t));

Closeup of Dependency
Statement

� For a given assignment of objects to a, t:
� Find first clause whose condition is satisfied
� Evaluate CPD arguments (terms, formulas, or sets)
� Pass them to CPD, get distribution over child variable

State(a, t)
if TakesOff(a, t) then

~ InitialStateDistrib(Location(CurBase(a, Pred(t)))
elseif InFlight(a, t) then

~ StateTransition(State(a, Pred(t)),
Location(Dest(a, t)));clauses

child variable

Aircraft Tracking:
Number Statements
#AirBase: () -> ()

~ NumBasesDistrib();

#Aircraft: (HomeBase) -> (b)
~ NumAircraftDistrib();

#RadarBlip: (BlipSource, BlipTime) -> (a, t)
if InFlight(a, t) then ~ NumDetectionsDistrib();

#RadarBlip: (BlipTime) -> (t)
~ NumFalseAlarmsDistrib();

Potential object
patterns (POPs)

4

Summary of BLOG Basics
� Defining distribution over model

structures of typed first-order language
� Generative process with two kinds of

steps:
� Generate objects, possibly from existing

objects (described by number statement)
� Set value of function on tuple of objects

(described by dependency statement)

Advanced Topics in BLOG
� Semantic issues

� What exactly are the objects?
� When is a BLOG model well-defined?

� Asserting evidence
� Approximate inference

What Exactly Are the Objects?

� Substituting other objects yields isomorphic
world – same formulas satisfied

� Must define distribution over specific set of
possible worlds containing particular objects

Color1Ball 2 3

Draw

4 5 Black White

Draw1 Draw2 Draw3 Draw4

Can We Avoid Representing
Unobserved Objects?

4321

Draws

Can We Avoid Representing
Unobserved Objects?

4321

Draws
2

3

Multiset

Labeled partition

Yes, but it’s not obvious how to:
• Define distributions over multisets, partitions
• Handle relations among unobserved objects

Letting Unobserved Objects Be
Natural Numbers

� Problem: Too many possible worlds
� Infinitely many possible worlds isomorphic to any

given world
� Can’t define uniform distribution over them

Ball 4 18 3629 75 Color Black White

Draw Draw1 Draw2 Draw3 Draw4

5

Letting Unobserved Objects Be
Consecutive Natural Numbers

� Still have isomorphic worlds obtained by
permuting {0, 1, 2, 3, 4}

� But only finitely many for each given world
� Is this always true?

Ball 0 1 32 4 Color Black White

Draw Draw1 Draw2 Draw3 Draw4

Representations for Radar Blips
� Infinitely many

isomorphic worlds
that differ in mapping
from blip numbers to
time steps

� Need more structured
representation…

RadarBlip 0, 1, 2, …

BlipTime

0

1

2

417

312

920… …

Objects as Tuples

AirBase

(type, (genfunc1, genobj1), …, (genfunck, genobjk), n)

(AirBase, 1), (AirBase, 2), …

Aircraft
(Aircraft, (HomeBase, (AirBase, 1)), 1), …
(Aircraft, (HomeBase, (AirBase, 2)), 1), …

…
RadarBlip

(RadarBlip, (BlipSource, (Aircraft, (HomeBase, (AirBase, 2)), 1)),

(BlipTime, 8), 1)

…
…

Advantage of Tuple-Based
Semantics

� Possible world is uniquely identified by
instantiation of basic random variables:

� Variable for each function and tuple of
arguments – yields value

� Variable for each POP and tuple of
generating objects – yields number of
objects generated

� So BLOG model just needs to define
joint distribution over these variables

Graphical Representation of
BLOG Model

� Like a BN, but:
� Edges are only active

in certain contexts
� Ignoring contexts,

ObsColor(d) has
infinitely many
parents

� In other models,
graph may be cyclic
if you ignore contexts

TrueColor(b)

K

BallDrawn(d)

ObsColor(d)

#Ball

∞∞∞∞

BallDrawn(d) = b

Well-Defined BLOG Models
� BLOG model defines not ordinary BN,

but contingent Bayesian network (CBN)
[Milch et al., AI/Stats 2005]

� If this CBN satisfies certain context-
specific finiteness and acyclicity
conditions, then BLOG model defines
unique distribution – it is well-defined

6

Checking Well-Definedness
� CBN for BLOG model is infinite
� Can we check well-definedness just by

inspecting the (finite) BLOG model?
� Yes, by drawing abstract graph where

nodes correspond to functions/POPs
rather than individual variables

� sound, but not complete
� kind of like proving program termination

Evidence and Unknown Objects
� Evidence for urn and balls:

� Can use constant symbols for draws
because they are guaranteed objects

� Evidence for aircraft tracking:
� Want to assert number of radar blips at

time t, ApparentPos value for each blip
� But no symbols for radar blips!

