
First-Order Probabilistic Languages:
Into the Unknown

Brian Milch and Stuart Russell
University of California at Berkeley, USA

August 27, 2006

Based on joint work with
Bhaskara Marthi, David Sontag, Andrey Kolobov, Daniel L. Ong

Knowledge Representation

deterministic

probabilistic

atomic propositional first-order

histogram
17th–18th centuries

Probabilistic logic
[Nilsson 1986],

Graphical models
late 20th century

Boolean logic
19th century

First-order logic
19th - early 20th century

First-order probabilistic
languages (FOPLs)
20th-21st centuries

First-Order Probabilistic Languages
(FOPLs)

Probabilistic Horn Abduction

Bayesian Logic Programs

Probabilistic Logic Programs

Relational Bayes Nets

BUGS/Plates

Probabilistic Relational Models

Markov Logic Networks

Relational Markov Networks

Bayesian Logic

Multi-Entity Bayes Nets

PRISM

Stochastic Logic Programs

Probabilistic Entity-Relationship Models

Object-Oriented Bayes Nets

IBAL

SPOOK

Logic Programs with Annotated Disjunctions
Logical Bayesian Networks

ProbLog

This Talk

• Taxonomy of FOPLs
• Design of a FOPL: Bayesian logic (BLOG)
• Inference in infinite Bayes nets
• Open problems in structure learning

S. Russel and P. Norvig (1995). Artificial Intelligence: A Modern
Approach. Upper Saddle River, NJ: Prentice Hall.

Motivating Problem: Bibliographies

Russell, Stuart and Norvig, Peter. Articial Intelligence. Prentice-Hall, 1995.

Pedagogical Example

• Tasks:
– Infer who is brilliant
– Predict paper acceptances
– Infer who wrote a paper

res = AuthorOf(pub)

Researchers

Publications Accepted(pub)

Brilliant(res)

Relational Structures

• Possible worlds are relational structures
– Set of objects

e.g., {Jones, Pub1, Pub2}
– Relations and functions defined on the objects

e.g., AuthorOf = {(Pub1, Jones), (Pub2, Jones)}
Brilliant = {(Jones)}
Accepted = {(Pub2)}

• Also known as: logical models / interpretations,
relational databases

How can we define probability distributions over
relational structures?

Taxonomy of FOPLs, first level

Outcome Space

Relational
structures

Proofs (and hence
logical atoms)

Nested data
structures

SLPs
[Muggleton 1996]

IBAL
[Pfeffer 2001]

Instantiations
of random
variables

Early KBMC
BUGS/Plates

[Gilks et al. 1994]
BLPs

[Kersting
& De Raedt 2001]

First-order
interpretations

Relational
databases
PRMs

[Koller & Pfeffer 1998]
RMNs

[Taskar et al. 2002]
DAPER models

[Heckerman et al. 2004]

PHA [Poole 1992]
RBNs [Jaeger 1997]
PRISM [Sato 1997]
MLNs [Domingos

& Richardson 2004]
BLOG

[Milch et al. 2004]
...

Full Specification versus
Constraints

Specificity

Model specifies constraints
on distribution

e.g., ∀x P(Brilliant(x)) = 0.3

Model specifies
full distribution

Halpern’s logic of probability [1990]
PLP [Ng & Subrahmanian 1992]

Relational Structures

Conditional Probabilities versus
Weights

Parameterization

Conditional probability
distributions (CPDs)

Potentials or feature weights

RMNs, MLNsBUGS/Plates, PHA, PRISM,
RBNs, PRMs, BLPs, DAPER,
BLOG, MEBN

Relational Structures

Full Distribution

Define directed graph
(Bayesian network)

Define undirected graph
(Markov network)

Directed Models

0.70.3¬¬¬¬b

0.20.8b

P(¬¬¬¬a)P(a)
Brilliant
(AuthorOf(pub))

0.80.2

P(¬¬¬¬b)P(b)
Brilliant(res) ~

Accepted(pub) ~
Brilliant(Res1)

Accepted(Pub1)

