
Probabilistic Models with Unknown Objects

by

Brian Christopher Milch

B.S. (Stanford University) 2000

A dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

and the Designated Emphasis

in

Communication, Computation and Statistics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Stuart J. Russell, Chair
Professor Michael I. Jordan

Professor Dan Klein
Professor James Pitman

Fall 2006





The dissertation of Brian Christopher Milch is approved:

Chair Date
Professor Stuart J. Russell

Date
Professor Michael I. Jordan

Date
Professor Dan Klein

Date
Professor James Pitman

University of California, Berkeley

Fall 2006





Probabilistic Models with Unknown Objects

Copyright c© 2006

by

Brian Christopher Milch





Abstract

Probabilistic Models with Unknown Objects

by

Brian Christopher Milch

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Stuart J. Russell, Chair

Humans and other intelligent agents must make inferences about the real-world

objects that underlie their observations: for instance, the objects visible in an image,

or the people mentioned in a set of text documents. The agent may not know in

advance how many objects exist, how they are related to each other, or which obser-

vations correspond to which underlying objects. Existing declarative representations

for probabilistic models do not capture the structure of such scenarios.

This thesis introduces Bayesian logic (BLOG), a first-order probabilistic model-

ing language that specifies probability distributions over possible worlds with varying

sets of objects. A BLOG model contains statements that define conditional prob-

ability distributions for a certain set of random variables; the model also specifies

certain context-specific independence properties. We provide criteria under which

such a model is guaranteed to fully define a probability distribution. These criteria go

beyond existing results in that they can be satisfied even when the Bayesian network

defined by the model is cyclic, or contains nodes with infinitely many ancestors.

We describe several approximate inference algorithms that exploit the context-

specific dependence structure revealed by a BLOG model. First, we present rejection

sampling and likelihood weighting algorithms that are guaranteed to converge to the

1



correct probability for any query on a structurally well-defined BLOG model. Be-

cause these algorithms instantiate only those variables that are context-specifically

relevant, they can generate samples in finite time even when the model defines in-

finitely many variables. We then define a general framework for inference on BLOG

models using Markov chain Monte Carlo (MCMC) algorithms. This framework al-

lows a programmer to plug in a domain-specific proposal distribution, which helps

the Markov chain move to high-probability worlds. Furthermore, the chain can op-

erate on partial world descriptions that specify values only for context-specifically

relevant variables. We give conditions under which MCMC over such partial world

descriptions is guaranteed to converge to correct probabilities. We also show that

this framework performs efficiently on a real-world task: reconstructing the set of

distinct publications referred to by a set of bibliographic citations.

Professor Stuart J. Russell, Chair Date

2



Acknowledgements

I could not have completed this thesis without the guidance and support of many

teachers, colleagues, and friends. The first thanks go to my Ph.D. advisor, Stuart

Russell. Without fail, Stuart has encouraged me to keep my eye on the big problems

of our field; to combine elegant theory with concrete implementation; and to present

my work to a variety of audiences with the greatest possible clarity and precision. I

am grateful to him for his patience and his confidence in what I could accomplish. I

would also like to thank my undergraduate advisor, Daphne Koller, who welcomed

me into her research group and set me on the path to a career in artificial intelligence.

In Daphne’s group, I also benefited from the mentorship of Avi Pfeffer, whose insight

and generosity remain an inspiration to me.

The members of my thesis committee also deserve special thanks for contributing

their time and advice. Michael Jordan has provided especially valuable comments,

and his courses on machine learning were among the most important parts of my

graduate education. I am grateful to Dan Klein for useful conversations about re-

search, as well as about teaching and other aspects of academic life. James Pitman’s

course on probability theory vastly deepened my understanding of the topic, and he

has also been a responsive and helpful member of my committee.

Much of the work described in this thesis was done jointly with my fellow grad-

uate student Bhaskara Marthi. Working with Bhaskara over the past five years has

been a great pleasure and privilege; his deep technical background and insights have

smoothed the way through many rough patches. I have also had the honor of work-

ing with three outstanding undergraduates, Andrey Kolobov, Daniel Ong, and David

Sontag, who made important contributions to several aspects of the project and have

become valued collaborators and friends. I am grateful as well to Hanna Pasula, who

i



initiated our group’s work on first-order probabilistic languages and helped me get

started in research at Berkeley.

Many other AI graduate students and post-docs at Berkeley gave feedback on

my talks, helped me work through ideas, and provided support and companionship.

I would especially like to thank Norm Aleks, Eyal Amir, Barbara Engelhardt, Greg

Lawrence, XuanLong Nguyen, Mark Paskin, Jason Wolfe, and Eric Xing.

I am thankful to have received financial support during graduate school from a

University of California Micro Fellowship, a National Science Foundation Graduate

Research Fellowship, and a Siebel Scholarship. My research has also been supported

by the Office of Naval Research under MURI N00014-00-1-0637, and by the Defense

Advanced Research Projects Agency (DARPA) under contracts 03-000219 and FA

8750-05-2-0249.

Man does not live by research alone; I could not have persevered through this

process without the social support of the close friends I made at both Stanford and

Berkeley. I am grateful to them for keeping me going and helping me unwind.

My last note of thanks is to my parents. From day one, they encouraged my

intellectual curiosity and my desire to figure things out. They have been my best

cheerleaders through graduate school, while giving me an unconditional net of sup-

port to fall back on. Mom and Dad, thank you.

ii



To my grandparents, one of whom memorably referred to me as

“the future Dr. Milch” when I was at an impressionable age.

iii



iv



Contents

1 Introduction 1

1.1 Declarative probabilistic models . . . . . . . . . . . . . . . . . . . . . 2

1.2 Models with unknown objects . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 15

2.1 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Graphs and numberings . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Bayesian networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Sampling methods for probabilistic inference . . . . . . . . . . . . . . 55

3 Contingent Probabilistic Models 69

3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Non-product outcome spaces . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 Split trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4 Partition-based models . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.5 Contingent Bayesian networks . . . . . . . . . . . . . . . . . . . . . . 114

Appendix 3.A Another factorization property . . . . . . . . . . . . . . . . 128

Appendix 3.B Supportive split trees revisited . . . . . . . . . . . . . . . . 129

v



4 Bayesian Logic (BLOG) 135

4.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.3 Declarative semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.4 Evaluating expressions . . . . . . . . . . . . . . . . . . . . . . . . . . 196

4.5 Structurally well-defined BLOG models . . . . . . . . . . . . . . . . . 229

Appendix 4.A Measurability of BLOG expressions . . . . . . . . . . . . . 246

5 Inference for BLOG Models 251

5.1 Evidence and queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

5.2 Rejection sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

5.3 Likelihood weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

5.4 Markov chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . 285

5.5 Application to citation matching . . . . . . . . . . . . . . . . . . . . . 299

6 Related Work 321

6.1 Contingent dependencies . . . . . . . . . . . . . . . . . . . . . . . . . 321

6.2 Infinite models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

6.3 First-order probabilistic languages . . . . . . . . . . . . . . . . . . . . 324

7 Conclusion 337

7.1 Contributions of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 337

7.2 Directions for future research . . . . . . . . . . . . . . . . . . . . . . 341

Bibliography 347

vi



Chapter 1

Introduction

A central aspect of intelligence is the ability to make inferences about the real-

world objects that underlie one’s observations. As human beings, we do this all the

time, often subconsciously. For instance, suppose I arrive in a new office and find a

computer monitor on my desk. I turn it on and discover, to my disappointment, that

it does not work. When I come in the next day, I have every reason to believe that

the monitor on my desk is the same one I saw yesterday, and still does not work. On

the other hand, suppose I arrive on the third day and find a note on my desk saying,

“Broken equipment has been replaced. Regards, Tech Support”. At this point I can

infer that the phrase “broken equipment” in the note refers to the old monitor, and

that the monitor on my desk today probably works — even if it looks identical to

the old one.

Behaving intelligently in such a situation requires determining when an image

that I’m seeing, or a phrase that I’m reading, corresponds to an object that I’ve

seen before. Figure 1.1 illustrates the conclusions that I reach in the example above:

all my observations correspond to just two monitors, the old one and the new one.

Making these inferences does not just involve mapping my observations to a pre-

1



Chapter 1. Introduction

“broken equipment”

day 1

day 2

day 3

Observations Underlying Objects

Figure 1.1: Illustration of the computer monitor scenario.

specified list of underlying objects — after all, I was not born with a list of all the

individual objects I would ever need to reason about. Instead, I routinely hypothesize

new objects as I get new observations. Furthermore, my inferences about what I’m

seeing or reading about are not based on some infallible set of rules. Someone could

have replaced the monitor before my second day of work without leaving a note; or

the phrase “broken equipment” could refer to some other object in the room. My

inferences are uncertain: I adopt some hypotheses because I consider them more

likely than the alternatives given my observations so far.

If we want to build robots that can perform useful tasks in real-world environ-

ments, or web search engines that can answer questions about people, places and

things rather than just finding words and phrases, we will need to automate this

kind of inference. This thesis takes a step in that direction.

1.1 Declarative probabilistic models

Probabilistic inference must be based on some knowledge of the relative likelihoods of

various courses of events, or “possible worlds”. Such knowledge is represented math-

ematically by a probabilistic model. A probabilistic model for the broken monitor

2



Chapter 1. Introduction

scenario would have to specify, for example, the probability that a monitor would be

replaced overnight; the probability that someone replacing a monitor would leave a

note; the probability that a new monitor would look identical to the old one; and the

probability that there would be some other broken equipment in an office besides the

monitor. This is an incomplete list of probabilities: a complete probabilistic model

for this scenario would be quite complicated.

There are, by and large, two ways to build a computer system that uses a prob-

abilistic model. In the first approach, the engineers define the probability model on

paper, work out an algorithm for performing inference on this model, and then write

code that implements the algorithm for this particular model. It is often possible to

adjust the numerical parameters of the model (perhaps estimating them from data)

without changing the code. However, more significant changes to the model often

require rewriting parts of the software.

This approach is unsatisfying for several reasons. First, it requires a lot of en-

gineering effort for each new model that is developed. Second, it can be unclear

what probability model a system is actually using; thus, it can be difficult to spot

errors in the code, and to tell whether a more efficient inference algorithm could be

applied to the same model. Finally, this approach provides little insight into how

a general-purpose reasoning system — such as the human brain — might operate.

Humans seem to be able to learn new probabilistic models from experience, and

then do inference on these models without having an engineer implant new inference

algorithms.

The alternative approach is to use declarative representations of probability mod-

els: computer-readable representations that have well-defined semantics in terms of

probability distributions over possible worlds, independently of any particular in-

ference algorithm. Once a declarative representation language is established, re-

searchers can develop inference algorithms that work on large classes of models

3



Chapter 1. Introduction

defined in this language. These algorithms can then be applied, with little or no

additional programming, to models from any real-world domain. Algorithms can

also be developed to learn models from data.

This declarative approach is also fraught with challenges, however. The number

of possible worlds is usually enormous (even if the scenario just consists of n coin

tosses, the number of possible worlds is 2n), so a model cannot simply list the prob-

ability of each world. Also, it may be computationally intractable to compute the

probability of a query event (such as, “the monitor on my desk today works”) given

some observations. In general, this involves looking at all the worlds consistent with

the observations, and seeing what fraction of their total probability is assigned to

worlds where the query event occurs. Special-purpose algorithms can answer queries

more efficiently by exploiting structure in particular models, but finding algorithms

that exploit structure in a large class of models is difficult.

Nevertheless, the declarative approach to probabilistic reasoning has seen great

successes over the past twenty years. The representation formalism responsible

for this success is graphical models [Pearl, 1988; Cowell et al., 1999], including

Bayesian networks (BNs), which are based on directed graphs, and Markov net-

works, which are based on undirected graphs. We give a more thorough intro-

duction to (directed) graphical models in Section 2.4, but the basic idea is as

follows. It is assumed that the model has been decomposed into a set of ran-

dom variables, such as Monitor1WorksOnDay2 (which takes a true/false value) and

TheMonitorOnMyDeskOnDay2 (which takes a monitor as its value). The graphical

part of the model contains one node for each random variable. Edges (links) be-

tween the nodes represent probabilistic dependencies: for instance, as shown in Fig-

ure 1.2, TheMonitorOnMyDeskOnDay2 depends on TheMonitorOnMyDeskOnDay1 and

MonitorReplacedAfterDay1. The model is also equipped with numerical parameters

that define exactly how each variable depends on its neighbors. This representa-

4



Chapter 1. Introduction

TheMonitorOnMyDesk
OnDay1

TheMonitorOnMyDesk
OnDay2

TheMonitorOnMyDesk
OnDay3

MonitorReplacedAfterDay1

MonitorReplacedAfterDay2

Figure 1.2: A Bayesian network describing how the monitor on my desk on a given
day depends on which monitor was on my desk on the previous day, and on whether
the monitor was replaced.

tion is particularly useful because the missing edges in the graph reveal probabilistic

independence properties, which can be exploited by general-purpose inference algo-

rithms.

One limitation of graphical models is that they are propositional, as opposed to

first-order: in other words, they do not support quantification over objects. Thus,

if we want to reason about M separate monitors, we need to repeat the portions

of the graph that deal with monitors M times. However, a number of first-order

probabilistic languages (FOPLs) have been developed to define graphical models

compactly for scenarios with multiple objects [Horsch and Poole, 1990; Gilks et al.,

1994; Koller and Pfeffer, 1998]. These languages allow us to define indexed families

of random variables: for example, random variables MonitorWorks(m, d) for each

monitor m and day d. We review these languages in more detail in Section 6.3.

In this thesis, we focus on a further shortcoming of conventional graphical models:

they do not appropriately capture the structure of scenarios with unknown objects.

First, it is not obvious how to take a scenario involving an unknown number of

5



Chapter 1. Introduction

objects and decompose it into a fixed set of random variables. If we do not know

how many monitors we will need to reason about, then how many nodes of the form

MonitorWorks(m,Day1) do we include in our graphical model? If we do not wish to

place any upper bound on the number of monitors we can reason about, then we need

to include an infinite number of these nodes. But the theory of infinite graphical

models is not very well developed—and such a model does not represent the fact that

some random variables are applicable only when the corresponding objects exist.

Second, if we do not know how observations are related to underlying objects,

then the dependency structure of the model becomes contingent rather than fixed.

For instance, suppose our model includes a variable MonitorOnMyDeskWorks(Day1)

that I can observe on day one. This variable depends on the monitor-valued variable

TheMonitorOnMyDesk(Day1), and also on some variable of the form MonitorWorks(m,

Day1) — specifically the one with m = TheMonitorOnMyDesk(Day1). But if we

want to capture this dependency in a graphical model with fixed edges, the only

thing we can do is include edges into MonitorOnMyDeskWorks(Day1) from all the

MonitorWorks(m,Day1) variables (if we left out any of those edges, the model would

assert an independence property that does not hold in general). In the resulting

model, shown in Figure 1.3, the contingent nature of the dependency is not repre-

sented in the graph structure; it is only encoded in the numerical parameters.

1.2 Models with unknown objects

Despite these shortcomings of existing declarative representations, systems that rea-

son about unknown objects using probabilistic models have indeed been built and

used successfully. These systems have not used general-purpose declarative repre-

sentations, and have been limited to specific domains.

One prominent application that calls for probabilistic reasoning about unknown

6



Chapter 1. Introduction

MonitorWorks
(M1, Day1)

MonitorWorks
(M3, Day1)

MonitorOnMyDeskWorks
(Day1)

TheMonitorOnMyDesk
(Day1)

MonitorWorks
(M2, Day1)

Figure 1.3: A graphical model for a scenario where there is uncertainty about which
monitor is on my desk, and there is no a priori upper bound on the number of
monitors that exist.

objects is the task of tracking multiple objects using cameras or radar. This task is

often called multitarget tracking, and the problem of determining which observations

(radar blips, image segments, etc.) correspond to which underlying objects is called

data association. The field dates back to early work by Sittler [1964]; there is a stan-

dard textbook by Bar-Shalom and Fortmann [1988]. The probabilistic models used

for multitarget tracking describe how targets move over time and how observations

depend on the true positions of targets; they can also specify probabilities for new

targets arriving, targets failing to be observed, and spurious observations appearing

at any given time step. If we observe, say, the positions of blips on a radar screen

over several time steps, we can use such a model to compute the probability that

two particular blips came from the same aircraft.

Performing such computations becomes computationally intractable as the num-

ber of observations increases, because we need to consider all possible mappings

between observations and underlying objects. Thus, in practice, data association is

performed using various heuristic approximation algorithms. However, these algo-

rithms do not operate on a declarative representation of a probabilistic model; they

are specific to multi-target tracking. Modifying such algorithms to go beyond the

7



Chapter 1. Introduction

basic multi-target tracking model — for instance, to exploit the fact that aircraft fly

in formation, or to infer the locations of air bases where aircraft often take off and

land — often requires a major research effort.

The problem of unknown objects arises not just with direct sensory observations,

but also with linguistic input. For instance, if a newspaper article uses the noun

phrases, “a police officer”, “Robert Smith”, “he”, and “a suspect”, how many distinct

people are being referred to? We would have to read the article to figure this out.

In computational linguistics, the task of determining which noun phrases refer to

the same objects is called coreference resolution or anaphora resolution [Lappin and

Leass, 1994; MUC–6, 1995; Soon et al., 2001]. And even if a computer system gets

all its information from databases, rather than physical sensors or raw text, it may

still have to determine when a set of database records refer to the same real-world

object. If one record is about “Brian Mitch” in “Berkeley, CA” and another is about

“Brian C. Milch” in “Berkley, California”, are these records about the same person?

This problem goes by many names, including record linkage, entity resolution, and

deduplication. It has been an active field of study since the 1950s [Newcombe et

al., 1959; Fellegi and Sunter, 1969]; a recent report by Winkler [2006] gives a good

overview of the field.

Most work in coreference resolution and record linkage has focused on evaluating

the probability that a single pair of mentions (or records) refer to the same entity.

This probability is based on similarities between the mentions, and also on proximity

and syntactic cues when the mentions are noun phrases in a document. Once these

probabilities are determined, one can attempt to find the partition of the mentions

that best respects all the pairwise match probabilities [McCallum and Wellner, 2005;

Singla and Domingos, 2005]. By reasoning only about pairwise matches between

mentions, these techniques avoid reasoning explicitly about the unknown objects

that the mentions refer to.

