
BLOG: Probabilistic Models
with Unknown Objects

Brian Milch
Harvard CS 282

November 29, 2007

1

2

Handling Unknown Objects

• Fundamental task: given observations, make
inferences about initially unknown objects

• But most probabilistic modeling languages
assume set of objects is fixed and known

• Bayesian logic (BLOG) lifts this assumption

3

Outline

• Motivating examples
• Bayesian logic (BLOG)

– Syntax
– Semantics

• Inference on BLOG models using MCMC

4

S. Russel and P. Norvig (1995). Artificial Intelligence: A Modern
Approach. Upper Saddle River, NJ: Prentice Hall.

Example 1: Bibliographies

Russell, Stuart and Norvig, Peter. Articial Intelligence. Prentice-Hall, 1995.

Title: …

Name: …

PubCited

AuthorOf

5

Example 2: Aircraft Tracking

Detection
Failure

6

Example 2: Aircraft Tracking

False
Detection

Unobserved
Object

Simple Example:
Balls in an Urn

Draws
(with replacement)

P(n balls in urn)

P(n balls in urn | draws)

1 2 3 4

Possible Worlds

……

… …

3.00 x 10-3 7.61 x 10-4 1.19 x 10-5

2.86 x 10-4 1.14 x 10-12

Draws Draws Draws

Draws Draws

Typed First-Order Language

• Types:

• Function symbols:

9

Ball, Draw, Color

(Built-in types: Boolean, NaturalNum, Real, RkVector, String)

TrueColor: (Ball) → Color
BallDrawn: (Draw) → Ball
ObsColor: (Draw) → Color

Blue: () → Color
Green: () → Color

Draw1: () → Draw
Draw2: () → Draw
Draw3: () → Draw

constant
symbols

First-Order Structures

• A structure for a typed first-order
language maps…
– Each type → a set of objects
– Each function symbol

→ a function on those objects
• A BLOG model defines:

– A typed first-order language
– A probability distribution over structures of

that language

10

BLOG Model for Urn and Balls:
Header

type Color;
type Ball;
type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;

type declarations

function declarations

guaranteed object statements:
introduce constant symbols,
assert that they denote distinct objects

Defining the Distribution:
Known Objects

• Suppose only guaranteed objects exist
• Then possible world is fully specified by

values for basic random variables

• Model will define conditional
distributions for these variables

12

Vf [o1, …, ok]
random function

objects of f’s argument types

Dependency Statements

13

TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();

BallDrawn(d) ~ Uniform({Ball b});

ObsColor(d)
if (BallDrawn(d) != null) then

~ TabularCPD[[0.8, 0.2],
[0.2, 0.8]]

(TrueColor(BallDrawn(d)));

Elementary CPD CPD parameters

CPD arguments

Syntax of Dependency Statements

Function(x1, ..., xk)
if Cond1 then ~ ElemCPD1[params](Arg1,1, ..., Arg1,m)
elseif Cond2 then ~ ElemCPD2[params](Arg2,1, ..., Arg2,m)
...
else ~ ElemCPDn[params](Argn,1, ..., Argn,m);

• Conditions are arbitrary first-order formulas
• Elementary CPDs are names of Java classes
• Arguments can be terms or set expressions

BLOG Model So Far

15

type Color; type Ball; type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;

TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();

BallDrawn(d) ~ Uniform({Ball b});

ObsColor(d)
if (BallDrawn(d) != null) then

~ TabularCPD[[0.8, 0.2], [0.2, 0.8]]
(TrueColor(BallDrawn(d)));

??? Distribution over what balls exist?