Probability model

Relational skeleton

Researcher = {Res1}
Publication = {Pub1}
AuthorOf = {(Pub1, Res1)}

Bayesian network (BN)

• Parameters easy to interpret

• CPDs can be estimated separately

• But need to ensure BN is acyclic

• Parameters easy to interpret

• CPDs can be estimated separately

• But need to ensure BN is acyclic

Directed Models

0.70.3¬¬¬¬b

0.20.8b

P(¬¬¬¬a)P(a)
Brilliant
(AuthorOf(pub))

0.80.2

P(¬¬¬¬b)P(b)
Brilliant(res) ~

Accepted(pub) ~
Brilliant(Res1)

Accepted(Pub1)

Probability model

Relational skeleton

Researcher = {Res1}
Publication = {Pub1, Pub2}
AuthorOf = {(Pub1, Res1),

(Pub2, Res1)}

Bayesian network (BN)

• Parameters easy to interpret

• CPDs can be estimated separately

• But need to ensure BN is acyclic

• Changing relational skeleton
doesn’t change optimal parameters

Accepted(Pub2)

Undirected Models
Probability model

Relational skeleton

Markov network

∀ res, pub : res = AuthorOf(pub) →

Researcher = {Res1}
Publication = {Pub1}
AuthorOf = {(Pub1, Res1)}

Brilliant(Res1)

Accepted(Pub1)

• No acyclicity constraints

• But parameters harder to interpret

• Estimating parameters requires
inference over whole model

Accepted(pub)

0.70.3¬¬¬¬b

0.20.8b

¬¬¬¬aaBrilliant(res)

Brilliant(res)

0.80.2

¬¬¬¬bb
∀ res,

Undirected Models
Probability model

Relational skeleton

Markov network

∀ res, pub : res = AuthorOf(pub) →

Researcher = {Res1}
Publication = {Pub1}
AuthorOf = {(Pub1, Res1)}

Brilliant(Res1)

Accepted(Pub1)

• No acyclicity constraints

• But parameters harder to interpret

• Estimating parameters requires
inference over whole model

Accepted(pub)

0.560.24¬¬¬¬b

0.040.16b

¬¬¬¬aaBrilliant(res)

Brilliant(res)

11

¬¬¬¬bb
∀ res,

same distribution,
different parameters

• No acyclicity constraints

• But parameters harder to interpret

• Estimating parameters requires
inference over whole model

Researcher = {Res1}
Publication = {Pub1, Pub2}
AuthorOf = {(Pub1, Res1),

(Pub2, Res1)}

Undirected Models
Probability model

Relational skeleton

Markov network

∀ res, pub : res = AuthorOf(pub) →

Brilliant(Res1)

Accepted(Pub1)

• No acyclicity constraints

• But parameters harder to interpret

• Estimating parameters requires
inference over whole model

• Changing relational skeleton may
change optimality of parameters

Accepted(pub)

0.560.24¬¬¬¬b

0.040.16b

¬¬¬¬aaBrilliant(res)

Brilliant(res)

11

¬¬¬¬bb
∀ res,

Accepted(Pub2)

marginal now
∝ [(0.2)2, (0.8)2]

applies
twice

Independent Choices versus
Probabilistic Dependencies

Decomposition

Model is decomposed into
independent, random “coin flips”
and logical rules

Model defines probabilistic
dependencies between
parent and child variables

PHA, PRISM
Independent Choice Logic [Poole 1997]

BUGS/Plates, RBNs, PRMs, BLPs,
DAPER, BLOG, MEBN

CPDs

Relational Structures

Full Distribution

• With dependent choices: Flip coin for Accepted(pub) with
bias determined by Brilliant(AuthorOf(pub))

• With independent choices:
– Flip coins for all possible values of Brilliant(AuthorOf(pub))

– Choose which flip to use based on actual value of
Brilliant(AuthorOf(pub))

• Makes algorithms more elegant, but representation more
cumbersome

Making All Random Choices
Independent

∀ pub Accepted_given_Brilliant(pub, True) ~ Bernoulli[0.8, 0.2]
∀ pub Accepted_given_Brilliant(pub, False) ~ Bernoulli[0.3, 0.7]

