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Abstract. This paper surveys first-order probabilistic languages (FOPLs),
which combine the expressive power of first-order logic with a probabilis-
tic treatment of uncertainty. We provide a taxonomy that helps make
sense of the profusion of FOPLs that have been proposed over the past
fifteen years. We also emphasize the importance of representing uncer-
tainty not just about the attributes and relations of a fixed set of ob-
jects, but also about what objects exist. This leads us to Bayesian logic,
or BLOG, a language for defining probabilistic models with unknown
objects. We give a brief overview of BLOG syntax and semantics, and
emphasize some of the design decisions that distinguish it from other lan-
guages. Finally, we consider the challenge of constructing FOPL models
automatically from data.

1 Introduction

Many real-world tasks, from identifying objects in images to extracting facts
about people from text documents, require probabilistic reasoning about many
related objects. These tasks often require weighing competing pieces of evidence,
so some form of probabilistic reasoning is necessary. However, the number of
random variables needed to describe such a scenario grows with the number of
objects. Thus, propositional probabilistic languages such as Bayesian networks
(BNs) — which describe a fixed set of random variables, and specify dependencies
and probability distributions for each variable individually — are insufficient.

To represent probabilistic models for such tasks, we need first-order prob-
abilistic languages (FOPLs): probabilistic modeling languages that can model
large families of random variables compactly by abstracting over objects. A sig-
nificant number of FOPLs have been proposed over the last fifteen years or so.
In Section 2, we organize many of the proposed languages into a taxonomy, at-
tempting to clarify the major ways in which they differ from one another. An



important desideratum for FOPLs is the ability to represent uncertainty about
the number of objects that exist and the correspondence between observations
and underlying objects. In Section 3, we focus on a FOPL that we developed
with this goal in mind: Bayesian logic, or BLOG [13]. In addition to discussing its
syntax and semantics, we highlight some of BLOG’s distinctive design features.

Section 4 turns to the question of learning FOPL models. Parameter esti-
mation for FOPL models is well-understood, and there has been considerable
work on learning the dependency structure of such models. However, an even
more challenging problem remains open: how to automatically hypothesize new
functions or predicates, or even new types of objects, to explain the data.

2 A Taxonomy of FOPLs

2.1 Outcome spaces

The most basic way in which certain FOPLs differ from others is in their outcome
spaces: that is, the sets of outcomes to which they assign probabilities. In most
FOPLs, the outcome space is a set of relational structures, which specify a set
of objects and some relations (or functions) on these objects. To make this idea
more concrete, consider the following pedagogical example:

Example 1. Suppose we are given a list of papers that have been submitted to a
conference over several years. Each paper is either accepted or not accepted. We
are also given a list of researchers, which includes the primary author of each
paper. Suppose that each researcher can be classified as brilliant or not brilliant,
and the probability that a paper is accepted depends on whether its primary
author is brilliant or not. Given the authorship and acceptance status of certain
papers, we would like to predict which other papers will be accepted.

A relational structure for Example 1 specifies a set of papers, a set of re-
searchers, a unary predicate Accepted that applies to papers, a unary predicate
Brilliant that applies to researchers, and a function PrimaryAuthor that maps pa-
pers to researchers. Depending on the what aspects of the scenario are known in
advance, the outcomes may share some relational skeleton [3]: for instance, they
may all have the same sets of objects and the same PrimaryAuthor function.

One reason for the diversity of FOPLs is that different communities talk
about relational structures in different ways. In logic, a relational structure is
a logical model structure: a domain of discourse plus an interpretation of a
logical language over that domain. Exanples of FOPLs that define distributions
over logical model structures include Halpern’s logic of probability on possible
worlds [5], relational Bayesian networks (RBNs) [7], PRISM [34], Markov logic
[33] and BLOG [13]. Relational structures can also be thought of as instances
of a relational database schema. This view has led to a distinct set of FOPLs,
including probabilistic relational models (PRMs) [10, 3] and relational Markov
networks (RMNs) [36].

