BLOG: Probabilistic Models with Unknown Objects

Brian Milch

Harvard CS 282

November 29, 2007

Handling Unknown Objects

- Fundamental task: given observations, make inferences about initially unknown objects
- But most probabilistic modeling languages assume set of objects is fixed and known
- Bayesian logic (BLOG) lifts this assumption

Outline

- Motivating examples
- Bayesian logic (BLOG)
 - Syntax
 - Semantics
- Inference on BLOG models using MCMC

Example 1: Bibliographies

Russell, Stuart and Norvig, Peter. Articial Intelligence. Prentice-Hall, 1995.

S. Russel and P. Norvig (1995). Artificial Intelligence: A Modern Approach. Upper Saddle River, NJ: Prentice Hall.

Example 2: Aircraft Tracking

Example 2: Aircraft Tracking

Simple Example: Balls in an Urn

Possible Worlds

3.00 x 10⁻³

Draws

 1.19×10^{-5}

2.86 x 10⁻⁴

 1.14×10^{-12}

Typed First-Order Language

Types:

Ball, Draw, Color

(Built-in types: Boolean, NaturalNum, Real, RkVector, String)

Function symbols:

```
TrueColor: (Ball) \rightarrow Color BallDrawn: (Draw) \rightarrow Ball ObsColor: (Draw) \rightarrow Color Color Draw1: () \rightarrow Draw Draw2: () \rightarrow Draw Draw3: () \rightarrow Draw
```

First-Order Structures

- A structure for a typed first-order language maps...
 - Each type → a set of objects
 - Each function symbol
 - → a function on those objects
- A BLOG model defines:
 - A typed first-order language
 - A probability distribution over structures of that language

BLOG Model for Urn and Balls: Header

```
type Color;
                   type declarations
type Ball;
type Draw;
random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
                                       function declarations
random Color ObsColor(Draw);
guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;
                       guaranteed object statements:
                       introduce constant symbols,
                       assert that they denote distinct objects
```

Defining the Distribution: Known Objects

- Suppose only guaranteed objects exist
- Then possible world is fully specified by values for basic random variables

$$V_f[o_1, ..., o_k]$$
 random function objects of f s argument types

 Model will define conditional distributions for these variables

Dependency Statements

```
CPD parameters
             Elementary CPD
TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();
BallDrawn(d) ~ Uniform({Ball b});
ObsColor(d)
    if (BallDrawn(d) != null) then
        ~ TabularCPD[[0.8, 0.2],
                                            CPD arguments
                      [0.2, 0.8]]
            (TrueColor(BallDrawn(d)));
```

Syntax of Dependency Statements

```
Function(x_1, ..., x_k)
if Cond_1 then ~ ElemCPD_1[params](Arg_{1,1}, ..., Arg_{1,m})
elseif Cond_2 then ~ ElemCPD_2[params](Arg_{2,1}, ..., Arg_{2,m})
...
else ~ ElemCPD_n[params](Arg_{n,1}, ..., Arg_{n,m});
```

- Conditions are arbitrary first-order formulas
- Elementary CPDs are names of Java classes
- Arguments can be terms or set expressions

BLOG Model So Far

```
type Color; type Ball; type Draw;
random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);
guaranteed Color Blue, Green;
quaranteed Draw Draw1, Draw2, Draw3, Draw4;
??? Distribution over what balls exist?
TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();
BallDrawn(d) ~ Uniform({Ball b});
ObsColor(d)
    if (BallDrawn(d) != null) then
        ~ TabularCPD[[0.8, 0.2], [0.2, 0.8]]
           (TrueColor(BallDrawn(d)));
```

Challenge of Unknown Objects

Attribute Uncertainty Relational Uncertainty Unknown **Objects**

Number Statements

```
#Ball ~ Poisson[6]();
```

- Define conditional distributions for basic RVs called number variables, e.g., N_{Ball}
- Can have same syntax as dependency statements:

Full BLOG Model for Urn and Balls

```
type Color; type Ball; type Draw;
random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);
guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;
#Ball ~ Poisson[61();
TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();
BallDrawn(d) ~ Uniform({Ball b});
ObsColor(d)
    if (BallDrawn(d) != null) then
        ~ TabularCPD[[0.8, 0.2], [0.2, 0.8]]
           (TrueColor(BallDrawn(d)));
```

Model for Citations: Header

```
type Res;
type Pub;
type Cit;
random String Name(Res);
random NaturalNum NumAuthors(Pub);
random Res NthAuthor(Pub, NaturalNum);
random String Title(Pub);
random Pub PubCited(Cit);
random String Text(Cit);
quaranteed Citation Cit1, Cit2, Cit3, Cit4;
```