8



Chapter 1. Introduction

However, there are cases where reasoning about the attributes of underlying ob-

jects is necessary [Milch et al., 2004]. For instance, suppose a document contains the

noun phrases “Alice”, “Stuart”, and “Jones”, and there are syntactic cues suggesting

that all three of them co-refer. If we just look at pairwise compatibilities, it seems

plausible that the mentions could all be coreferent: there could easily be a person

named “Alice Stuart”, “Stuart Jones” or “Alice Jones”. However, “Alice” and “Stu-

art” can plausibly co-refer only if “Stuart” is a surname, while “Stuart” and “Jones”

can plausibly co-refer only if “Stuart” is a first name. It is not likely that one person

would be referred to by all three of these names. Thus, in order to do coreference

resolution in general, we need to consider hypotheses about the attributes of under-

lying objects that might be referred to by the mentions. There are only a handful of

coreference resolution algorithms that do this kind of reasoning [Pasula et al., 2003;

Wellner et al., 2004]. Interestingly, reasoning about attributes of the underlying

objects is standard in the multitarget tracking literature: if one does not represent

the velocities of the objects (specifically their direction of travel), then it is diffi-

cult to keep track of, say, two objects that pass close to each other while moving in

opposite directions. As in the multitarget tracking case, the coreference resolution

techniques that reason about unknown objects use special-purpose representations

and inference algorithms.

Another application area that involves reasoning about unknown objects is popu-

lation estimation: for instance, estimating the population of a certain animal species

in an area by marking animals that are caught in one sweep through the area, and

looking at the fraction of marked animals in a subsequent sweep [Borchers et al.,

2002]. This application differs from the ones discussed above in that tracking indi-

vidual objects (animals in this case) is no longer the goal; instead, one is primarily

interested in the number of unknown objects. Again, this field tends to use special-

ized techniques rather than general-purpose declarative formalisms.

9



Chapter 1. Introduction

Finally, work in statistics on Bayesian mixture models can be thought of as

dealing with unknown objects. In a Bayesian mixture model, observations are gen-

erated by first choosing a mixture component from some prior distribution, and then

choosing values for the observable attributes according to a probability distribu-

tion associated with that mixture component. For example, a mixture model for

stars might have a component for each type of star (blue giant, yellow dwarf, white

dwarf, etc.), each with its own distribution for color, mass, and luminosity. The mix-

ture components are the unknown objects here: the number of components may be

fixed [Cheeseman et al., 1988; Neal, 1991], it may be unknown but have some prior

distribution [Richardson and Green, 1997], or it may be infinite [Ferguson, 1983;

Neal, 1991; Escobar and West, 1995]. If the number of mixture components has

an upper bound (or if a model with infinitely many components is truncated, as in

the work of Ishwaran and James [2001]), then the model can be represented as a

standard Bayesian network. But when the number of components is unbounded or

infinite, the only alternatives are to truncate the model or apply a special-purpose

inference algorithm.

1.3 Overview of the thesis

The primary contribution of this thesis is a new first-order probabilistic language,

called Bayesian logic or BLOG, that concisely defines distributions over possible

worlds with unknown objects. These possible worlds are represented formally as

model structures of a first-order logical language; the set of objects that exist can

vary from world to world. BLOG makes explicit the contingent dependencies that

arise from relational uncertainty and the unknown mapping from observations to

objects. We describe new inference algorithms that exploit this explicit structure to

answer queries more efficiently than existing algorithms, and even perform inference

10



Chapter 1. Introduction

in finite time on some BLOG models that define infinite Bayesian networks. These

algorithms have been implemented in a system that is publicly available from the

author’s web page.

We begin in Chapter 2 with some technical background on first-order logic, prob-

ability theory, Bayesian networks, and sampling-based algorithms for approximate

inference. The novel material begins in Chapter 3, where we introduce two new

declarative formalisms for describing probability models with contingent dependen-

cies. These formalisms are propositional rather than first-order; they form the foun-

dation for BLOG in the same way that standard graphical models form the founda-

tion for existing first-order probabilistic languages. The first formalism, partition-

based models (PBMs), provides an abstract way of specifying a probabilistic model in

terms of conditional distributions for individual variables along with context-specific

independence assertions. The second formalism, called contingent Bayesian networks

(CBNs), provides a concrete way of expressing a PBM. A CBN differs from an ordi-

nary Bayesian network in that the edges are labeled with conditions indicating when

they are active. We provide criteria under which a CBN is guaranteed to fully define

a probability distribution over outcomes; these criteria go beyond existing results

for BNs in that they can be satisfied even if some nodes in the graph have infinitely

many ancestors, and even if the graph contains cycles.

Chapter 4 defines the syntax and semantics of the BLOG language. Intuitively,

a BLOG model defines a generative process that constructs a possible world step by

step, where each step either sets the value of a function on some arguments, or adds

some new objects to the world. More formally, each BLOG model defines a PBM

over a certain set of basic random variables. We show that a probability distribution

for these basic random variables always corresponds uniquely to a probability distri-

bution over first-order model structures. Thus, building on results from Chapter 3,

we show that every BLOG model in a large class of structurally well-defined models

11



Chapter 1. Introduction

fully defines a distribution over possible worlds.

In Chapter 5, we move on to the question of inference in BLOG models. We

begin by describing rejection sampling and likelihood weighting algorithms that are

guaranteed to converge to the correct probability for any query on a structurally well-

defined BLOG model. These algorithms exploit the contingent dependency structure

revealed by the BLOG model to avoid sampling irrelevant random variables. In fact,

these algorithms can generate samples in finite time even if the BLOG model defines

an infinite Bayesian network, as we illustrate with experiments on a pedagogical

“balls in an urn” example.

These two algorithms both sample variables top-down according to their prior

distributions, and thus they may take astronomical amounts of time to converge on

problems of practical interest. In Section 5.4, however, we describe a framework

for doing inference on BLOG models using Markov chain Monte Carlo (MCMC)

algorithms. An MCMC algorithm performs a random walk over possible worlds in

such a way that in the long run, the number of times each world is visited is pro-

portional to its probability under the model. Our framework allows a programmer

to provide a domain-specific proposal distribution, which helps the MCMC process

to move between high-probability worlds more efficiently. The main innovation in

our framework is that the chain does not have to run over fully specified possi-

ble worlds: instead, the MCMC states can be partial world descriptions that only

specify values for relevant variables. Again, the relevant variables are determined

context-specifically, based on the model’s contingent dependency structure. We pro-

vide conditions under which this abstract-level MCMC algorithm is guaranteed to

converge to correct probabilities.

Finally, in Section 5.5, we describe an application of BLOG to a real-world task:

parsing the citations that are found at the ends of academic papers, and constructing

a de-duplicated database of the publications that they refer to. We discuss a BLOG

12



Chapter 1. Introduction

model that we developed for this task, as well as a custom proposal distribution that

can be plugged into our general MCMC inference engine. Our experimental results

show that even though the BLOG inference engine is implemented in a general-

purpose way — to handle arbitrary BLOG models and proposal distributions —

its speed is within a reasonable constant factor of a hand-coded, domain-specific

implementation.

Chapter 6 discusses how this thesis relates to existing work: particularly, how

BLOG compares with other first-order probabilistic languages. Some of these lan-

guages are quite different from BLOG in their approach to defining probability mod-

els, and thus it is difficult to compare their expressive power to BLOG’s directly.

However, in the category of languages that use directed graphical models to define

distributions over relational structures, BLOG is the most expressive.

Chapter 7 concludes the thesis with a summary of contributions and some thoughts

on future work. The main areas for future research are learning the parameters and

structure of BLOG models, and developing general-purpose inference algorithms that

can handle more realistic BLOG models.

Much of the material in this thesis has been described in a series of conference

papers. PBMs and CBNs are defined in a paper presented at the 2005 AI/Stats

Conference [Milch et al., 2005b]. BLOG was first described informally at the ICML

2004 Workshop on Statistical Relational Learning and Its Connections to Other

Fields [Milch et al., 2004], and presented formally at the 2005 International Joint

Conference on Artificial Intelligence [Milch et al., 2005a]. The MCMC inference

framework was described at the 2006 Conference on Uncertainty in AI [Milch and

Russell, 2006].

13



Chapter 1. Introduction

14



Chapter 2

Background

2.1 Logic

First-order logic plays a foundational role in both the syntax and the semantics of the

BLOG language. This section briefly reviews the relevant concepts. It also discusses

how we extend standard first-order logic to distinguish between different types of

objects, and to allow partial functions. For a thorough introduction to logic, see

[Enderton, 2001].

2.1.1 Propositional logic

The reader is probably familiar with propositional logic, where symbols such as

p and q are used to represent atomic propositions such as “Alice works in Soda

Hall” and “Alice has a key to Soda Hall”. A propositional language for a particular

application domain is simply a set of atomic proposition symbols. These symbols can

be combined to form sentences using the logical connectives ¬ (“not”), ∧ (“and”),

∨ (“or”) and → (“implies”), as well as parentheses. For instance, p∧ q might mean,

“Alice works in Soda Hall and Alice has a key to Soda Hall”. A truth assignment

15



Chapter 2. Background

is a function that maps each atomic proposition symbol in a language to a value

in {true, false}. A truth assignment satisfies certain sentences and not others; for

instance, p∧ q is satisfied just by those truth assignments that map both p and q to

true.

The drawback of propositional logic is that it is an extremely inefficient way to

represent knowledge. For instance, using the symbols defined above, we can write

p → q to mean “If Alice works in Soda Hall, then Alice has a key to Soda Hall”.

But this sentence only expresses knowledge about one person, namely Alice, and

one building, Soda Hall. If we want to express knowledge of the form, “If person A

works in building B, then A has a key to B” for 100 people and 100 buildings, we

need 10,000 sentences.

2.1.2 First-order languages

First-order logic allows us to represent knowledge more efficiently by generalizing

over objects. A first-order language consists of constant symbols such as Alice and

SodaHall, predicate symbols such as WorksIn and HasKeyTo, and function symbols

such as Name and JobTitle. Sentences in first-order logic can contain not only logical

connectives, but also the quantifiers ∀ (“for all”) and ∃ (“there exists”). We can

express our desired statement about people and buildings as ∀a∀b(WorksIn(a, b) →

HasKeyTo(a, b)). Here a and b are logical variables that range over all objects.1

In this thesis we use typed (or sorted) first-order languages, where the objects

are divided into types, and predicate and function symbols apply only to objects of

specific types. In our example domain, it is natural to have separate types Person

and Building. Instead of using unrestricted quantifiers such as ∀a, we use quantifiers

that range over a specific type, such as ∀ Person a. Each predicate and function

1This kind of logic is called “first-order” to distinguish it from second-order logic, where it is
possible to quantify over sets of objects. Logics of even higher order have also been considered.

16



Chapter 2. Background

symbol has a type signature, which specifies the types of arguments it takes and the

type of value it returns. In fact, given that we are using a typed language, we can

simplify our definitions by treating predicates simply as functions whose return type

is Boolean. We will also treat constant symbols as function symbols that take no

arguments, that is, zero-ary function symbols.

Definition 2.1. A typed first-order language L is a tuple (TL, FL, sigL, VL) where:

• TL is a countable ( i.e., finite or countably infinite) set of type symbols, including

the Boolean type symbol Boolean;

• FL is a countable set of function symbols;

• sigL maps each function symbol f to a type signature (a1, . . . , ak, r), where

a1, . . . , ak ∈TL are f ’s argument types (k ≥ 0), and r∈TL is f ’s return type;

• VL is a countable set of logical variable symbols.

We will also write retL(f) to denote the return type of a function f . The subscript

L may be omitted when it is clear what language we are talking about.

2.1.3 First-order terms and formulas

The symbols in a first-order language can be put together to form terms, which

denote objects, and sentences, which have truth values.

Definition 2.2. A term in a typed first-order language L has one of the following

forms:

• the null term, null;

• a constant term c, where c∈FL and sigL(c) = (r) for some type r;

17



Chapter 2. Background

• a function application term f(t1, . . . , tk) for some k ≥ 0, where f ∈FL and

sigL(f) = (a1, . . . , ak, r) for some types a1, . . . , ak;

• a logical variable term v ∈VL.

The only part of this definition that is not standard is the null term, which

denotes a special “undefined” value. Its role will become clearer when we discuss

semantics in the next section. Another notable aspect of this definition is that the

definition of a function application term does not say anything about the types of

the argument terms. This is because the type of a logical variable term cannot be

determined in isolation; it depends on the scope in which the variable occurs.

Definition 2.3. In a typed first-order language L, a scope β is a set of pairs (v, τ),

where v ∈VL and τ ∈TL, such that each logical variable v ∈VL occurs in at most one

pair in β.

We will write domain(β) for the set of variables v that occur in some pair in β.

For any v ∈ domain(β), we will write β(v) for the unique type τ such that (v, τ) ∈ β.

The empty scope is a scope whose domain is the empty set; it does not assign a type

to any variables. If β is a scope, we will write (β; v 7→ τ) to represent the scope

formed by taking β, removing any pair that contains v, and adding the pair (v, τ).

Definition 2.4. The term t is a well-formed term of type r in a scope β if:

• t is a constant term c and sigL(c) = (r); or

• t is a function application term f(t1, . . . , tk), sigL(f) = (a1, . . . , ak, r) for

some types a1, . . . , ak, and ti is a well-formed term of type ai in β for each

i∈{1, . . . , k}; or

• t is a variable term v such that (v, r) ∈ β.

18



Chapter 2. Background

The null term is also a well-formed term in all scopes, but it is not of any type.

Now that we have defined what it means for a term to be well-formed in a scope,

we can move on to formulas.

Definition 2.5. A well-formed formula of a typed first-order language L in a scope

β has one of the following forms:

• a term t that is well-formed and has type Boolean in β, called an atomic for-

mula;

• t1 = t2 or t1 6= t2, where either:

– t1 and t2 are well-formed terms of the same type in β, or

– one of t1, t2 is a well-formed term in β and the other is the null term;

• ¬ψ, where ψ is a well-formed formula in β;

• ψ ∧ χ, ψ ∨ χ, or ψ → χ, where ψ and χ are well-formed formulas in β;

• ∀ τ v ψ or ∃ τ v ψ, where τ ∈TL, v ∈VL, and ψ is a well-formed formula in

the scope (β; v 7→ τ).

The set of free variables in a term or formula is the set of variables that are

included in all scopes in which that term or formula is well-formed. For instance, in

the formula ∀PersonpWorksIn(p, b), the set of free variables is {b}. A formula that is

well-formed in the empty scope — that is, that has no free variables — is called a

sentence.

2.1.4 First-order model structures

So far we have discussed only the syntax of first-order logic. We now move on to

semantics: the conditions under which sentences are true or false. In propositional

19



Chapter 2. Background

logic, sentences are evaluated with respect to truth assignments. In first-order logic,

they are evaluated with respect to more complicated objects called model structures

(or just structures). A model structure for a language L maps each type to a set of

objects, and each function symbol to a function that relates those objects to each

other.

Definition 2.6. A model structure ω for a typed first-order language L is a function

that:

• maps each type τ ∈TL to a set [τ ]ω, called the extension of τ in ω, with

[Boolean]ω = {true, false};

• maps each function symbol f ∈FL with sigL(f) = (a1, . . . , ak, r) to a function

[f ]ω from [a1]
ω×· · ·× [ak]

ω to [r]ω ∪{null}, called the interpretation of f in ω.

For a zero-ary function symbol f , we will abuse notation slightly and use [f ]ω to

denote both the function that serves as the interpretation of f , and the value [f ]ω ()

that this function yields on the empty tuple. Also, note that the symbol null serves

double duty here: it is both the null term, and an object that can be the value of an

interpretation [f ]ω on some arguments.

As an example, consider a language L with types Boolean, Person and Building,

and with the following functions and type signatures:

sigL(Alice) = (Person)

sigL(Bob) = (Person)

sigL(SodaHall) = (Building)

sigL(WorksIn) = (Person,Building,Boolean)

sigL(HasKeyTo) = (Person,Building,Boolean)

20



Chapter 2. Background

In a particular model structure ω, the extension of Person might be {P1,P2}, and

the extension of Building might be {B1}. The interpretations of Alice, Bob and

SodaHall are all zero-ary functions that yield some value on the empty tuple; suppose

[Alice]ω = P1, [Bob]ω = P2, and [SodaHall]ω = B1. The interpretation of WorksIn

might map (P1,B1) to true, but (P2,B1) to false, meaning that Alice works in Soda

Hall but Bob does not.

The constant symbols Alice and Bob could also refer to the same object: [Alice]ω

and [Bob]ω could both equal P2. This would leave the object P1 with no constant

symbols referring to it, which is also allowed. Another possibility is that [Alice]ω or

[Bob]ω could equal null.

In each model structure, each sentence of L is either satisfied or unsatisfied. To

define satisfaction, we begin with the notion of assigning values to logical variables.

An assignment α is a function on a scope β: that is, it maps each variable-type

pair (v, τ)∈ β to a value. We will write domain(α) for the scope that α is defined

on. If v is a logical variable that occurs in some pair (v, τ)∈ domain(α), then by

the definition of a scope, there is only one such pair; so for such variables v, we can

write α(v) as an abbreviation for α((v, τ)). We will write (α; (v, τ) 7→ o) to represent

the assignment obtained by taking α, removing any mapping for a pair containing v,

and adding the mapping (v, τ) 7→ o. The assignment α is valid in a model structure

ω if for each (v, τ)∈ domain(α), α(v) ∈ [τ ]ω.

Definition 2.7. Let ω be a model structure for L, α be an assignment that is valid

in ω, and t be a term of L that is well-formed in domain(α). Then the denotation

of t in ω under α, denoted [t]ωα, is defined as follows:

• if t is the null term, then [t]ωα = null;

• if t is a constant term c, then [t]ωα = [c]ω;

21



Chapter 2. Background

• if t is a function application term f(t1, . . . , tk), then:

[t]ωα =

 null if [ti]
ω
α = null for some i∈{1, . . . , k}

[f ]ω ([t1]
ω
α , . . . , [tk]

ω
α) otherwise

• if t is a logical variable term v, then [v]ωα = α(v).

Definition 2.8. Let ω be a model structure for L, α be an assignment that is valid

in ω, and ϕ be a formula of L that is well-formed in domain(α). Then ω satisfies ϕ

under α, written ω |=α ϕ, if one of the following cases holds:

• ϕ is an atomic formula t and [t]ωα = true;

• ϕ has the form t1 = t2 and [t1]
ω
α = [t2]

ω
α, or it has the form t1 6= t2 and

[t1]
ω
α 6= [t2]

ω
α;

• ϕ has the form ¬ψ and ω 2α ψ;

• ϕ has the form ψ ∧ χ and ω |=α ψ and ω |=α χ, or it has the form ψ ∨ χ and

ω |=α ¬(¬ψ ∧ ¬χ), or it has the form ψ → χ and ω |=α (¬ψ ∨ χ);

• ϕ has the form ∀ τ v ψ and for every o ∈ [τ ]ω, ω |=(α,(v,τ) 7→o) ψ;

• ϕ has the form ∃ τ v ψ and ω |=α ¬(∀ τ v ¬ψ).