The statistics community thinks of possible outcomes in yet another way: as
instantiations of a set of random variables. The statistical analogue of a unary
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Fig. 1. A taxonomy of first-order probabilistic languages.

predicate Accepted is a family of binary-valued random variables Ai, indexed by
natural numbers i that represent papers. Similarly, the function PrimaryAuthor

can be represented as an indexed family of random variables Pi, whose values
are natural numbers representing researchers. Thus, instantiations of a set of
random variables can represent relational structures. Indexed families of random
variables are a basic modeling element in the BUGS system [37], where they are
represented graphically using “plates” that contain co-indexed nodes.

There are two well-known FOPLs whose possible outcomes are not relational
structures in the sense we have defined. One is stochastic logic programs (SLPs)
[17]. An SLP defines a distribution over proofs from a given logic program. If a
particular goal predicate R is specified, then an SLP also defines a distribution
over tuples of logical terms: the probability of a tuple (t1, . . . , tk) is the sum of the
probabilities of proofs of R(t1, . . . , tk). SLPs are useful for defining distributions
over objects that can be encoded as terms, such as strings or trees; they can also
emulate more standard FOPLs [31]. The other prominent FOPL with a unique
outcome space is IBAL [26], a programming language that allows stochastic
choices. An IBAL program defines a distribution over environments that map
symbols to values. These values may be individual symbols, like the values of
variables in a BN; but they may also be other environments, or even functions.

This analysis defines the top level of the taxonomy shown in Figure 1. In the
rest of the paper, we will focus on languages that define probability distributions
over relational structures.



2.2 Specificity

Among the FOPLs that define distributions over relational structures, the first
distinction we can draw is between languages that fully define a distribution,
and those that only impose constraints on a distribution. As an example of the
latter type, Halpern’s logic of probability on possible worlds [5] allows statements
such as ∀xP (Brilliant(x)) = 0.3. Such statements just specify particular marginal
probabilities: in general, they do not fully define a distribution. Probabilistic logic
programs (PLPs) [21] are essentially a version of Halpern’s language restricted to
Horn clauses, although one can obtain a full distribution from a PLP by finding
the maximum entropy distribution consistent with the PLP’s constraints [12].
The FOPLs that we will discuss from here on all define probability distributions
completely, just as BNs and Markov networks do.

2.3 Conditional probabilities versus weights

In the propositional realm, Bayesian networks are directed models that specify a
conditional probability distribution (CPD) for each variable given some parent
variables, whereas Markov networks are undirected models that use weights to
define the relative probabilities of instantiations. This distinction carries over
to the first-order case. The CPD-based or directed FOPLs include BUGS [37],
PRISM [34], PRMs [10], Bayesian logic programs (BLPs) [8], and BLOG [13].
The principal weight-based or undirected formalisms are relational Markov net-
works [36] and Markov logic [33].

To understand the trade-offs between directed and undirected representa-
tions, consider a directed FOPL model for Example 1 with the following CPDs:

Brilliant(r) ∼ True False

0.2 0.8
, Accepted(p) ∼

Accepted(p)
Brilliant(PrimaryAuthor(p)) True False

True 0.8 0.2
False 0.3 0.7

If the relational skeleton contains just one paper Pub1 and just one researcher
Res1, with PrimaryAuthor(Pub1) = Res1, then this model defines the BN in Figure
2(a). If there are two papers by Res1, we get the BN in Figure 2(b).

Brilliant(Res1)

Accepted(Pub1)

(a)

Brilliant(Res1)

Accepted(Pub1) Accepted(Pub2)

(b)

Fig. 2. BNs defined by a directed FOPL model whose relational skeleton includes
(a) one paper, or (b) two papers.



This directed model has several attractive properties. First, the parameters
have clear interpretations as prior and conditional probabilities, and can be
estimated from fully observed data using elementary formulas. Even more im-
portantly, the parameters are modular : they reflect causal processes that apply
regardless of the relational skeleton. Thus, if we estimate the parameters using
only examples with one paper per researcher, we will get the same CPDs that we
would get from examples with two papers per researcher. We can also exploit a
related modularity property when performing inference: rather than doing infer-
ence on the whole BN defined by the FOPL model, it suffices to use the subgraph
consisting of the query and evidence nodes and their ancestors [22].

The drawback of directed models is that they must not have any cycles. This
requirement is especially burdensome in FOPLs, because we must ensure that
the probability model is acyclic for every relational skeleton in some class. Also,
certain properties of relations are difficult to describe without creating cycles:
for instance, it is not easy to specify that for all people a and b, if Likes(a, b) is
true than Likes(b, a) is probably true as well.

