First-Order Probabilistic Models

Brian Milch http://people.csail.mit.edu/milch

9.66: Computational Cognitive Science December 7, 2006

1

How Can Theories be Represented?

Deterministic	Probabilistic		
Propositional formulas	Bayesian network		
Finite state automaton	N-gram model Hidden Markov model		
Context-free grammar	Probabilistic context-free grammar		
First-order formulas	First-order probabilistic model		

Outline

- Motivation: Why first-order models?
- Models with known objects and relations
 - Representation with probabilistic relational models (PRMs)
 - Inference (not much to say)
 - Learning by local search
- Models with unknown objects and relations
 - Representation with Bayesian logic (BLOG)
 - Inference by likelihood weighting and MCMC
 - Learning (not much to say)

Propositional Theory (Deterministic)

• Scenario with students, courses, profs

Dr. Pavlov teaches CS1 and CS120 Matt takes CS1 Judy takes CS1 and CS120

Propositional theory

 $PavlovDemanding \rightarrow CS1Hard$

 $CS1Hard \rightarrow MattTired$

 $\text{CS1Hard} \rightarrow \text{JudyTired}$

 $\mathsf{CS120Hard} \rightarrow \mathsf{JudyTired}$

 \neg CS1Hard \rightarrow MattGetsAInCS1

PavlovDemanding \rightarrow CS120Hard

 \neg CS1Hard \rightarrow JudyGetsAInCS1

 $\neg \text{CS120Hard} \rightarrow \text{JudyGetsAInCS120}$

Propositional Theory (Probabilistic)

- Specific to particular scenario (who takes what, etc.)
- No generalization of knowledge across objects

First-Order Theory

• General theory:

 $\forall \ p \ \forall \ c \ [Teaches(p, \ c) \ \land \ Demanding(p) \rightarrow Hard(c)]$

 $\forall \ s \ \forall \ c \ [Takes(s, \ c) \ \land \ Hard(c) \rightarrow Tired(s, \ c)]$

 $\forall \ s \ \forall \ c \ [Takes(s, \, c) \ \land \ Easy(c) \rightarrow GetsA(s, \, c)]$

 $\forall \ s \ \forall \ c \ [Takes(s, \ c) \land Hard(c) \land Smart(s) \rightarrow GetsA(s, \ c)]$

• Relational skeleton:

Teaches(Pavlov, CS1)Teaches(Pavlov, CS120)Takes(Matt, CS1)Takes(Judy, CS1)Takes(Judy, CS1)Takes(Judy, CS120)

- Compact, generalizes across scenarios and objects
- But deterministic

Task for First-Order Probabilistic Model

First-Order Probabilistic Models with Known Skeleton

 Random functions become indexed families of random variables

Demanding(p) Hard(c) Tired(s) Smart(s) GetsA(s, c)

- For each family of RVs, specify:
 - How to determine parents from relations
 - CPD that can handle varying numbers of parents

• One way to do this: probabilistic relational models (PRMs) [Koller & Pfeffer 1998; Friedman, Getoor, Koller & Pfeffer 1999]

Probabilistic Relational Models

- Functions/relations treated as slots on objects
 - Simple slots (random)
 p.Demanding, c.Hard, s.Smart, s.Tired
 - Reference slots (nonrandom; value may be a set)
 p.Teaches, c.TaughtBy
- Specify parents with slot chains c.Hard ← {c.TaughtBy.Demanding}
- Introduce link objects for non-unary functions
 - new type: Registration
 - reference slots: r.Student, r.Course, c.RegisteredIn
 - simple slots: r.GetsA

PRM for Academic Example

p.Demanding \leftarrow {}

 $c.Hard \leftarrow \{c.TaughtBy.Demanding\}$

s.Smart \leftarrow {}

 $r.GetsA \leftarrow \{r.Course.Hard, r.Student.Smart\}$

s.Tired \leftarrow {**#True**(c.RegisteredIn.Course.Hard)}

 Aggregation function: takes multiset of slot chain values, returns single value

CPDs always get one parent value per slot chain

Inference in PRMs

- Construct ground BN
 - Node for each simple slot on each object
 - Edges found by following parent slot chains
- Run a BN inference
 algorithm
 - Exact (variable elimination)
 - Gibbs sampling
 - Loopy belief propagation

[Although see Pfeffer et al. (1999) paper on SPOOK for smarter method]

