First-Order Probabilistic Models

Brian Milch
http://people.csail.mit.edu/milch

9.66: Computational Cognitive Science
December 7, 2006

Theories

Prior over theories/
Inductive bias

'

'

Possible worlds/

outcomes
(partially observed)

How Can Theories be
Represented?

Deterministic

Probabillistic

Propositional formulas

Finite state automaton

Context-free grammar

First-order formulas

Bayesian network

N-gram model
Hidden Markov model

Probabilistic context-free grammar

First-order probabilistic model

Outline

« Motivation: Why first-order models?

 Models with known objects and relations

— Representation with
probabllistic relational models (PRMs)

— Inference (not much to say)
— Learning by local search

 Models with unknown objects and relations
— Representation with Bayesian logic (BLOG)

— Inference by likelihood weighting and MCMC
— Learning (not much to say)

Propositional Theory
(Deterministic)

e Scenario with students, courses, profs

Dr. Pavlov teaches CS1 and CS120
Matt takes CS1
Judy takes CS1 and CS120

* Propositional theory

PavlovDemanding - CS1Hard PavlovDemanding —» CS120Hard
CS1Hard - MattTired - CS1Hard - MattGetsAInCS1
CS1Hard - JudyTired - CS1Hard - JudyGetsAInCS1
CS120Hard - JudyTired - CS120Hard - JudyGetsAInCS120

MattSmart [1CS1Hard — MattGetsAInCS1
JudySmart 0 CS1Hard - JudyGetsAInCS1

JudySmart 0 CS120Hard - JudyGetsAInCS120

Propositional Theory
(Probabillistic)

PavliovDemandin

CS1Hard

MattGetsA
?nCSelS JudyGetsA
INnCS1
QattszD

 Specific to particular scenario (who takes what, etc.)

CS120Hard

JudyTired

JudyGetsA
INCS120

JudySmart

* No generalization of knowledge across objects 6

First-Order Theory

* General theory:
[p O c [Teaches(p, c) O Demanding(p) — Hard(c)]
s Oc [Takes(s, c) OHard(c) — Tired(s, c)]
s Oc [Takes(s, c) Easy(c) - GetsA(s, c)]
[Js Oc [Takes(s, c) OHard(c) O Smart(s) - GetsA(s, c)]

 Relational skeleton:

Teaches(Pavlov, CS1) Teaches(Pavlov, CS120)
Takes(Matt, CS1)
Takes(Judy, CS1) Takes(Judy, CS120)

 Compact, generalizes across scenarios and objects

e But deterministic

Task for First-Order
Probabilistic Model

Relational skeleton Relational skeleton
Prof. Pavlov Model Prof. Peterson, Quirk
Course: CS1, CS120 Course: Biol, Biol120
Student: Matt, Judy Student: Mary, John

Teaches: (P, C1), (P, C120)
Takes: (M, C1), (J, C1), (J, C120)

Teaches: (P, Bl), (Q, B160)
Takes: (M, B1), (J, B160)

)

A(J, B160)

First-Order Probabilistic Models
with Known Skeleton

e Random functions become indexed
families of random variables
Demanding(p) Hard(c) Tired(s) Smart(s) GetsA(s, ¢)

* For each family of RVs, specify:

— How to determine parents from relations

— CPD that can handle varying numbers of
parents

 One way to do this:

probabilistic relational models (PRMs)
[Koller & Pfeffer 1998; Friedman, Getoor, Koller & Pfeffer 1999]

Probabilistic Relational Models

e Functions/relations treated as slots on objects

— Simple slots (random)
p.Demanding, c.Hard, s.Smart, s.Tired

— Reference slots (nonrandom; value may be a set)
p.Teaches, c.TaughtBy

o Specify parents with slot chains
c.Hard — {c.TaughtBy.Demanding}
 Introduce link objects for non-unary functions
— new type: Registration
— reference slots: r.Student, r.Course, c.RegisteredIn
— simple slots: r.GetsA