Undirected models, on the other hand, have no acyclicity constraints. An
undirected model is defined by potential functions that assign weights to in-
stantiations based on some subsets of the random variables. The weight of an
instantiation is the product of the weights assigned by all the potentials; these
weights are then normalized to yield a probability distribution. In the first-order
case, a model specifies potential function templates that apply to all sets of vari-
ables that satisfy certain conditions. For instance, in Example 1, we can include
a potential template that applies to Brilliant(r) for every researcher r, and an-
other template that applies to {Brilliant(r), Accepted(p)} for all pairs (r, p) such
that PrimaryAuthor(p) = r. Figure 3 shows the Markov networks that result when
these templates are applied to relational skeletons with one or two papers.

Brilliant(Res1)

Accepted(Pub1)

(a)

Brilliant(Res1)

Accepted(Pub1) Accepted(Pub2)

(b)

Fig. 3. Markov networks defined by an undirected FOPL model whose relational skele-
ton includes (a) one paper, or (b) two papers. Dotted ovals indicate sets of variables
that are in the domain of the same potential function.



This undirected FOPL model can reproduce the distributions defined by our
directed model above: we can simply set the potential on Brilliant(r) equal to the
CPD for Brilliant(r), and the potential on {Brilliant(r), Accepted(p)} to the CPD
for Accepted(p). However, suppose we estimate our parameters solely on examples
with one paper per researcher (recall that this caused no problems in the directed
case). Our learning algorithm may arrive at the following parameterization for
the network in Figure 3(a), defining the same joint distribution as the CPD-like
parameterization:

∀ r :
Brilliant(r)
True False

1 1

∀ (r, p) s.t. PrimaryAuthor(p) = r :

Accepted(p)
Brilliant(r) True False

True 0.16 0.04
False 0.24 0.56

The meanings of the parameters in these potential templates are no longer so
obvious. The potential on Brilliant(r) is all 1’s, but the marginal distribution
on Brilliant(Res1) in Figure 3(a) still ends up being (0.2, 0.8). This is because
the event Brilliant(Res1) = True receives a total weight of 0.16 + 0.04 = 0.2 in
the potential over {Brilliant(Res1), Accepted(Pub1)}. This coupling between po-
tentials means that maximum-likelihood parameters for Markov networks can-
not be found with simple formulas: one must use a gradient-based optimization
algorithm [33].

Now consider what happens if we apply the undirected probability model
above to the two-paper network in Figure 3(b). Then the template for pairs
(r, p) such that PrimaryAuthor(p) = r applies twice, and the marginal distribution
on Brilliant(Res1) ends up being proportional to (0.22, 0.82), which normalizes
to about (0.06, 0.94). If the actual probability that a researcher is brilliant is
0.2, then these parameters are sub-optimal: we would not learn them if we had
instances with two papers in our training set.3 Thus, unlike in the directed case,
we need to ensure that the relational skeletons in our training set reflect the
diversity of relational skeletons that we may encounter in test data.

2.4 Independent choices versus probabilistic dependencies

The category of CPD-based languages for defining complete distributions over
relational structures is still quite large. However, one of the languages we have
mentioned, namely PRISM [34], stands out from the rest in that it represents
only deterministic dependencies and independent random choices. That is, each
variable either has no parents, or has a deterministic CPD. Other FOPLs that

3 The problem actually gets worse if we eliminate the apparently redundant potential
template on Brilliant(r): then there is no parameterization that yields the desired
distribution for all relational skeletons.



take this approach include probabilistic Horn abduction [27], independent choice
logic [28] and logic programs with annotated disjunctions (LPADs) [39].4

It may not be immediately obvious how independent choices could suffice
to represent all the randomness in a probabilistic model. First, consider the di-
rected model that we defined in the previous section for Example 1. To sample
a value for an Accepted(p) variable in that model, we flip a coin with a bias
determined by the value of Brilliant(PrimaryAuthor(p)). The trick used in PRISM
is, conceptually, to flip coins for all possible values of Brilliant(PrimaryAuthor(p))
ahead of time, and then choose which coin flip to use based on the actual
value of Brilliant(PrimaryAuthor(p)). The initial coin flips can be represented by an
auxiliary predicate Accepted given Brilliant(p, b), which represents the value that
Accepted(p) would have if Brilliant(PrimaryAuthor(p)) were equal to b. The predi-
cate Accepted given Brilliant has the following probability model:

Accepted given Brilliant(p, True) ∼ True False

0.8 0.2

Accepted given Brilliant(p, False) ∼ True False

0.3 0.7

Now the probability model for Accepted is deterministic (note that we are treating
Brilliant here as a Boolean function, yielding values in {True, False}):

Accepted(p) = Accepted given Brilliant(p, Brilliant(PrimaryAuthor(p)))

The advantage of this technique is that it completely separates the logical
and probabilistic parts of the language. This separation can be exploited to
obtain efficient algorithms for certain tasks [35]. However, this decomposition
often makes the representation considerably less intuitive.

2.5 Known versus unknown objects

The last distinction in our taxonomy regards whether a language requires the set
of objects to be specified in the relational skeleton, or allows the set of objects
to be unknown. To motivate our discussion of unknown objects, consider the
following example, based on our earlier work on citation matching [24].

Example 2. Suppose we are given a set of citation strings extracted from the
“References” sections of online papers. These citations use a variety of different
formats; they use initials and abbreviations in different places; and they contain
typographical errors. The task is to reconstruct a database of publications and
researchers who are referred to in the citations. This database should contain
just one record for each publication and each researcher, including all the true
attributes of these entities that can be inferred from the citations.
4 In LPADs, the independent choices do not set the values of ground atoms directly;

instead, there is one choice for each ground disjunctive clause, and this choice de-
termines which element of the clause’s head will be entailed by the clause’s body.



In this example, the sets of publications and researchers that underlie the ci-
tations are not known in advance. Furthermore, we do not know which citations
refer to which publications, or which substrings of citations refer to which re-
searchers. If Cit1 and Cit2 are two citations and PubCited is a function that maps
citations to the publications they refer to, then the ground terms PubCited(Cit1)
and PubCited(Cit2) may or may not denote the same object.

Most FOPLs assume that the objects are in one-to-one correspondence with
a given set of constant symbols, or with the ground terms of the language. The
CPD-based FOPLs that make such assumptions include BUGS [37] (where the
objects correspond to specified sets of natural numbers), RBNs [7], BLPs [8], and
directed acyclic probabilistic entity-relationship (DAPER) models [6]. One can
model unknown objects to some extent in these languages by adding an Exists

predicate, but one still has to specify all the objects that could exist, and craft
the probability models so that objects for which Exists is false cannot serve as
values for functions or have any probabilistic influence on other objects.

There are three prominent languages that make unknown objects a funda-
mental part of their semantics. One of these is PRMs, which allow uncertainty
about the number of objects that stand in a given relation to an existing object
(e.g., papers written by a researcher) [10], about whether there exists an object
that stands in certain relations to several other objects (e.g., a role for a given
actor in a given movie) [4], and about the total number of objects of a given
type [24]. However, PRMs do not have a unified syntax that supports all these
types of uncertainty. The language of multi-entity Bayesian networks (MEBN)
[11] does have a consistent syntax, and incorporates Exists variables as part of
its semantics. But MEBN still requires the modeler to list all objects that might
exist. The third language that supports unknown objects is BLOG, which we
discuss in the next section.

3 Bayesian Logic (BLOG)

In this section we give an informal overview of Bayesian logic (BLOG) [13], a
language that facilitates defining probability distributions over relational struc-
tures with varying sets of objects. In fact, BLOG’s design makes it an attractive
choice even for scenarios that do not involve unknown objects.

3.1 Syntax

A BLOG model defines a probability distribution over model structures of a
typed first-order language. To this end, the model defines a typed first-order
language for a particular scenario; specifies certain nonrandom aspects of the
scenario; and specifies a probability model for the remaining aspects. The proba-
bility model can be thought of as describing a generative process for constructing
a possible world. This process has two kinds of steps: steps that set the value of
a function5 on some objects, and steps that add new objects to the world.
5 We treat predicates as Boolean functions.