Challenge of Unknown Objects

A
CB

D

A
CB

D

A
CB

D

A
CB

D

Attribute
Uncertainty

A
CB

D

A
CB

D

A
CB

D

A
CB

D

Relational
Uncertainty

A, C

B, D

Unknown
Objects

A, B,
C, D

A, C

B, D

A
C, DB

Number Statements

• Define conditional distributions for basic
RVs called number variables, e.g., NBall

• Can have same syntax as dependency
statements:

17

#Ball ~ Poisson[6]();

#Candies
if Unopened(Bag)
then ~ RoundedNormal[10]

(MeanCount(Manuf(Bag)))
else ~ Poisson[50];

Full BLOG Model for Urn and Balls

18

type Color; type Ball; type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;

#Ball ~ Poisson[6]();

TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();

BallDrawn(d) ~ Uniform({Ball b});

ObsColor(d)
if (BallDrawn(d) != null) then

~ TabularCPD[[0.8, 0.2], [0.2, 0.8]]
(TrueColor(BallDrawn(d)));

Model for Citations: Header

19

type Res;
type Pub;
type Cit;

random String Name(Res);

random NaturalNum NumAuthors(Pub);
random Res NthAuthor(Pub, NaturalNum);
random String Title(Pub);

random Pub PubCited(Cit);
random String Text(Cit);

guaranteed Citation Cit1, Cit2, Cit3, Cit4;

Model for Citations: Body

#Res ~ NumResearchersPrior();

Name(r) ~ NamePrior();

#Pub ~ NumPubsPrior();

NumAuthors(p) ~ NumAuthorsPrior();

NthAuthor(p, n)
if (n < NumAuthors(p)) then ~ Uniform({Res r});

Title(p) ~ TitlePrior();

PubCited(c) ~ Uniform({Pub p});

Text(c) ~ FormatCPD
(Title(PubCited(c)),
{n, Name(NthAuthor(PubCited(c), n)) for

NaturalNum n : n < NumAuthors(PubCited(c))});

21

Probability Model for
Aircraft Tracking

Sky RadarExistence of radar blips depends on
existence and locations of aircraft

22

BLOG Model for Aircraft Tracking

origin Aircraft Source(Blip);

origin NaturalNum Time(Blip);

…
#Aircraft ~ NumAircraftDistrib();

State(a, t)
if t = 0 then ~ InitState()
else ~ StateTransition(State(a, Pred(t)));

#Blip(Source = a, Time = t)
~ NumDetectionsDistrib(State(a, t));

#Blip(Time = t)
~ NumFalseAlarmsDistrib();

ApparentPos(r)
if (Source(r) = null) then ~ FalseAlarmDistrib()
else ~ ObsDistrib(State(Source(r), Time(r)));

2

Source

Time

a

t
Blips

2

Time

t Blips

Families of Number Variables

• Defines family of number variables

• Note: no dependency statements for
origin functions

23

#Blip(Source = a, Time = t)
~ NumDetectionsDistrib(State(a, t));

Nblip[Source = os, Time = ot]

Object of
type Aircraft

Object of type
NaturalNum

24

Outline

• Motivating examples
• Bayesian logic (BLOG)

– Syntax
– Semantics

• Inference on BLOG models using MCMC

25

Declarative Semantics

• What is the set of possible worlds?
– They’re first-order structures, but with what

objects?
• What is the probability distribution over

worlds?

26

What Exactly Are the Objects?

• Potential objects are tuples that encode
generation history
– Aircraft: (Aircraft, 1), (Aircraft, 2), …
– Blips from (Aircraft, 2) at time 8:

(Blip, (Source, (Aircraft, 2)), (Time, 8), 1)
(Blip, (Source, (Aircraft, 2)), (Time, 8), 2)
…

• Point: If we specify value for number variable
Nblip[Source=(Aircraft, 2), Time=8]

there’s no ambiguity about which blips have
this source and time

27

Worlds and Random Variables

• Recall basic random variables:
– One for each random function on each

tuple of potential arguments
– One for each number statement and each

tuple of potential generating objects
• Lemma: Full instantiation of basic RVs

uniquely identifies a possible world
• Caveat: Infinitely many potential objects

→ infinitely many basic RVs

• Each BLOG model defines contingent
Bayesian network (CBN) over basic RVs
– Edges active only under certain conditions

Contingent Bayesian Network

TrueColor((Ball,1)) TrueColor((Ball,2)) TrueColor((Ball, 3)) …

ObsColor(D1)
BallDrawn(D1)

#Ball

BallDrawn(D1)
= (Ball,1)

BallDrawn(D1)
= (Ball,2)

BallDrawn(D1)
= (Ball,3)

[Milch et al., AI/Stats 2005]

BN Semantics

• Usual semantics for BN with N nodes:

• If BN is infinite but has topological
numbering X1, X2, …, then suffices to
make same assertion for each finite
prefix of this numbering

29

)|(),...,(
1

)(Pa1 ∏
=

=
N

i
iiiN xxpxxp

But CBN may fail to have topological numbering!