10

PRM for Academic Example

p.Demanding ~ {}
c.Hard ~ {c.TaughtBy.Demanding}

s.Smart — {}

r.GetsA — {r.Course.Hard, r.Student.Smart}

s.Tired —~ {#True (c.Registeredin.Course.Hard)}

L Aggregation function: takes multiset of slot chain
values, returns single value

ags

CPDs always get one parent value per slot chain

11

Inference iIn PRMs

e Construct ground BN

— Node for each simple
slot on each object

— Edges found by following
parent slot chains
 Run a BN inference
algorithm
— Exact (variable elimination)
— Gibbs sampling

Vl/arning_. Va
J/be /nl'[‘actab/
— Loopy belief propagation c

[Although see Pfeffer et al. (1999) paper on SPOOK for smarter method]
12

Learning PRMs

e Learn structure: for each simple slot, a set of
parent slot chains with aggregation functions

P(S|D) D P(S) [P(D|6,5)P(6]S)db,
pr\iror margirmkelihood

 Marginal likelihood
— prefers fitting the data well
— penalizes having lots of parameters, i.e., lots of parents

* Prior penalizes long slot chains:

P(S) Dexp[— > Zlength(C)j

FOslots COPag(F)

13

PRM Learning Algorithm

e Local search over structures
— Operators add, remove, reverse slot chains

— Greedy: looks at all possible moves, choose
one that increases score the most

* Proceed in phases
— Increase max slot chain length each time
— Until no improvement in score

14

PRM Benefits and Limitations

e Benefits

— Generalization across objects
* Models are compact
 Don’t need to learn new theory for each new scenario

— Learning algorithm is known
« Limitations

— Slot chains are restrictive, e.g., can’'t say
GoodRec(p, s) « {GotA(s, c) : TaughtBy(c, p)}

— Objects and relations have to be specified in skeleton
[although see later extensions to PRM language]

15

Basic Task for Intelligent Agents

 Glven observations, make inferences about
underlying objects

e Difficulties:

— Don’t know list of objects in advance
— Don’'t know when same object observed twice

(identity uncertainty / data association / record linkage)

16

Unknown Objects: Applications

$ 8 S
Peter %a< i = Stuart

Norvig Russell

% Moglern Approach
)
\ gﬁﬂ"—’ I\ 4
A
\ 1\ =
\\ 7\
\ II)
N \
1! \

/ \

! \
L S. Russel and P. NotVvig (1995).
Ar

Russell, Stuart and Norvig,
Peter. Articial Intelligence...

Citation Matching

—
—

— - -

—-— o ——

t=1 t=2

Multi-Target Tracking *’

Levels of Uncertainty

A . A

Attribute Bg'\g B<\§ Bcf\.c <\§
Uncertainty D D D D
A . A

Relational B<\§ ® '\5 BC\O;.C \I\g
Uncertainty D .}0 D D
. A

Unknown 220 A CI A CI/O <\[§: P

Objects | B, D B, D
18

Bayesian Logic (BLOG)
[Milch et al., SRL 2004; 1JCAI 2005]

« Defines probability distribution over possible
worlds with varying sets of objects

e Intuition: Stochastic generative process with two
kinds of steps:
— Set the value of a function on a tuple of arguments
— Add some number of objects to the world

19

Simple Example:
Balls in an Urn

P(n balls in urn)

P(n balls in urn | draws)

Draws
(with replacement)

20

Possible Worlds

3.00 x 103 7.61 x 104 1.19 x 10

gocm | |6

Draws Draws Draws

2.86 x 104

Generative Process for
Possible Worlds

Draws
(with replacement)

22

BLOG Model for Urn and Balls

type Color; type Ball; type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Drawl, Draw2, Draw3, Draw4;

#Ball ~ Poisson[6]();
TrueColor(b) ~ TabularCPD[[0.5, 0.5]]();
BallDrawn(d) ~ UniformChoice({Ball b});

ObsColor(d)
If (BallDrawn(d) != null) then
~ NoisyCopy(TrueColor(BallDrawn(d)));

23

BLOG Model for Urn and Balls

type Color; type Ball; type Draw;

random Color TrueColor(Ball);
random Ball BallDrawn(Draw);
random Color ObsColor(Draw);

guaranteed Color Blue, Green;
guaranteed Draw Drawl, Draw2, Draw3, Draw4;

