Handling Unknown Objects

• Fundamental task: given observations, make inferences about initially unknown objects
• But most probabilistic modeling languages assume set of objects is fixed and known
• Bayesian logic (BLOG) lifts this assumption
Outline

• Motivating examples
• Bayesian logic (BLOG)
 – Syntax
 – Semantics
• Inference on BLOG models using MCMC
Example 1: Bibliographies

Example 2: Aircraft Tracking
Example 2: Aircraft Tracking

False Detection

Unobserved Object
Simple Example: Balls in an Urn

\[P(n \text{ balls in urn}) \]

\[P(n \text{ balls in urn} \mid \text{draws}) \]

Draws (with replacement)

1 2 3 4
Possible Worlds

3.00 x 10^{-3} \quad 7.61 x 10^{-4} \quad 1.19 x 10^{-5}

2.86 x 10^{-4} \quad 1.14 x 10^{-12}

Draws

Draws

Draws

Draws

...
Typed First-Order Language

• Types:
 Ball, Draw, Color
 (Built-in types: Boolean, NaturalNum, Real, RkVector, String)

• Function symbols:
 TrueColor: (Ball) → Color
 BallDrawn: (Draw) → Ball
 ObsColor: (Draw) → Color
 Blue: () → Color
 Green: () → Color
 Draw1: () → Draw
 Draw2: () → Draw
 Draw3: () → Draw
First-Order Structures

• A **structure** for a typed first-order language maps…
 – Each type \rightarrow a set of objects
 – Each function symbol \rightarrow a function on those objects

• A **BLOG** model defines:
 – A typed first-order language
 – A **probability distribution over structures** of that language
BLOG Model for Urn and Balls: Header

type Color;
type Ball;
type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;

guaranteed object statements: introduce constant symbols, assert that they denote distinct objects
Defining the Distribution: Known Objects

• Suppose only guaranteed objects exist
• Then possible world is fully specified by values for **basic random variables**

\[V_f[o_1, \ldots, o_k] \]

- random function
- objects of f's argument types

• Model will define **conditional distributions** for these variables
Dependency Statements

TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();

BallDrawn(d) ~ Uniform({Ball b});

ObsColor(d)
 if (BallDrawn(d) != null) then
 ~ TabularCPD[[0.8, 0.2],
 [0.2, 0.8]]
 (TrueColor(BallDrawn(d)));

CPD parameters

Elementary CPD

CPD arguments
Syntax of Dependency Statements

Function(x_1, \ldots, x_k)
 if $Cond_1$ then $\sim ElemCPD_1[params](Arg_{1,1}, \ldots, Arg_{1,m})$
 elseif $Cond_2$ then $\sim ElemCPD_2[params](Arg_{2,1}, \ldots, Arg_{2,m})$
 ...
 else $\sim ElemCPD_n[params](Arg_{n,1}, \ldots, Arg_{n,m})$;

- Conditions are arbitrary first-order formulas
- Elementary CPDs are names of Java classes
- Arguments can be terms or set expressions
BLOG Model So Far

type Color; type Ball; type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;

??? Distribution over what balls exist?

TrueColor(b) \sim \text{TabularCPD}[[0.5, 0.5]]();

BallDrawn(d) \sim \text{Uniform}({\text{Ball } b});

ObsColor(d)
 if (BallDrawn(d) \neq \text{null}) \text{ then}
 ~ \text{TabularCPD}[[0.8, 0.2], [0.2, 0.8]]
 (\text{TrueColor}(\text{BallDrawn}(d)));
Challenge of Unknown Objects

Attribute Uncertainty

Relational Uncertainty

Unknown Objects

A, B, C, D

A, C

A, C

B, D

B, D

B, D

B, C, D
Number Statements

• Define conditional distributions for basic RVs called number variables, e.g., \(N_{\text{Ball}} \)
• Can have same syntax as dependency statements:

```plaintext
#Ball ~ Poisson[6]();

#Candies
    if Unopened(Bag)
        then ~ RoundedNormal[10]
            (MeanCount(Manuf(Bag)))
    else ~ Poisson[50];
```
type Color; type Ball; type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;