1 type Res; type Pub; type Cit;

2 guaranteed Cit Cit1, Cit2, Cit3, Cit4;

3 #Res ∼ NumResearchersPrior;

4 random String Name(Res r) ∼ NamePrior;

5 #Pub ∼ NumPublicationsPrior;

6 random String Title(Pub p) ∼ TitlePrior;

7 random NaturalNum NumAuthors(Pub p) ∼ NumAuthorsPrior;

8 random Res NthAuthor(Pub p, NaturalNum n)

9 if (n < NumAuthors(p)) then ∼ Uniform({Res r});

10 random Pub PubCited(Cit c) ∼ Uniform({Pub p});
11 random String Text(Cit c)

12 ∼ FormatModel(Title(PubCited(c)),

13 {n, Name(NthAuthor(PubCited(c), n)) for

14 NaturalNum n : n < NumAuthors(PubCited(c))});

Fig. 4. A BLOG model for citation matching.

Figure 4 gives a complete BLOG model for Example 2. We will begin by
walking through the generative process defined by this model; then we will dis-
cuss the syntax in more detail. Line 1 of Figure 4 says that there are three types
of objects in this scenario; then line 2 asserts that four citations are guaranteed
to exist. Line 3 begins the random part of the generative process: a random
number of researchers are added to the world, with this number being sam-
pled according to NumResearchersPrior. Then, for each researcher r, a name
is sampled from NamePrior. Line 5 adds a random number of publications to
the world. For each publication, the title and the number of authors are sampled
from appropriate priors (lines 6–7). Then for each publication p and each number
n < NumAuthors(p), a researcher is sampled uniformly at random to serve as the
nth author of p. In line 10 we get to the model for citations: for each citation c,
the publication cited is sampled uniformly from the set of publications. Finally,
the text of each citation is sampled according to a format model that conditions
on the title of the cited paper and the names of its authors.

The syntax in Figure 4 may seem complicated, but in fact it can be explained
fairly simply. A BLOG model is a series of statements, each ending with a semi-
colon. The three statements in line 1 are type declarations; a BLOG model can
also include function declarations that specify the type signatures of functions
(these are necessary if we use a function before we define its probability model).
Line 2 is a guaranteed object statement that asserts the existence of a set of
distinct objects, and assigns a constant symbol to each one. Along with nonran-
dom function definitions, which do not appear in this model, guaranteed object
statements define a relational skeleton. The probabilistic portion of the model



consists of number statements, which describe steps where objects are added to
the world, and dependency statements, which describe how values are assigned
to functions. These six types of statements constitute the full syntax of BLOG.

Dependency statements and number statements have a rich syntax of their
own. A BLOG model must contain exactly one dependency statement for each
random function. If f is a function with return type τ0 and argument types
τ1, . . . , τk, then a dependency statement for f has the following general form:

random τ0 f(τ1 x1, . . . , τk xk)
if cond1 then ∼ cpd1(a1,1, . . . , a1,m1)
elseif cond2 then ∼ cpd2(a2,1, . . . , a2,m2)
...
else ∼ cpdn(an,1, . . . , an,mn);

The conditions cond1, . . . , condn−1 are arbitrary first-order formulas that can use
the variables x1, . . . , xk. The elementary CPDs cpd1, . . . , cpdn can be thought of
as functions that take in a list of arguments a1, . . . , am and return a probability
distribution over objects of f ’s return type. More technically, they are the names
of Java classes that implement a certain interface. The arguments a can be logical
terms, such as Title(PubCited(c)); set expressions, such as {Pub p} or {Pub p :
Venue(p) = ILP}; or tuple multiset expressions, such as the one in lines 13–14,
which defines a multiset of pairs consisting of an author number and a name.

Obviously, not all the dependency statements in Figure 4 have this full-
fledged if-then-else form: we allow a number of abbreviations. The expression
“if cond1 then” can be omitted if cond1 is simply True. Also, if a statement
contains some non-trivial conditions but omits the else clause, then the function
gets a default value of null when none of the conditions are satisfied. This default
convention is exploited in line 9.

The number statements in Figure 4 are very simple, but in general, they
can have the same syntax as dependency statements. The only difference is that
the expression “random τ0 f(τ1 x1, . . . , τk xk)” is replaced with #τ , where τ is
the type of object being generated.6 Thus, the number of objects that exist can
depend on other variables.