∀ pub Accepted(pub)
= Accepted_given_Brilliant(pub, Brilliant(AuthorOf(pub)))

Known versus Unknown Objects

Set of objects

Fixed for all possible worlds,
in one-to-one correspondence
with symbols
(e.g., Herbrand universe)

Varies from world to world,
with uncertainty about
symbol-object mapping

BUGS/Plates, RBNs, DAPER,
BLPs

(PRMs), MEBN, BLOG

CPDs

Relational Structures

Full Distribution

Probabilistic
Dependencies

S. Russel and P. Norvig (1995). Artificial Intelligence: A Modern
Approach. Upper Saddle River, NJ: Prentice Hall.

Example Again: Bibliographies

Russell, Stuart and Norvig, Peter. Articial Intelligence. Prentice-Hall, 1995.

Levels of Uncertainty

A
CB

D

A
CB

D

A
CB

D

A
C

B

D

Attribute
Uncertainty

A
CB

D

A
CB

D

A
CB

D

A
C

B

D

Relational
Uncertainty

A, C

B, D

Unknown
Objects

A, B,
C, D

A, C

B, D

A
C, D

B

Bayesian Logic (BLOG)

• Completely defines probability distribution over
model structures with varying sets of objects

• Intuition: Stochastic generative process with two
kinds of steps:
– Set the value of a function on a tuple of arguments
– Add some number of objects to the world

[Milch et al., IJCAI 2005]

BLOG Model for Bibliographies
guaranteed Citation Cit1, Cit2, Cit3, Cit4;

#Res ~ NumResearchersPrior();

String Name(Res r) ~ NamePrior();

#Pub ~ NumPubsPrior();

NaturalNum NumAuthors(Pub p) ~ NumAuthorsPrior();

Res NthAuthor(Pub p, NaturalNum n)
if (n < NumAuthors(p)) then ~ Uniform({Res r});

String Title(Pub p) ~ TitlePrior();

Pub PubCited(Citation c) ~ Uniform({Pub p});

String Text(Citation c) ~ CitationCPD
(Title(PubCited(c)),
{Name(NthAuthor(PubCited(c), n)) for

NaturalNum n : n < NumAuthors(PubCited(c))});

guaranteed Citation Cit1, Cit2, Cit3, Cit4;

#Res ~ NumResearchersPrior();

String Name(Res r) ~ NamePrior();

#Pub ~ NumPubsPrior();

NaturalNum NumAuthors(Pub p) ~ NumAuthorsPrior();

Res NthAuthor(Pub p, NaturalNum n)
if (n < NumAuthors(p)) then ~ Uniform({Res r});

String Title(Pub p) ~ TitlePrior();

Pub PubCited(Citation c) ~ Uniform({Pub p});

String Text(Citation c) ~ CitationCPD
(Title(PubCited(c)),
{Name(NthAuthor(PubCited(c), n)) for

NaturalNum n : n < NumAuthors(PubCited(c))});

BLOG Model for Bibliographies

Number statements

Dependency statements

guaranteed Citation Cit1, Cit2, Cit3, Cit4;

#Res ~ NumResearchersPrior();

String Name(Res r) ~ NamePrior();

#Pub ~ NumPubsPrior();

NaturalNum NumAuthors(Pub p) ~ NumAuthorsPrior();

Res NthAuthor(Pub p, NaturalNum n)
if (n < NumAuthors(p)) then ~ Uniform({Res r});

String Title(Pub p) ~ TitlePrior();

Pub PubCited(Citation c) ~ Uniform({Pub p});

String Text(Citation c) ~ CitationCPD
(Title(PubCited(c)),
{Name(NthAuthor(PubCited(c), n)) for

NaturalNum n : n < NumAuthors(PubCited(c))});

BLOG Model for Bibliographies

Elementary CPDs

guaranteed Citation Cit1, Cit2, Cit3, Cit4;