Learning PRMs

- Learn structure: for each simple slot, a set of parent slot chains with aggregation functions $P(S \mid D) \propto P(S) \int P(D \mid \theta, S) P(\theta \mid S) d\theta$ prior marginal likelihood
- Marginal likelihood
 - prefers fitting the data well
 - penalizes having lots of parameters, i.e., lots of parents
- Prior penalizes long slot chains:

$$P(S) \propto \exp\left(-\sum_{F \in \text{slots}} \sum_{C \in \text{Pa}_{S}(F)} \text{length}(C)\right)$$

PRM Learning Algorithm

- Local search over structures
 - Operators add, remove, reverse slot chains
 - Greedy: looks at all possible moves, choose one that increases score the most
- Proceed in phases
 - Increase max slot chain length each time
 - Until no improvement in score

PRM Benefits and Limitations

- Benefits
 - Generalization across objects
 - Models are compact
 - Don't need to learn new theory for each new scenario
 - Learning algorithm is known
- Limitations
 - Slot chains are restrictive, e.g., can't say
 GoodRec(p, s) ← {GotA(s, c) : TaughtBy(c, p)}
 - Objects and relations have to be specified in skeleton [although see later extensions to PRM language]

Basic Task for Intelligent Agents

- Given observations, make inferences about underlying objects
- Difficulties:
 - Don't know list of objects in advance
 - Don't know when same object observed twice

(identity uncertainty / data association / record linkage)

Unknown Objects: Applications

Multi-Target Tracking ¹⁷

Levels of Uncertainty

Bayesian Logic (BLOG)

[Milch et al., SRL 2004; IJCAI 2005]

- Defines probability distribution over possible worlds with varying sets of objects
- Intuition: Stochastic generative process with two kinds of steps:
 - Set the value of a function on a tuple of arguments
 - Add some number of objects to the world

Simple Example: **Balls in an Urn**

Possible Worlds

3.00 x 10⁻³

7.61 x 10⁻⁴

1.19 x 10⁻⁵

2.86 x 10⁻⁴

1.14 x 10⁻¹²

. . .

21

Generative Process for Possible Worlds


```
type Color; type Ball; type Draw;
random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);
guaranteed Color Blue, Green;
quaranteed Draw Draw1, Draw2, Draw3, Draw4;
#Ball ~ Poisson[6]();
TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();
BallDrawn(d) ~ UniformChoice({Ball b});
ObsColor(d)
    if (BallDrawn(d) != null) then
        ~ NoisyCopy(TrueColor(BallDrawn(d)));
```

```
type Color; type Ball; type Draw;
random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
                                                   header
random Color ObsColor(Draw);
guaranteed Color Blue, Green;
guaranteed Draw Draw1, Draw2, Draw3, Draw4;
#Ball ~ Poisson[6](); 

    number statement

TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();
BallDrawn(d) ~ UniformChoice({Ball b});
                                                dependency
                                                statements
ObsColor(d)
    if (BallDrawn(d) != null) then
        ~ NoisyCopy(TrueColor(BallDrawn(d)));
```

```
type Color; type Ball; type Draw;
random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);
```

```
guaranteed Color Blue, Green;
```

Identity uncertainty: BallDrawn(Draw1) $\stackrel{:}{=}$ BallDrawn(Draw2)

```
TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();
```

```
BallDrawn(d) ~ UniformChoice({Ball b});
```

```
ObsColor(d)
    if (BallDrawn(d) != null) then
    ~ NoisyCopy(TrueColor(BallDrawn(d)));
```



```
type Color; type Ball; type Draw;
random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);
quaranteed Color Blue, Green;
quaranteed Draw Draw1, Draw2, Draw3, Draw4;
#Ball ~ Poisson[6]();
TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();
                                          Context-specific
BallDrawn(d) ~ UniformChoice({Ball b});
                                          dependence
ObsColor(d)
    if (BallDrawn(d) != null) then
        ~ NoisyCopy(TrueColor(BallDrawn(d)));
```

Syntax of Dependency Statements

 $\begin{array}{l} \textit{RetType Function}(\textit{ArgType}_1 \ x_1, \ ..., \ \textit{ArgType}_k \ x_k) \\ \textit{if Cond}_1 \ \textit{then} \ \sim \ \textit{ElemCPD}_1(\textit{Arg}_{1,1}, \ ..., \ \textit{Arg}_{1,m}) \\ \textit{elseif Cond}_2 \ \textit{then} \ \sim \ \textit{ElemCPD}_2(\textit{Arg}_{2,1}, \ ..., \ \textit{Arg}_{2,m}) \\ ... \\ \textit{else} \ \sim \ \textit{ElemCPD}_n(\textit{Arg}_{n,1}, \ ..., \ \textit{Arg}_{n,m}); \end{array}$

- Conditions are arbitrary first-order formulas
- Elementary CPDs are names of Java classes
- Arguments can be terms or set expressions
- Number statements: same except that their headers have the form #<Type>

Generative Process for Aircraft Tracking

BLOG Model for Aircraft Tracking

Declarative Semantics

- What is the set of possible worlds?
- What is the probability distribution over worlds?

