
1

First-Order Probabilistic Models

Brian Milch
http://people.csail.mit.edu/milch

9.66: Computational Cognitive Science
December 7, 2006

2

Theories

Theory

Prior over theories/
inductive bias

Possible worlds/
outcomes

(partially observed)

3

How Can Theories be
Represented?

Deterministic Probabilistic

Propositional formulas Bayesian network

Finite state automaton N-gram model
Hidden Markov model

Context-free grammar Probabilistic context-free grammar

First-order formulas First-order probabilistic model

4

Outline

• Motivation: Why first-order models?
• Models with known objects and relations

– Representation with
probabilistic relational models (PRMs)

– Inference (not much to say)
– Learning by local search

• Models with unknown objects and relations
– Representation with Bayesian logic (BLOG)
– Inference by likelihood weighting and MCMC
– Learning (not much to say)

5

Propositional Theory
(Deterministic)

• Scenario with students, courses, profs

• Propositional theory

Dr. Pavlov teaches CS1 and CS120
Matt takes CS1
Judy takes CS1 and CS120

PavlovDemanding → CS1Hard PavlovDemanding → CS120Hard

MattSmart ∧ CS1Hard → MattGetsAInCS1

¬CS1Hard → MattGetsAInCS1

JudySmart ∧ CS1Hard → JudyGetsAInCS1

¬CS1Hard → JudyGetsAInCS1

JudySmart ∧ CS120Hard → JudyGetsAInCS120

¬CS120Hard → JudyGetsAInCS120

CS1Hard → MattTired

CS1Hard → JudyTired

CS120Hard → JudyTired

6

Propositional Theory
(Probabilistic)

PavlovDemanding

CS1Hard CS120Hard

MattGetsA
InCS1 JudyGetsA

InCS1
JudyGetsA
InCS120

MattSmart JudySmart

• Specific to particular scenario (who takes what, etc.)

• No generalization of knowledge across objects

JudyTired
MattTired

7

First-Order Theory

• General theory:

• Relational skeleton:

∀ p ∀ c [Teaches(p, c) ∧ Demanding(p) → Hard(c)]

∀ s ∀ c [Takes(s, c) ∧ Easy(c) → GetsA(s, c)]

∀ s ∀ c [Takes(s, c) ∧ Hard(c) ∧ Smart(s) → GetsA(s, c)]

Teaches(Pavlov, CS1) Teaches(Pavlov, CS120)

Takes(Matt, CS1)

Takes(Judy, CS1) Takes(Judy, CS120)

• Compact, generalizes across scenarios and objects

• But deterministic

∀ s ∀ c [Takes(s, c) ∧ Hard(c) → Tired(s, c)]

8

Task for First-Order
Probabilistic Model

Model

D(P)

H(C120)H(C1)

T(M)

S(M)

A(M, C1)

T(J)

S(J)

A(J, C1) A(J, C120)

Prof: Pavlov
Course: CS1, CS120
Student: Matt, Judy

Teaches: (P, C1), (P, C120)
Takes: (M, C1), (J, C1), (J, C120)

Prof: Peterson, Quirk
Course: Bio1, Bio120
Student: Mary, John

Teaches: (P, B1), (Q, B160)
Takes: (M, B1), (J, B160)

Relational skeleton Relational skeleton

D(P)

H(B160)H(B1)

T(M)

S(M)

A(M, B1)

T(J)

S(J)

A(J, B160)

D(Q)

9

First-Order Probabilistic Models
with Known Skeleton

• Random functions become indexed
families of random variables

• For each family of RVs, specify:
– How to determine parents from relations
– CPD that can handle varying numbers of

parents

• One way to do this:
probabilistic relational models (PRMs)

[Koller & Pfeffer 1998; Friedman, Getoor, Koller & Pfeffer 1999]

Demanding(p) Hard(c) Smart(s)Tired(s) GetsA(s, c)

10

Probabilistic Relational Models

• Functions/relations treated as slots on objects
– Simple slots (random)

p.Demanding, c.Hard, s.Smart, s.Tired
– Reference slots (nonrandom; value may be a set)

p.Teaches, c.TaughtBy

• Specify parents with slot chains
c.Hard ← {c.TaughtBy.Demanding}

• Introduce link objects for non-unary functions
– new type: Registration
– reference slots: r.Student, r.Course, c.RegisteredIn
– simple slots: r.GetsA