3.2 Semantics

We have given an intuitive semantics for BLOG in terms of a random process that
generates possible worlds. However, BLOG also has a more formal, declarative
semantics [13]. A BLOG model defines a set of basic random variables: a number
variable for each number statement, and a function application variable for each
random function and each tuple of arguments that exist in any possible world.
The distribution defined by a BLOG model can be represented as a contingent
Bayesian network (CBN) [14] over these basic variables.
6 In fact, BLOG supports more complex number statements to model scenarios where

objects generate other objects [13].



Title((Pub, 1)) Title((Pub, 2)) Title((Pub, 3)) …

Text(Cit1)PubCited(Cit1)

#Pub

PubCited(Cit1) 
= (Pub, 1)

PubCited(Cit1) 
= (Pub, 2) PubCited(Cit1) 

= (Pub, 3)

Fig. 5. A contingent Bayesian network for a simplified version of the BLOG model in
Figure 4. This simplified model has just one citation and does not include researchers.

A CBN is a directed graphical model in which the edges are labeled with
conditions that specify when they are active. For example, Figure 5 shows a
CBN for a simplified version of the citation model from Figure 4. Note that
the node Text(Cit1) has infinitely many parents, because it may depend on the
title of any publication. Most treatments of Bayesian networks do not provide
well-definedness results for networks that contain infinite parent sets. However,
the edge labels in Figure 5 allow us to see that at most two edges into Text(Cit1)
can be active in any single outcome: one edge from PubCited(Cit1), and one edge
from Title(p) where p = PubCited(Cit1). It turns out that one can obtain stronger
well-definedness results for CBNs than for standard BNs — well-defined CBNs
can even contain cycles, as long as some edges on each cycle have mutually con-
tradictory labels [14]. In [13], we build on these results to give conditions under
which a BLOG model is guaranteed to define a unique probability distribution
over possible worlds.

3.3 Design features

Distributions over function values. A dependency statement in BLOG can de-
fine a probability distribution for a function, such as NthAuthor or PubCited. By
contrast, many FOPLs — including PRISM [34], relational Bayesian networks
[7], DAPER models [6], and Markov logic [33] — only express uncertainty about
the values of predicates. In a purely logical context, this limitation might be
innocuous: one can simply write PubCited(c, p) rather than PubCited(c) = p. How-
ever, using a predicate to represent a random functional relationship yields an
unnecessarily complicated probability model. Instead of a single object-valued
random variable PubCited(Cit1), one ends up with many binary random vari-
ables PubCited(Cit1, p) — and all these binary variables are mutually dependent,
because exactly one of them must have the value True.

Explicit aggregation. In BLOG, we allow our elementary CPDs to take multisets
as arguments. This eliminates the need for separate “combination functions”, as
used, for example, in BLPs [8]: the burden of aggregation is now on the CPDs.



Contingent dependencies. Dependency statements make a clear distinction be-
tween the values that are passed into elementary CPDs, and the logical formulas
in “if” statements and set expressions, which determine what CPD to apply and
what values to pass into it. This contrasts with the situation in BLPs [8], where
any logical atom that is included in a clause to govern when the clause applies
is also passed into the CPD for the head variable. Also, unlike in the probabilis-
tic knowledge bases of Ngo and Haddaway [22] or the logical BNs of Fierens et
al. [2], the conditions that govern dependencies in a BLOG model do not have
to be nonrandom.

The contingent dependency structure that a BLOG model makes explicit
can be exploited in sampling-based algorithms for approximate inference [14,
15]. The basic insight is that algorithms such as likelihood weighting or Markov
chain Monte Carlo only need to instantiate variables that are context-specifically
relevant for the query: that is, variables that are known to be relevant given the
other instantiated variables. Crucially, it is not necessary to instantiate all the
variables that might be relevant for a query in some circumstances — this would
be an infinite set if the query were about Text(Cit1) in Figure 5.

4 Learning in FOPLs

4.1 Parameters

Parameter estimation for FOPLs is well understood: the goal is to find parame-
ters that maximize the likelihood of the data, or that have maximal a posteriori
probability given the data and some Bayesian prior. As we noted in Section 2.3,
parameter estimation tends to be computationally straightforward in directed
models with complete data. For undirected models, and for directed models with
unobserved variables, parameter estimation becomes computationally difficult as
the number of random variables increases. However, this difficulty is common to
all large probabilistic models, not just models defined by FOPLs.