What Exactly Are the Objects?

- Objects are tuples that encode generation history
- Aircraft: (Aircraft, 1), (Aircraft, 2), ...
- Blip from (Aircraft, 2) at time 8: (Blip, (Source, (Aircraft, 2)), (Time, 8), 1)

Basic Random Variables (RVs)

- For each number statement and tuple of generating objects, have RV for number of objects generated
- For each function symbol and tuple of arguments, have RV for function value
- <u>Lemma</u>: Full instantiation of these RVs uniquely identifies a possible world

Another Look at a BLOG Model

```
""
#Ball ~ Poisson[6]();
TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();
BallDrawn(d) ~ UniformChoice({Ball b});
ObsColor(d)
    if !(BallDrawn(d) = null) then
        ~ NoisyCopy(TrueColor(BallDrawn(d)));
```

Dependency and number statements define CPDs for basic RVs

Semantics: Contingent BN

[Milch et al., Al/Stats 2005]

•Each BLOG model defines a contingent BN

• *Theorem:* Every BLOG model that satisfies certain conditions (analogous to BN acyclicity) fully defines a distribution

Inference on BLOG Models

- Very easy to define models where exact inference is hopeless
- Sampling-based approximation algorithms:
 - Likelihood weighting
 - Markov chain Monte Carlo

Likelihood Weighting (LW)

- Sample non-evidence nodes top-down
- Weight each sample by probability of observed evidence values given their parents
- Provably converges to correct posterior

Only need to sample ancestors of query and evidence nodes 37

Application to BLOG

- Given ObsColor variables, get posterior for #Ball
- Until we condition on BallDrawn(*d*), ObsColor(*d*) has infinitely many parents
- Solution: interleave sampling and relevance determination

[Milch et al., AISTATS 2005]

LW for Urn and Balls

	Instantiation	Stack			
Evidence: <pre> </pre> <pre> ObsColor(Draw1) = Blue; <pre> ObsColor(Draw2) = Green; </pre> <pre> Query: </pre></pre>	#Ball = 7 BallDrawn(Draw1) = (Ball, 3) TrueColor((Ball, 3)) = Blue ObsColor(Draw1) = Blue; BallDrawn(Draw2) = (Ball, 3) ObsColor(Draw2) = Green;				
√#Ball		TBad D calom ((Bata, w32))			
	Weight: 1 x 0.8 x 0.2	ObsC#bBant(Draw2)			
<pre>#Ball ~ Poisson(); TrueColor(b) ~ TabularCPD(); BallDrawn(d) ~ UniformChoice({Ball b}); ObsColor(d) if !(BallDrawn(d) = null) then ~ TabularCPD(TrueColor(BallDrawn(d)));</pre>					

39

[Courtesy of Josh Tenenbaum]

- Ball colors:
 {Blue, Green,
 Red, Orange,
 Yellow, Purple,
 Black, White}
- Given 10
 draws, all
 appearing Blue
- Runs of 100,000 samples each

[Courtesy of Josh Tenenbaum]

- Ball colors: {Blue}
- Given 10
 draws, all
 appearing Blue
- Runs of
 100,000
 samples each

[Courtesy of Josh Tenenbaum]

Number of balls

- Ball colors: {Blue, Green}
- Given 3 draws:
 2 appear Blue,
 1 appears
 Green
- Runs of
 100,000
 samples each

[Courtesy of Josh Tenenbaum]

Number of balls

- Ball colors: {Blue, Green}
- Given 30
 draws: 20
 appear Blue, 10
 appear Green
- Runs of
 100,000
 samples each

More Practical Inference

- Drawback of likelihood weighting: as number of observations increases,
 - Sample weights become very small
 - A few high-weight samples tend to dominate
- More practical to use MCMC algorithms
 - Random walk over possible worlds
 - Find high-probability areas and stay there

45

Metropolis-Hastings MCMC

- Let \mathbf{s}_1 be arbitrary state in \mathbf{E}
- For *n* = 1 to *N*
 - Sample $s' \in E$ from proposal distribution $q(s' | s_n)$
 - Compute acceptance probability

$$\alpha = \max\left(1, \frac{p(s')q(s_n \mid s')}{p(s_n)q(s' \mid s_n)}\right)$$