If a formula ϕ has no free variables, then the assignment is irrelevant, and we

will just write ω |= ϕ or ω 2 ϕ. Similarly, if a term t has no free variables, we will

write [t]ω for its denotation in ω.

2.1.5 Isomorphisms between model structures

It is possible for two model structures to represent the same relational structure, just

with different objects. That is, there may be an isomorphism between two model

22



Chapter 2. Background

structures.

Definition 2.9. Let ω1 and ω2 be two model structures of a typed first-order language

L. Let h be a bijection between
⋃

(τ ∈TL) [τ ]ω1 and
⋃

(τ ∈TL) [τ ]ω2. Then h is an

isomorphism between ω1 and ω2 if:

• for each type τ in L and each object o∈ [τ ]ω1,

h(o)∈ [τ ]ω2 ;

• for each function symbol f in L with type signature (r, a1, . . . , ak) and each

tuple of arguments (o1, . . . , ok)∈ [a1]
ω1 × · · · × [ak]

ω1,

h([f ]ω1 (o1, . . . , ok)) = [f ]ω2 (h(o1), . . . , h(ok)).

We say two model structures are isomorphic if there exists an isomorphism be-

tween them. For instance, in the language that we have been using in our examples,

let ω1 be a model structure with:

[Person]ω1 = {P1,P2}

[Building]ω1 = {B1}

[Alice]ω1 = P1

[Bob]ω1 = P2

[SodaHall]ω1 = B1

[WorksIn]ω1 = {(P1,B1, true), (P2,B1, false)}

[HasKeyTo]ω1 = {(P1,B1, false), (P2,B1, false)}

This model structure is isomorphic to a model structure ω2 that is the same except

23



Chapter 2. Background

that:

[Alice]ω1 = P2

[Bob]ω1 = P1

[WorksIn]ω1 = {(P1,B1, false), (P2,B1, true)}

The isomorphism from ω1 to ω2 maps P1 to P2, P2 to P1, and B1 to itself.

2.2 Probability

In this section, we assume the reader already has an intuitive understanding of

probability. We briefly review the basic concepts and introduce some more advanced

material that will be used in later chapters. For a more extensive treatment of this

material, see [Durrett, 1996] or [Billingsley, 1995].

2.2.1 Measurable spaces

Let Ω denote a set of possible worlds or outcomes. Intuitively, a probability distri-

bution P assigns a probability P (ω) to each outcome ω ∈Ω, and it follows that the

probability of any event A ⊆ Ω is
∑

(ω ∈A) P (ω). However, when Ω is uncountable,

the probabilities of events can no longer be derived simply by summing the probabil-

ities of individual outcomes. Uncountable outcome sets obviously arise when we deal

with real numbers, but we also get uncountable outcome sets when we have infinite

sequences. For example, the set of possible outcomes of an infinite sequence of coin

tosses is uncountable. If the tosses are independent and each have probability 0.5 of

coming up heads, then the probability of any infinite sequence of heads-tails values

is zero. But sets of sequences — for example, the set of sequences where the first

toss comes up heads — obviously have nonzero probabilities.

24



Chapter 2. Background

Thus, in general, we need to assign probabilities directly to sets of outcomes. For

any given scenario, we define an event space F that is a subset of the power set of

Ω. Sets in F are called measurable sets. An event space is required to be a σ-field :

that is, if A ∈ F then (Ω \ A) ∈ F , and if A1, A2, . . . is a countable sequence of

sets in F then
⋃∞

i=1Ai ∈ F (these conditions imply that F is also closed under

countable intersections). A pair (Ω,F ) where Ω is a non-empty set and F is a

σ-field of subsets of Ω is called a measurable space.

Generating a σ-field. If A is a set of subsets of Ω, we write σ(A ) for the σ-field

generated by A : that is, the smallest σ-field on Ω that is a superset of A . Intuitively,

σ(A ) is the set of sets that can be generated by starting with the elements of A

and repeatedly taking complements and countable unions and intersections. If a set

A is such that σ(A ) = F , then we say that A generates F , or that A is a basis

for F .

Discrete spaces. A measurable space (Ω,F ) is discrete if Ω is countable (i.e.,

finite or countably infinite) and F is the power set of Ω. In this case, F is generated

by the singleton sets {ω} for ω ∈Ω.

Product spaces. If we have a set of measurable spaces {(Ωi,Fi)}i∈ I indexed by

an index set I, then the product space ×(i∈ I)(Ωi,Fi) is a measurable space (Ω,F )

defined as follows. The outcome set Ω is the set of functions ω : I →
⋃

(i∈ I) Ωi

such that ω(i) ∈ Ωi for each i∈ I. We will often think of such an outcome ω as

a tuple indexed by I, and write ωi rather than ω(i). The event space F is the

σ-field generated by the sets of the form {ω : ωi ∈ A} for i∈ I and A∈Fi. By

convention, if the index set I is empty, then Ω contains just the empty set, which

can be interpreted as a function with an empty domain. The coordinate random

25



Chapter 2. Background

variables on ×(i∈ I)(Ωi,Fi) are a set of variables {Xi}(i∈ I) such that Xi(ω) , ωi.

2.2.2 Probability measures

A probability measure (or probability distribution) on a measurable space (Ω,F ) is

a function P : F → [0, 1] such that:

• P (∅) = 0;

• P (Ω) = 1;

• if A1, A2, . . . are disjoint sets in F , then P (
⋃∞

i=1Ai) =
∑∞

i=1 P (Ai).

Note that if (Ω,F ) is discrete, then every set A∈F can be expressed as a

countable disjoint union of singleton sets in F : A =
⋃

(ω ∈A){ω}. Thus, a probability

measure on (Ω,F ) is fully determined by the probabilities assigned to singleton sets.

So we can define a discrete probability distribution on Ω as a function P : Ω→ [0, 1]

such that
∑

(ω ∈Ω) P (ω) = 1. Then any discrete probability distribution on Ω defines

a probability measure on (Ω,F ).

2.2.3 Random variables

A random variable on (Ω,F ) is a measurable functionX : Ω→ SX , where SX is a set

of possible values equipped with a σ-field SX . The value set SX will also be denoted

range (X). The requirement that X be measurable means that the preimages of

measurable sets must be measurable: that is, for each A∈SX , {ω : X(ω)∈A} is

in F . We will write {X ∈A} and {X =x} as abbreviations for the events {ω :

X(ω)∈A} and {ω : X(ω) = x}.

As an example, suppose Ω is the set of outcomes of an infinite sequence of coin

tosses, so each ω ∈ Ω is a sequence (ci)
∞
i=1 where each ci ∈ {H,T}. A natural event

26



Chapter 2. Background

space for Ω is the σ-field generated by the events {(ci)∞i=1 : cn = H} for n = 1, 2, . . ..

Given this event space, we can define random variables Xn for n = 1, 2, . . . such that

Xn ((ci)
∞
i=1) = cn. The range of these random variables is the set {H,T}, with its

power set as its σ-field. We can also define random variables Hn yielding the number

of heads in the first n tosses. The range of Hn is {0, 1, . . . , n}, again with the power

set as the σ-field.

A distribution for a random variable X is a probability measure on (SX ,SX).

Any probability measure P on (Ω,F ) induces a distribution for X, which we will

denote P (X) or simply PX , such that PX(A) , P ({ω : X(ω) ∈ A}) for each

A∈SX . The requirement that X be a measurable function on (F ,Ω) ensures that

P ({ω : X(ω) ∈ A}) is well-defined. For a brief proof that the function PX defined

this way is indeed a probability measure on (SX ,SX), see Billingsley [1995], pages

185–186. We will sometimes call PX the marginal distribution for X under P . Note

that if X is discrete — that is, its value space (SX ,SX) is discrete — then PX can

be represented as a function on individual elements of SX (rather than events).

The idea of an induced distribution can be extended to sets of random vari-

ables. We will represent such sets with bold letters, such as X. If X is a set of

random variables on (Ω,F ), then their joint value space is range (X) , (SX,SX) ,

×(X ∈X)(SX ,SX). We can actually regard X as one big random variable on (Ω,F ):

thus, X(ω) is that element σ of SX such that σX = X(ω) for each X ∈X. The

definition of the σ-field for a product space (see Section 2.2.1) ensures that the

function X defined this way is measurable. It follows that any probability measure

P on (Ω,F ) induces a joint distribution for X, denoted P (X) or PX, such that

PX(A) , P ({ω : X(ω)∈A}) for each A∈SX.

27



Chapter 2. Background

2.2.4 Instantiations

An instantiation of a set of variables X is an assignment of values to the variables

in X. More formally, an instantiation of X is a function σ : X →
⋃

(X ∈X) SX such

that σ(X) ∈ SX for each X ∈X. Another way to say this is that σ is an element

of the product space range (X) , ×(X ∈X)(SX ,SX). Continuing our convention for

product spaces, we will write σX instead of σ(X) for the value that σ assigns to X.

We will write vars (σ) for the set of variables to which σ assigns a value. Thus,

σ is an instantiation of vars (σ). If vars (σ) is a subset of some given set of variables

V , then will say that σ is an instantiation on V ; this use of the preposition “on”

is motivated by the fact that such an instantiation is a partial function on V . An

instantiation σ on V is finite if vars (σ) is finite, and complete if vars (σ) = V .

Each outcome ω ∈Ω corresponds to a unique instantiation of a set of variables X:

the instantiation σ such that σX = X(ω) for each X ∈X. Conversely, an instantia-

tion σ corresponds to an event ev (σ) , {ω ∈Ω : X(ω) = σX for all X ∈ vars (σ)}.

We will often just write σ instead of ev (σ) when no confusion is likely: for in-

stance, we will write P (σ) instead of P (ev (σ)). An outcome ω is consistent with σ

if ω ∈ ev (σ), or in other words, X(ω) = σX for all X ∈ vars (σ). Note that an in-

stantiation may not be consistent with any outcome, in which case its corresponding

event is the empty set.

Instantiations play a major role in this thesis, so we introduce quite a bit of ter-

minology and notation for talking about them. We will write σ[Y] for the restriction

of σ to a set of variables Y, and σ−Y for the restriction of σ to vars (σ)\Y . These are

examples of sub-instantiations of σ: instantiations τ such that vars (τ) ⊆ vars (σ)

and τX = σX for X ∈ vars (τ). Note that if τ is a sub-instantiation of σ, then σ

asserts at least as much as τ does, so ev (σ) ⊆ ev (τ). Conversely, an extension of

σ is an instantiation that has σ as a sub-instantiation. The empty instantiation is

28



Chapter 2. Background

denoted >; it has the properties vars (>) = ∅ and ev (>) = Ω.

Two instantiations σ and τ are contradictory if there is some variable X ∈

vars (σ)∩ vars (τ) such that σX 6= τX . If σ and τ are not contradictory, then we will

write (σ; τ) for the conjunction of σ and τ . Thus, ev (σ; τ) = ev (σ)∩ev (τ). If σ and

τ are contradictory, we will still allow ourselves to use the expressions ev (σ; τ) and

P (σ; τ): in this case, we interpret ev (σ; τ) as ∅, so P (σ; τ) = 0. Finally, if σ1, σ2, . . .

is a sequence of non-contradictory instantiations, we will write ∧iσi to denote the

conjunction of all these instantiations. That is, vars (∧iσi) =
⋃∞

i=1 vars (σi), and for

every X ∈ vars (∧iσi), the value that ∧iσi assigns to X is that x such that (σi)X = x

for some i. This x is unique because the instantiations σi are non-contradictory.

2.2.5 Defining probability measures

Suppose we specify some constraints on a probability measure over a given measur-

able space. It is natural to ask under what circumstances there exists a probability

measure satisfying these constraints, and under what circumstances this probability

measure is unique. The uniqueness question is addressed by the following theorem:

Theorem 2.1 (Theorem 3.3 of [Billingsley, 1995]). Suppose A is a set of

subsets of Ω that is closed under intersection (that is, if A∈A and B ∈A then

A ∩ B ∈ A ) and that generates F . Then any two probability measures that agree

on A agree on all elements of F .

Thus, if we specify the probabilities of all the events in a set A satisfying the

conditions of this theorem, then there is at most one probability measure satisfying

these specifications.

As to the existence of probability measures, we will limit ourselves to outcome

spaces formed by taking a countable product of countable spaces. Suppose we are

given a countable index set T and a set of measurable spaces {(St,St)}t∈T . Then

29



Chapter 2. Background

we can form the product space ×(t∈T )(St,St), which has coordinate random vari-

ables {Xt}(t∈T ) such that Xt(ω) , ωt. The following theorem (a discrete version

of Kolmogorov’s extension theorem2) states that if we specify the probabilities of

finite instantiations of the coordinate random variables in a consistent way, then

there is a probability measure on the product space that satisfies these probability

specifications.

Theorem 2.2 (Theorem A.7.1 in [Durrett, 1996]). Let T be a countable index

set, and let (Ω,F ) = ×(t∈T )(St,St) where each (St,St) is a discrete measurable

space. Let X0, X1, . . . be any numbering of the coordinate variables on this product

space. For each natural number n ≤ |T |, let fn be a function from the range space

range ({X0, . . . , Xn−1}) to [0, 1]. Suppose that f0(>) = 1, and for all natural numbers

n < |T | and all instantiations σ ∈ range ({X0, . . . , Xn−1}),

∑
xn ∈ range(Xn)

fn+1(σ;Xn =xn) = fn(σ) (2.1)

Then there is a unique probability measure P on (Ω,F ) such that P (σ) = fn(σ) for

each natural number n ≤ |T | and each σ ∈ range ({X0, . . . , Xn−1}).

Note that the uniqueness part of this theorem actually follows from Theorem

2.1, with A consisting of the empty set and all instantiations σ for which vars (σ) =

{X0, . . . , Xn−1} for some n.

In some cases, it is also possible to define a probability measure P on (Ω,F ) by

defining a probability measure Q on the value space (SX ,SX) of a random variable

X, and then defining P as the unique probability measure on (Ω,F ) that induces

Q. Obviously, the random variable X must have some special properties in order

2Kolmogorov’s theorem is usually stated with the assumption that the component spaces in the
infinite product are all (R,B). However, the theorem still holds if we assume all the component
spaces are standard Borel spaces, a class that includes all discrete spaces and all Borel subsets of
Rn (for any n) with their Borel σ-fields (see [Durrett, 1996], p. 33).

30



Chapter 2. Background

for this P to be well-defined. In general, a random variable X depends only on

certain aspects of an outcome ω, so there are many probability measures on (Ω,F )

that yield the measure Q on (SX ,SX). On the other hand, if Q assigns positive

probability to some elements of SX that do not actually serve as values of X for any

ω ∈Ω, then there is no probability measure on (Ω,F ) that induces Q. The following

proposition gives conditions under which Q is induced by exactly one probability

measure.

Proposition 2.3. Let (Ω,F ) be a measurable space, let X be a random variable on

(Ω,F ) with value space (SX ,SX), and let Q be a probability measure on (SX ,SX).

Further suppose that both of the following conditions hold:

i. the preimages of events in SX , denoted X−1(B) for B ∈SX , generate F ;

ii. there is some event S∗X ∈SX such that Q(S∗X) = 1 and for all x∈S∗X , X−1(x) 6=

∅.

Then there is a unique probability measure P on (Ω,F ) such that Q is the distribution

of X under P .

Proof. Let S∗X be an event that satisfies the conditions in (ii), and let S ∗
X be the set

of events in SX that are subsets of S∗X . Because S∗X ∈ SX , we know S ∗
X is a σ-field,

and thus (S∗X ,S
∗
X) is a measurable space.

By (ii), each value x∈S∗X has a non-empty preimage X−1(x). So we can define

a function h : (S∗X ,S
∗
X) → (Ω,F ) such that for each x∈S∗X , h(x) is an arbitrary

element of X−1(x). We claim that h is measurable. Since the events of the form

X−1(B) for B ∈SX generate F , it suffices to show that the events of the form

h−1(X−1(B)) are S ∗
X-measurable. To see this, first consider individual elements

x∈SX . Since the sets X−1(x) are disjoint for distinct x, there cannot be any x′ 6= x

31



Chapter 2. Background

such that h(x′) ∈ X−1(x). So:

h−1(X−1(x)) =

 {x} if x∈S∗X
∅ otherwise

Therefore, for any B ∈SX , we have h−1(X−1(B)) = B ∩ S∗X , which is an event in

S ∗
X .

So we can regard h as a random variable from (S∗X ,S
∗
X) to (Ω,F ). We have a

probability measure Q on (SX ,SX), and by assumption (ii), we know this measure

assigns probability one to S∗X as well. So as discussed earlier in this section, there

is a unique probability measure P on (Ω,F ) such that P (A) = Q(h−1(A)) for each

A∈F .

We will now check that Q is indeed the distribution of X under this P . Consider

any B ∈SX . Because X is measurable, we know X−1(B) is an element of F .

So by the way we defined P , P (X−1(B)) = Q(h−1(X−1(B))). As we argued above,

h−1(X−1(B)) = B∩S∗X , so we have P (X−1(B)) = Q(B∩S∗X). But since Q(S∗X) = 1,

we know Q(B ∩ S∗X) = Q(B). So P (X−1(B)) = Q(B), as desired.

Finally, assume for contradiction that there is another probability measure P ′

that also induces Q as the distribution for X. By definition, for each B ∈SX ,

P ′(X−1(B)) = Q(B) = P (X−1(B)). By assumption (i), the events of the form

X−1(B) generate F . And this set of events is clearly closed under intersection,

since X−1(B) ∩X−1(B′) = X−1(B ∩ B′). So by Theorem 2.1, P ′ must be identical

to P .

32



Chapter 2. Background

2.2.6 Conditional probability

If P is a probability measure and B is an event such that P (B) > 0, then the

conditional probability of an event A given B is:

P (A|B) ,
P (A ∩B)

P (B)

If P (A) represents our prior degree of belief that A is true, then P (A|B) represents

our posterior belief in A given that we know B. We would also like to speak about our

beliefs regarding a random variable X given that we know the values of some other

variables W: that is, the conditional probability distribution for X given W. Our

treatment of conditional probability distributions will assume that all the variables

involved are discrete, and that the set of variables we are conditioning on is finite.

