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Handling Unknown Objects

• Fundamental task: given observations, make 
inferences about initially unknown objects

• But most probabilistic modeling languages 
assume set of objects is fixed and known

• Bayesian logic (BLOG) lifts this assumption
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Outline

• Motivating examples
• Bayesian logic (BLOG)

– Syntax
– Semantics

• Inference on BLOG models using MCMC
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S. Russel and P. Norvig (1995). Artificial Intelligence: A Modern 
Approach. Upper Saddle River, NJ: Prentice Hall.

Example 1: Bibliographies

Russell, Stuart and Norvig, Peter. Articial Intelligence. Prentice-Hall, 1995.

Title: …

Name: …

PubCited

AuthorOf
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Example 2: Aircraft Tracking

Detection
Failure



6

Example 2: Aircraft Tracking

False
Detection

Unobserved
Object



Simple Example: 
Balls in an Urn

Draws
(with replacement)

P(n balls in urn)

P(n balls in urn | draws)

1 2 3 4



Possible Worlds

……

… …

3.00 x 10-3 7.61 x 10-4 1.19 x 10-5

2.86 x 10-4 1.14 x 10-12

Draws Draws Draws

Draws Draws



Typed First-Order Language

• Types:

• Function symbols:
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Ball, Draw, Color

(Built-in types: Boolean, NaturalNum, Real, RkVector, String)

TrueColor: (Ball) → Color
BallDrawn: (Draw) → Ball
ObsColor: (Draw) → Color

Blue: () → Color
Green: () → Color 

Draw1: () → Draw
Draw2: () → Draw
Draw3: () → Draw

constant
symbols



First-Order Structures

• A structure for a typed first-order 
language maps…
– Each type → a set of objects
– Each function symbol 

→ a function on those objects
• A BLOG model defines:

– A typed first-order language
– A probability distribution over structures of 

that language

10



BLOG Model for Urn and Balls: 
Header

type Color;  
type Ball;  
type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;

type declarations

function declarations

guaranteed object statements:
introduce constant symbols, 
assert that they denote distinct objects



Defining the Distribution: 
Known Objects

• Suppose only guaranteed objects exist
• Then possible world is fully specified by 

values for basic random variables

• Model will define conditional 
distributions for these variables
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Vf [o1, …, ok]
random function

objects of f’s argument types



Dependency Statements
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TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();

BallDrawn(d) ~ Uniform({Ball b});

ObsColor(d) 
if (BallDrawn(d) != null) then

~ TabularCPD[[0.8, 0.2],
[0.2, 0.8]]

(TrueColor(BallDrawn(d)));

Elementary CPD CPD parameters

CPD arguments



Syntax of Dependency Statements

Function(x1, ..., xk) 
if Cond1 then ~ ElemCPD1[params](Arg1,1, ..., Arg1,m)
elseif Cond2 then ~ ElemCPD2[params](Arg2,1, ..., Arg2,m)
...
else ~ ElemCPDn[params](Argn,1, ..., Argn,m);

• Conditions are arbitrary first-order formulas
• Elementary CPDs are names of Java classes
• Arguments can be terms or set expressions



BLOG Model So Far
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type Color; type Ball;  type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;

TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();

BallDrawn(d) ~ Uniform({Ball b});

ObsColor(d) 
if (BallDrawn(d) != null) then

~ TabularCPD[[0.8, 0.2], [0.2, 0.8]]
(TrueColor(BallDrawn(d)));

??? Distribution over what balls exist?



Challenge of Unknown Objects
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Number Statements

• Define conditional distributions for basic 
RVs called number variables, e.g., NBall

• Can have same syntax as dependency 
statements:
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#Ball ~ Poisson[6]();

#Candies 
if Unopened(Bag) 
then ~ RoundedNormal[10]

(MeanCount(Manuf(Bag)))
else ~ Poisson[50];



Full BLOG Model for Urn and Balls
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type Color; type Ball;  type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;

#Ball ~ Poisson[6]();

TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();

BallDrawn(d) ~ Uniform({Ball b});

ObsColor(d) 
if (BallDrawn(d) != null) then

~ TabularCPD[[0.8, 0.2], [0.2, 0.8]]
(TrueColor(BallDrawn(d)));



Model for Citations: Header
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type Res; 
type Pub; 
type Cit;

random String Name(Res);

random NaturalNum NumAuthors(Pub);
random Res NthAuthor(Pub, NaturalNum);
random String Title(Pub);

random Pub PubCited(Cit);
random String Text(Cit);

guaranteed Citation Cit1, Cit2, Cit3, Cit4;



Model for Citations: Body

#Res ~ NumResearchersPrior(); 

Name(r) ~ NamePrior();