#Ball ~ Poisson[6]();

TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();

BallDrawn(d) ~ Uniform({Ball b});

ObsColor(d)
 if (BallDrawn(d) != null) then
 ~ TabularCPD[[0.8, 0.2], [0.2, 0.8]]
 (TrueColor(BallDrawn(d)));

Model for Citations: Header

type Res;
type Pub;
type Cit;

random String Name(Res);
random NaturalNum NumAuthors(Pub);
random Res NthAuthor(Pub, NaturalNum);
random String Title(Pub);
random Pub PubCited(Cit);
random String Text(Cit);

guaranteed Citation Cit1, Cit2, Cit3, Cit4;

Model for Citations: Body

#Res ~ NumResearchersPrior();

Name(r) ~ NamePrior();

#Pub ~ NumPubsPrior();

NumAuthors(p) ~ NumAuthorsPrior();

NthAuthor(p, n)
 if (n < NumAuthors(p)) then ~ Uniform({Res r});

Title(p) ~ TitlePrior();

PubCited(c) ~ Uniform({Pub p});

Text(c) ~ FormatCPD
 (Title(PubCited(c)),
 {n, Name(NthAuthor(PubCited(c), n)) for
 NaturalNum n : n < NumAuthors(PubCited(c))});
Existence of radar blips depends on existence and locations of aircraft
BLOG Model for Aircraft Tracking

\[
\begin{align*}
\text{origin} & \quad \text{Aircraft Source (Blip)}; \\
\text{origin} & \quad \text{NaturalNum Time (Blip)}; \\
\ldots
\end{align*}
\]

\[
\begin{align*}
\# & \text{Aircraft} \sim \text{NumAircraftDistrib}() \\
\text{State}(a, t) & \quad \text{if } t = 0 \text{ then } \sim \text{InitState()} \\
& \quad \text{else } \sim \text{StateTransition}(ext{State}(a, \text{pred}(t))); \\
\# & \text{Blip(Source = a, Time = t)} \\
& \quad \sim \text{NumDetectionsDistrib}(\text{State}(a, t)); \\
\# & \text{Blip(Time = t)} \\
& \quad \sim \text{NumFalseAlarmsDistrib}(); \\
\text{ApparentPos}(r) & \quad \text{if } (\text{Source}(r) = \text{null}) \text{ then } \sim \text{FalseAlarmDistrib() } \\
& \quad \text{else } \sim \text{ObsDistrib}(\text{State}(ext{Source}(r), \text{Time}(r)));
\end{align*}
\]
Families of Number Variables

#Blip(Source = a, Time = t)
~ NumDetectionsDistrib(State(a, t));

• Defines family of number variables

N_{blip}[Source = o_s, Time = o_t]

Object of type Aircraft

Object of type NaturalNum

• Note: no dependency statements for origin functions
Outline

• Motivating examples
• Bayesian logic (BLOG)
 – Syntax
 – Semantics
• Inference on BLOG models using MCMC
Declarative Semantics

• What is the set of possible worlds?
 – They’re first-order structures, but with what objects?
• What is the probability distribution over worlds?
What Exactly Are the Objects?

- Potential objects are **tuples** that encode generation history
 - Aircraft: (Aircraft, 1), (Aircraft, 2), ...
 - Blips from (Aircraft, 2) at time 8:
 - (Blip, (Source, (Aircraft, 2)), (Time, 8), 1)
 - (Blip, (Source, (Aircraft, 2)), (Time, 8), 2)
 - ...