11

PRM for Academic Example

p.Demanding ← {}

c.Hard ← {c.TaughtBy.Demanding}

s.Tired ← {#True (c.RegisteredIn.Course.Hard)}

r.GetsA ← {r.Course.Hard, r.Student.Smart}

s.Smart ← {}

Aggregation function: takes multiset of slot chain
values, returns single value

CPDs always get one parent value per slot chain

12

Inference in PRMs

• Construct ground BN
– Node for each simple

slot on each object
– Edges found by following

parent slot chains

• Run a BN inference
algorithm
– Exact (variable elimination)
– Gibbs sampling
– Loopy belief propagation

Pavlov.D

CS120.HCS1.H

Matt.T

Matt.S

Reg1.A

Judy.T

Judy.S

Reg2.A Reg3.A

[Although see Pfeffer et al. (1999) paper on SPOOK for smarter method]

Warning: May be intractable

13

Learning PRMs

• Learn structure: for each simple slot, a set of
parent slot chains with aggregation functions

• Marginal likelihood
– prefers fitting the data well
– penalizes having lots of parameters, i.e., lots of parents

• Prior penalizes long slot chains:

∫∝ θθθ dSPSDPSPDSP)|(),|()()|(

prior marginal likelihood

−∝ ∑ ∑

∈ ∈slots)(PaS

)(lengthexp)(
F FC

CSP

14

PRM Learning Algorithm

• Local search over structures
– Operators add, remove, reverse slot chains

– Greedy: looks at all possible moves, choose
one that increases score the most

• Proceed in phases
– Increase max slot chain length each time
– Until no improvement in score

15

PRM Benefits and Limitations

• Benefits
– Generalization across objects

• Models are compact
• Don’t need to learn new theory for each new scenario

– Learning algorithm is known

• Limitations
– Slot chains are restrictive, e.g., can’t say

GoodRec(p, s) ← {GotA(s, c) : TaughtBy(c, p)}
– Objects and relations have to be specified in skeleton

[although see later extensions to PRM language]

16

Basic Task for Intelligent Agents

• Given observations, make inferences about
underlying objects

• Difficulties:
– Don’t know list of objects in advance
– Don’t know when same object observed twice

(identity uncertainty / data association / record linkage)

17

S. Russel and P. Norvig (1995).
Artificial Intelligence: ...

Unknown Objects: Applications

S. Russel and P. Norvig (1995).
Artificial Intelligence: ...Russell, Stuart and Norvig,

Peter. Articial Intelligence...

Citation Matching

Stuart
Russell

Peter
Norvig

Artificial Intelligence:
A Modern Approach

t=1 t=2

Multi-Target Tracking

18

Levels of Uncertainty

A
CB

D

A
CB

D

A
CB

D

A
C

B

D

Attribute
Uncertainty

A
CB

D

A
CB

D

A
CB

D

A
C

B

D

Relational
Uncertainty

A, C

B, D

Unknown
Objects

A, B,
C, D

A, C

B, D

A
C, D

B

19

Bayesian Logic (BLOG)

• Defines probability distribution over possible
worlds with varying sets of objects

• Intuition: Stochastic generative process with two
kinds of steps:
– Set the value of a function on a tuple of arguments
– Add some number of objects to the world

[Milch et al., SRL 2004; IJCAI 2005]

20

Simple Example:
Balls in an Urn

Draws
(with replacement)

P(n balls in urn)

P(n balls in urn | draws)

1 2 3 4

21

Possible Worlds

……

… …

3.00 x 10-3 7.61 x 10-4 1.19 x 10-5

2.86 x 10-4 1.14 x 10-12

Draws Draws Draws

Draws Draws

22

Generative Process for
Possible Worlds

Draws
(with replacement)

1 2 3 4

23

BLOG Model for Urn and Balls

type Color; type Ball; type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;

#Ball ~ Poisson[6]();

TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();

BallDrawn(d) ~ UniformChoice({Ball b});

ObsColor(d)
if (BallDrawn(d) != null) then

~ NoisyCopy(TrueColor(BallDrawn(d)));

24

BLOG Model for Urn and Balls

type Color; type Ball; type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;

#Ball ~ Poisson[6]();

TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();

BallDrawn(d) ~ UniformChoice({Ball b});

ObsColor(d)
if (BallDrawn(d) != null) then

~ NoisyCopy(TrueColor(BallDrawn(d)));

header

number statement

dependency
statements

25

BLOG Model for Urn and Balls

type Color; type Ball; type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;

#Ball ~ Poisson[6]();

TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();

BallDrawn(d) ~ UniformChoice({Ball b});

ObsColor(d)
if (BallDrawn(d) != null) then

~ NoisyCopy(TrueColor(BallDrawn(d)));

Identity uncertainty: BallDrawn(Draw1) = BallDrawn(Draw2)
?