#Pub ~ NumPubsPrior();

NumAuthors(p) ~ NumAuthorsPrior();

NthAuthor(p, n) 
if (n < NumAuthors(p)) then ~ Uniform({Res r});

Title(p) ~ TitlePrior();

PubCited(c) ~ Uniform({Pub p});

Text(c) ~ FormatCPD
(Title(PubCited(c)),
{n, Name(NthAuthor(PubCited(c), n)) for

NaturalNum n : n < NumAuthors(PubCited(c))});
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Probability Model for 
Aircraft Tracking

Sky RadarExistence of radar blips depends on 
existence and locations of aircraft
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BLOG Model for Aircraft Tracking

origin Aircraft Source(Blip);

origin NaturalNum Time(Blip);

…
#Aircraft ~ NumAircraftDistrib();

State(a, t) 
if t = 0 then ~ InitState() 
else ~ StateTransition(State(a, Pred(t)));

#Blip(Source = a, Time = t) 
~ NumDetectionsDistrib(State(a, t));

#Blip(Time = t) 
~ NumFalseAlarmsDistrib();

ApparentPos(r)
if (Source(r) = null) then ~ FalseAlarmDistrib()
else ~ ObsDistrib(State(Source(r), Time(r)));

2

Source

Time

a

t
Blips

2

Time

t Blips



Families of Number Variables

• Defines family of number variables

• Note: no dependency statements for 
origin functions
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#Blip(Source = a, Time = t) 
~ NumDetectionsDistrib(State(a, t));

Nblip[Source = os, Time = ot]

Object of 
type Aircraft

Object of type 
NaturalNum
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Outline

• Motivating examples
• Bayesian logic (BLOG)

– Syntax
– Semantics

• Inference on BLOG models using MCMC
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Declarative Semantics

• What is the set of possible worlds?
– They’re first-order structures, but with what 

objects?
• What is the probability distribution over 

worlds? 
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What Exactly Are the Objects?

• Potential objects are tuples that encode 
generation history
– Aircraft: (Aircraft, 1), (Aircraft, 2), …
– Blips from (Aircraft, 2) at time 8:

(Blip, (Source, (Aircraft, 2)), (Time, 8), 1)
(Blip, (Source, (Aircraft, 2)), (Time, 8), 2)
…

• Point: If we specify value for number variable
Nblip[Source=(Aircraft, 2), Time=8] 

there’s no ambiguity about which blips have 
this source and time
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Worlds and Random Variables

• Recall basic random variables:
– One for each random function on each 

tuple of potential arguments
– One for each number statement and each 

tuple of potential generating objects
• Lemma: Full instantiation of basic RVs 

uniquely identifies a possible world
• Caveat: Infinitely many potential objects

→ infinitely many basic RVs



• Each BLOG model defines contingent 
Bayesian network (CBN) over basic RVs
– Edges active only under certain conditions

Contingent Bayesian Network

TrueColor((Ball,1)) TrueColor((Ball,2)) TrueColor((Ball, 3)) …

ObsColor(D1)
BallDrawn(D1)

#Ball

BallDrawn(D1) 
= (Ball,1)

BallDrawn(D1)
= (Ball,2)

BallDrawn(D1)
= (Ball,3)

[Milch et al., AI/Stats 2005]



BN Semantics

• Usual semantics for BN with N nodes:

• If BN is infinite but has topological 
numbering X1, X2, …, then suffices to 
make same assertion for each finite 
prefix of this numbering
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But CBN may fail to have topological numbering!



Self-Supporting Instantiations

• x1, …, xn is self-supporting if for all i < n:
– x1, …, x(i-1) determines which parents of Xi

are active
– These active parents are all in X1,…,X(i-1)

30

TrueColor((Ball,1)) TrueColor((Ball,2)) TrueColor((Ball, 3)) …

ObsColor(D1)
BallDrawn(D1)

#Ball

BallDrawn(D1) 
= (Ball,1)

BallDrawn(D1)
= (Ball,2)

BallDrawn(D1)
= (Ball,3)

12 =

= Blue



Semantics for CBNs and BLOG

• CBN asserts that for each self-
supporting instantiation x1,…,xn:

• Theorem: If CBN satisfies certain 
conditions (analogous to BN acyclicity), 
these constraints fully define distribution

• So by earlier lemma, BLOG model fully 
defines distribution over possible worlds
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[Milch et al., IJCAI 2005]
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Outline

• Motivating examples
• Bayesian logic (BLOG)

– Syntax
– Semantics

• Inference on BLOG models using MCMC



Review: Markov Chain Monte Carlo

• Markov chain s1, s2, ... 
over outcomes in E

• Designed so unique 
stationary distribution is 
proportional to p(s)

