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First-Order Probabilistic Languages
(FOPLs)
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This Talk

• Taxonomy of FOPLs
• Design of a FOPL: Bayesian logic (BLOG)
• Inference in infinite Bayes nets
• Open problems in structure learning



S. Russel and P. Norvig (1995). Artificial Intelligence: A Modern 
Approach. Upper Saddle River, NJ: Prentice Hall.

Motivating Problem: Bibliographies

Russell, Stuart and Norvig, Peter. Articial Intelligence. Prentice-Hall, 1995.



Pedagogical Example

• Tasks:
– Infer who is brilliant
– Predict paper acceptances
– Infer who wrote a paper

res = AuthorOf(pub)

Researchers

Publications Accepted(pub)

Brilliant(res)



Relational Structures

• Possible worlds are relational structures
– Set of objects

e.g., {Jones, Pub1, Pub2}
– Relations and functions defined on the objects

e.g., AuthorOf = {(Pub1, Jones), (Pub2, Jones)}
Brilliant = {(Jones)}
Accepted = {(Pub2)}

• Also known as: logical models / interpretations, 
relational databases

How can we define probability distributions over 
relational structures?



Taxonomy of FOPLs, first level

Outcome Space

Relational
structures

Proofs (and hence 
logical atoms)

Nested data
structures

SLPs
[Muggleton 1996]

IBAL
[Pfeffer 2001]

Instantiations 
of random
variables

Early KBMC
BUGS/Plates 

[Gilks et al. 1994]
BLPs 

[Kersting 
& De Raedt 2001]

First-order
interpretations

Relational
databases
PRMs

[Koller & Pfeffer 1998]
RMNs

[Taskar et al. 2002]
DAPER models

[Heckerman et al. 2004]

PHA [Poole 1992]
RBNs [Jaeger 1997]
PRISM [Sato 1997]
MLNs [Domingos 

& Richardson 2004]
BLOG 

[Milch et al. 2004]
...



Full Specification versus 
Constraints

Specificity

Model specifies constraints 
on distribution

e.g., ∀x P(Brilliant(x)) = 0.3

Model specifies 
full distribution

Halpern’s logic of probability [1990]
PLP [Ng & Subrahmanian 1992]

Relational Structures



Conditional Probabilities versus 
Weights

Parameterization

Conditional probability 
distributions (CPDs)

Potentials or feature weights

RMNs, MLNsBUGS/Plates, PHA, PRISM, 
RBNs, PRMs, BLPs, DAPER, 
BLOG, MEBN

Relational Structures

Full Distribution

Define directed graph 
(Bayesian network)

Define undirected graph 
(Markov network)



Directed Models

0.70.3¬¬¬¬b

0.20.8b

P(¬¬¬¬a)P(a)
Brilliant
(AuthorOf(pub))

0.80.2

P(¬¬¬¬b)P(b)
Brilliant(res) ~

Accepted(pub) ~
Brilliant(Res1)

Accepted(Pub1)

Probability model

Relational skeleton

Researcher = {Res1}
Publication = {Pub1}
AuthorOf = {(Pub1, Res1)}

Bayesian network (BN)

• Parameters easy to interpret

• CPDs can be estimated separately

• But need to ensure BN is acyclic



• Parameters easy to interpret

• CPDs can be estimated separately

• But need to ensure BN is acyclic

Directed Models

0.70.3¬¬¬¬b

0.20.8b

P(¬¬¬¬a)P(a)
Brilliant
(AuthorOf(pub))

0.80.2

P(¬¬¬¬b)P(b)
Brilliant(res) ~

Accepted(pub) ~
Brilliant(Res1)

Accepted(Pub1)

Probability model

Relational skeleton

Researcher = {Res1}
Publication = {Pub1, Pub2}
AuthorOf = {(Pub1, Res1),

(Pub2, Res1)}

Bayesian network (BN)

• Parameters easy to interpret

• CPDs can be estimated separately

• But need to ensure BN is acyclic

• Changing relational skeleton 
doesn’t change optimal parameters

Accepted(Pub2)



Undirected Models
Probability model

Relational skeleton

Markov network

∀ res, pub : res = AuthorOf(pub) →

Researcher = {Res1}
Publication = {Pub1}
AuthorOf = {(Pub1, Res1)}

Brilliant(Res1)

Accepted(Pub1)

• No acyclicity constraints

• But parameters harder to interpret

• Estimating parameters requires 
inference over whole model

Accepted(pub)

0.70.3¬¬¬¬b

0.20.8b

¬¬¬¬aaBrilliant(res)

Brilliant(res)

0.80.2

¬¬¬¬bb
∀ res,



Undirected Models
Probability model

Relational skeleton

Markov network

∀ res, pub : res = AuthorOf(pub) →

Researcher = {Res1}
Publication = {Pub1}
AuthorOf = {(Pub1, Res1)}

Brilliant(Res1)