4.2 Dependency structure

Learning the dependency structure of FOPL models, on the other hand, raises
issues that do not arise in the propositional case. In a Bayesian network, the
dependency structure can be represented simply as a list of parents for each
variable. But in a FOPL, we need a first-order representation of each vari-
able’s parent set. For instance, in Example 1, we need to learn that for all
papers p, Accepted(p) depends on Brilliant(PrimaryAuthor(p)). Also, a variable of-
ten depends on a whole class of parents in a symmetrical way. In Example 1,
if we take multiple authors into account by adding a predicate HasAuthor(p, r),
then Accepted(p) might depend on some aggregation function of the variables
{Brilliant(r) : HasAuthor(p, r)}, such as their average value, or the number that
have the value True.

A well-known paper by Friedman et al. [3] introduces a method for learning
the structure of a probabilistic relational model. In that work, a parent set is



represented as a set of attribute chains, and parents that are reachable by the
same attribute chain are aggregated together using one of a pre-defined library
of aggregation functions. However, there are many other kinds of structures
that we would like to be able to learn (and that are expressible in BLOG): for
example, a variable may depend on different sets of parents in different contexts,
or the parents may be selected using criteria other than single slot chains (e.g., in
Figure 4, Text(c) depends on those variables Name(NthAuthor(PubCited(c), n)) for
n < NumAuthors(PubCited(c))). Also, aggregation functions might be constructed
from more primitive components rather than being chosen from a library.

There has been significant work on learning more complex selection and
aggregation rules for estimating the conditional distribution of a single variable
[30, 20, 25, 38]. However, there does not seem to be any work so far on using these
sophisticated techniques to learn directed, acyclic FOPL models for multiple
variables (although they have been used to learn cyclic directed models called
dependency networks [19]). There has been other work on structure learning for
stochastic logic programs [18] and for Markov logic [9], building on inductive logic
programming techniques for searching over logical formulas. We are interested
in developing structure learning algorithms for BLOG models; this line of work
might begin with restricted versions of the BLOG dependency statement syntax.

4.3 Functions and types

Algorithms that learn the dependency structure of FOPL models typically as-
sume that the functions, predicates, and object types are given. But as John
McCarthy pointed out in his invited talk at ILP 2006, hypothesizing new ob-
jects and relations to explain observed data is a fundamental part of human
learning. For instance, it would be useful to hypothesize a binary predicate on
researchers, which might be called Colleagues(r1, r2), to explain how researchers
co-occur in author lists. There has been considerable work in the inductive logic
programming literature on predicate invention [16], but it is not yet clear how
to generalize it to the probabilistic case. Inventing a new random function (or
predicate) in a FOPL model corresponds to discovering a whole family of hid-
den variables. The task of discovering hidden variables in Bayesian networks has
been investigated by Elidan and Friedman [1]; recently, Revoredo et al. [32] have
taken some steps toward applying these ideas to BLPs.

It may also be possible to improve probabilistic models by automatically
hypothesizing new types of objects. For example, to explain recurring substrings
that come after the titles in citations, a system might hypothesize objects that
could be called conferences. One simple form of type invention that has already
been implemented involves clustering some observed objects, and treating the
clusters as a new type of object [29]. In this case, the hypothesized type plays a
predetermined role in the probabilistic model; in the general case, we would like a
system to discover what roles need to be filled. Otero and Muggleton [23] sketch
a learning algorithm for purely logical models that addresses this problem.



5 Conclusion

First-order probabilistic languages combine a principled treatment of uncertainty
with the ability to describe large models formally and concisely. We hope the
taxonomy of FOPLs given in this paper will make the wide landscape of proposed
languages less daunting, and help researchers choose the most appropriate FOPL
for a given application. This paper has highlighted two major areas of FOPL re-
search: the development of languages such as BLOG, which support reasoning
about the unknown objects that underlie a particular data set; and some pre-
liminary work on discovering initially unknown predicates and object types that
can be used to build more accurate and parsimonious models. In both of these
areas, FOPL research is moving “into the unknown”.
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