• Fraction of s1, s2,..., sN
in query event Q
converges to p(Q|E) 
as N → ∞

E

Q



Metropolis-Hastings MCMC

• Let s1 be arbitrary state in E
• For n = 1 to N

– Sample s′∈E from proposal distribution q(s′ | sn)
– Compute acceptance probability

– With probability α, let sn+1 = s′; 
else let sn+1 = sn
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Stationary distribution is proportional to p(s)

Fraction of visited states in Q converges to p(Q|E)



Toward General-Purpose Inference

• Successful applications of MCMC with 
domain-specific proposal distributions:
– Citation matching [Pasula et al., 2003]
– Multi-target tracking [Oh et al., 2004]

• But each application requires new code for:
– Proposing moves
– Representing MCMC states
– Computing acceptance probabilities

• Goal: 
– User specifies model and proposal distribution
– General-purpose code does the rest



General MCMC Engine

• Propose MCMC 
state s′ given sn

• Compute ratio 
q(sn | s′) / q(s′ | sn) 

• Compute acceptance 
probability based on 
model

• Set sn+1

• Define p(s)
Custom proposal distribution

(Java class)

General-purpose engine
(Java code)

Model 
(in BLOG) 1. What are the MCMC states?

2. How does the engine handle 
arbitrary proposals efficiently?

[Milch et al., UAI 2006]



Proposer for Citations

• Split-merge moves:

– Propose titles and author names for 
affected publications based on citation 
strings

• Other moves change total number of 
publications

[Pasula et al., NIPS 2002]



MCMC States

• Not complete instantiations!
– No titles, author names for uncited publications

• States are partial instantiations of random 
variables

– Each state corresponds to an event: set of 
outcomes satisfying description 

#Pub = 100, PubCited(Cit1) = (Pub, 37), Title((Pub, 37)) = “Calculus”



MCMC over Events

• Markov chain over 
events σ, with stationary 
distrib. proportional to p(σ)

• Theorem: Fraction of 
visited events in Q
converges to p(Q|E) if:
– Each σ is either subset of Q

or disjoint from Q
– Events form partition of E

E

Q



Computing Probabilities of Events

• Engine needs to compute p(σ′) / p(σn) 
efficiently (without summations)

• Use self-supporting
instantiations

• Then probability is 
product of CPDs:
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States That Are Even More Abstract

• Typical partial instantiation:

– Specifies particular publications, even though 
publications are interchangeable

• Let states be abstract partial instantiations:

• There are conditions under which we can 
compute probabilities of such events

#Pub = 100, PubCited(Cit1) = (Pub, 37), Title((Pub, 37)) = “Calculus”,
PubCited(Cit2) = (Pub, 14), Title((Pub, 14)) = “Psych”

∃ x ∃ y ≠ x [#Pub = 100, PubCited(Cit1) = x, Title(x) = “Calculus”,
PubCited(Cit2) = y, Title(y) = “Psych”]



Computing Acceptance 
Probabilities Efficiently

• First part of acceptance probability is:

• If moves are local, most factors cancel
• Need to compute factors for Xi only if 

proposal changes Xi or one of
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Identifying Factors to Compute

• Maintain list of changed variables
• To find children of changed variables, use 

context-specific BN
• Update context-specific BN as active 

dependencies change

Title((Pub, 37))

Text(Cit1)

PubCited(Cit1)

Text(Cit2)

PubCited(Cit2)

Title((Pub, 37)) Title((Pub, 14))

Text(Cit1)

PubCited(Cit1)

Text(Cit2)

PubCited(Cit2)

split



Results on Citation Matching

• Hand-coded version uses:
– Domain-specific data structures to represent MCMC state
– Proposer-specific code to compute acceptance probabilities 

• BLOG engine takes 5x as long to run
• But it’s faster than hand-coded version was in 2003!

(hand-coded version took 120 secs on old hardware and JVM)

Face
(349 cits)

Reinforce
(406 cits)

Reasoning
(514 cits)

Constraint
(295 cits)

Hand-coded Acc: 95.1% 81.8% 88.6% 91.7%

Time: 14.3 s 19.4 s 19.0 s 12.1 s
BLOG engine Acc: 95.6% 78.0% 88.7% 90.7%

Time: 69.7 s 99.0 s 99.4 s 59.9 s
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BLOG Software

• Bayesian Logic inference engine 
available: 

http://people.csail.mit.edu/milch/blog
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Summary

• Modeling unknown objects is essential
• BLOG models define probability distributions 

over possible worlds with
– Varying sets of objects
– Varying mappings from observations to objects

• Can do inference on BLOG models using 
MCMC over partial worlds
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