- With probability α , let $\mathbf{s}_{n+1} = \mathbf{s}'$; else let $\mathbf{s}_{n+1} = \mathbf{s}_n$

Stationary distribution is proportional to p(s) \int Fraction of visited states in Q converges to p(Q|E) 40

Toward General-Purpose Inference

- Without BLOG, each new application requires new code for:
 - Proposing moves
 - Representing MCMC states

- Computing acceptance probabilities
- With BLOG:
 - User specifies model and proposal distribution
 - General-purpose code does the rest

General MCMC Engine

[Milch & Russell, UAI 2006]

Example: Citation Model

guaranteed Citation Cit1, Cit2, Cit3, Cit4;

#Res ~ NumResearchersPrior();

String Name(Res r) ~ NamePrior();

```
#Pub ~ NumPubsPrior();
```

Res Author(Pub p) ~ Uniform({Res r});

String Title(Pub p) ~ TitlePrior();

Pub PubCited(Citation c) ~ Uniform({Pub p});

```
String Text(Citation c) ~ FormatCPD
    (Title(PubCited(c)), Name(Author(PubCited(c)));
```

Proposer for Citations

[Pasula et al., NIPS 2002]

• Split-merge moves:

- Propose titles and author names for affected publications based on citation strings
- Other moves change total number of publications

MCMC States

• Not complete instantiations!

- No titles, author names for uncited publications

States are partial instantiations of random variables

#Pub = 100, PubCited(Cit1) = (Pub, 37), Title((Pub, 37)) = "Calculus"

 Each state corresponds to an event: set of outcomes satisfying description

MCMC over Events

- Markov chain over events σ, with stationary distrib. proportional to **p**(σ)
- Theorem: Fraction of visited events in Q converges to p(Q|E) if:
 - Each σ is either subset of Q or disjoint from Q
 - Events form partition of *E*

Computing Probabilities of Events

- Engine needs to compute *p*(σ') / *p*(σ_n) efficiently (without summations)
- Use instantiations that include all active parents of the variables they instantiate

• Then probability is product of CPDs: $p(\sigma) = \prod_{X \in \text{vars}(\sigma)} p_X(\sigma(X) | \sigma(\text{Pa}_{\sigma}(X)))$

Computing Acceptance Probabilities Efficiently

• First part of acceptance probability is:

$$\frac{p(\sigma')}{p(\sigma_n)} = \frac{\prod_{X \in \text{vars}(\sigma')} p_X(\sigma'(X) | \sigma'(\text{Pa}_{\sigma'}(X)))}{\prod_{X \in \text{vars}(\sigma_n)} p_X(\sigma_n(X) | \sigma_n(\text{Pa}_{\sigma_n}(X)))}$$

- If moves are local, most factors cancel
- Need to compute factors for X only if proposal changes X or one of $Pa_{\sigma_n}(X)$

Identifying Factors to Compute

- Maintain list of changed variables
- To find children of changed variables, use context-specific BN
- Update context-specific BN as active dependencies change

Results on Citation Matching

		Face (349 cits)	Reinforce (406 cits)	Reasoning (514 cits)	Constraint (295 cits)
Hand-coded	Acc:	95.1%	81.8%	88.6%	91.7%
	Time:	14.3 s	19.4 s	19.0 s	12.1 s
BLOG engine	Acc:	95.6%	78.0%	88.7%	90.7%
	Time:	69.7 s	99.0 s	99.4 s	59.9 s

- Hand-coded version uses:
 - Domain-specific data structures to represent MCMC state
 - Proposer-specific code to compute acceptance probabilities
- BLOG engine takes 5x as long to run
- But it's faster than hand-coded version was in 2003! (hand-coded version took 120 secs on old hardware and JVM)

Learning BLOG Models

- Much larger class of dependency structures
 - If-then-else conditions
 - CPD arguments, which can be:
 - terms
 - set expressions, maybe containing conditions
- And we'd like to go further: invent new
 - Random functions, e.g., Colleagues(x, y)
 - Types of objects, e.g., Conferences
- Search space becomes extremely large

Summary

- First-order probabilistic models combine:
 - Probabilistic treatment of uncertainty
 - First-order generalization across objects
- PRMs
 - Define BN for any given relational skeleton
 - Can learn structure by local search
- BLOG
 - Expresses uncertainty about relational skeleton
 - Inference by MCMC over partial world descriptions
 - Learning is open problem