ObsColor(Draw1) = Black;

Existential Evidence
� To say there are exactly 2 blips at time 8, with certain

apparent positions:

� But this is awkward, doesn’t allow queries about, say,
State(BlipSource(b1), 8)

() ()
()

() () ()()
()
()

�
�
�
�
�
�

�

�

�
�
�
�
�
�

�

�

=∧
=∧

≠∧≠∧=¬∃∧
≠∧

=∧=

∃

3.36.19.2)(sApparentPo

8.322.16.9)(sApparentPo

8)(BlipTime

8)(BlipTime8)(BlipTime

,RadarBlip

2

1

231333

21

21

21

b

b

bbbbbb

bb

bb

bb

Skolemization
� Introduce Skolem constants B1, B2

� Now can query State(BlipSource(B1), 8)
� But what is distribution over interpretations of B1, B2?

() ()
()

() () ()()
()
()3.36.19.2)2B(sApparentPo

8.322.16.9)B1(sApparentPo

2BB18)(BlipTime

B2B1

8)B2(BlipTime8)B1(BlipTime

3333

=
=

≠∧≠∧=¬∃
≠

=∧=

bbbb

Exhaustive Observations
� Our evidence asserts that B1, B2

exhaust {RadarBlip b : BlipTime(b) = 8}
� Theorem: If evidence asserts B1, …, BK

exhaust S, then conditioning on evidence is
equivalent to:

� assuming values of B1, …, BK are sampled
uniformly without replacement from S

� conditioning on atomic sentences with B1, …, BK
(e.g., ApparentPos(B1) = (9.6, 1.2, 32.8))

Existential Evidence versus
Sampling in General

� Suppose you’re in a wine shop, want to know
whether it’s fancy or not

� Existential evidence (not exhaustive!):

� Evidence from sampling:

� Sampling $40 bottle is strong evidence that
shop is fancy; knowing there is a $40 bottle
tells you almost nothing

()40)(Price)ThisShop,(InWineBottle =∧∃ bbb

B() ~ UniformChoice[]({WineBottle b : In(b, ThisShop)});
Price(B) = 40;

7

Skolemization in BLOG
� Only allow Skolemization for exhaustive

observations
� Skolem constant introduction syntax:

{RadarBlip b : BlipTime(b) = 8} = {B1, B2};

Sampling-Based Approximate
Inference in BLOG

� Infinite CBN
� For inference, only need

ancestors of query and
evidence nodes

� But until we condition on
BallDrawn(d),
ObsColor(d) has
infinitely many parents

� Solution: interleave
sampling and relevance
determination

TrueColor(b)

K

BallDrawn(d)

ObsColor(d)

#Ball

∞∞∞∞

BallDrawn(d) = b

Likelihood Weighting (LW)
� Sample non-evidence

nodes top-down
� Weight each sample by

product of probabilities
of evidence nodes
given their parents

� Provably converges to
correct posterior

Q

Likelihood Weighting for BLOG

#Ball: () -> () ~ Poisson();
TrueColor(b) ~ TabularCPD();
BallDrawn(d) ~ UniformChoice({Ball b});
ObsColor(d)

if !(BallDrawn(d) = null) then
~ TabularCPD(TrueColor(BallDrawn(d)));

StackInstantiation
Evidence:
ObsColor(Draw1) = Black;
ObsColor(Draw2) = White;

Query:
#Ball

Weight: 1 #Ball

#Ball = 7

ObsColor(Draw1)

BallDrawn(Draw1)

BallDrawn(Draw1) = (Ball, 3)

TrueColor((Ball, 3))

TrueColor((Ball, 3) = Black

x 0.8 ObsColor(Draw2)

BallDrawn(Draw2)

BallDrawn(Draw2) = (Ball, 3)

x 0.2

ObsColor(Draw1) = Black;

ObsColor(Draw2) = White;

Algorithm Correctness
� Thm: If the BLOG model satisfies the

finiteness and acyclicity conditions that
guarantee it’s well-defined, then:

� LW algorithm generates each sample in
finite time

� Algorithm output converges to posterior
defined by model as num samples → �

� Holds even if infinitely many variables

Experiment: Approximating
Posterior over #Ball

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 2 4 6 8 10 12 14

P
ro

ba
bi

lit
y

Number of Balls

Given 10 draws, half black, half white
Results from 5 runs of 5,000,000 samples

8

Convergence Rate

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 1e+06 2e+06 3e+06 4e+06 5e+06

P
ro

ba
bi

lit
y

Number of Samples

P(#Ball = 2 | observations)

Convergence with Deterministic
Observations

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 1e+06 2e+06 3e+06 4e+06 5e+06

P
ro

ba
bi

lit
y

Number of Samples

P(#Ball = 2 | observations)

Current Work
� Application: Building bibliographic

database with human-level accuracy
� Represent authors, topics, venues

� Inference algorithm that operates on
objects, not just variables

� Based on MCMC
� Provide framework for hand-designed

proposal distributions [Pasula et al. 2003]