TN

>- header

—

number statement

#Ball ~ Poisson[6](); <
TrueColor(b) ~ TabularCPDI[0.5, 0.5]]();
BallDrawn(d) ~ UniformChoice({Ball b});

ObsColor(d)
If (BallDrawn(d) != null) then
~ NoisyCopy(TrueColor(BallDrawn(d)));

V\

<«—____ dependency
statements

24

BLOG Model for Urn and Balls

?
|ldentity uncertainty: BallDrawn(Drawl) = BallDrawn(Draw?2)

BallDrawn(d) ~ UniformChoice({Ball b});)

25

BLOG Model for Urn and Balls

Arbitrary conditional
probability distributions

#Ball~ Poisson[6] () /

TrueColor(b) ~ TabularCPD[[0.5, 0.5]] 0;
BallDrawn(d) ~ UniformChoice ({Ballb});
—
ObsColor(d) CPD arguments
if (BallDrawn(d) !'= null) then —

~ NoisyCopy (TrueColor(BallDrawn(d)));
26

BLOG Model for Urn and Balls

Context-specific

ObsColor(d) dependence

if (BallDrawn(d) != null) then “
~ NoisyCopy(TrueColor(BallDrawn(d)));
27

Syntax of Dependency Statements

RetType Function(ArgType, X4, ..., ArgType, X,)
if Cond, then ~ ElemCPD,(Arg, 4, ..., Arg, ,)
elseif Cond, then ~ ElemCPD,(Arg, 4, ..., Arg,)

else ~ ElemCPD, (Arg, 4, .., Arg, n);

e Conditions are arbitrary first-order formulas
 Elementary CPDs are names of Java classes
e Arguments can be terms or set expressions

Number statements: same except that their
headers have the form #<Type>

28

Generative Process for
Aircraft Tracking

Existence of radar blips depends on
existence and locations of aircraft

29

BLOG Model for Aircraft Tracking

Source

origin Aircraft Source(Blip);
origin NaturalNum Time(Blip);

#Blip(Source = a, Time =1t)
~ NumDetectionsDistrib(State(a, t));

=D

*
LS *

30

Declarative Semantics

e What Is the set of possible worlds?

 \What is the probability distribution over
worlds?

31

What Exactly Are the Objects?

* Objects are tuples that encode generation
history

o Aircraft: (Aircraft, 1), (Aircraft, 2), ...

* Blip from (Aircraft, 2) at time 8:
(Blip, (Source, (Aircraft, 2)), (Time, 8), 1)

32

Basic Random Variables (RVs)

* For each number statement and tuple of
generating objects, have RV for
number of objects generated

e For each function symbol and tuple of
arguments, have RV for function value

 Lemma: Full instantiation of these RVs
uniquely identifies a possible world

33

Another Look at a BLOG Model

#Ball ~ Poisson[6]();
TrueColor(b) ~ TabularCPDI[0.5, 0.5]]();

BallDrawn(d) ~ UniformChoice({Ball b});

ObsColor(d)
if I(BallDrawn(d) = null) then
~ NoisyCopy(TrueColor(BallDrawn(d)));

Dependency and number statements
define CPDs for basic RVs

34

Semantics: Contingent BN

[Milch et al., Al/Stats 2005]

Each BLOG model defines a contingent BN

#Ball
TrueColor(B1 TrueColor(B2)) TrueColor(B3)) -

BallDrawn(D1
BallDrawn(D1) _ B (B1) BallDrawn(D1)
i = B1 = B3

@Drawn(Dl) ObsColor(D1)
 Theorem: Every BLOG model that satisfies

certain conditions (analogous to BN acyclicity)
fully defines a distribution

35

Inference on BLOG Models

* Very easy to define models where exact
Inference Is hopeless

o Sampling-based approximation algorithms:
— Likelihood weighting
— Markov chain Monte Carlo

36

Likelihood Weighting (LW)

e Sample non-evidence
nodes top-down

 Weight each sample by
probability of observed

evidence values given
their parents
 Provably converges to

correct posterior

Only need to sample ancestors of query and evidence nodes
37

Application to BLOG

\—

ObsColor(D1) ObsColor(D2)