#Res ~ NumResearchersPrior();

String Name(Res r) ~ NamePrior();

#Pub ~ NumPubsPrior();

NaturalNum NumAuthors(Pub p) ~ NumAuthorsPrior();

Res NthAuthor(Pub p, NaturalNum n)
if (n < NumAuthors(p)) then ~ Uniform({Res r});

String Title(Pub p) ~ TitlePrior();

Pub PubCited(Citation c) ~ Uniform({Pub p});

String Text(Citation c) ~ CitationCPD
(Title(PubCited(c)),
{Name(NthAuthor(PubCited(c), n)) for

NaturalNum n : n < NumAuthors(PubCited(c))});

BLOG Model for Bibliographies

CPD arguments

Syntax of Dependency Statements

<RetType> F(<ArgType> x1, ..., <ArgType> xk)
if <Cond> then ~ <ElemCPD>(<Arg>, ..., <Arg>)
elseif <Cond> then ~ <ElemCPD>(<Arg>, ..., <Arg>)
...
else ~ <ElemCPD>(<Arg>, ..., <Arg>);

• Conditions are arbitrary first-order formulas
• Elementary CPDs are names of Java classes
• Arguments can be terms or set expressions
• Number statements: same except that their

headers have the form #<Type>

Semantics: Contingent BN

• Each BLOG model defines a contingent BN

• Theorem: Every BLOG model that satisfies
certain conditions (analogous to BN
acyclicity) fully defines a distribution

Title((Pub, 1)) Title((Pub, 2)) Title((Pub, 3)) …

Text(Cit1)PubCited(Cit1)

#Pub

PubCited(Cit1)
= (Pub, 1)

PubCited(Cit1)
= (Pub, 2)

PubCited(Cit1)
= (Pub, 3)

[Milch et al., AI/Stats 2005]

[see Milch et al., IJCAI 2005]

(Pub, 2)
=

Design of BLOG:
Choosing Function Values

• Choosing values for functions, not just
predicates

• Removes unique names assumption

• Alternative in logic: relation PubCited(c, p)
– But then BN has many Boolean PubCited

nodes for each citation
– Need to force relation to be functional

Pub PubCited(Citation c) ~ Uniform({Pub p});

PubCited(Cit1) = PubCited(Cit2)
?

Design of BLOG:
Contingent Dependencies

• Arguments passed to CPDs are determined by
other variables, which can also be random

• Contrast with BLPs, where BN contains all
edges that are active in any context

• Also contrast with languages that make context
explicit, but require it to be non-random
[Ngo & Haddawy 1997; Fierens et al. 2005]

String Text(c) ~ CitationCPD(Title(PubCited(c));

Text(c) :- Title(p), PubCited(c, p).

Text(c) | Title(p) ←←←← PubCited(c, p).

Design of BLOG:
Explicit Aggregation

• One dependency statement per random function
– Can have if-then-else clauses

– Can pass multisets into CPDs

• Contrast with combining rules in BLPs, etc.

String Title(Pub p)
if Type(p) = Proceedings then ~ ProcTitlePrior
else ~ OrdinaryTitlePrior;

String Text(Citation c) ~ CitationCPD
(Title(PubCited(c)),
{Name(NthAuthor(PubCited(c), n)) for

NaturalNum n : n < NumAuthors(PubCited(c))});

Design of BLOG:
Number Statements

• Distribution for number of objects of a type
– Can also have objects generating objects, e.g.,

aircraft generating radar blips

• Contrast with existence variables in MEBN
[Laskey & Costa 2005]

– Easier to have one number variable than sequence of
existence variables

– Number statements make interchangeability explicit
• Can be exploited in inference; see [Milch & Russell, UAI ’06]

#Pub ~ NumPubsPrior();

Inference

• Task: Find posterior
probability that query
Q is true given
evidence E

• Naive solution
involves summing
probabilities of worlds
in E and in E ∩ Q

E

Q

)(

)(
)|(

EP

QEP
EQP

∩=

Inference on BNs

• Most common FOPL inference method:
– Construct BN defined by model
– Perform exact or approximate inference on BN