26

BLOG Model for Urn and Balls

type Color; type Ball; type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;

#Ball ~ Poisson[6] ();

TrueColor(b) ~ TabularCPD[[0.5, 0.5]] ();

BallDrawn(d) ~ UniformChoice ({Ball b});

ObsColor(d)
if (BallDrawn(d) != null) then

~ NoisyCopy (TrueColor(BallDrawn(d)));

Arbitrary conditional
probability distributions

CPD arguments

27

BLOG Model for Urn and Balls

type Color; type Ball; type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;

#Ball ~ Poisson[6]();

TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();

BallDrawn(d) ~ UniformChoice({Ball b});

ObsColor(d)
if (BallDrawn(d) != null) then

~ NoisyCopy(TrueColor(BallDrawn(d)));

Context-specific
dependence

28

Syntax of Dependency Statements

RetType Function(ArgType1 x1, ..., ArgTypek xk)
if Cond1 then ~ ElemCPD1(Arg1,1, ..., Arg1,m)
elseif Cond2 then ~ ElemCPD2(Arg2,1, ..., Arg2,m)
...
else ~ ElemCPDn(Argn,1, ..., Argn,m);

• Conditions are arbitrary first-order formulas
• Elementary CPDs are names of Java classes
• Arguments can be terms or set expressions
• Number statements: same except that their

headers have the form #<Type>

29

Generative Process for
Aircraft Tracking

Sky RadarExistence of radar blips depends on
existence and locations of aircraft

30

BLOG Model for Aircraft Tracking
…
origin Aircraft Source(Blip);

origin NaturalNum Time(Blip);

#Aircraft ~ NumAircraftDistrib();

State(a, t)
if t = 0 then ~ InitState()
else ~ StateTransition(State(a, Pred(t)));

#Blip(Source = a, Time = t)
~ NumDetectionsDistrib(State(a, t));

#Blip(Time = t)
~ NumFalseAlarmsDistrib();

ApparentPos(r)
if (Source(r) = null) then ~ FalseAlarmDistrib()
else ~ ObsDistrib(State(Source(r), Time(r)));

2

Source

Time

a

t

Blips

2

Time

t Blips

31

Declarative Semantics

• What is the set of possible worlds?
• What is the probability distribution over

worlds?

32

What Exactly Are the Objects?

• Objects are tuples that encode generation
history

• Aircraft: (Aircraft, 1), (Aircraft, 2), …
• Blip from (Aircraft, 2) at time 8:

(Blip, (Source, (Aircraft, 2)), (Time, 8), 1)

33

Basic Random Variables (RVs)

• For each number statement and tuple of
generating objects, have RV for
number of objects generated

• For each function symbol and tuple of
arguments, have RV for function value

• Lemma: Full instantiation of these RVs
uniquely identifies a possible world

34

Another Look at a BLOG Model

…

#Ball ~ Poisson[6]();

TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();

BallDrawn(d) ~ UniformChoice({Ball b});

ObsColor(d)
if !(BallDrawn(d) = null) then

~ NoisyCopy(TrueColor(BallDrawn(d)));

Dependency and number statements
define CPDs for basic RVs

35

•Each BLOG model defines a contingent BN

• Theorem: Every BLOG model that satisfies
certain conditions (analogous to BN acyclicity)
fully defines a distribution

Semantics: Contingent BN

TrueColor(B1) TrueColor(B2) TrueColor(B3) …

ObsColor(D1)BallDrawn(D1)

#Ball

BallDrawn(D1)
= B1

BallDrawn(D1)
= B2

BallDrawn(D1)
= B3

[Milch et al., AI/Stats 2005]