Model for Citations: Body

```
#Res ~ NumResearchersPrior();
Name(r) ~ NamePrior();
#Pub ~ NumPubsPrior();
NumAuthors(p) ~ NumAuthorsPrior();
NthAuthor(p, n)
    if (n < NumAuthors(p)) then ~ Uniform({Res r});</pre>
Title(p) ~ TitlePrior();
PubCited(c) ~ Uniform({Pub p});
Text(c) ~ FormatCPD
       (Title(PubCited(c)),
        {n, Name(NthAuthor(PubCited(c), n)) for
           NaturalNum n : n < NumAuthors(PubCited(c))});</pre>
```

Probability Model for Aircraft Tracking

BLOG Model for Aircraft Tracking

```
Source
origin Aircraft Source(Blip);
origin NaturalNum Time(Blip);
                                                   Blips
#Aircraft ~ NumAircraftDistrib()
                                           Time
State(a, t)
  if t = 0 then ~ InitState()
  else ~ StateTransition(State(a ( Tred(t)));
#Blip(Source = a, Time = t)
  ~ NumDetectionsDistrib(State(a, t));
#Blip(Time = t)
  ~ NumFalseAlarmsDistrib()(
ApparentPos(r)
  if (Source(r) = null) then
                                        Time
  else ~ ObsDistrib(State(Sour
```

Families of Number Variables

Defines family of number variables

 Note: no dependency statements for origin functions

Outline

- Motivating examples
- Bayesian logic (BLOG)
 - Syntax
 - Semantics
- Inference on BLOG models using MCMC

Declarative Semantics

- What is the set of possible worlds?
 - They're first-order structures, but with what objects?
- What is the probability distribution over worlds?

What Exactly Are the Objects?

- Potential objects are tuples that encode generation history
 - Aircraft: (Aircraft, 1), (Aircraft, 2), ...
 - Blips from (Aircraft, 2) at time 8:
 (Blip, (Source, (Aircraft, 2)), (Time, 8), 1)
 (Blip, (Source, (Aircraft, 2)), (Time, 8), 2)
- Point: If we specify value for number variable
 N_{blip}[Source=(Aircraft, 2), Time=8]
 there's no ambiguity about which blips have
 this source and time

Worlds and Random Variables

- Recall basic random variables:
 - One for each random function on each tuple of potential arguments
 - One for each number statement and each tuple of potential generating objects
- Lemma: Full instantiation of basic RVs uniquely identifies a possible world
- Caveat: Infinitely many potential objects
 - → infinitely many basic RVs

Contingent Bayesian Network

- Each BLOG model defines contingent Bayesian network (CBN) over basic RVs
 - Edges active only under certain conditions

BN Semantics

Usual semantics for BN with N nodes:

$$p(x_1,...,x_N) = \prod_{i=1}^{N} p_i(x_i \mid x_{Pa(i)})$$

 If BN is infinite but has topological numbering X₁, X₂, ..., then suffices to make same assertion for each finite prefix of this numbering

But CBN may fail to have topological numbering!

Self-Supporting Instantiations

- $x_1, ..., x_n$ is self-supporting if for all i < n:
 - $-x_1, ..., x_{(i-1)}$ determines which parents of X_i are active
 - These active parents are all in $X_1, ..., X_{(i-1)}$

Semantics for CBNs and BLOG

 CBN asserts that for each selfsupporting instantiation x₁,...,x_n:

$$p(x_1,...,x_n) = \prod_{i=1}^n p_i(x_i \mid x_{Pa(i|x_1,...,x_{(i-1)})})$$

- Theorem: If CBN satisfies certain conditions (analogous to BN acyclicity), these constraints fully define distribution
- So by earlier lemma, BLOG model fully defines distribution over possible worlds

Outline

- Motivating examples
- Bayesian logic (BLOG)
 - Syntax
 - Semantics
- Inference on BLOG models using MCMC

Review: Markov Chain Monte Carlo

- Markov chain s₁, s₂, ...
 over outcomes in E
- Designed so unique stationary distribution is proportional to p(s)
- Fraction of s₁, s₂,..., s_N in query event Q converges to p(Q|E) as N→∞

Metropolis-Hastings MCMC

- Let s_1 be arbitrary state in E
- For n = 1 to N
 - Sample s' ∈ E from proposal distribution $q(s' | s_n)$
 - Compute acceptance probability

$$\alpha = \max \left(1, \frac{p(s') q(s_n \mid s')}{p(s_n) q(s' \mid s_n)} \right)$$