Accepted(Pub1)

• No acyclicity constraints

• But parameters harder to interpret

• Estimating parameters requires 
inference over whole model

Accepted(pub)

0.560.24¬¬¬¬b

0.040.16b

¬¬¬¬aaBrilliant(res)

Brilliant(res)

11

¬¬¬¬bb
∀ res,

same distribution, 
different parameters



• No acyclicity constraints

• But parameters harder to interpret

• Estimating parameters requires 
inference over whole model

Researcher = {Res1}
Publication = {Pub1, Pub2}
AuthorOf = {(Pub1, Res1),

(Pub2, Res1)}

Undirected Models
Probability model

Relational skeleton

Markov network

∀ res, pub : res = AuthorOf(pub) →

Brilliant(Res1)

Accepted(Pub1)

• No acyclicity constraints

• But parameters harder to interpret

• Estimating parameters requires 
inference over whole model

• Changing relational skeleton may 
change optimality of parameters

Accepted(pub)

0.560.24¬¬¬¬b

0.040.16b

¬¬¬¬aaBrilliant(res)

Brilliant(res)

11

¬¬¬¬bb
∀ res,

Accepted(Pub2)

marginal now
∝ [(0.2)2, (0.8)2]

applies
twice



Independent Choices versus 
Probabilistic Dependencies

Decomposition

Model is decomposed into 
independent, random “coin flips”
and logical rules 

Model defines probabilistic 
dependencies between 
parent and child variables

PHA, PRISM
Independent Choice Logic [Poole 1997]

BUGS/Plates, RBNs, PRMs, BLPs, 
DAPER, BLOG, MEBN

CPDs

Relational Structures

Full Distribution



• With dependent choices: Flip coin for Accepted(pub) with 
bias determined by Brilliant(AuthorOf(pub))

• With independent choices: 
– Flip coins for all possible values of Brilliant(AuthorOf(pub))

– Choose which flip to use based on actual value of 
Brilliant(AuthorOf(pub))

• Makes algorithms more elegant, but representation more 
cumbersome

Making All Random Choices 
Independent

∀ pub Accepted_given_Brilliant(pub, True) ~ Bernoulli[0.8, 0.2]
∀ pub Accepted_given_Brilliant(pub, False) ~ Bernoulli[0.3, 0.7]

∀ pub Accepted(pub) 
= Accepted_given_Brilliant(pub, Brilliant(AuthorOf(pub)))



Known versus Unknown Objects

Set of objects

Fixed for all possible worlds,
in one-to-one correspondence
with symbols
(e.g., Herbrand universe)

Varies from world to world, 
with uncertainty about 
symbol-object mapping

BUGS/Plates, RBNs, DAPER, 
BLPs

(PRMs), MEBN, BLOG

CPDs

Relational Structures

Full Distribution

Probabilistic
Dependencies



S. Russel and P. Norvig (1995). Artificial Intelligence: A Modern 
Approach. Upper Saddle River, NJ: Prentice Hall.

Example Again: Bibliographies

Russell, Stuart and Norvig, Peter. Articial Intelligence. Prentice-Hall, 1995.



Levels of Uncertainty
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Bayesian Logic (BLOG)

• Completely defines probability distribution over 
model structures with varying sets of objects

• Intuition: Stochastic generative process with two 
kinds of steps:
– Set the value of a function on a tuple of arguments
– Add some number of objects to the world

[Milch et al., IJCAI 2005]



BLOG Model for Bibliographies
guaranteed Citation Cit1, Cit2, Cit3, Cit4;

#Res ~ NumResearchersPrior();

String Name(Res r) ~ NamePrior();

#Pub ~ NumPubsPrior();

NaturalNum NumAuthors(Pub p) ~ NumAuthorsPrior();

Res NthAuthor(Pub p, NaturalNum n) 
if (n < NumAuthors(p)) then ~ Uniform({Res r});

String Title(Pub p) ~ TitlePrior();

Pub PubCited(Citation c) ~ Uniform({Pub p});

String Text(Citation c) ~ CitationCPD 
(Title(PubCited(c)),
{Name(NthAuthor(PubCited(c), n)) for

NaturalNum n : n < NumAuthors(PubCited(c))});



guaranteed Citation Cit1, Cit2, Cit3, Cit4;

#Res ~ NumResearchersPrior();

String Name(Res r) ~ NamePrior();

#Pub ~ NumPubsPrior();

NaturalNum NumAuthors(Pub p) ~ NumAuthorsPrior();

Res NthAuthor(Pub p, NaturalNum n) 
if (n < NumAuthors(p)) then ~ Uniform({Res r});