- Point: If we specify value for number variable $N_{\text{blip}}[\text{Source}=(\text{Aircraft, 2}), \text{Time}=8]$ there’s **no ambiguity** about which blips have this source and time
Worlds and Random Variables

• Recall basic random variables:
 – One for each random function on each tuple of potential arguments
 – One for each number statement and each tuple of potential generating objects

• Lemma: Full instantiation of basic RVs uniquely identifies a possible world

• Caveat: Infinitely many potential objects → infinitely many basic RVs
Each BLOG model defines contingent Bayesian network (CBN) over basic RVs
– Edges active only under certain conditions

[Milch et al., AI/Stats 2005]
BN Semantics

• Usual semantics for BN with \(N \) nodes:

\[
p(x_1, ..., x_N) = \prod_{i=1}^{N} p_i(x_i \mid x_{\text{Pa}(i)})
\]

• If BN is infinite but has topological numbering \(X_1, X_2, \ldots \), then suffices to make same assertion for each finite prefix of this numbering

But CBN may fail to have topological numbering!
• x_1, \ldots, x_n is self-supporting if for all $i < n$:
 – $x_1, \ldots, x_{(i-1)}$ determines which parents of X_i are active
 – These active parents are all in $X_1, \ldots, X_{(i-1)}$
Semantics for CBNs and BLOG

• CBN asserts that for each self-supporting instantiation x_1, \ldots, x_n:

$$p(x_1, \ldots, x_n) = \prod_{i=1}^{n} p_i(x_i \mid x_{Pa(i|x_1, \ldots, x_{(i-1)})})$$

• Theorem: If CBN satisfies certain conditions (analogous to BN acyclicity), these constraints fully define distribution

• So by earlier lemma, BLOG model fully defines distribution over possible worlds

[Milch et al., IJCAI 2005]
Outline

• Motivating examples
• Bayesian logic (BLOG)
 – Syntax
 – Semantics
• Inference on BLOG models using MCMC
Review: Markov Chain Monte Carlo

- Markov chain s_1, s_2, \ldots over outcomes in E
- Designed so unique stationary distribution is proportional to $p(s)$
- Fraction of s_1, s_2, \ldots, s_N in query event Q converges to $p(Q|E)$ as $N \to \infty$
Metropolis-Hastings MCMC

• Let \(s_1 \) be arbitrary state in \(E \)
• For \(n = 1 \) to \(N \)
 – Sample \(s' \in E \) from proposal distribution \(q(s' \mid s_n) \)
 – Compute acceptance probability
 \[
 \alpha = \max \left(1, \frac{p(s') q(s_n \mid s')}{p(s_n) q(s' \mid s_n)} \right)
 \]
 – With probability \(\alpha \), let \(s_{n+1} = s' \); else let \(s_{n+1} = s_n \)

Stationary distribution is proportional to \(p(s) \)

\[\downarrow \]

Fraction of visited states in \(Q \) converges to \(p(Q \mid E) \)
Toward General-Purpose Inference

- Successful applications of MCMC with domain-specific proposal distributions:
 - Citation matching [Pasula et al., 2003]
 - Multi-target tracking [Oh et al., 2004]
- But each application requires new code for:
 - Proposing moves
 - Representing MCMC states
 - Computing acceptance probabilities
- Goal:
 - User specifies model and proposal distribution
 - General-purpose code does the rest
General MCMC Engine

1. What are the MCMC states?
 - Define \(p(s) \)
 - Compute acceptance probability based on model
 - Set \(s_{n+1} \)

2. How does the engine handle arbitrary proposals efficiently?
 - Custom proposal distribution (Java class)
 - Propose MCMC state \(s' \) given \(s_n \)
 - Compute ratio \(q(s_n | s') / q(s' | s_n) \)

Model (in BLOG)
 - Define \(p(s) \)

General-purpose engine (Java code)

[Milch et al., UAI 2006]
Proposer for Citations

• **Split-merge moves:**

 – Propose titles and author names for affected publications based on citation strings