- With probability α , let $\mathbf{s}_{n+1} = \mathbf{s}'$; else let $\mathbf{s}_{n+1} = \mathbf{s}_n$

Stationary distribution is proportional to p(s)

Fraction of visited states in \mathbf{Q} converges to $\mathbf{p}(\mathbf{Q}|\mathbf{E})$

Toward General-Purpose Inference

- Successful applications of MCMC with domain-specific proposal distributions:
 - Citation matching [Pasula et al., 2003]
 - Multi-target tracking [Oh et al., 2004]
- But each application requires new code for:
 - Proposing moves
 - Representing MCMC states
 - Computing acceptance probabilities
- Goal:
 - User specifies model and proposal distribution
 - General-purpose code does the rest

General MCMC Engine

[Milch et al., UAI 2006]

Model (in BLOG)

• Define **p**(**s**)

- Compute acceptance probability based on model
- Set s_{n+1}

1. What are the MCMC states?

Custom proposal distribution (Java class)

- Propose MCMC
 state s' given s_n
- Compute ratio $q(s_n | s') / q(s' | s_n)$

General-purpose engine (Java code)

2. How does the engine handle arbitrary proposals efficiently?

Proposer for Citations

[Pasula et al., NIPS 2002]

Split-merge moves:

- Propose titles and author names for affected publications based on citation strings
- Other moves change total number of publications

MCMC States

- Not complete instantiations!
 - No titles, author names for uncited publications
- States are partial instantiations of random variables

```
#Pub = 100, PubCited(Cit1) = (Pub, 37), Title((Pub, 37)) = "Calculus"
```

 Each state corresponds to an event: set of outcomes satisfying description

MCMC over Events

- Markov chain over events σ, with stationary distrib. proportional to p(σ)
- Theorem: Fraction of visited events in Q converges to p(Q|E) if:
 - Each σ is either subset of Q or disjoint from Q
 - Events form partition of *E*

Computing Probabilities of Events

- Engine needs to compute $p(\sigma') / p(\sigma_n)$ efficiently (without summations)
- Use self-supporting instantiations
- Then probability is product of CPDs:

$$p(\sigma) = p(x_1, ..., x_n) = \prod_{i=1}^n p_i(x_i \mid x_{Pa(i|x_1, ..., x_{(i-1)})})$$

States That Are Even More Abstract

Typical partial instantiation:

```
\#Pub = 100, PubCited(Cit1) = (Pub, 37), Title((Pub, 37)) = "Calculus", PubCited(Cit2) = (Pub, 14), Title((Pub, 14)) = "Psych"
```

- Specifies particular publications, even though publications are interchangeable
- Let states be abstract partial instantiations:

```
\exists x \exists y \neq x  [#Pub = 100, PubCited(Cit1) = x, Title(x) = "Calculus", PubCited(Cit2) = y, Title(y) = "Psych"]
```

 There are conditions under which we can compute probabilities of such events

Computing Acceptance Probabilities Efficiently

First part of acceptance probability is:

$$\frac{p(\sigma')}{p(\sigma_n)} = \frac{\prod_{i \in \text{vars}(\sigma')} p_i(x_i' \mid x_{\text{Pa}(i|\sigma')}')}{\prod_{i \in \text{vars}(\sigma_n)} p_i(x_i \mid x_{\text{Pa}(i|\sigma_n)})}$$

- If moves are local, most factors cancel
- Need to compute factors for X_i only if proposal changes X_i or one of $Pa(i \mid \sigma_n)$

Identifying Factors to Compute

- Maintain list of changed variables
- To find children of changed variables, use context-specific BN
- Update context-specific BN as active dependencies change

Results on Citation Matching

		Face (349 cits)	Reinforce (406 cits)	Reasoning (514 cits)	Constraint (295 cits)
Hand-coded	Acc:	95.1%	81.8%	88.6%	91.7%
	Time:	14.3 s	19.4 s	19.0 s	12.1 s
BLOG engine	Acc:	95.6%	78.0%	88.7%	90.7%
	Time:	69.7 s	99.0 s	99.4 s	59.9 s

- Hand-coded version uses:
 - Domain-specific data structures to represent MCMC state
 - Proposer-specific code to compute acceptance probabilities
- BLOG engine takes 5x as long to run
- But it's faster than hand-coded version was in 2003! (hand-coded version took 120 secs on old hardware and JVM)

BLOG Software

Bayesian Logic inference engine available:

http://people.csail.mit.edu/milch/blog

Summary

- Modeling unknown objects is essential
- BLOG models define probability distributions over possible worlds with
 - Varying sets of objects
 - Varying mappings from observations to objects
- Can do inference on BLOG models using MCMC over partial worlds