For a discussion of the complexities that arise in extending these ideas to continuous

variables or infinite sets of variables, see Section 4.1 of Durrett [1996].

Definition 2.10. Let X be a discrete random variable, and let W be a finite set of

discrete random variables. A conditional probability distribution (CPD) for X given

W is a function c : range (X)×range (W)→ [0, 1] such that for each σ ∈ range (W):

∑
x∈ range(X)

c(x, σ) = 1

Just as a probability measure P on (Ω,F ) induces a distribution P (X) for any

random variable X defined on (Ω,F ), it seems that P should also induce a CPD

for any variable X given any finite set of variables W. The induced CPD c should

be defined in terms of the conditional probabilities of events: c(x, σ) = P (X =x|σ).

However, this conditional probability is only defined when P (σ) > 0. Thus, a proba-

bility measure P does not fully specify the CPD for X given W when some instanti-

ations of W have probability zero. We can only speak of versions of the conditional

33



Chapter 2. Background

distribution P (X|W).

Definition 2.11. Let P be a probability measure on a measurable space (Ω,F ). Let

X be a discrete random variable defined on (Ω,F ), and let W be a finite set of

such variables. Then a CPD c for X given W is a version of P (X|W) if, for every

σ ∈ range (W) with P (σ) > 0 and every x∈ range (X):

c(x, σ) = P (X =x|σ)

One consequence of this definition is that if c is a version of P (X|W), then:

P (σ)c(x, σ) = P (σ)P (X =x|σ)

This equation holds because the only case when c(x, σ) may not be equal to P (X =x|σ)

is when P (σ) = 0, and then both sides of the equation are zero anyway. Further-

more, a simple manipulation of the definition of conditional probability shows that

P (X =x|σ)P (σ) = P (σ;X =x). Thus, whenever c is a version of P (X|W), we have:

P (σ)c(x, σ) = P (σ;X =x) (2.2)

2.2.7 Independence

It may be that under a probability measure P , a certain event A provides no informa-

tion about another event B: that is, the conditional probability P (B|A) is equal to

the prior probability P (B). By the definition of conditional probability, this implies

that P (A ∩ B) = P (A)P (B). Moving P (B) into the denominator on the left hand

side, we then find that P (A) = P (A|B), which is the same as our initial statement

but with the roles of A and B reversed. When A and B have these properties, we

say that they are independent.

34



Chapter 2. Background

Definition 2.12. Two events A and B are independent under a probability distri-

bution P , denoted A⊥⊥P B, if P (A ∩B) = P (A)P (B).

Thus, independence allows us to factor the probability of a conjunction of events,

expressing it in terms of the probabilities of individual events. If P (A) = 0, then

A is independent of all events B, since P (A ∩ B) = P (A)P (B) = 0. The notion of

independence can be extended to random variables as follows.

Definition 2.13. Let X and Y be sets of discrete random variables defined on an

outcome space (Ω,F ), and let P be a probability measure on (Ω,F ). Then X is

independent of Y under P , denoted X⊥⊥P Y, if P (σ; τ) = P (σ)P (τ) for every finite

instantiation σ on X and every finite instantiation τ on Y.

It may seem arbitrary to define independence for infinite sets of variables just

in terms of finite instantiations, but in fact this criterion can be derived from a

more general definition that deals with independence of σ-fields; see Section 1.4

(particularly Theorem 1.4.2) in Durrett [1996]. If we wish to talk about a single

random variable X being independent of a set of variables Y, we will simply write

X ⊥⊥P Y in place of the more pedantic {X}⊥⊥P Y. Also, for an event B ∈F , we

will take X⊥⊥P B to mean that X is independent of the indicator variable for B:

that is, the variable 1B such that 1B(ω) is equal to 1 if ω ∈ B, and zero otherwise.

Two events may also be conditionally independent given another event.

Definition 2.14. Let P be a probability measure, and let C be an event such that

P (C) > 0. Two events A and B are conditionally independent given C under P ,

denoted A⊥⊥P B |C, if P (A ∩B|C) = P (A|C)P (B|C).

When all the events involved have positive probabilities, saying that A and B

are conditionally independent given C is equivalent to saying that P (A|B,C) =

P (A|C), or that P (B|A,C) = P (B|C). For discrete random variables, the definition

of conditional independence is as follows.

35



Chapter 2. Background

Definition 2.15. Let X, Y and Z be three sets of random variables defined on an

outcome space (Ω,F ) such that Z is finite, and let P be a probability measure on

(Ω,F ). Then X and Y are conditionally independent given Z under P , denoted

X⊥⊥P Y |Z, if for every finite instantiation σ on X, every finite instantiation τ on

Y, and every instantiation ρ of Z such that P (ρ) > 0:

P (σ; τ |ρ) = P (σ|ρ)P (τ |ρ) (2.3)

2.3 Graphs and numberings

2.3.1 Directed graphs

A directed graph G is a pair (V,E), where V is an arbitrary set of nodes or vertices,

and E ⊆ V × V is a set of edges. Each edge is a pair (u, v) where u, v ∈V , and

is drawn as an arrow from u to v. Note that an edge (u, v) may be a self-loop in

which u = v. The parents of a node v, denoted Pa(v), are those nodes u∈V such

that (u, v) ∈ E. A path of length n is a sequence of nodes v0, v1, . . . , vn such that

(vi, vi+1) ∈ E for each i < n. Note that the length of a path is measured by counting

edge traversals rather than visits to nodes; a single node v0 constitutes a path of

length zero. An infinite path is an infinite sequence of nodes v0, v1, . . . such that

(vi, vi+1) ∈ E for each i∈N. A cycle is a finite path whose first and last element

are the same. We will say that a directed graph is cyclic if it contains a cycle, and

acyclic otherwise.

The ancestors of a node v, denoted Anc(v) are those nodes u such that there is a

path from u to v. Similarly, the descendants of v, denoted Desc(v), are those nodes

u such that there is a path from v to u. The paths used in these definitions may

have length zero, so any node v is both an ancestor and a descendant of itself. The

36



Chapter 2. Background

set of nondescendants of v is NonDesc(v) , V \ Desc(v); this set cannot contain v.

We also define the strict ancestors of v, denoted StrictAnc(v), to be the set of nodes

u such that there is a non-zero-length path from u to v. The strict descendants of

v are defined analogously. Thus, the only way v can be a strict ancestor or strict

descendant of itself is if it is part of a cycle.

A set of nodes S ⊆ V is an ancestral set if it is closed under the parent relation:

that is, for each v ∈S, Pa(v) ⊆ S. Note that a set NonDesc(v) is always an ancestral

set, since if u is a nondescendant of v, then all parents of u are nondescendants of v

as well.

2.3.2 Topological numberings

A numbering of a set V is a bijection π between V and some prefix of the natural

numbers: this will be a finite prefix {0, 1, . . . , n} if V is finite, and the whole set N

if V is infinite. Thus π(v) is the number assigned to an element v, and we can list

the elements of V as v0, v1, v2, . . . in order of their numbers. The predecessors of an

element v under π are denoted Predπ[v].

Definition 2.16. A topological numbering of a directed graph G = (V,E) is a

numbering π of V such that for each (u, v)∈E, π(u) < π(v).

It is a standard result that if G is finite and acyclic, then it has a topological

numbering. And if G is not countable, then clearly it has no topological numbering.

But the case where G is countably infinite is more interesting. Figure 2.1 shows

two infinite graphs that do not have topological numberings, even though they are

acyclic. Note that these graphs do have topological orderings, but certain nodes

— all the nodes in graph (a), and node Y in graph (b) — have infinitely many

predecessors in all such orderings. A topological numbering could not assign any

finite number to these nodes.

37



Chapter 2. Background

X-3

X-2

X-1

X0

(a)

X0 X1 X2

Y

(b)

Figure 2.1: Two acyclic graphs that do not have topological numberings.

To ensure that a countably infinite graph has a topological numbering, we have

to add another requirement beyond acyclicity: every node must have finitely many

ancestors. This fact is a graph-theoretic version of a well-known result in the theory

of order relations (see, for example, Exercise 2.15.1 in Fräıssé [2000]). But rather

than presenting all the necessary background in order theory, we give a self-contained

proof below.

Theorem 2.4. Let G = (V,E) be a directed graph in which V is countable. There

exists a topological numbering of G if and only if G is acyclic and every node in G

has finitely many ancestors.

Proof. Suppose G is acyclic and every node in G has finitely many ancestors. First,

let π0 be an arbitrary numbering of V ; this exists since V is countable. Then

38



Chapter 2. Background

construct a topological numbering v0, v1, v2, . . . of V inductively as follows: for each

natural number n < |V |, let vn be the lowest-numbered node in π0 such that vn /∈

{v0, . . . , vn−1}, but every parent of vn is in {v0, . . . , vn−1}.

We need to check that such a node vn exists for each n < |V |. Suppose it does

not: that is, every node in V \{v0, . . . , vn−1} has a parent in V \{v0, . . . , vn−1}. Then

we can construct an infinite (possibly repeating) sequence of variables u1, u2, . . . in

V\{v0, . . . , vn−1} such that ui+1 is a parent of ui for each i. If the same node occurs

at two different indices i and j in this sequence, then ui, . . . , uj forms a cycle; if the

sequence is non-repeating, then u0 has infinitely many ancestors. Both of these cases

are ruled out by our hypotheses. So a node vn with the desired properties must exist.

We also need to check that this numbering v0, v1, . . . includes every node in V . By

hypothesis, every node has finitely many ancestors, so we can proceed by induction

on the size of a node’s strict ancestor set. If a node w has zero strict ancestors, then

at any step in the construction where w /∈ {v0, . . . , vn−1}, w is eligible to be chosen

as vn. Nodes are chosen according to the numbering π0, so at most π0(w) nodes can

be chosen before w. Thus, w must eventually be chosen. Now assume all nodes w

with |StrictAnc(w)| ≤ m are included in v0, v1, . . ., and consider a variable w with

m + 1 strict ancestors. If u is a strict ancestor of w, then StrictAnc(u) must be a

proper subset of StrictAnc(w): in particular, u cannot be in StrictAnc(u), because

the graph is acyclic. So by the inductive hypothesis, u is included in v0, v1, . . .. Since

this holds for each u∈ StrictAnc(w) and StrictAnc(w) is finite, it follows that there is

some n such that {v0, . . . , vn−1} includes all of StrictAnc(w). So w must be included

in the sequence v0, v1, . . . with an index less than or equal to n+ π0(w).

For the converse, suppose π is a topological numbering of G. Assume for contra-

diction that G contains a cycle v1, v2, . . . , vn with v1 = vn. Then by the definition of

a topological ordering, π(vi) < π(vi+1) for all i < n. But this implies π(v1) < π(v1),

which is impossible. Now suppose G contains a node v with infinitely many ances-

39



Chapter 2. Background

tors. The fact that π is topological implies π(u) < π(v) for each strict ancestor u of

v. But then there are infinitely many elements of V with numbers less than π(v).

Given that π is a bijection, this is also impossible.

2.3.3 König’s infinity lemma

Theorem 2.4 makes use of the condition that every node in a graph G has finitely

many ancestors. However, it is not always obvious whether a specified graph satisfies

this condition or not. In this section, we provide an equivalent condition that may

be simpler to check. An infinite receding chain in a directed graph G = (V,E) is

an infinite sequence v0, v1, . . . of distinct elements of V , such that vi+1 is a parent of

vi for each i. For example, the entire graph in Figure 2.1(a) is an infinite receding

chain. The main result of this section is that in a graph G, every node has finitely

many ancestors if and only if G contains no infinite receding chains and every node

has finitely many parents.

This fact is a straightforward consequence of König’s infinity lemma [König,

1926]. The simplest statement of this lemma says that if G is an infinite, connected,

undirected graph in which every node has finitely many neighbors, then G contains

an infinite path [König, 1927; Franchella, 1997]. For our purposes, however, it is

more convenient to use a version of the lemma that deals with a directed relation.

The following statement is adapted from Nash-Williams [1967].

Theorem 2.5 (König’s Lemma). Let S0, S1, . . . be an infinite sequence of disjoint,

non-empty, finite sets of nodes in a directed graph G = (V,E). Suppose that for each

natural number i, each node in Si+1 is a parent of some node in Si. Then G contains

an infinite receding chain v0, v1, . . . where vi ∈ Si for each i.

König’s lemma allows us to prove the following proposition.

40



Chapter 2. Background

Proposition 2.6. In a directed graph G, every node has finitely many ancestors if

and only if G contains no infinite receding chains and every node in G has finitely

many parents.

Proof. The “only if” direction is trivial: if every node in G has finitely many ances-

tors, then clearly every node has finitely many parents, and there can be no infinite

chain because the nodes in such a chain would have infinitely many ancestors. For

the “if” direction, suppose G contains no infinite receding chain and every node in

G has finitely many parents. Then consider any node v; we will show that v has

finitely many ancestors.

To fit the conditions of König’s lemma, define a sequence of sets S0, S1, . . . where

Si is the set of nodes u such that there is a path from u to v of length i and not

of any shorter length. By definition, for every u∈Anc(v), there is a path of some

length from u to v. So {S0, S1, . . .} is a partition of Anc(v). Note that every node in

Si+1 is a parent of some node in Si, since a node with a length-(i+1) path to v must

have a child with a length-i path to v. Also, the set S0 is necessarily finite because

it consists only of v itself. And if Si is finite then so is Si+1, because each node in

Si has only finitely many parents. So by induction, all the sets S0, S1, . . . are finite.

Also, we know that G contains no infinite receding chain. Thus, by König’s lemma,

the only possibility is that Si is empty for some i. This implies that Sj is empty

for all j > i, and thus Anc(v) can be partitioned into a finite sequence of finite sets

S0, . . . , Si−1. So Anc(v) is finite.

41



Chapter 2. Background

2.4 Bayesian networks

2.4.1 Introduction

If we want to specify a joint distribution for a set of random variables, then in

principle we can just list all the complete instantiations and specify a probability for

each one (assuming the number of variables is finite and each has a finite range).

As long as the probabilities we specify add up to one, then this specification will

indeed define a unique distribution. However, this approach is not feasible for real-

world scenarios: the number of probabilities one must specify grows exponentially

with the number of variables. This is a problem both computationally, because the

model will take exponential space and require exponential time to answer queries,

and statistically, because the number of probabilities to estimate from data will be

exponentially large.

Bayesian networks (BNs) [Pearl, 1988; Cowell et al., 1999] (also called belief

networks or directed graphical models) allow a modeler to avoid this exponential

blow-up by exploiting independence properties. We will introduce BNs with the

following simple example, first used by Pearl [1988].

Example 2.1. Suppose I have a home alarm system that is designed to be triggered

by would-be burglars, but can also be set off by small earthquakes, which are common

where I live. If my alarm goes off while I am at work, my neighbors John and Mary

may call to let me know. My beliefs about this scenario can be be formalized with a

probability distribution over the product space of five variables: Burglary, Earthquake,

Alarm, JohnCalls, and MaryCalls. Each of these variables is Boolean, taking values in

the set {T,F}.

Figure 2.2 shows a BN for this example. A BN consists of two parts, the BN

structure and the conditional probability distributions (CPDs). The BN structure

42



Chapter 2. Background

Burglary

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

0.990.01

P(B = F)P(B = T)

Alarm

0.050.95TT

0.060.94FT

0.710.29TF

F

B

F

E

0.9990.001

P(A = F)P(A = T)

JohnCalls

0.10.9T

0.950.05F

A P(J = F)P(J = T)

MaryCalls

0.30.7T

0.990.01F

A P(M = F)P(M = T)

Earthquake

0.980.02

P(E = F)P(E = T)

Figure 2.2: A Bayesian network for Example 2.1, including the BN structure and
conditional probability tables.

43



Chapter 2. Background

is a directed graph with a node for each random variable. The edges in the graph

represent probabilistic dependencies, in a sense that we will make precise below. We

will write PaB(X) to denote the parents of a variable X in a BN B.

For each variableX, B specifies a conditional probability distribution (see Section

2.2.6) for X given PaB(X). When X and all its parents have finite ranges, a CPD

for X can be represented as a conditional probability table (CPT) with a row for each

instantiation of PaB(X). This is illustrated in Figure 2.2. Note that in this example,

the CPTs contain only 20 probability values. In fact, since the values in each row

of each CPT must sum to one, this representation has only 10 free parameters. By

contrast, a table listing probabilities for all 32 instantiations of these five binary

variables would have 31 free parameters. Thus, even for this small example, the

BN is considerably more compact than a naive representation. The advantage of

a BN increases with the number of variables: while an explicit representation of a

joint distribution for n k-ary variables has kn − 1 parameters, a BN representation

in which each variable has at most m parents has only O(nkm) parameters.

2.4.2 Syntax and semantics for infinite BNs

We now give a more formal treatment of BN syntax and semantics. We limit ourselves

to discrete random variables, but we allow the number of variables to be infinite.

We require that each variable have finitely many parents: this is because we wish

to continue working with the elementary definition of conditional probability (as

given in Section 2.2.6) rather than a more advanced definition based on σ-fields.

Although the main results about BNs are well known, we give proofs here for two

reasons. First, the standard references [Pearl, 1988; Cowell et al., 1999] do not

deal with infinite sets of variables. Previous treatments of infinite BNs [Jaeger,

1998; Pfeffer, 2000; Kersting and De Raedt, 2001a; Laskey, 2006] have been tied

44



Chapter 2. Background

to particular representation languages, making it awkward to cite their theorems in

other contexts. Second, our development of partition-based models in Chapter 3 will

be analogous to the sequence of results here. Understanding the line of reasoning in

this section should make Chapter 3 easier to understand.

Definition 2.17. A Bayesian network structure over a set of variables V is a directed

graph in which the nodes are the elements of V, and each node has finitely many

parents.

Definition 2.18. Let V be a countable set of discrete random variables that are the

coordinate variables of a product space (Ω,F ). A Bayesian network (BN) B for V

consists of:

• a Bayesian network structure GB over V;

• for each X ∈V, a conditional probability distribution cXB for X given PaB(X).

This definition assumes that the variables in V are all defined on a common

outcome space (Ω,F ), and furthermore that (Ω,F ) is a product space with V as its

coordinate variables (see Section 2.2.1). A BN B for V is a declarative representation

of a probability measure P on (Ω,F ). One assertion B makes about P is that for each

variable X, the CPD cXB is a version of P (X|PaB(X)). However, specifying a version

of P (X|PaB(X)) for each X ∈V typically does not yield a complete specification of

P . This is apparent in a very simple example: suppose B has just two variables, X

and Y , with no edges between them. Then specifying the CPDs for X and Y given

their parents just amounts to specifying the marginal distributions for X and Y ,

and there can be many different probability measures that yield the same marginals

for these two variables. Thus, we define the semantics of a BN not just in terms of

CPDs, but also in terms of independence properties.