String Title(Pub p) ~ TitlePrior();

Pub PubCited(Citation c) ~ Uniform({Pub p});

String Text(Citation c) ~ CitationCPD 
(Title(PubCited(c)),
{Name(NthAuthor(PubCited(c), n)) for

NaturalNum n : n < NumAuthors(PubCited(c))});

BLOG Model for Bibliographies

Number statements

Dependency statements



guaranteed Citation Cit1, Cit2, Cit3, Cit4;

#Res ~ NumResearchersPrior();

String Name(Res r) ~ NamePrior();

#Pub ~ NumPubsPrior();

NaturalNum NumAuthors(Pub p) ~ NumAuthorsPrior();

Res NthAuthor(Pub p, NaturalNum n) 
if (n < NumAuthors(p)) then ~ Uniform({Res r});

String Title(Pub p) ~ TitlePrior();

Pub PubCited(Citation c) ~ Uniform({Pub p});

String Text(Citation c) ~ CitationCPD 
(Title(PubCited(c)),
{Name(NthAuthor(PubCited(c), n)) for

NaturalNum n : n < NumAuthors(PubCited(c))});

BLOG Model for Bibliographies

Elementary CPDs



guaranteed Citation Cit1, Cit2, Cit3, Cit4;

#Res ~ NumResearchersPrior();

String Name(Res r) ~ NamePrior();

#Pub ~ NumPubsPrior();

NaturalNum NumAuthors(Pub p) ~ NumAuthorsPrior();

Res NthAuthor(Pub p, NaturalNum n) 
if (n < NumAuthors(p)) then ~ Uniform({Res r});

String Title(Pub p) ~ TitlePrior();

Pub PubCited(Citation c) ~ Uniform({Pub p});

String Text(Citation c) ~ CitationCPD 
(Title(PubCited(c)),
{Name(NthAuthor(PubCited(c), n)) for

NaturalNum n : n < NumAuthors(PubCited(c))});

BLOG Model for Bibliographies

CPD arguments



Syntax of Dependency Statements

<RetType> F(<ArgType> x1, ..., <ArgType> xk) 
if <Cond> then ~ <ElemCPD>(<Arg>, ..., <Arg>)
elseif <Cond> then ~ <ElemCPD>(<Arg>, ..., <Arg>)
...
else ~ <ElemCPD>(<Arg>, ..., <Arg>);

• Conditions are arbitrary first-order formulas
• Elementary CPDs are names of Java classes
• Arguments can be terms or set expressions
• Number statements: same except that their 

headers have the form #<Type>



Semantics: Contingent BN

• Each BLOG model defines a contingent BN

• Theorem: Every BLOG model that satisfies 
certain conditions (analogous to BN 
acyclicity) fully defines a distribution

Title((Pub, 1)) Title((Pub, 2)) Title((Pub, 3)) …

Text(Cit1)PubCited(Cit1)

#Pub

PubCited(Cit1) 
= (Pub, 1)

PubCited(Cit1) 
= (Pub, 2)

PubCited(Cit1) 
= (Pub, 3)

[Milch et al., AI/Stats 2005]

[see Milch et al., IJCAI 2005]

(Pub, 2)
=



Design of BLOG: 
Choosing Function Values

• Choosing values for functions, not just 
predicates

• Removes unique names assumption

• Alternative in logic: relation PubCited(c, p)
– But then BN has many Boolean PubCited 

nodes for each citation
– Need to force relation to be functional 

Pub PubCited(Citation c) ~ Uniform({Pub p});

PubCited(Cit1) = PubCited(Cit2)
?



Design of BLOG:
Contingent Dependencies

• Arguments passed to CPDs are determined by 
other variables, which can also be random

• Contrast with BLPs, where BN contains all 
edges that are active in any context

• Also contrast with languages that make context 
explicit, but require it to be non-random 
[Ngo & Haddawy 1997; Fierens et al. 2005]

String Text(c) ~ CitationCPD(Title(PubCited(c));

Text(c) :- Title(p), PubCited(c, p).

Text(c) | Title(p) ←←←← PubCited(c, p).



Design of BLOG:
Explicit Aggregation

• One dependency statement per random function
– Can have if-then-else clauses

– Can pass multisets into CPDs

• Contrast with combining rules in BLPs, etc.