Self-Supporting Instantiations

• x1, …, xn is self-supporting if for all i < n:
– x1, …, x(i-1) determines which parents of Xi

are active
– These active parents are all in X1,…,X(i-1)

30

TrueColor((Ball,1)) TrueColor((Ball,2)) TrueColor((Ball, 3)) …

ObsColor(D1)
BallDrawn(D1)

#Ball

BallDrawn(D1)
= (Ball,1)

BallDrawn(D1)
= (Ball,2)

BallDrawn(D1)
= (Ball,3)

12 =

= Blue

Semantics for CBNs and BLOG

• CBN asserts that for each self-
supporting instantiation x1,…,xn:

• Theorem: If CBN satisfies certain
conditions (analogous to BN acyclicity),
these constraints fully define distribution

• So by earlier lemma, BLOG model fully
defines distribution over possible worlds

31

)|(),...,(
1

),...,|(Pa1)1(1∏
=

−
=

n

i
xxiiin i

xxpxxp

[Milch et al., IJCAI 2005]

32

Outline

• Motivating examples
• Bayesian logic (BLOG)

– Syntax
– Semantics

• Inference on BLOG models using MCMC

Review: Markov Chain Monte Carlo

• Markov chain s1, s2, ...
over outcomes in E

• Designed so unique
stationary distribution is
proportional to p(s)

• Fraction of s1, s2,..., sN
in query event Q
converges to p(Q|E)
as N → ∞

E

Q

Metropolis-Hastings MCMC

• Let s1 be arbitrary state in E
• For n = 1 to N

– Sample s′∈E from proposal distribution q(s′ | sn)
– Compute acceptance probability

– With probability α, let sn+1 = s′;
else let sn+1 = sn

() ()
() ()⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛
′

′′
=

nn

n

ssqsp
ssqsp

|
|,1maxα

Stationary distribution is proportional to p(s)

Fraction of visited states in Q converges to p(Q|E)

Toward General-Purpose Inference

• Successful applications of MCMC with
domain-specific proposal distributions:
– Citation matching [Pasula et al., 2003]
– Multi-target tracking [Oh et al., 2004]

• But each application requires new code for:
– Proposing moves
– Representing MCMC states
– Computing acceptance probabilities

• Goal:
– User specifies model and proposal distribution
– General-purpose code does the rest

General MCMC Engine

• Propose MCMC
state s′ given sn

• Compute ratio
q(sn | s′) / q(s′ | sn)

• Compute acceptance
probability based on
model

• Set sn+1

• Define p(s)
Custom proposal distribution

(Java class)

General-purpose engine
(Java code)

Model
(in BLOG) 1. What are the MCMC states?

2. How does the engine handle
arbitrary proposals efficiently?

[Milch et al., UAI 2006]

Proposer for Citations

• Split-merge moves:

– Propose titles and author names for
affected publications based on citation
strings

• Other moves change total number of
publications

[Pasula et al., NIPS 2002]

MCMC States

• Not complete instantiations!
– No titles, author names for uncited publications

• States are partial instantiations of random
variables

– Each state corresponds to an event: set of
outcomes satisfying description

#Pub = 100, PubCited(Cit1) = (Pub, 37), Title((Pub, 37)) = “Calculus”

MCMC over Events

• Markov chain over
events σ, with stationary
distrib. proportional to p(σ)

• Theorem: Fraction of
visited events in Q
converges to p(Q|E) if:
– Each σ is either subset of Q

or disjoint from Q
– Events form partition of E

E

Q

Computing Probabilities of Events

• Engine needs to compute p(σ′) / p(σn)
efficiently (without summations)

• Use self-supporting
instantiations

• Then probability is
product of CPDs:

)|(),...,()(
1

),...,|(Pa1)1(1∏
=

−
==

n

i
xxiiin i

xxpxxpp σ

States That Are Even More Abstract

• Typical partial instantiation:

– Specifies particular publications, even though
publications are interchangeable

• Let states be abstract partial instantiations:

• There are conditions under which we can
compute probabilities of such events

#Pub = 100, PubCited(Cit1) = (Pub, 37), Title((Pub, 37)) = “Calculus”,
PubCited(Cit2) = (Pub, 14), Title((Pub, 14)) = “Psych”

∃ x ∃ y ≠ x [#Pub = 100, PubCited(Cit1) = x, Title(x) = “Calculus”,
PubCited(Cit2) = y, Title(y) = “Psych”]

Computing Acceptance
Probabilities Efficiently

• First part of acceptance probability is:

• If moves are local, most factors cancel
• Need to compute factors for Xi only if

proposal changes Xi or one of

()
()∏

∏

∈

′∈
′′′

=
′

)(vars
)|(Pa

)(vars
)|(Pa

|

|

)(
)(

n

n
i

iii

i
iii

n xxp

xxp

p
p

σ
σ

σ
σ

σ
σ

)|Pa(ni σ

Identifying Factors to Compute

• Maintain list of changed variables
• To find children of changed variables, use

context-specific BN
• Update context-specific BN as active

dependencies change

Title((Pub, 37))

Text(Cit1)

PubCited(Cit1)

Text(Cit2)

PubCited(Cit2)

Title((Pub, 37)) Title((Pub, 14))

Text(Cit1)

PubCited(Cit1)

Text(Cit2)

PubCited(Cit2)

split

Results on Citation Matching

• Hand-coded version uses:
– Domain-specific data structures to represent MCMC state
– Proposer-specific code to compute acceptance probabilities

• BLOG engine takes 5x as long to run
• But it’s faster than hand-coded version was in 2003!

(hand-coded version took 120 secs on old hardware and JVM)

Face
(349 cits)

Reinforce
(406 cits)

Reasoning
(514 cits)

Constraint
(295 cits)

Hand-coded Acc: 95.1% 81.8% 88.6% 91.7%

Time: 14.3 s 19.4 s 19.0 s 12.1 s
BLOG engine Acc: 95.6% 78.0% 88.7% 90.7%

Time: 69.7 s 99.0 s 99.4 s 59.9 s

45

BLOG Software

• Bayesian Logic inference engine
available:

http://people.csail.mit.edu/milch/blog

46

Summary

• Modeling unknown objects is essential
• BLOG models define probability distributions

over possible worlds with
– Varying sets of objects
– Varying mappings from observations to objects

• Can do inference on BLOG models using
MCMC over partial worlds

	BLOG: Probabilistic Models with Unknown Objects
	Handling Unknown Objects
	Outline
	Example 1: Bibliographies
	Example 2: Aircraft Tracking
	Example 2: Aircraft Tracking
	Simple Example: �Balls in an Urn
	Possible Worlds
	Typed First-Order Language
	First-Order Structures
	BLOG Model for Urn and Balls: Header
	Defining the Distribution: �Known Objects
	Dependency Statements
	Syntax of Dependency Statements
	BLOG Model So Far
	Challenge of Unknown Objects
	Number Statements
	Full BLOG Model for Urn and Balls
	Model for Citations: Header
	Model for Citations: Body
	Probability Model for �Aircraft Tracking
	BLOG Model for Aircraft Tracking
	Families of Number Variables
	Outline
	Declarative Semantics
	What Exactly Are the Objects?
	Worlds and Random Variables
	Contingent Bayesian Network
	BN Semantics
	Self-Supporting Instantiations
	Semantics for CBNs and BLOG
	Outline
	Review: Markov Chain Monte Carlo
	Metropolis-Hastings MCMC
	Toward General-Purpose Inference
	General MCMC Engine
	Proposer for Citations
	MCMC States
	MCMC over Events
	Computing Probabilities of Events
	States That Are Even More Abstract
	Computing Acceptance Probabilities Efficiently
	Identifying Factors to Compute
	Results on Citation Matching
	BLOG Software
	Summary