45



Chapter 2. Background

Definition 2.19. Let B be a BN over a set of random variables V defined on (Ω,F ).

A probability measure P on (Ω,F ) satisfies B if, for each X ∈V,

i. cXB is a version of P (X|PaB(X)); and

ii. X ⊥⊥P NonDescB(X) |PaB(X).

Thus, in addition to specifying CPDs, a BN asserts the directed local Markov

property [Howard and Matheson, 1984; Kiiveri et al., 1984]: each variable is inde-

pendent of its nondescendants given its parents. A BN is well-defined if there is

exactly one probability measure that satisfies it. The main result of this section is

that if a BN has a topological numbering — or equivalently (by Theorem 2.4), if it

is acyclic and each of its nodes has finitely many ancestors — then it is well-defined.

Thus these BNs perform the desired task of fully defining a probability measure over

the outcome space.

We begin by showing that the local Markov property implies a certain factoriza-

tion property for instantiations whose variables form a finite prefix of a topological

numbering. If B has finitely many variables and has a topological numbering, then

this factorization applies to complete instantations of B’s variables. In fact, this

factorization property for complete instantiations is often used as the definition of

BN semantics [Lauritzen et al., 1990].

Lemma 2.7. Suppose X0, X1, . . . is a topological numbering of a BN B. Let P be a

probability measure that satisfies B. Then for any instantiation σ such that vars (σ)

is a finite prefix of X0, X1, . . .,

P (σ) =
∏

X ∈ vars(σ)

cXB (σX , σ[PaB(X)]) (2.4)

Proof. We proceed by induction on |vars (σ) |. For |vars (σ) | = 0, we just have

P (>) = 1, which is true by the definition of a probability measure. Now sup-

46



Chapter 2. Background

pose Equation 2.4 holds for all instantiations of {X0, . . . , Xn−1}, and consider an

instantiation σ of {X0, . . . , Xn}. If P (σ−Xn) > 0, then the definition of conditional

probability tells us that:

P (σ) = P (Xn =σXn |σ−Xn)P (σ−Xn)

BecauseX0, X1, . . . is a topological numbering of B, we know PaB(Xn) ⊆ {X0, . . . , Xn−1}.

We also know {X0, . . . , Xn−1} ⊆ NonDescB(Xn), so by condition (ii) of Definition

2.19,

P (σ) = P (Xn =σXn |σ[PaB(Xn)])P (σ−Xn)

By condition (i) of Definition 2.19, cXn
B is a version of P (Xn |PaB(Xn)). So:

P (σ) = cXn
B (σXn , σ[PaB(Xn)])P (σ−Xn)

This equation also holds when P (σ−Xn) = 0, because then both sides of the equation

are zero. Now by the inductive hypothesis,

P (σ) = cXn
B (σXn , σ[PaB(Xn)])

∏
X ∈{X0,...,Xn−1}

cXB (σX , σ[PaB(X)])

Moving the cXn
B factor into the product expression yields Equation 2.4, as desired.

Thus, if X0, X1, . . . is a topological numbering for a BN B, then B uniquely

determines the probabilities of all instantiations of finite prefixes ofX0, X1, . . .. Using

Kolmogorov’s extension theorem (Theorem 2.2), we will be able to show that there

is a unique probability measure on B’s outcome space that assigns the specified

probabilities to these instantiations. However, we must also show that assigning the

right probabilities to these instantiations is a sufficient condition for satisfying B.

We do this in two steps. First, we show that if a probability measure P satisfies

47



Chapter 2. Background

Equation 2.4 for all instantiations of prefixes of X0, X1, . . ., then in fact it satisfies

Equation 2.4 for all instantiations of finite, ancestral sets. This is the broadest class of

instantiations σ for which Equation 2.4 even makes sense: vars (σ) must be ancestral

so that σ[PaB(X)] is defined for each X ∈ vars (σ), and vars (σ) must be finite so

that we do not get an infinite product expression, which would yield zero for most

instantiations. Second, we show that if P satisfies Equation 2.4 for all instantiations

of finite, ancestral sets, then it has the CPDs and independence properties necessary

to satisfy B.

Lemma 2.8. Suppose X0, X1, . . . is a topological numbering of a BN B. Let P be

a probability measure on B’s outcome space such that P (σ) satisfies Equation 2.4

whenever vars (σ) is a finite prefix of X0, X1, . . .. Then P (σ) satisfies Equation 2.4

for every instantiation σ such that vars (σ) is a finite, ancestral set in B.

Proof. Consider any instantiation σ such that vars (σ) is a finite, ancestral set in B.

We proceed by induction on the index of the highest-numbered element of vars (σ)

in X0, X1, . . .. The conclusion is trivially true for σ = >; our base case is where the

highest-numbered element of vars (σ) is X0. In this case, vars (σ) is a finite prefix of

X0, X1, . . ., so the conclusion is immediate.

Now suppose the conclusion holds for instantiations whose highest-numbered

variable has index at most n− 1. Let σ be an instantiation of a finite, ancestral set

whose highest-numbered element is Xn. Now let R be the set of instantiations of

{X0, . . . , Xn−1} that do not contradict σ. Because {X0, . . . , Xn−1} and {X0, . . . , Xn}

are both finite prefixes of X0, X1, . . ., we can apply Equation 2.4 to conclude that

for each ρ∈R:

P (ρ;Xn =σXn) = P (ρ) cXn
B (σXn , ρ[PaB(Xn)])

Since vars (σ) is an ancestral set, we know PaB(Xn) ⊆ vars (σ), so ρ[PaB(Xn)] =

σ[PaB(Xn)] for all ρ∈R. Thus we can rewrite the cXn
B factor in our previous equation

48



Chapter 2. Background

without using ρ:

P (ρ;Xn =σXn) = P (ρ) cXn
B (σXn , σ[PaB(Xn)])

Our choice of R ensures that {ev (ρ) : ρ∈R} is a partition of ev (σ−Xn), and

{ev (ρ;Xn =σXn) : ρ∈R} is a partition of ev (σ). So summing over ρ∈R on both

sides of our previous equation yields:

P (σ) = P (σ−Y )cXn
B (σXn , σ[PaB(Xn)])

Then by the inductive hypothesis,

P (σ) = cXn
B (σXn , σ[PaB(Xn)])

∏
X ∈ vars(σ−Xn )

cXB (σX , σ[PaB(X)])

Moving the cXn
B factor into the product expression yields Equation 2.4.

Lemma 2.9. Let B be a BN that has a topological numbering, and let P be a proba-

bility measure on B’s outcome space. If P (σ) satisfies Equation 2.4 for each instan-

tiation σ such that vars (σ) is a finite, ancestral set in B, then P satisfies B.

Proof. Consider any variable X in B. Let x be any value in range (X), ρ be

any instantiation of PaB(X) such that P (ρ) > 0, and σ be any finite instantia-

tion on NonDescB(X). We will show that P (σ;X =x | ρ) = cXB (x, ρ)P (σ|ρ). Let

A =
⋃
{AncB(W ) : W ∈ (vars (σ) ∪ PaB(X))}. Let T be the set of instantiations

τ of A such that τ [PaB(X)] = ρ and τ [vars (σ)] = σ (this is an empty set if σ

contradicts ρ). Thus:

P (ρ;σ;X =x) =
∑
τ ∈T

P (τ ;X =x)

49



Chapter 2. Background

Note that A is an ancestral set. Also, since B has a topological numbering, we

know each node has finitely many ancestors, so A is finite. And PaB(X) ⊆ A, so

both A and A ∪ {X} are finite, ancestral sets. Thus we can apply Equation 2.4

to both τ and (τ ;X =x) for each τ ∈T . We can also be sure that X is not in A:

X is not an ancestor of any variable in vars (σ) because vars (σ) ⊆ NonDescB(X),

and X is not an ancestor of any variable in PaB(X) because B has a topological

numbering and hence is acyclic. So applying Equation 2.4 allows us to conclude that

P (τ ;X =x) = cXB (x, ρ)P (τ). Therefore:

P (ρ;σ;X =x) = cXB (x, ρ)
∑
τ ∈T

P (τ)

Now by our choice of T :

P (ρ;σ;X =x) = cXB (x, ρ)P (ρ;σ)

P (σ;X =x | ρ) = cXB (x, ρ)P (σ|ρ)

This is the equation we set out to prove. Taking σ = > yields P (X =x | ρ) =

cXB (x, ρ). Since this holds for all x∈ range (X) and ρ∈ range (PaB(X)) such that

P (ρ) > 0, we can conclude that cXB is a version of P (X|PaB(X)). Applying this

conclusion to our last equation gives:

P (σ;X =x | ρ) = P (x|ρ)P (σ|ρ)

This holds for any finite instantiation σ on NonDescB(X), so we have the indepen-

dence property X ⊥⊥P NonDescB(X) |PaB(X). Thus, P satisfies B.

Given these lemmas, we now have two conditions on a probability measure P

that are equivalent to the statement that P satisfies a given BN.

50



Chapter 2. Background

Theorem 2.10. Let B be a BN that has a topological numbering, and let X0, X1, . . .

be one such numbering. Let P be a probability measure on B’s outcome space. Then

the following three conditions are equivalent:

1. P satisfies B (in the sense of Definition 2.19).

2. for every instantiation σ such that vars (σ) is a finite prefix of X0, X1, . . ., P (σ)

satisfies Equation 2.4.

3. for every instantiation σ such that vars (σ) is a finite, ancestral set in B, P (σ)

satisfies Equation 2.4.

Proof. By Lemma 2.7, (1) implies (2). By Lemma 2.8, (2) implies (3). And by

Lemma 2.9), (3) implies (1).

We can now use Kolmogorov’s extension theorem to show that for a BN with a

topological ordering, exactly one probability measure satisfies these three equivalent

conditions. This result is given in Section 5.4 of Pfeffer’s thesis [2000] under the

assumption that each variable has a finite range, which removes the need to appeal

to Kolmogorov’s theorem. Kersting and De Raedt [2001b] cover the general case.

Theorem 2.11. If a BN has a topological numbering, then it is well-defined.

Proof. Let B be a BN that has a topological numbering, and let X0, X1, . . . be one

such numbering. Let V be the set of variables in B and (Ω,F ) be B’s outcome space.

We must show that there is a unique probability measure on (Ω,F ) that satisfies

B. By Definition 2.18, (Ω,F ) is a product space with V as its coordinate variables,

so X0, X1, . . . can serve as the numbering of the coordinate variables required by

Kolmogorov’s extension theorem (Theorem 2.2). For each natural number n ≤ |V|,

51



Chapter 2. Background

define a function fn on instantiations of {X0, . . . , Xn−1} as follows:

fn(σ) ,
∏

X ∈ vars(σ)

cXB (σX , σ[PaB(X)])

We must show that these functions fn satisfy the conditions of Theorem 2.2. Since

each fn(σ) is a product of values returned by CPDs, it is clear that fn returns values

in [0, 1]. Also, f0(>) is an empty product, which equals 1. Now consider any natural

number n < |V| and any instantiation σ of {X0, . . . , Xn−1}.

∑
xn ∈ range(Xn)

fn+1(σ;Xn =xn) =
∑

xn ∈ range(Xn)

fn(σ)cXn
B (xn, σ[PaB(Xn)])

= fn(σ)
∑

xn ∈ range(Xn)

cXn
B (xn, σ[PaB(Xn)])

= fn(σ)

The last step here follows from the definition of a CPD (Definition 2.10). So the

functions fn satisfy all the conditions of Theorem 2.2, which implies there is exactly

one probability measure P on (Ω,F ) such that P (σ) = fn(σ) for all n ≤ |V| and all

σ ∈ range ({X0, . . . , Xn−1}). By the definition of fn, P (σ) = fn(σ) just when P (σ)

satisfies Equation 2.4. So by Theorem 2.10 (specifically the fact that condition (2)

implies condition (1)), there is exactly one probability measure that satisfies B.

By Theorem 2.4, we get the following corollary.

Corollary 2.12. If a BN is acyclic and every one of its variables has finitely many

ancestors, then it is well-defined.

Thus, we have identified a class of BNs that are guaranteed to be well-defined.

52



Chapter 2. Background

X

Y

X

0.10.9T

0.90.1F

Y P(X = F)P(X = T)

Y

0.90.1T

0.10.9F

X P(Y = F)P(Y = T)

Figure 2.3: A cyclic BN that is not satisfied by any probability distribution.

2.4.3 Ill-defined BNs

Our well-definedness results or BNs only apply when the network is acyclic and

each of its nodes has finitely many ancestors. It is instructive to see what can go

wrong when these conditions are violated. First, let B be the cyclic BN in Figure

2.3. It turns out that there is no probability measure P such that cXB and cYB are

versions of P (X|Y ) and P (Y |X), respectively. To be consistent with the first row

of X’s CPD, P would need to satisfy P (X =T, Y =T ) = 0.9
0.1
× P (X =F, Y =T ) =

9×P (X =F, Y =T ). And to be consistent with the second row of Y ’s CPD, it would

need to have P (X =F, Y =T ) = 9×P (X =F, Y =F ). So we have P (X =T, Y =T ) =

81×P (X =F, Y =F ). However, the same argument with the second row of X’s CPD

and the first row of Y ’s CPD gives us the opposite conclusion: P (X =F, Y =F ) =

81×P (X =T, Y =T ). These constraints can be satisfied only if P (X =T, Y =T ) and

P (X =F, Y =F ) are both zero — but then the CPDs imply that P (X =T, Y =F )

53



Chapter 2. Background

and P (X =F, Y =T ) are both zero as well, which is impossible since a probability

measure must sum to one.

As another example, consider a BN B that contains an infinite receding chain

X0, X−1, X−2, . . ., as shown in Figure 2.1(a). Suppose all the variables are Boolean

and the CPDs are deterministic: specifically, let cXi
B (T, (Xi−1 =T )) = 1 and let

cXi
B (F, (Xi−1 =F )) = 1. Then there are two probability measures that satisfy B: one

where all the variables are true with probability one, and one where they are all false

with probability one. In general, an infinite receding chain in a BN can be thought

of as a Markov chain with no specified distribution for its initial state. As pointed

out by Pfeffer and Koller [2000], the BN is satisfied by multiple probability measures

whenever this Markov chain has multiple stationary distributions.

2.4.4 Extensions

Most treatments of Bayesian networks allow continuous random variables [Cowell

et al., 1999]. It is fairly straightforward to extend the development we have given

here to handle continuous variables by letting the CPDs define conditional densities,

and letting cB define a probability density for each finite, ancestral set of variables.

We have refrained from using density functions here because we will not be using

them in Chapter 3, where the extension from discrete to continuous variables is more

complicated.

It is also possible to relax the requirement that every variable have finitely many

parents (even without representing the conditions under which dependencies are

active, as we do in Chapter 3). If we allowed infinite parent sets, we would have to

introduce more measure-theoretic machinery to define what it means for cXB to be a

version of P (X|PaB(X)), since individual instantiations of PaB(X) will typically have

probability zero. We would also have to give up topological numberings and instead

54



Chapter 2. Background

use well-founded orderings [Ciesielski, 1997], in which cycles and infinite receding

chains are still disallowed but a variable may have infinitely many predecessors.

Jaeger [1998] outlines this approach, but only gives details for a case where the

variables can be divided into finitely many levels, such that the ancestors of each

variable are in preceding levels. Laskey [2006] gives a well-definedness proof for the

case where for each variable X, there is an upper bound on the length of paths

ending at X. This restriction is slightly stronger than the requirement of a well-

founded topological ordering, which allows a variable to have incoming paths of all

finite lengths.

2.5 Sampling methods for probabilistic inference

Probabilistic inference is the task of computing the posterior probability of an event

given some evidence. Specifically, suppose we are given a probability measure P on

an outcome space (Ω,F ), an evidence event E ∈F with P (E) > 0, and a query

event Q∈F . For instance, in the Bayesian network of Figure 2.2, the evidence

might be represented by the instantiation (JohnCalls = T, MaryCalls = F), and the

query might be (Burglary = T). The inference task, then, is to compute P (Q|E).

We restrict ourselves to discrete outcome spaces throughout this section. Given

this assumption, P (Q|E) can be written as:

P (Q|E) =
P (Q ∩ E)

P (E)
=

∑
ω ∈Q∩E P (ω)∑

ω ∈E P (ω)

In principle, if the set E is finite, we can enumerate all the outcomes ω ∈E and com-

pute these sums directly. But in cases of practical interest, the number of outcomes

consistent with the evidence can be extremely large: in a Bayesian network, it is expo-

nential in the number of unobserved variables. The conditional independence prop-

55



Chapter 2. Background

erties expressed by a BN mitigate this problem to some extent. It is possible to use

dynamic programming algorithms such as variable elimination [Shachter et al., 1990;

Zhang and Poole, 1994] or the junction tree method [Lauritzen and Spiegelhalter,

1988] to do inference on a BN without enumerating each outcome separately. How-

ever, the complexity of these methods is still exponential in the treewidth of the

network, which grows as the graph becomes more highly connected [Dechter, 1999].

Thus, there has been a great deal of interest in approximation algorithms for prob-

abilistic inference. The ones we discuss in this thesis are Monte Carlo algorithms,

based on random sampling (or technically, pseudorandom number generation on a

computer). One popular alternative to Monte Carlo methods is loopy belief propa-

gation [Murphy et al., 1999], but it fails to converge on certain models. Variational

methods [Jordan et al., 1999] are another family of deterministic approximation al-

gorithms. This family includes general-purpose methods for BNs with a certain class

of CPDs [Xing et al., 2003]; for other models, one must attempt to derive equations

by hand.

The general-purpose Monte Carlo methods we discuss below can be applied to

a very wide range of models, and they are guaranteed to converge to correct prob-

abilities if one generates enough samples. They do have drawbacks: convergence

can be slow, and it can be difficult to tell whether convergence has occurred. Still,

sampling-based methods are the best algorithms available for many probabilistic

inference tasks.

2.5.1 Rejection sampling

For any evidence event E with P (E) > 0, we can consider the posterior probability

distribution PE on E such that PE(ω) = P (ω)/P (E). Then P (Q|E) is simply

PE(Q ∩ E). If we can generate samples from PE directly, then we can apply a very

56



Chapter 2. Background

simple algorithm to approximate PE(Q ∩ E): generate a sequence of independent

samples s1, s2, . . . , sN from PE, and estimate PE(Q ∩ E) by the fraction of samples

that are in Q. If we write 1S for the indicator variable that returns 1 on outcomes

ω ∈S and 0 on other outcomes, then we can write this estimate as:

p̂N =
1

N

N∑
n=1

1Q∩E(sn) (2.5)

The strong law of large numbers (see, e.g., Billingsley [1995]) guarantees that with

probability one, p̂N converges to PE(Q ∩ E) (which is the expectation of 1Q∩E) as

N →∞.