• But many BLOG models define infinite BNs

Title((Pub, 1)) Title((Pub, 2)) Title((Pub, 3)) …

Text(Cit1)PubCited(Cit1)

#Pub

PubCited(Cit1)
= (Pub, 1)

PubCited(Cit1)
= (Pub, 2)

PubCited(Cit1)
= (Pub, 3)

Exploiting Context-Specific
Relevance

• Sampling algorithms only need to instantiate
finite set of context-specifically relevant variables
– Rejection sampling [Milch et al., IJCAI 2005]

– Likelihood weighting [Milch et al., AI/Stats 2005]

– Metropolis-Hastings MCMC [Milch & Russell, UAI 2006]

• Theorem: For structurally well-defined BLOG
models, sampling algorithms converge to correct
probability for any query, using finite time per
sampling step

Metropolis-Hastings MCMC

• Let s1 be arbitrary state in E
• For n = 1 to N

– Sample s′∈E from proposal
distribution q(s′ | sn)

– Compute acceptance
probability

– With probability αααα, let sn+1 = s′;
else let sn+1 = sn

() ()
() ()

′
′′

=
nn

n

ssqsp

ssqsp

|

|
,1maxα

Fraction of visited states in Q converges to p(Q|E)

E

Q

Proposer for Citations

• Split-merge moves:

– Propose titles and author names for affected
publications based on citation strings

• Other moves change total number of
publications

[Pasula et al., NIPS 2002]

MCMC States

• Not complete instantiations!
– No titles, author names for uncited publications

• States are partial instantiations of random
variables

– Each state corresponds to an event: set of
worlds satisfying description

#Pub = 100, PubCited(Cit1) = (Pub, 37), Title((Pub, 37)) = “Calculus”

MCMC over Events

• Markov chain over
events σ, with stationary
distrib. proportional to p(σ)

• Theorem: Fraction of
visited events in Q
converges to p(Q|E) if:
– Each σ is either subset of Q

or disjoint from Q
– Events form partition of E

E

Q

[Milch & Russell, UAI 2006]

Computing Probabilities of Events

• Need to compute p(σ′) / p(σn) efficiently
(without summations)

• Use instantiations that
include all active parents
of the variables they
instantiate

• Then probability is product of CPDs:
()∏

∈

=
)(vars

))(Pa(|)()(
σ

σσσσ
X

X XXpp

Learning

• Parameters:
– Easy to estimate CPDs from complete data

– With incomplete data, use EM algorithm

• Structure:
– Choose parents [e.g., Friedman et al. 1999,

Popescul et al. 2003, Landwehr et al. 2005, Kok & Domingos 2005]

– Choose aggregation functions

– Learn conditions under which CPDs apply

Predicate/Function Invention

• Predicate invention has long history in ILP
– But typically new predicates are defined

deterministically in terms of existing predicates

• In probabilistic case: Invent random functions
– With existing functions as parents, as in [Revoredo et

al., this conference]
– Without parents, e.g., relation Colleagues(a, b) to

explain co-authorship patterns

• Inventing family of latent variables in BN

Entity Invention

• Invent new types of objects, such as:
– Atoms (as in John McCarthy’s talk)

– Conferences, to explain recurring substrings
of citation strings

• Requires representation that allows
unknown objects
– Objects of invented types will not be known to

modeler in advance

Challenge Problem

• Cognitive science question: could children learn
concept of an object, or must it be innate?

• Given sequence of frames (pixel arrays), learn
model that includes colored blocks
– Initially, only functor is Color(x, y, t)

[Courtesy of Prof. Josh Tenenbaum, MIT]

Summary

• There is method to the madness of FOPLs

• Bayesian logic (BLOG)
– Defines full distribution over relational structures
– Allows unknown objects, unknown mapping from

symbols to objects
– Makes contingent dependencies explicit

• Inference can be possible even when model
yields infinite BN

• Exciting challenges in predicate/entity invention

http://www.cs.berkeley.edu/~milch/blog