String Title(Pub p) 
if Type(p) = Proceedings then ~ ProcTitlePrior 
else ~ OrdinaryTitlePrior;

String Text(Citation c) ~ CitationCPD
(Title(PubCited(c)),
{Name(NthAuthor(PubCited(c), n)) for  

NaturalNum n : n < NumAuthors(PubCited(c))});



Design of BLOG:
Number Statements

• Distribution for number of objects of a type
– Can also have objects generating objects, e.g., 

aircraft generating radar blips

• Contrast with existence variables in MEBN 
[Laskey & Costa 2005]

– Easier to have one number variable than sequence of 
existence variables

– Number statements make interchangeability explicit
• Can be exploited in inference; see [Milch & Russell, UAI ’06]

#Pub ~ NumPubsPrior();



Inference

• Task: Find posterior 
probability that query 
Q is true given 
evidence E

• Naive solution 
involves summing
probabilities of worlds 
in E and in E ∩ Q

E

Q

)(

)(
)|(

EP

QEP
EQP

∩=



Inference on BNs

• Most common FOPL inference method:
– Construct BN defined by model
– Perform exact or approximate inference on BN

• But many BLOG models define infinite BNs

Title((Pub, 1)) Title((Pub, 2)) Title((Pub, 3)) …

Text(Cit1)PubCited(Cit1)

#Pub

PubCited(Cit1) 
= (Pub, 1)

PubCited(Cit1) 
= (Pub, 2)

PubCited(Cit1) 
= (Pub, 3)



Exploiting Context-Specific 
Relevance

• Sampling algorithms only need to instantiate 
finite set of context-specifically relevant variables
– Rejection sampling [Milch et al., IJCAI 2005]

– Likelihood weighting [Milch et al., AI/Stats 2005]

– Metropolis-Hastings MCMC [Milch & Russell, UAI 2006]

• Theorem: For structurally well-defined BLOG 
models, sampling algorithms converge to correct 
probability for any query, using finite time per 
sampling step



Metropolis-Hastings MCMC

• Let s1 be arbitrary state in E
• For n = 1 to N

– Sample s′∈E from proposal 
distribution q(s′ | sn)

– Compute acceptance 
probability

– With probability αααα, let sn+1 = s′; 
else let sn+1 = sn

( ) ( )
( ) ( )





′
′′

=
nn

n

ssqsp

ssqsp

|

|
,1maxα

Fraction of visited states in Q converges to p(Q|E)

E

Q



Proposer for Citations

• Split-merge moves:

– Propose titles and author names for affected 
publications based on citation strings

• Other moves change total number of 
publications

[Pasula et al., NIPS 2002]



MCMC States

• Not complete instantiations!
– No titles, author names for uncited publications

• States are partial instantiations of random 
variables

– Each state corresponds to an event: set of 
worlds satisfying description 

#Pub = 100, PubCited(Cit1) = (Pub, 37), Title((Pub, 37)) = “Calculus”



MCMC over Events

• Markov chain over 
events σ, with stationary 
distrib. proportional to p(σ)

• Theorem: Fraction of 
visited events in Q
converges to p(Q|E) if:
– Each σ is either subset of Q

or disjoint from Q
– Events form partition of E

E

Q

[Milch & Russell, UAI 2006]



Computing Probabilities of Events

• Need to compute p(σ′) / p(σn) efficiently 
(without summations)

• Use instantiations that 
include all active parents
of the variables they 
instantiate

• Then probability is product of CPDs:
( )∏

∈

=
)(vars

))(Pa(|)()(
σ

σσσσ
X

X XXpp



Learning

• Parameters: 
– Easy to estimate CPDs from complete data

– With incomplete data, use EM algorithm

• Structure: 
– Choose parents [e.g., Friedman et al. 1999, 

Popescul et al. 2003, Landwehr et al. 2005, Kok & Domingos 2005]

– Choose aggregation functions

– Learn conditions under which CPDs apply



Predicate/Function Invention

• Predicate invention has long history in ILP
– But typically new predicates are defined 

deterministically in terms of existing predicates

• In probabilistic case: Invent random functions
– With existing functions as parents, as in [Revoredo et 

al., this conference]
– Without parents, e.g., relation Colleagues(a, b) to 

explain co-authorship patterns

• Inventing family of latent variables in BN



Entity Invention

• Invent new types of objects, such as:
– Atoms (as in John McCarthy’s talk)

– Conferences, to explain recurring substrings 
of citation strings

• Requires representation that allows 
unknown objects
– Objects of invented types will not be known to 

modeler in advance



Challenge Problem

• Cognitive science question: could children learn
concept of an object, or must it be innate?

• Given sequence of frames (pixel arrays), learn 
model that includes colored blocks
– Initially, only functor is Color(x, y, t)

[Courtesy of Prof. Josh Tenenbaum, MIT]



Summary

• There is method to the madness of FOPLs

• Bayesian logic (BLOG)
– Defines full distribution over relational structures
– Allows unknown objects, unknown mapping from 

symbols to objects
– Makes contingent dependencies explicit

• Inference can be possible even when model 
yields infinite BN

• Exciting challenges in predicate/entity invention

http://www.cs.berkeley.edu/~milch/blog