In many cases, it is not easy to generate samples directly from PE. In a BN, for

example, the only case where such sampling is straightforward is when the evidence

is just an instantiation of some root nodes. However, we can often generate samples

from the full outcome space Ω according to a proposal distribution q such that PE(ω)

is proportional to q(ω) for ω ∈E. For example, q might be the prior distribution P .

Then we can approximate PE(Q ∩ E) using the rejection sampling method [Rubin-

stein, 1981]. The idea is to reject samples that fall outside of E, and compute our

estimate based only on samples in E. Specifically, the estimate of PE(Q ∩ E) after

N samples is:

p̂N =


0 if

∑N
n=1 1E(sn) = 0∑N

n=1 1Q∩E(sn)∑N
n=1 1E(sn)

otherwise
(2.6)

The following proposition states that these estimates converge as desired.

Proposition 2.13. Let q be a probability measure on a countable set Ω, and PE

be a probability measure on a subset E ⊆ Ω such that q(E) > 0 and PE(ω) is

proportional to q(ω) for ω ∈E. Suppose s1, s2, . . . is a sequence of outcomes sampled

57



Chapter 2. Background

independently according to q. Then for any query event Q ⊆ Ω, the estimates p̂N

defined in Equation 2.6 converge with probability one to PE(Q ∩ E) as N →∞.

Proof. By the strong law of large numbers,
∑N

n=1 1E(sn) converges with probability

one to q(E). Since q(E) > 0, this implies that with probability one, this sum

exceeds zero after some number of samples. After that point, p̂N is given by the

ratio in the second part of Equation 2.6. The numerator in this ratio converges with

probability one to q(Q ∩ E), and the denominator converges with probability one

to q(E). Therefore the ratio converges with probability one to q(Q∩E)
q(E)

. We know

PE(E) = 1, so the proportionality constant β such that PE(ω) = βq(ω) must be

1
q(E)

. So q(Q∩E)
q(E)

= PE(Q ∩ E).

There is a simple method, sometimes called logic sampling [Henrion, 1988], for

applying rejection sampling to any finite Bayesian network B that has a topological

numbering. We let the sampling distribution q be the prior distribution PB defined by

the network. Assume that for each variable X in B, we have a function Sample that

takes in an instantiation of X’s parents and returns a sample from X’s CPD given

these parent values. Then we can generate a sample from PB by iterating over the

variables in some topological order, and using Sample to sample a value for each one

given the values already assigned to its parents. The result is a complete instantiation

of the variables, which (in a discrete BN) corresponds to a single outcome. Given

this procedure for sampling from PB, we can use the rejection sampling formula in

Equation 2.6 to approximate PB(Q|E).

In fact, we can remove the requirement that B be finite, as long as the evidence

and query events are expressed as instantiations of finite sets of random variables.

That is, E = ev (e) for some instantiation e of a finite set of evidence variables VE,

and Q = ev (q) for some instantiation q of a finite set of query variables VQ. In

this case, we can construct a BN B′ from B by including just the query and evidence

58



Chapter 2. Background

variables and their ancestors: that is, the set of variables V ′ = AncB(VE)∪AncB(VQ).

It is clear by Lemma 2.7 that B′ assigns the same probabilities to all instantiations

of V ′ as B does. This observation is similar to Shachter’s [1986] insight that barren

nodes — that is, nodes that do not have any children — can be removed from a BN

without affecting the joint distribution for the remaining variables.

Since we are assuming that B has a topological numbering, we know by Theo-

rem 2.4 and Proposition 2.6 that each query or evidence variable has finitely many

ancestors. Thus V ′ is finite. So we can apply rejection sampling to B′ to compute

an approximation to PB′(q|e); this result will also be an approximation to PB(q|e).

Thus, rejection sampling can be applied to any discrete BN that has a topological

numbering. In principle, the estimates obtained from rejection sampling converge to

the desired posterior probabilities. In practice, however, this convergence can be so

slow as to make the algorithm useless. The problem is that the estimates only take

into account samples that happen to land in E; the probability of this occurring

on any given sample is q(E). If our proposal distribution is the prior probability

distribution for a BN B, then q(E) is the prior probability PB(E). But in many

cases, the probabilities of individual evidence instantiations decrease exponentially

with the number of observed variables. For instance, if E represents an observed

sequence of words that make up an English sentence, the probability of the sequence

under the model can easily be 10−20 or smaller. This means that even if we are

generating 100,000 samples per second, we will get one sample in E approximately

every 30 million years.

2.5.2 Importance sampling and likelihood weighting

One way to achieve faster convergence than rejection sampling is to use a proposal

distribution q that puts more probability mass on E. To create such a q that we

59



Chapter 2. Background

can sample from efficiently, we may need to sacrifice the property that q(ω) is pro-

portional to PE(ω) for ω ∈E: we may need to use a q that is biased toward certain

portions of E. We can compensate for such bias by weighting the samples that we

get, yielding an importance sampling algorithm [Rubinstein, 1981].

If we generate N samples s1, s2, . . . , sN from q and use a weight function w(ω)

that returns zero for ω /∈ E, we get a weighted estimate of PE(Q ∩ E):

p̂N =


0 if

∑N
n=1w(sn) = 0∑N

n=1 1Q∩E(sn)w(sn)∑N
n=1w(sn)

otherwise
(2.7)

It turns out that to make p̂N converge to PE(Q ∩ E), it suffices to let w(ω) be pro-

portional to PE(ω)
q(ω)

for outcomes ω ∈E, and 0 on other outcomes. Rejection sampling

is the special case where w(ω) is constant on E; the requirement that w yield zero

on outcomes outside E means that those outcomes are effectively rejected.

Theorem 2.14. Let q be a probability measure on a countable set Ω, and PE be a

probability measure on a subset E ⊆ Ω such that q(E) > 0. Let w : Ω → R be a

function such that for some constant β > 0,

w(ω) =


βPE(ω)

q(ω)
for ω ∈E

0 otherwise.
(2.8)

Suppose s1, s2, . . . is a sequence of outcomes sampled independently according to q.

Then for any query event Q ⊆ Ω, the estimates p̂N defined in Equation 2.7 converge

with probability one to PE(Q ∩ E) as N →∞.

Proof. By the strong law of large numbers,
∑N

n=1w(sn) converges with probabil-

ity one to the expectation
∑

(ω ∈Ω)w(ω)q(ω). By Equation 2.8, this is equal to

β
∑

(ω ∈E) PE(ω), which is simply equal to β since PE is a discrete probability mea-

60



Chapter 2. Background

sure on E. Since β > 0, it follows that with probability one, the second case in Equa-

tion 2.7 applies after some number of samples. In this case, p̂N =
PN

n=1 1Q∩E(sn)w(sn)PN
n=1 w(sn)

.

We already know that the denominator in this ratio converges with probability one

to β. The numerator converges with probability one to
∑

(ω ∈Ω) 1Q∩E(ω)w(ω)q(ω),

which is equal to β
∑

(ω ∈Q∩E) PE(ω) = βPE(Q ∩ E). Therefore, the ratio converges

with probability one to PE(Q ∩ E).

There is a simple and elegant way to apply importance sampling to a BN, called

likelihood weighting [Fung and Chang, 1990; Shachter and Peot, 1990]. Consider a

finite BN B over a set of variables V , and assume it has a topological numbering.

As above, we assume E corresponds to an instantiation e of some evidence variables

VE ⊆ V. In the likelihood weighting algorithm, we sample complete instantiations

from the BN as described in the previous section, except that whenever we reach a

variable X ∈VE, we deterministically set it to its observed value eX . This means

that every sample we generate is consistent with the evidence.

Clearly, we are no longer sampling from the prior distribution PB with this al-

gorithm. Instead, the probability of sampling an outcome ω includes factors for the

unobserved variables only:

q(ω) =
∏

X ∈V\VE

cXB (X(ω),PaB(X)(ω))

We also know that by Lemma 2.7 (and the fact that in a discrete BN, there is a

one-to-one correspondence between outcomes and complete instantiations):

PE(ω) =

∏
X ∈V c

X
B (X(ω),PaB(X)(ω))

PB(E)

61



Chapter 2. Background

Therefore, for ω ∈E:

PE(ω)

q(ω)
=

1

PB(E)

∏
X ∈VE

cXB (X(ω),PaB(X)(ω))

=
1

PB(E)

∏
X ∈VE

cXB (eX ,PaB(X)(ω))

PB(E)PE(ω)

q(ω)
=

∏
X ∈VE

cXB (eX ,PaB(X)(ω))

So the following weight function w satisfies Equation 2.8 with the proportionality

constant β = PB(E):

w(ω) =


∏

X ∈VE
cXB (eX ,PaB(X)(ω)) if X(ω) = eX for all X ∈VE

0 otherwise

It is easy to compute this weight for an outcome ω as we are sampling it. We start

with a weight of 1, and whenever we instantiate a variable X ∈VE to it observed

value, we multiply its likelihood cXB (eX ,PaB(X)(ω)) into the weight.

Thus, likelihood weighting is a form of importance sampling with a particular

choice of q and w such that we can efficiently sample from q and compute w. Using

the trick mentioned at the end of the previous section to deal with infinite networks,

we can run likelihood weighting on any discrete BN that has a topological numbering.

Convergence is often much faster than rejection sampling, since every sample is

consistent with the evidence.

However, likelihood weighting becomes unacceptably slow to converge when there

are tight dependencies between the evidence variables and their unobserved parents.

For instance, consider a model with unobserved variables representing words in a

sentence, and evidence variables representing the words written by an imperfect

scribe trying to copy that sentence. When we generate a sample from q, we sample

62



Chapter 2. Background

the unobserved words from their prior distribution, and we are very unlikely to get

a word sequence that is similar to the observed one. Thus, the likelihood weight —

which is the probability of the observed words given the hidden ones — will be very

small, or zero if the model assigns zero probability to certain copying errors. As a

result, the estimates p̂N end up having high variance unless N is extremely large:

a handful of samples often get weights orders of magnitude larger than the others,

and thus dominate the estimate [Russell and Norvig, 2003].

2.5.3 Markov chain Monte Carlo

So far we have discussed Monte Carlo algorithms in which the samples are drawn

independently from some proposal distribution. This means that if we are lucky

enough to generate a high-weight sample — one in which the values of the unobserved

variables match the observed evidence well — we ignore that sample when generating

the next one. It seems that it would be more efficient to let each sample depend on

the preceding one, in such a way that we spend time exploring parts of the outcome

space that have high posterior probability. Markov chain Monte Carlo (MCMC)

algorithms [Metropolis et al., 1953] are motivated by this intuition. In this section,

we review certain aspects of MCMC algorithms that we will refer to later in the

thesis; for a more thorough overview, see the book edited by Gilks et al. [1996] or

the survey article by Andrieu et al. [2003].

A Markov chain on a countable set E is a sequence of random variables S0, S1, S2, . . .

taking values in E, with a joint distribution M that satisfies the Markov property :

Sn+1 may depend on Sn, but Sn+1⊥⊥M {S0, . . . , Sn−1} |Sn. We will also assume that

the chain is homogeneous : there is a fixed transition distribution Mxy such that

M(Sn+1 = y|Sn =x) = Mxy for all natural numbers n and all x, y ∈E. Intuitively,

a Markov chain can be thought of as a random process that chooses a state S0 ac-

63



Chapter 2. Background

cording to an initial state distribution M0, then chooses a next state S1 given S0

according to Mxy, then chooses S2 given S1, and so on.

Our plan is to construct a Markov chain on an evidence event E such that if we

sample outcomes s0, s1, s2, . . . from the chain, then the estimates:

p̂N =
1

N

N∑
n=1

1Q(sn) (2.9)

converge to PE(Q∩E). In order for this to happen, PE will need to be a stationary

distribution of the chain.

Definition 2.20. Let Mxy be a transition distribution on a countable set Ω. A

probability measure π on E is a stationary distribution for Mxy if, for each y ∈E,

∑
x∈E

π(x)Mxy = π(y).

This definition says that a stationary distribution π is preserved by the transition

distribution Mxy, in the following sense: if π is the marginal distribution of Sn, then

the probability that Sn+1 has a value y — which can be obtained by summing over

all possible values x of Sn — is π(y) as well.

The requirement that PE be a stationary distribution for Mxy is not sufficient

in itself to ensure that the estimates in Equation 2.9 converge to the desired prob-

abilities. We also need to ensure that the chain does not get stuck in some sub-

set B of the outcome space such that PE(B) < 1. Let us write M t
xy to denote

M(Sn+t = y|Sn = x); because of the Markov property and the assumption of ho-

mogeneity, this probability does not depend on n and is solely a property of the

transition distribution. Following Tierney [1996], we say that a transition distribu-

tion Mxy is π-irreducible if for each pair x, y ∈E with π(x) > 0 and π(y) > 0, there

64



Chapter 2. Background

is some t such that M t
xy > 0.3 That is, within the set {x∈E : π(x) > 0}, there

is a positive probability of getting from any outcome to any other outcome in some

finite number of steps.

Theorem 2.15. Let PE be a probability distribution on a countable set E, and let

s0, s1, s2, . . . be a sequence of samples from a Markov chain with initial state distribu-

tion M0 and transition distribution Mxy. Suppose PE is a stationary distribution for

Mxy, Mxy is PE-irreducible, and M0(x) = 0 for all x∈E such that PE(x) = 0. Then

for any set Q, the estimates p̂N defined in Equation 2.9 converge with probability one

to PE(Q ∩ E) as N →∞.

The statement of this theorem is based on Theorem 4.3 of Tierney [1996]. It is

a consequence of a more general result called the ergodic theorem (see, e.g., Durrett

[1996]). A Markov chain whose transition distribution satisfies the conditions of

this theorem is said to be ergodic. Note that the distribution for the initial state

S0 is irrelevant; the only aspect of the Markov chain that matters is its transition

distribution.

Thus, if we wish to use Markov chains for approximate inference, we need to

generate samples from a Markov chain that has PE as a stationary distribution. The

Metropolis-Hastings algorithm [Metropolis et al., 1953; Hastings, 1970] is a general

technique for constucting such a chain. Like importance sampling, the Metropolis-

Hastings algorithm allows us to use a proposal distribution q: but now q is a condi-

tional distribution q(s′|s).

For a given target distribution PE, initial state distribution q0, and proposal

distribution q, the Metropolis-Hastings algorithm generates samples s0, s1, s2, . . . by

the following procedure:

3It is more common to define irreducibility without reference to any particular distribution,
simply requiring that the property hold for all pairs of outcomes x, y. But if PE assigns probability
zero to some outcomes in E, then the Markov chains we construct for inference typically will not
be irreducible in that sense: M t

xy will be zero for all t if PE(y) = 0.

65



Chapter 2. Background

1. Sample s0 according to q0.

2. To generate each sample sn+1:

(a) Sample a “proposed” state s′ according to q(·|sn).

(b) Compute the acceptance probability :

α(sn, s
′) = min

(
1,
PE(s′)q(sn|s′)
PE(sn)q(s′|sn)

)
(2.10)

(c) With probability α(sn, s
′), accept the proposal: that is, let sn+1 = s′.

Otherwise, reject the proposal and let sn+1 = sn.

Note that the acceptance probability α(sn, s
′) depends on the relative probabilities

of s′ and sn under PE, as well as the relative probabilities of the forward proposal

sn → s′ and the reverse proposal s′ → sn. Note that if s′ has probability zero under

PE, or if the reverse proposal s′ → sn has zero probability under q, then the proposal

will be rejected. The factor q(s′|sn) in the denominator will never be zero because

s′ was sampled from q(·|sn). Also, as long as q0 does not assign positive probability

to states outside {s∈E : PE(s) > 0}, we know the sampled states will all be in this

set, so the factor PE(sn) will not be zero either.

Theorem 2.16 (Hastings [1970]). Let PE be a probability measure on a countable

set E, and let q(s′|s) be any function such that for each s∈E, q(·|s) is a probability

distribution on E. Then the Markov chain generated by the Metropolis-Hastings algo-

rithm with target distribution PE and proposal distribution q has PE as a stationary

distribution.

If the resulting Markov chain is PE-irreducible and q0(x) = 0 whenever PE(x) = 0,

then by Theorem 2.15, the estimates p̂N converge with probability one to PE(Q∩E)

66



Chapter 2. Background

as N → ∞. Besides the requirement that the resulting chain be ergodic, no other

conditions must be imposed on the proposal distribution q to ensure correctness.

However, the choice of proposal distribution can have a drastic effect on the

speed of convergence. A good proposal distribution should propose outcomes that

have relatively high probability given the evidence; if there are several regions in the

outcome space that have high posterior probability, the proposal distribution should

propose moves that go between them. Achieving these properties in practice can be

difficult. There are some families of proposal distributions, such as Gibbs samplers

[Geman and Geman, 1984], that can be applied to a wide variety of models. However,

it is often necessary to develop a special-purpose proposal distribution to achieve

fast convergence on a particular task [Tu and Zhu, 2002; Pasula et al., 2003; Oh et

al., 2004]. The advantage of Metropolis-Hastings MCMC is that with a properly

designed proposal distribution, it is sometimes possible to do inference on problems

that would be intractable with all other known methods.

67



Chapter 2. Background

68



Chapter 3

Contingent Probabilistic Models

3.1 Motivation

In standard Bayesian networks (BNs), as discussed in Section 2.4, the dependency

structure is fixed: each variable X either is or is not a parent of each variable Y . As

we noted in the introduction, this limits the utility of BNs for scenarios where the

relations between objects are unknown. Consider the following simple example from

Russell [2001], which is a stylized version of the general problem of making inferences

about the objects that underlie one’s observations.

Example 3.1. Suppose we have an urn that contains a finite but unknown number

of balls; our prior distribution over the number of balls assigns positive probability to

every natural number. Each ball has a color—say, blue or green—chosen indepen-

dently from a fixed prior distribution. Suppose we repeatedly draw a ball uniformly

at random, observe its color, and return it to the urn. We cannot distinguish two

identically colored balls from each other. Furthermore, we have some (known) prob-

ability of making a mistake in each color observation. Given our observations, we

might want to predict the total number of balls in the urn, or compute the posterior

69



Chapter 3. Contingent Probabilistic Models

probability that we drew the same ball on our first two draws.