@Drawn(Dl) @Drawn(DZ)

Given ObsColor variables, get posterior for #Ball

Until we condition on BallDrawn(d), ObsColor(d) has
Infinitely many parents

Solution: interleave sampling and relevance determination

#Ball
TrueColor(B1

[Milch et al., AISTATS 2895]

Evidence:

\/ObsCoIor(Drawl) = Blue;
\/ ObsColor(Draw2) = Green;

Query:
 #Ball

LW for Urn and Balls

Instantiation Stack

#Ball =7
BallDrawn(Drawl) = (Ball, 3)
TrueColor((Ball, 3)) = Blue
ObsColor(Drawl) = Blue;
BallDrawn(Draw?2) = (Ball, 3)
ObsColor(Draw?2) = Green;

TBad Dran(Bakin)
Weight: 1x0.8x0.2 ObsGiBai({Draw2)

#Ball ~ Poisson();
TrueColor(b) ~ TabularCPD();

BallDrawn(d) ~ UniformChoice({Ball b});
ObsColor(d)

if I(BallDrawn(d) = null) then
~ TabularCPD(TrueColor(BallDrawn(d)));

39

Probability

0.18
0.16 +
0.14 +
0.12 +
0.1 +

%
0.08 +
0.06
0.04 +

0.02

Examples of Inference

5

10 15

Number of Balls

Given 10 draws,
all appearing blue

5 runs of 100,000
samples each

l
lllll

40

Probability

Examples of inference

[Courtesy of Josh Tenenbaum]

— Ball colors:

X approximate {Blue, Green,
posterior Red, Orange,
Yellow, Purple,
Black, White}

— Given 10
draws, all
appearing Blue

— Runs of
100,000
Number of balls samples each

Probability

Examples of inference

[Courtesy of Josh Tenenbaum]

018

016 -

014

012

0.1+

0.0s

0.06

0.04 -

0.02 -

X approximate
posterior

0 prior

1 | | |
& d 10 12 14 16

Number of balls

15

20

— Ball colors:
{Blue}

— Given 10
draws, all
appearing Blue

— Runs of
100,000
samples each

42

Probability

Examples of inference

[Courtesy of Josh Tenenbaum]

035

0.3

025

0.2F

0.1a

X approximate
posterior

0 prior

| |
4 B g 10 12

Number of balls

— Ball colors:
{Blue, Green}

— Given 3 draws:
2 appear Blue,
1 appears
Green

— Runs of
100,000
samples each

43

Probability

Examples of inference

045 -

0.4+

0.35

0.3

025

0.2

0145

0.1

0.057

[Courtesy of Josh Tenenbaum]

— Ball colors:
X approximate {Blue, Green}
osterior i
] Erior — Given 30
draws: 20

appear Blue, 10
appear Green

— Runs of
100,000
+ « o Samples each

Number of balls
44

More Practical Inference

 Drawback of likelihood weighting: as
number of observations increases,

— Sample weights become very small

— A few high-weight samples tend to dominate

* More practical to use MCMC algorithms

Random walk over
nossible worlds

~ind high-probability areas
and stay there

O O O

OOO O

OOOO

S

45

Metropolis-Hastings MCMC

* Lets, be arbitrary state in E

e Forn=1to N

— Sample s'UE from proposal distribution q(s’ | s,)
— Compute acceptance probability

= el 1 PE)als, Is)
7 [L p(s,) a(s Isn)]

— With probability a, lets,,; = S';
elselets ., =s,

Stationary distribution is proportional to p(s)

4

Fraction of visited states in Q converges to p(Q|E)

4(

\w rj

Toward General-Purpose Inference

o Without BLOG, each new application
requires new code for:

— Proposing moves
— Representing MCMC states
— Computing acceptance probabilities

* With BLOG:

— User specifies model and proposal distribution
— General-purpose code does the rest

a7

General MCMC Engine

[Milch & Russell, UAI 2006]

Model 1. What are the MCMC states?