36

Inference on BLOG Models

• Very easy to define models where exact
inference is hopeless

• Sampling-based approximation algorithms:
– Likelihood weighting
– Markov chain Monte Carlo

37

Likelihood Weighting (LW)

• Sample non-evidence
nodes top-down

• Weight each sample by
probability of observed
evidence values given
their parents

• Provably converges to
correct posterior

Q

Only need to sample ancestors of query and evidence nodes

38

Application to BLOG

• Given ObsColor variables, get posterior for #Ball
• Until we condition on BallDrawn(d), ObsColor(d) has

infinitely many parents
• Solution: interleave sampling and relevance determination

[Milch et al., AISTATS 2005]

TrueColor(B1) TrueColor(B2) TrueColor(B3) …

ObsColor(D1)

BallDrawn(D1)

#Ball

ObsColor(D2)

BallDrawn(D2)

39

LW for Urn and Balls

#Ball ~ Poisson();
TrueColor(b) ~ TabularCPD();
BallDrawn(d) ~ UniformChoice({Ball b});
ObsColor(d)

if !(BallDrawn(d) = null) then
~ TabularCPD(TrueColor(BallDrawn(d)));

StackInstantiation
Evidence:
ObsColor(Draw1) = Blue;
ObsColor(Draw2) = Green;

Query:
#Ball

Weight: 1 #Ball

#Ball = 7

ObsColor(Draw1)

BallDrawn(Draw1)

BallDrawn(Draw1) = (Ball, 3)

TrueColor((Ball, 3))

TrueColor((Ball, 3)) = Blue

x 0.8 ObsColor(Draw2)

BallDrawn(Draw2)

BallDrawn(Draw2) = (Ball, 3)

x 0.2

ObsColor(Draw1) = Blue;

ObsColor(Draw2) = Green;

40

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 5 10 15 20 25

Number of Balls

P
ro

ba
bi

lit
y

Examples of Inference

prior

posterior

• Given 10 draws,
all appearing blue

• 5 runs of 100,000
samples each

41

Examples of inference

o prior

– Ball colors:
{Blue, Green,
Red, Orange,
Yellow, Purple,
Black, White}

– Given 10
draws, all
appearing Blue

– Runs of
100,000
samples each

x approximate
posterior

Number of balls

Pr
ob

ab
ili

ty
[Courtesy of Josh Tenenbaum]

42

Examples of inference

o prior

– Ball colors:
{Blue}

– Given 10
draws, all
appearing Blue

– Runs of
100,000
samples each

Number of balls

Pr
ob

ab
ili

ty
[Courtesy of Josh Tenenbaum]

x approximate
posterior

43

Examples of inference

– Ball colors:
{Blue, Green}

– Given 3 draws:
2 appear Blue,
1 appears
Green

– Runs of
100,000
samples each

Number of balls

Pr
ob

ab
ili

ty o prior

[Courtesy of Josh Tenenbaum]

x approximate
posterior

44

Examples of inference

– Ball colors:
{Blue, Green}

– Given 30
draws: 20
appear Blue, 10
appear Green

– Runs of
100,000
samples each

Number of balls

Pr
ob

ab
ili

ty o prior

[Courtesy of Josh Tenenbaum]

x approximate
posterior

45

• Drawback of likelihood weighting: as
number of observations increases,
– Sample weights become very small
– A few high-weight samples tend to dominate

• More practical to use MCMC algorithms
– Random walk over

possible worlds
– Find high-probability areas

and stay there

More Practical Inference

E

Q

46

Metropolis-Hastings MCMC

• Let s1 be arbitrary state in E
• For n = 1 to N

– Sample s′∈E from proposal distribution q(s′ | sn)
– Compute acceptance probability

– With probability αααα, let sn+1 = s′;
else let sn+1 = sn

() ()
() ()

′
′′

=
nn

n

ssqsp

ssqsp

|

|
,1maxα

Stationary distribution is proportional to p(s)

Fraction of visited states in Q converges to p(Q|E)

47

Toward General-Purpose Inference

• Without BLOG, each new application
requires new code for:
– Proposing moves

– Representing MCMC states
– Computing acceptance probabilities

• With BLOG:
– User specifies model and proposal distribution
– General-purpose code does the rest

48

General MCMC Engine

• Propose MCMC
state s′ given sn

• Compute ratio
q(sn | s′) / q(s′ | sn)

• Compute acceptance
probability based on
model

• Set sn+1

• Define p(s)
Custom proposal distribution

(Java class)

General-purpose engine
(Java code)

Model
(in declarative language) 1. What are the MCMC states?