It is natural to think of the possible outcomes of this scenario as logical model

structures (defined in Section 2.1) that contain balls, draws and colors and specify

certain relations between them. Specifically, we will use a typed first-order language

with three types: Ball, Draw and Color. The language includes constant symbols

Blue and Green for the colors, and constant symbols of the form Draw1, Draw2,

etc. for the draws (we know how many of these symbols to include because we

know how many draws we are making). The function symbols of the language are

TrueColor : Ball → Color, BallDrawn : Draw → Ball, and ObsColor : Draw → Color.

For a scenario with k draws, we will let our outcome space Ω be the set of model

structures ω of this language in which [Color]ω = {Blue,Green}, [Draw]ω is the set

of pairs {(Draw, 1), . . . , (Draw, k)}, and [Ball]ω = {(Ball, 1), . . . , (Ball, n)} for some

natural number n. We also restrict Ω to model structures where the constant symbols

have the obvious intended interpretations, so only the interpretations of TrueColor,

BallDrawn, and ObsColor can vary. Each of these outcomes contains finitely many

objects, so Ω is countable, and we can let the event space F be the power set of Ω.

A natural method for defining a probability measure over (Ω,F ) is to define

some random variables on the outcome space and specify a BN over these random

variables. Figure 3.1 shows what appears to be a natural BN for an urn-and-balls

scenario with two draws. For a scenario with k draws, the random variables are N ,

{Ci}∞i=1, {Bj}kj=1 and {Oj}kj=1, defined as follows:

N(ω) = | [Ball]ω |

Ci(ω) =

 [TrueColor]ω ((Ball, i)) if i ≤ | [Ball]ω |

null otherwise

Bj(ω) = [BallDrawn]ω ((Draw, j))

Oj(ω) = [ObsColor]ω ((Draw, j))

70



Chapter 3. Contingent Probabilistic Models

C1

N

C2 C3

O1 O2

B1

B2

Figure 3.1: A graphical model for the balls-and-urn example with two draws. Be-
cause the “observed color” nodes O1 and O2 have infinitely many parents, this model
is not a Bayesian network under the definition we gave in Section 2.4.

However, there are several difficulties with the model in Figure 3.1. First, the

set of outcomes we have defined is not isomorphic to the Cartesian product of the

ranges of our random variables. Some instantiations of the random variables are

unachievable: they do not correspond to any outcome. For instance, there are no

outcomes ω where N(ω) = 5 and C20(ω) = Blue. Thus, the model in Figure 3.1 does

not satisfy the conditions of Definition 2.18. Some choices of CPDs for the variables

will fail to yield a probability measure over (Ω,F ), because some probability mass

will be placed on unachievable instantiations.

The model in Figure 3.1 also violates the requirement (in Definition 2.17) that

every variable have finitely many parents. Because the observed color on a draw

may depend on the true color of any ball, the ObsColor variables O1, . . . , Ok have

incoming edges from all of the TrueColor variables C1, C2, . . .. Note that we cannot

limit ourselves to a finite set of TrueColor variables C1, . . . , Cm because then our

71



Chapter 3. Contingent Probabilistic Models

model would not specify probabilities for outcomes with more than m balls. It

would be possible to add intermediate, deterministic variables to the model so that it

represented the same probability distribution using only finite parent sets. However,

the ObsColor variables would still end up with infinitely many ancestors. So we could

not use the results of Section 2.4 to prove that the BN defines a unique probability

measure.

One could argue that infinite sets of variables are a purely theoretical concern:

in practice, we could limit the number of balls to, say, 10,000. But still, we would be

left with a very large BN that would create difficulties for standard inference algo-

rithms. Note that the standard technique of reducing the size of a BN by removing

“barren” nodes — that is, nodes that are not ancestors of any query or evidence

nodes [Shachter, 1986] — is not helpful here, because C1, C2, . . . are all ancestors

of O1, . . . , Ok, which are observed. The problem is that the BN does not make ex-

plicit the contingent nature of the dependencies between the ObsColor and TrueColor

variables. As we will show in Chapter 5, an algorithm that exploits contingent de-

pendencies can perform inference without assuming any upper bound on the number

of balls.

We have seen that for scenarios with unknown objects and relational uncertainty,

the natural graphical models may not satisfy the requirement that each node have

finitely many ancestors. Relational uncertainty can also lead to models that violate

the other well-definedness condition we gave in Section 2.4, namely acyclicity. We

will see this in the next example.

Example 3.2. Suppose a hurricane is going to strike two cities, Alphatown and

Betaville, but it is not known which city will be hit first. The amount of damage in

each city depends on the level of preparations made in each city. Also, the level of

preparations in the second city to be hit depends on the amount of damage in the

72



Chapter 3. Contingent Probabilistic Models

first city.

Because this example involves no uncertainty about what objects exist, it would

be straightforward to represent the possible outcomes simply as instantiations of

a set of random variables. However, for consistency, we will continue to represent

the outcomes as logical model structures. We can represent this scenario using

a logical language with types City, PrepLevel (for the level of preparations) and

DamageLevel. Each of these types has a known extension: in every possible world ω,

[City]ω = {A,B} (standing for Alphatown and Betaville); [PrepLevel]ω = {High, Low};

and [DamageLevel]ω = {Mild, Severe}. In addition to nonrandom constant symbols

denoting these known objects, we include a constant symbol First whose value is the

City object that is hit first by the hurricane. The value of First varies from outcome

to outcome. Thus, we have a simple kind of relational uncertainty: we do not know

which city plays the role of the first city to be hit. Finally, we have two unary function

symbols: Prep : City → PrepLevel and Damage : City → DamageLevel. On this set

of model structures, we define random variables F , {Pc}c∈{A,B} and {Dc}c∈{A,B} as

follows:

F (ω) = [First]ω

Pc(ω) = [Prep]ω (c)

Dc(ω) = [Damage]ω (c)

In this example, suppose that we have a good estimate of the distribution for

preparations in the first city, and of the conditional probability distribution for prepa-

rations in the second city given damage in the first. The obvious graphical model

to draw is the one in Fig. 3.2, but it has a figure-eight-shaped cycle. Of course, we

can construct a BN for the intended distribution by choosing an arbitrary ordering

of the variables and including all necessary edges to each variable from its predeces-

73



Chapter 3. Contingent Probabilistic Models

F

PA PB

DA DB

Figure 3.2: A cyclic graphical model for the hurricane scenario. P stands for prepa-
rations, D for damage, A for Alphatown, B for Betaville, and F for the city that is
hit first.

sors. Suppose we use the ordering F, PA, DA, PB, DB. Then P (PA|F =A) is easy to

write down, but to compute P (PA|F =B) we need to sum out PB and DB. There is

no acyclic BN that reflects our causal intuitions. And recall that in general, as we

showed in Section 2.4.3, a cyclic BN may not be satisfied by any probability measure.

Note that in this example, the damage in Alphatown influences the preparations

in Betaville only when Alphatown is the first city to be hit. Thus, the edge from DA

to PB is active only when F = A; similarly, the edge from DB to PA is active only

when F = B. So there is no context in which all the edges in a cycle are active.

Similarly, in the urn-and-balls example, if we condition on Bk = i, then Ok has only

one other ancestor: Ci. Thus, the ancestor sets are “context-specifically” finite.

In this chapter, we develop modeling formalisms that explicitly represent the

conditions under which dependencies are active. This idea of representing context-

specific independence has been explored before [Boutilier et al., 1996] with the goal

of obtaining more compact representations and performing inference more efficiently.

We go beyond this earlier work in that we provide new criteria for showing that a

model defines a unique probability measure; these criteria can be satisfied even for

models whose BN representations would contain cycles or infinite ancestor sets.

We begin in Section 3.2 by addressing the first problem we mentioned with Ex-

74



Chapter 3. Contingent Probabilistic Models

ample 3.1: that the outcome space is not the product of the ranges of the random

variables. We give weaker conditions under which a set of random variables can be

used to define a probability measure over an outcome space. In Section 3.3, we lay

the foundation for models with contingent dependencies by giving an alternative ver-

sion of Kolmogrov’s extension theorem. The version we gave in Section 2.2.5 requires

a fixed ordering of the random variables X0, X1, . . ., and requires probabilities to be

specified for all instantiations of all finite prefixes of this ordering. Our new version

of the theorem only requires probabilities to be specified for all the instantiations in

a split tree, which defines a contingent ordering on the variables. Split trees serve as

the semantic foundation for partition-based models (PBMs), introduced in Section

3.4. In a PBM, instead of specifying a set of parents for each variable, one specifies an

arbitrary partition of the outcome space that determines the variable’s conditional

distribution. We identify a condition under which a PBM is guaranteed to define a

unique probability measure. In the special case where the partition for each variable

is defined by a decision tree, a PBM can be represented as a contingent Bayesian

network (CBN): a directed graph where edges are labeled with the conditions under

which they are active. In Section 3.5, we provide graphical conditions under which

a CBN defines a unique probability distribution. These conditions may be satisfied

even in the presence of cycles or infinite ancestor sets.

3.2 Non-product outcome spaces

Suppose we are given a measurable space (Ω,F ) and a countable set of random

variables V . Throughout this chapter, we assume the random variables in V are dis-

crete: each variable X takes values in a value space (SX ,SX) where SX is countable

and SX is the power set of SX . As usual, we write range (X) to denote SX . Note

that although V is countable and each variable has a countable range, the number of

75



Chapter 3. Contingent Probabilistic Models

complete instantiations of these variables is uncountable (unless V is finite). For in-

stance, the instantiations of a countable sequence of binary variables can be thought

of as infinite binary expansions of the real numbers.

As we noted in the urn-and-balls example (Example 3.1), some instantiations of

the random variables may not correspond to any outcome. That is, they may not

be achievable.

Definition 3.1. Let V be a set of random variables defined on a measurable space

(Ω,F ). An instantiation σ on V is achievable if ev (σ) 6= ∅.

Although the complete instantiations of V in Example 3.1 are not in one-to-one

correspondence with the outcomes, an achievable complete instantiation does fully

describe an outcome. The values of the variables {Ci}∞i=1, {Bj}kj=1 and {Oj}kj=1

specify the interpretations of TrueColor, BallDrawn and ObsColor, respectively, and

N specifies the extension of the type Ball. All other aspects of the model structures

in Ω are fixed. Thus, we can fully specify a probability measure over (Ω,F ) by

specifying a probability measure over the achievable instantiations of V .

To formalize this idea, we will prove a version of Kolmogorov’s extension theorem

(Theorem 2.2) that allows non-product outcome spaces. This theorem will require

that V be sufficient for (Ω,F ) in the following sense.

Definition 3.2. A set V of discrete random variables is sufficient for a measurable

space (Ω,F ) if:

i. the events of the form {X =x} for X ∈V and x∈ range (X) generate F ; and

ii. if σ is a complete instantiation on V, and every finite sub-instantiation of σ is

achievable, then σ is achievable.

Condition (i) says, intuitively, that all measurable events can be expressed in

terms of assignments of values to the random variables. This ensures that a joint

76



Chapter 3. Contingent Probabilistic Models

distribution for V corresponds to a unique distribution on (Ω,F ). Condition (ii)

says that we can determine if a complete instantiation σ is achievable or not by

looking at its finite sub-instantiations. This condition is perhaps easier to check in its

contrapositive form: every unachievable complete instantiation has an unachievable

finite sub-instantiation. In Example 3.1, the only way a complete instantiation σ

can be unachievable is if there is some i > σN such that σ(Ci) 6= null for some i > σN .

But then the finite sub-instantiation consisting of N and this Ci is also unachievable,

so condition (ii) is satisfied. Note that the restriction to complete instantiations is

important here. An incomplete instantiation that does not instantiate N , but asserts

Ci = Blue for i = 1 to∞, is unachievable because every model structure in Ω contains

a finite number of balls.

To get an idea of what outcome spaces we are ruling out with condition (ii),

consider a scenario where each outcome ω ∈Ω is an infinite sequence (ωi)
∞
i=1, with

ωi ∈ {0, 1} for each i. Let F be generated by the events of the form {ω ∈Ω : ωi = 1}

for i = 1 to ∞. If we let V = {Xi}∞i=1 where Xi(ω) = ωi, then condition (i) is

satisfied. Now suppose Ω consists of just those sequences that contain finitely many

1’s. If σ is a complete instantiation that sets an infinite set of Xi variables to 1,

then it is unachievable, although each of its finite sub-instantiations is achievable.

So condition (ii) is not satisfied in this case.

We now give a version of Kolmogorov’s extension theorem that does not require

the random variables to be the coordinate variables of a product space. Instead, we

just require that the random variables be sufficient for the outcome space on which

they are defined. The only other difference between this theorem and Theorem 2.2

is in the consistency condition for the finite-dimensional distribution functions fn,

which now forces unachievable instantiations to have zero probability. This condition

uses a new piece of notation: for an event A ⊆ Ω, we will write range (X|A) to denote

{x∈ range (X) : ∃ω ∈A (X(ω) = x)}.

77



Chapter 3. Contingent Probabilistic Models

Theorem 3.1. Let V be a set of discrete random variables that are sufficient for a

measurable space (Ω,F ). Let X0, X1, . . . be any numbering of V. For each natural

number n ≤ |V|, let fn be a function from range ({X0, . . . , Xn−1}) to [0, 1]. Sup-

pose that f0(>) = 1, and for all natural numbers n < |V| and all instantiations

σ ∈ range ({X0, . . . , Xn−1}),

∑
xn ∈ range(Xn|σ)

fn+1(σ;Xn =xn) = fn(σ) (3.1)

Then there is a unique probability measure P on (Ω,F ) such that P (σ) = fn(σ) for

each natural number n ≤ |V| and each σ ∈ range ({X0, . . . , Xn−1}).

Proof. Suppose each variable X ∈V has a value space (SX ,SX), and let (ΩV ,FV)

be the product space ×(X ∈V)(SX ,SX). Note that ΩV is the set of complete instan-

tiations of V (see Section 2.2.4). Now, for each X ∈V , we define a random variable

X̃ : (ΩV ,FV) → (SX ,SX), such that X̃(σ) , σX . These variables, which we will

denote collectively as Ṽ , are the coordinate variables of ΩV . They can be numbered

X̃0, X̃1, . . . in correspondence with X1, X2, . . .. For any given instantiation σ on V ,

we will write σ̃ for the instantiation on Ṽ such that vars (σ̃) = {X̃ : X ∈ vars (σ)}

and σ̃ eX = σX for each X̃ ∈ vars (σ̃). Note that ev (σ̃) consists of all those com-

plete instantiations that are extensions of σ. Now for each n ≤ |V|, let f̃n be a

function on range
(
{X̃0, . . . , X̃n−1}

)
such that f̃n(σ̃) = fn(σ). By the standard

version of Kolmogorov’s extension theorem (Theorem 2.2), there is a unique prob-

ability measure PV on (ΩV ,FV) such that PV(σ̃) = f̃n(σ̃) for each n ≤ |V| and

σ̃ ∈ range
(
{X̃0, . . . , X̃n−1}

)
.

Now let V be a function from (Ω,F ) to (ΩV ,FV) such that V (ω) is the instan-

tiation that assigns the value X(ω) to each X ∈V . Because each element of V is a

random variable and (ΩV ,FV) is a product space, V is also a random variable. By

the definitions of X̃ and σ̃, we know V −1(ev (σ̃)) = ev (σ) for each instantiation σ̃

78



Chapter 3. Contingent Probabilistic Models

on Ṽ . And for each n ≤ |V|, the instantiations of {X̃0, . . . , X̃n−1} are in one-to-one

correspondence with the instantiations of {X0, . . . , Xn−1}. So a probability mea-

sure P on (Ω,F ) satisfies the conditions of this proposition if and only if PV is the

distribution on V induced by P .

We will use Prop. 2.3 to show that there is a unique probability measure that

induces PV . The first thing to show is that the preimages (under V ) of events in FV

generate F . Since V is sufficient for (Ω,F ), we know the events of the form {X =x}

forX ∈V generate F . These are the preimages of events of the form {σX =x}, which

are in FV since the variables are discrete. So condition (i) of Prop. 2.3 is satisfied.

The other thing we have to show is that PV assigns probability one to the set

of achievable instantiations. First, for each natural number n ≤ |V|, let Sn be the

set of achievable instantiations of {X0, . . . , Xn−1}. We will show by induction on n

that
∑

(σ ∈Sn) PV(σ̃) = 1. For n = 0, we just have S0 = {>}, and PV(>̃) = f̃(>̃) =

f(>) = 1. Now suppose
∑

(σ ∈Sn) PV(σ̃) = 1, and consider Sn+1. Each instantiation

σ ∈Sn+1 has the form (τ ;Xn =xn) for some τ ∈Sn and xn ∈ range (Xn|τ). Therefore:

∑
σ ∈Sn+1

PV(σ̃) =
∑

(τ ∈Sn)

∑
(xn ∈ range(Xn|τ))

PV(τ̃ ; X̃n =xn)

But by Equation 3.1 and the definitions of PV and f̃ ,
∑

(xn ∈ range(Xn|τ)) PV(τ̃ ; X̃n =xn) =

PV(τ̃). So we have
∑

(σ ∈Sn+1) PV(σ̃) =
∑

(τ ∈Sn) PV(τ̃), which equals one by the in-

ductive hypothesis.

Since ev (σ̃) is the set of complete extensions of σ,
⋃

(σ ∈Sn) ev (σ̃) is the set of

all complete instantiations σ of V such that σ[{X0, . . . , Xn−1}] is achievable. Let An

denote this set of complete instantiations. Note that eachAn is FV–measurable, since

each event ev (σ̃) is FV–measurable and An is a countable union of such events. Also,

by Definition 3.2(ii), we know that if every finite subinstantiation of σ is achievable

then so is σ. So the set of all achievable instantiations of V , which we will denote A,

79



Chapter 3. Contingent Probabilistic Models

is equal to
⋂|V|

n=0An. Since A is a countable intersection of FV–measurable sets that

have probability one under PV , we know A itself is FV–measurable and PV(A) = 1.

So condition (ii) in Prop. 2.3 is satisfied, and P is the unique probability measure

on (Ω,F ) that induces PV .

This version of Kolmogorov’s extension theorem can be used to prove well-

definedness results for BNs on non-product outcome spaces. However, we still have

the requirement that such a BN must be acyclic and each of its variables must have

finitely many ancestors. Thus, we need to go further to handle cases such as the

urn-and-balls scenario of Example 3.1 or the hurricane scenario of Example 3.2.