(in declarative language)

» Define p(s)

Custom proposal distribution

(Java class)
@ Propose MCMC

state s’ given s,
Compute acceptance . C |
probability based on OmDUFe rat|o,
model q(s,|s)/q(s'|s,)
Set S,

\

2. How does the engine handle
arbitrary proposals efficiently?

General-purpose engine
(Java code)

Example: Citation Model

guaranteed Citation Citl, Cit2, Cit3, Cit4;
#Res ~ NumResearchersPrior();

String NamgRes r) ~ NamePrior();

#Pub ~ NumPubsPrior();

Res Author (Pub p) ~ Uniform({Res r});
String Title (Pub p) ~ TitlePrior();

Pub PubCited (Citation c) ~ Uniform({Pub p});

String Text (Citation ¢) ~ FormatCPD
(Title(PubCited(c)), Name(Author(PubCited(c))));

49

Proposer for Citations

[Pasula et al., NIPS 2002]
* Split-merge moves:

SN | (2

i~
e

i

li-><&

— Propose titles and author names for affected
publications based on citation strings

* Other moves change total number of
publications

50

MCMC States

 Not complete instantiations!
— No titles, author names for uncited publications
o States are partial instantiations of random

variables
#Pub = 100, PubCited(Citl) = (Pub, 37), Title((Pub, 37)) = “Calculus”

— Each state corresponds to an event: set of
outcomes satisfying description

51

MCMC over Events

 Markov chain over
events g, with stationary
distrib. proportional to p(o)

 Theorem: Fraction of
visited events in Q
converges to p(QJ|E) If:

— Each o is either subset of Q
or disjoint from Q

— Events form partition of E

® ®
® [0 @
® @ @

E@,\@

®

—>®‘/

<4—

®

®

®®

52

Computing Probabillities of Events

* Engine needs to compute p(a’) / p(o,)
efficiently (without summations)

e Use instantiations that
iInclude all active parents
of the variables they

Instantiate

* Then probabillity i1s product of CPDs:
p(@) = [px(a(X) (P, (X))

X[Ovars(o)

53

Computing Acceptance
Probabilities Efficiently

* First part of acceptance probabillity Is:
Py (0’ (X) | o' (Pa, (X)
p(a) _ was(a’) (())
p(@,) [pxlo.(X)1,(Pa, (X))

XUvars(oy,)

e |If moves are local, most factors cancel

* Need to compute factors for X only if
proposal changes X or one of Pa, (X)

54

ldentifying Factors to Compute

« Maintain list of changed variables

* To find children of changed variables, use
context-specific BN

« Update context-specific BN as active

dependencies change
Title((Pub, 37)) Title((Pub, 37))) (Title((Pub, 14))

PubCited(Cit1) PubCited(Cit2) PubCited(Cit1) PubCited(Cjt2)

Results on Citation Matching

Face Reinforce Reasoning Constraint
(349 cits) (406 cits) (514 cits) (295 cits)
Hand-coded Acc: 95.1% 81.8% 88.6% 91.7%
Time: 14.3 s 19.4 s 19.0 s 12.1s
BLOG engine Acc: 95.6% 78.0% 88.7% 90.7%
Time: 69.7 s 99.0s 99.4 s 59.9s

» Hand-coded version uses:

— Domain-specific data structures to represent MCMC state
— Proposer-specific code to compute acceptance probabilities

« BLOG engine takes 5x as long to run

e But it's faster than hand-coded version was in 2003!
(hand-coded version took 120 secs on old hardware and JVM)

56

Learning BLOG Models

e Much larger class of dependency structures
— If-then-else conditions

— CPD arguments, which can be:
e terms
» set expressions, maybe containing conditions

 And we’d like to go further: invent new
— Random functions, e.g., Colleagues(x, y)
— Types of objects, e.g., Conferences

e Search space becomes extremely large

57

Summary

» First-order probabilistic models combine:
— Probabilistic treatment of uncertainty
— First-order generalization across objects

* PRMs

— Define BN for any given relational skeleton
— Can learn structure by local search

e BLOG
— EXpresses uncertainty about relational skeleton
— Inference by MCMC over partial world descriptions
— Learning is open problem

58