2. How does the engine handle
arbitrary proposals efficiently?

[Milch & Russell, UAI 2006]

49

Example: Citation Model
guaranteed Citation Cit1, Cit2, Cit3, Cit4;

#Res ~ NumResearchersPrior();

String Name(Res r) ~ NamePrior();

#Pub ~ NumPubsPrior();

Res Author (Pub p) ~ Uniform({Res r});

String Title (Pub p) ~ TitlePrior();

Pub PubCited (Citation c) ~ Uniform({Pub p});

String Text (Citation c) ~ FormatCPD
(Title(PubCited(c)), Name(Author(PubCited(c))));

50

Proposer for Citations

• Split-merge moves:

– Propose titles and author names for affected
publications based on citation strings

• Other moves change total number of
publications

[Pasula et al., NIPS 2002]

51

MCMC States

• Not complete instantiations!
– No titles, author names for uncited publications

• States are partial instantiations of random
variables

– Each state corresponds to an event: set of
outcomes satisfying description

#Pub = 100, PubCited(Cit1) = (Pub, 37), Title((Pub, 37)) = “Calculus”

52

MCMC over Events

• Markov chain over
events σ, with stationary
distrib. proportional to p(σ)

• Theorem: Fraction of
visited events in Q
converges to p(Q|E) if:
– Each σ is either subset of Q

or disjoint from Q
– Events form partition of E

E

Q

53

Computing Probabilities of Events

• Engine needs to compute p(σ′) / p(σn)
efficiently (without summations)

• Use instantiations that
include all active parents
of the variables they
instantiate

• Then probability is product of CPDs:
()∏

∈

=
)(vars

))(Pa(|)()(
σ

σσσσ
X

X XXpp

54

Computing Acceptance
Probabilities Efficiently

• First part of acceptance probability is:

• If moves are local, most factors cancel
• Need to compute factors for X only if

proposal changes X or one of

()()

()()∏
∏

∈

′∈
′′′

=
′

)(vars

)(vars

)(Pa|)(

)(Pa|)(

)(

)(

n

nX
nnX

X
X

n XXp

XXp

p

p

σ
σ

σ
σ

σσ

σσ

σ
σ

)(Pa X
nσ

55

Identifying Factors to Compute

• Maintain list of changed variables
• To find children of changed variables, use

context-specific BN
• Update context-specific BN as active

dependencies change

Title((Pub, 37))

Text(Cit1)

PubCited(Cit1)

Text(Cit2)

PubCited(Cit2)

Title((Pub, 37)) Title((Pub, 14))

Text(Cit1)

PubCited(Cit1)

Text(Cit2)

PubCited(Cit2)

split

56

Results on Citation Matching

• Hand-coded version uses:
– Domain-specific data structures to represent MCMC state
– Proposer-specific code to compute acceptance probabilities

• BLOG engine takes 5x as long to run
• But it’s faster than hand-coded version was in 2003!

(hand-coded version took 120 secs on old hardware and JVM)

90.7%88.7%78.0%95.6%Acc:BLOG engine

91.7%88.6%81.8%95.1%Acc:Hand-coded

59.9 s99.4 s99.0 s69.7 sTime:

12.1 s19.0 s19.4 s14.3 sTime:

Constraint
(295 cits)

Reasoning
(514 cits)

Reinforce
(406 cits)

Face
(349 cits)

57

Learning BLOG Models

• Much larger class of dependency structures
– If-then-else conditions
– CPD arguments, which can be:

• terms
• set expressions, maybe containing conditions

• And we’d like to go further: invent new
– Random functions, e.g., Colleagues(x, y)
– Types of objects, e.g., Conferences

• Search space becomes extremely large

58

Summary

• First-order probabilistic models combine:
– Probabilistic treatment of uncertainty
– First-order generalization across objects

• PRMs
– Define BN for any given relational skeleton
– Can learn structure by local search

• BLOG
– Expresses uncertainty about relational skeleton
– Inference by MCMC over partial world descriptions
– Learning is open problem