• Other moves change total number of publications

[Pasula et al., NIPS 2002]
MCMC States

- Not complete instantiations!
 - No titles, author names for uncited publications
- States are *partial* instantiations of random variables

\[\text{#Pub} = 100, \text{PubCited(Cit1)} = (\text{Pub}, 37), \text{Title((Pub, 37))} = \text{“Calculus”} \]

- Each state corresponds to an *event*: set of outcomes satisfying description
MCMC over Events

- Markov chain over events σ, with stationary distrib. proportional to $p(\sigma)$
- **Theorem:** Fraction of visited events in Q converges to $p(Q|E)$ if:
 - Each σ is either subset of Q or disjoint from Q
 - Events form partition of E
Computing Probabilities of Events

• Engine needs to compute $p(\sigma') / p(\sigma_n)$ efficiently (without summations)

• Use self-supporting instantiations

• Then probability is product of CPDs:

$$p(\sigma) = p(x_1, \ldots, x_n) = \prod_{i=1}^{n} p_i(x_i \mid x_{Pa(i|x_1, \ldots, x_{(i-1)})}$$
States That Are Even More Abstract

• Typical partial instantiation:

 \#Pub = 100, PubCited(Cit1) = (Pub, 37), Title((Pub, 37)) = “Calculus”,
 PubCited(Cit2) = (Pub, 14), Title((Pub, 14)) = “Psych”

 – Specifies particular publications, even though publications are interchangeable

• Let states be abstract partial instantiations:

 \exists x \exists y \neq x \ [\#Pub = 100, PubCited(Cit1) = x, Title(x) = “Calculus”,
 PubCited(Cit2) = y, Title(y) = “Psych”]

• There are conditions under which we can compute probabilities of such events
Computing Acceptance Probabilities Efficiently

• First part of acceptance probability is:

\[
\frac{p(\sigma')}{p(\sigma_n)} = \frac{\prod_{i \in \text{vars}(\sigma')} p_i(x'_i | x'_{\text{Pa}(i|\sigma')})}{\prod_{i \in \text{vars}(\sigma_n)} p_i(x_i | x_{\text{Pa}(i|\sigma_n)})}
\]

• If moves are local, most factors cancel
• Need to compute factors for \(X_i\) only if proposal changes \(X_i\) or one of \(\text{Pa}(i | \sigma_n)\)
Identifying Factors to Compute

- Maintain list of changed variables
- To find children of changed variables, use context-specific BN
- Update context-specific BN as active dependencies change
Results on Citation Matching

<table>
<thead>
<tr>
<th></th>
<th>Face (349 cits)</th>
<th>Reinforce (406 cits)</th>
<th>Reasoning (514 cits)</th>
<th>Constraint (295 cits)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand-coded</td>
<td>Acc: 95.1%</td>
<td>81.8%</td>
<td>88.6%</td>
<td>91.7%</td>
</tr>
<tr>
<td></td>
<td>Time: 14.3 s</td>
<td>19.4 s</td>
<td>19.0 s</td>
<td>12.1 s</td>
</tr>
<tr>
<td>BLOG engine</td>
<td>Acc: 95.6%</td>
<td>78.0%</td>
<td>88.7%</td>
<td>90.7%</td>
</tr>
<tr>
<td></td>
<td>Time: 69.7 s</td>
<td>99.0 s</td>
<td>99.4 s</td>
<td>59.9 s</td>
</tr>
</tbody>
</table>

- Hand-coded version uses:
 - Domain-specific data structures to represent MCMC state
 - Proposer-specific code to compute acceptance probabilities
- BLOG engine takes 5x as long to run
- But it’s faster than hand-coded version was in 2003!
 (hand-coded version took 120 secs on old hardware and JVM)
BLOG Software

- Bayesian Logic inference engine available:

 http://people.csail.mit.edu/milch/blog
Summary

• Modeling **unknown objects** is essential
• **BLOG** models define probability distributions over possible worlds with
 – Varying sets of objects
 – Varying mappings from observations to objects
• Can do inference on **BLOG** models using **MCMC** over **partial worlds**