3.3 Split trees

The versions of Kolmogorov’s extension theorem that we have given so far require

a numbering X0, X1, . . . of the random variables V , and require probabilities to be

specified for all instantiations of prefixes of this numbering. These conditions are

already easier to work with than those in other versions of the extension theorem

(see, e.g., Billingsley [1995]) that require probabilities for all instantiations of all

finite subsets of V . In this section, we prove a result that allows still more flexibility

in choosing the set of instantiations for which we specify probabilities. This result is

based on the notion of a split tree, which can be thought of as a contingent numbering

of the random variables. We will write chT (σ) to denote the children of a node σ in

a rooted tree T .

Definition 3.3. A split tree for a set of random variables V is a rooted tree T whose

nodes are partial instantiations of V, in which:

i. the root node is the empty instantiation;

80



Chapter 3. Contingent Probabilistic Models

T

X=1

X=0

X=1, Y=1

X=1, Y=0

X=0, Z=1

X=0, Z=0

X=1, Y=1, Z=1

X=1, Y=1, Z=0

X=1, Y=0, Z=1

X=1, Y=0, Z=0

X=0, Z=1, Y=1

X=0, Z=1, Y=0

X=0, Z=0, Y=1

X=0, Z=0, Y=0

Figure 3.3: A split tree over the variables {X,Y, Z}.

ii. for each non-leaf instantiation σ in T , there is a split variable Xσ
T such that

chT (σ) = {(σ;Xσ
T =x) : x∈ range (Xσ

T |σ)};

iii. for each non-truncated path (i.e., a path that does not end except at a leaf)

starting at the root of T , and for each X ∈V, there is exactly one node σ on the

path such that Xσ
T = X.

Figure 3.3 shows an example of a split tree. A split tree T can be thought

of as a program for sampling a complete instantiation. We start with an empty

instantiation. When we are at a non-leaf node σ, we stochastically choose one of σ’s

children, which corresponds to assigning some value to Xσ
T (the split tree does not

define the probabilities of choices; those will be specified separately). Part (iii) of

the definition ensures that we sample a value for each variable exactly once in each

“run” of the program. Note that each instantiation in a split tree is finite, and since

we are assuming that the ranges of random variables are countable, this implies that

81



Chapter 3. Contingent Probabilistic Models

any split tree contains at most countably many instantiations.

Our first result about split trees is that every instantiation in a split tree is

achievable.

Lemma 3.2. If T is a split tree for a set of variables V defined on a measurable

space (Ω,F ), then every instantiation in T is achievable.

Proof. Consider any instantiation σ in T . If σ is the root node, then σ = >, which is

achievable since Ω is non-empty (this was part of our definition of a measurable space

in Section 2.2.1). Otherwise, σ has a parent τ . By part (ii) of the definition of a

split tree, σ = (τ ;X =x) for some x∈ range (X|τ). By the definition of range (X|τ),

this implies there is some ω ∈ ev (τ) such that X(ω) = x. This ω is consistent with

σ, so σ is achievable.

We can also show that if V is sufficient for (Ω,F ), then the conjunction of the

instantiations along any non-truncated path from the root is achievable. This holds

even if the path is infinite, in which case the conjunction is an infinite instantiation

that is not itself in the tree.

Lemma 3.3. Let T be a split tree for a set of variables V that is sufficient for (Ω,F ).

If σ1, σ2, . . . is a non-truncated path starting at the root of T , then the conjunction

∧iσi is achievable.

Proof. First, the conjunction ∧iσi is well-defined because, by Definition 3.3(iii), each

path splits on any given variable at most once; thus the instantiations σ1, σ2, . . . do

not assign conflicting values to any variable. We now claim that ∧iσi is a complete

instantiation of V . This is also implied by Definition 3.3(iii): for every X ∈V , there

is exactly one node σj on this non-truncated path that splits on X. Thus the path

contains a node σj+1 that is a child of σj and hence instantiates X. So ∧iσi assigns

a value to every variable in V .

82



Chapter 3. Contingent Probabilistic Models

T

X=1

X=0

X=1, Y=1

X=1, Y=0

X=0, Z=1

X=0, Z=0

X=1, Y=1, Z=1

X=1, Y=1, Z=0

X=1, Y=0, Z=1

X=1, Y=0, Z=0

X=0, Z=1, Y=1

X=0, Z=1, Y=0

X=0, Z=0, Y=1

X=0, Z=0, Y=0

Figure 3.4: There is one shaded instantiation on each non-truncated path from the
root node. By Lemma 3.4, the events corresponding to these instantiations form a
partition of ev (>).

Now let τ be any finite sub-instantiation of ∧iσi. For each variable X ∈ vars (τ),

there must be some j such that σj instantiates X. Let jX be the least such j for any

given X. Then let jτ = max(X ∈ vars(τ)) jX ; this maximization is well-defined since τ

is finite. It follows that τ is a sub-instantiation of σ(jτ ). We know by Lemma 3.2 that

σ(jτ ) is achievable, so τ is achievable. Since this holds for any finite sub-instantiation

of ∧iσi, the fact that V is sufficient for (Ω,F ) implies that ∧iσi is achievable.

It is clear from Definition 3.3(ii) that in a split tree, the children of any node

σ represent a partition of ev (σ). It is slightly less obvious that the same partition

property holds if we choose one instantiation from each non-truncated path starting

at σ. For example, if we choose one instantiation from each non-truncated path out

of the root node — as shown in Figure 3.4 — then the events corresponding to these

instantiations form a partition of ev (>). The following lemma states this fact, which

is useful in subsequent proofs.

83



Chapter 3. Contingent Probabilistic Models

Lemma 3.4. In a split tree T , if R is a set of descendants of σ such that every

non-truncated path starting from σ contains exactly one element of R, then {ev (ρ) :

ρ∈R} is a partition of ev (σ).

Proof. First, note that each event in {ev (ρ) : ρ∈R} is non-empty, since every instan-

tiation in a split tree is achievable (by Lemma 3.2). Now consider any two distinct

instantiations ρ1, ρ2 ∈R. By hypothesis, ρ1 and ρ2 are on different paths from σ; let

τ be the last node that is on both of these paths. The instantiations ρ1 and ρ2 must

assign different values to Xτ
T , so they correspond to disjoint sets.

Now we will show that
⋃

(ρ∈R) ev (ρ) = ev (σ). Based on Definition 3.3(ii), it is

clear that all descendants of σ represent subsets of ev (σ). So
⋃

(ρ∈R) ev (ρ) ⊆ ev (σ).

To show ev (σ) ⊆
⋃

(ρ∈R) ev (ρ), consider any outcome ω ∈ ev (σ). We will construct

a non-truncated path σ1, σ2, . . ., starting at σ, on which every node is consistent with

ω. Because ω ∈σ and σ1 =σ, we know σ1 is consistent with ω. Now as an inductive

hypothesis, suppose σ1, σ2, . . . , σn are all consistent with ω. If σn is a leaf node, then

σ1, σ2, . . . , σn constitutes a non-truncated path. Otherwise, we can extend the path

with σn+1 = (σn;Xσn
T =Xσn

T (ω)), which is a child of σn (by Definition 3.3(ii)) and is

consistent with ω. In this way, we can construct a non-truncated path starting at σ

on which all nodes are consistent with ω. Let ρ be the element of R on this path;

then ω ∈ ev (ρ). So every ω ∈ ev (σ) is in some element of R.

The next thing we would like to show about split trees is that if V is sufficient for

(Ω,F ), then the nodes in a split tree for V generate (Ω,F ). This is not completely

obvious, because the split tree does not contain instantiations of the form (X =x)

for most variables — indeed, the only variable for which such instantiations occur is

the split variable of the root node. However, it turns out that we can express any

set of the form {X =x} as the union of instantiations in the tree.

84



Chapter 3. Contingent Probabilistic Models

Lemma 3.5. Let T be a split tree for a set of variables V that is sufficient for (Ω,F ).

Then the set of events {ev (σ) : σ ∈T} generates F .

Proof. Because V is sufficient for (Ω,F ), it suffices to show that {ev (σ) : σ ∈T}

generates the set of events {X =x} for X ∈V and x∈ range (X). So consider any

such event. Let R be the set of nodes ρ in T such that Xρ
T = X. By Definition

3.3(iii), there is exactly one element of R on each non-truncated path starting at

the root. So by Lemma 3.4,
⋃

(ρ∈R) ev (ρ) = Ω. Now let R′ = {(ρ;X =x) : ρ ∈

R and x ∈ range (X|ρ)}. Note that by Definition 3.3(ii), all the instantiations in R′

are in the tree. We claim that
⋃

(ρ′ ∈R′) ev (ρ′) = {X =x}. To see this, first note that

the elements of R′ all correspond to subsets of {X =x} because they all instantiateX

to x. To see that they are exhaustive, consider any ω such that X(ω) = x. Because⋃
(ρ∈R) ev (ρ) = Ω, there is some ρ∈R such that ω ∈ ev (ρ). And the existence of

this outcome ω ∈ ev (ρ) with X(ω) = x confirms that x ∈ range (X|ρ). So ρ’s child

(ρ;X =x) is an element of R′ whose corresponding event contains ω.

Because any split tree contains only countably many nodes, we know R′ is count-

able. So {X =x} can be expressed as a countable union of events in {ev (σ) : σ ∈T}.

Thus {ev (σ) : σ ∈T} generates all events of the form {X =x}.

We are now ready to prove the main theorem of this section: that if we specify

probabilities f(σ) for all the instantiations in a split tree in a consistent way, then

there is a unique probability measure P on (Ω,F ) such that P (σ) = f(σ) for in-

stantiations in the tree. Perhaps the most obvious approach to proving this theorem

would be to impose an arbitrary numbering X1, X2, . . . on the variables, show that

the constraints P (σ) = f(σ) for instantiations in the tree uniquely determine the

probabilities of all instantiations of X1, . . . , Xn for each n, and then show that these

probabilities satisfy the consistency conditions of Kolmogorov’s extension theorem.

However, that approach turns out to be fairly complicated, and does not provide

85



Chapter 3. Contingent Probabilistic Models

much insight.

We take an alternative approach based on the intuition that a split tree represents

a program for sampling outcomes. To understand the proof, it helps to imagine

a computer that has access to an infinite sequence of random numbers in (0, 1].

These numbers govern the choices that the computer makes at each node as it walks

along a path from the root. We show that each random number sequence can be

associated with an outcome that is consistent with every instantiation on this path.

The probability of an event A∈F is then defined as the probability of the set

of random number sequences that yield outcomes in A. Note that this is just a

mathematical construction, not an algorithm, because the program runs forever when

V is infinite.

Theorem 3.6. Let T be a split tree for a set V of variables that is sufficient for

(Ω,F ). Let f be a function from instantiations in T to [0, 1] such that f(>) = 1

and for each non-leaf node σ:

f(σ) =
∑

ρ∈ chT (σ)

f(ρ) (3.2)

Then there is a unique probability measure P on (Ω,F ) such that P (σ) = f(σ) for

every instantiation σ in T .

Proof. First we will construct a probability measure with the desired properties;

then we will show it is unique. Let (U,U ) = ×∞i=1((0, 1],B(0,1]): the space of infinite

sequences u = u1, u2, . . . where ui ∈ (0, 1]. Here B(0,1] is the Borel σ-field on (0, 1].

Let µ be a probability measure on (U,U ) such that the coordinate random variables

Ui(u) , ui are independent and uniformly distributed over (0, 1]. Such a probability

measure exists by the continuous form of Kolmogorov’s extension theorem [Durrett,

1996] (and also by less general results such as Theorem 20.4 of Billingsley [1995]).

86



Chapter 3. Contingent Probabilistic Models

For each non-leaf node σ ∈T with f(σ) > 0, and each ρ∈ chT (σ), define:

f(ρ|σ) ,
f(ρ)

f(σ)
(3.3)

Equation 3.2 implies that
∑

ρ∈chT (σ) f(ρ|σ) = 1. Now impose an arbitrary ordering

< on chT (σ), and for each instantiation ρ in that set, define a(ρ|σ) ,
∑

ρ′<ρ f(ρ′|σ)

and b(ρ|σ) , a(ρ|σ)+f(ρ|σ). Note that for any given σ, the intervals (a(ρ|σ), b(ρ|σ)]

are disjoint for distinct children ρ. Also, because the f(ρ|σ) values sum to 1 for each

σ, the sets (a(ρ|σ), b(ρ|σ)] for ρ∈ chT (σ) form a partition of (0, 1].

For non-leaf nodes σ with f(σ) = 0, we choose a child ρ∗ ∈ chT (σ) arbitrarily

and let a(ρ∗|σ) = 0 and b(ρ∗|σ) = 1. For other children ρ∈ chT (σ), we let a(ρ|σ)

and b(ρ|σ) both equal 1, defining the empty interval (1, 1].

Now, for each i ≤ |V|, we define a function gi(u) that returns the instantiation

we reach at depth i in the split tree when using the random number sequence u:

g0(u) = >

gi+1(u) = the unique ρ∈ chT (gi(u))

such that Ui+1(u) ∈ (a(ρ|gi(u)), b(ρ|gi(u))] (3.4)

Thus, any random number sequence u yields a non-truncated path g0(u), g1(u), . . ..

Let h : (U,U ) → (Ω,F ) be a function such that h(u) is an arbitrary outcome

consistent with ∧i gi(u); Lemma 3.3 tells us that at least one such outcome exists.

Finally, we define our probability measure P on (Ω,F ) such that P (A) = µ(h−1(A))

for each A ∈ F .

We must check that the function P defined this way is indeed a probability

measure. We will prove this by showing that h is measurable: thus we can regard

h as a random variable, and P as the probability measure for this variable induced

87



Chapter 3. Contingent Probabilistic Models

by µ (see Section 2.2.3). To show that h is measurable, we must show that the

preimage of each element of F is U -measurable. In fact, because instantiations

in T generate F (Lemma 3.5), it suffices to show that the preimages of the events

ev (σ) for σ ∈T are U -measurable. We will show at the same time that they have

the desired probabilities f(σ).

We proceed by induction on |vars (σ) |. The base case is σ = >: then h−1(ev (σ)) =

h−1(Ω) = U , since h is a total function on U . So h−1(ev (σ)) is measurable and

P (σ) = 1 = f(σ). As the inductive hypothesis, assume that for any n-variable

instantiation σ in the tree, h−1(ev (σ)) ∈ U and P (σ) = f(σ). Now let σ be an

(n+ 1)-variable instantiation in T . Since σ is in the tree, every non-truncated path

either goes through σ or contradicts σ. So if a random variable sequence u yields a

non-truncated path consistent with σ, then σ must be the (n + 1)st node on that

path. Thus h−1(ev (σ)) = {u : gn+1(u) = σ}. We also know σ has a parent τ ,

which is the only n-variable instantiation in T consistent with σ. Thus σ has a

unique representation as (τ ;X =σX) such that τ is in T . By Equation 3.4, we can

see that gn+1(u) = σ if and only if gn(u) = τ and Un+1(u) ∈ (a(σ|τ), b(σ|τ)]. So

h−1(ev (σ)) = h−1(ev (τ)) ∩ {un+1 ∈ (a(σ|τ), b(σ|τ)]}. The event h−1(ev (τ)) is mea-

surable by the inductive hypothesis, and the other event is a half-open interval for

un+1, so h−1(σ) is measurable.

Furthermore, the second part of our inductive hypothesis tells us P (τ) = f(τ).

If f(τ) = 0, then P (τ) = 0, and since σ is an extension of τ , P (σ) = 0 as well.

And by Equation 3.2, f(τ) = 0 also implies that f(σ) = 0, so P (σ) = f(σ) in

this case. For the case where f(τ) > 0, we exploit the fact that gn(u) depends

only on u1, . . . , un, which are independent of the uniformly distributed un+1. So

P (σ) = P (τ)(b(σ|τ) − a(σ|τ)). Now applying the definition of b(·|τ) and a(·|τ),

we get P (σ) = f(τ)f(σX |τ). Equation 3.3 tells us f(σX |τ) = f(σ)
f(τ)

. So we get

P (σ) = f(τ)f(σ)
f(τ)

= f(σ), as desired. Our inductive step is now complete. So we

88



Chapter 3. Contingent Probabilistic Models

have shown that h is measurable and that P (σ) = f(σ) for each σ in the tree.

It just remains to show that this P is the only probability measure on (Ω,F )

that assigns the desired probabilities to instantiations in the tree. By Theorem 2.1,

it suffices to show that the set of events {ev (σ) : σ ∈T}, with the empty set added,

is closed under intersections and generates F . Observe that if two instantiations σ

and τ are both on a common path from the root, then ev (σ)∩ ev (τ) is either ev (σ)

or ev (τ), whichever is deeper in the tree. Otherwise, σ and τ are on different paths,

so they must disagree on some variable. Thus ev (σ) ∩ ev (τ) = ∅. So this set is

closed under intersections. The fact that it generates F is given by Lemma 3.5, so

our proof is complete.

We now have a version of Kolmogorov’s extension theorem that allows proba-

bilities to be specified for the instantiations in an arbitrary split tree, rather than

requiring probabilities for all finite prefixes of a numbering of V . This theorem also

allows the outcome space (Ω,F ) to be arbitrary, as long as V is sufficient for it. Just

as the standard version of Kolmogorov’s extension theorem allowed us to derive cri-

teria under which infinite BNs are well-defined, Theorem 3.6 will allow us to provide

such criteria for a more general class of models.

3.4 Partition-based models

3.4.1 Definition and examples

Recall our goal of developing declarative probabilistic models for scenarios with con-

tingent dependencies, such as the urn and balls in Example 3.1 or the hurricane

preparations in Example 3.2. In these examples, drawing an edge for every depen-

dency that holds under any conditions yields a graph with cycles or infinite ancestor

sets. Simply drawing edges between variables does not capture the contingent nature

89



Chapter 3. Contingent Probabilistic Models

of the dependency structure.

U

V WX
U=1U=0

Figure 3.5: A simple BN with contingent dependencies.

To motivate our alternative approach, consider the BN in Fig. 3.5, ignoring for

now the labels on the edges. Assuming the variables are binary, the CPD for X can

be represented as a table with eight rows, each corresponding to an instantiation

of X’s three parents. Another way of viewing this is that X’s parent set defines a

partition of Ω: each CPT row corresponds to a block (i.e., element) of the partition.

This may seem like a pedantic rephrasing, but partitions can expose more structure

in the CPD. For example, suppose X depends only on V when U = 0 and only on

W when U = 1. The tabular CPD for X would still be the same size, but now the

partition for X only has four blocks: {U = 0, V = 0}, {U = 0, V = 1}, {U = 1,W = 0},

and {U = 1,W = 1}. Thus, instead of speaking of a CPD for X given a set of parent

variables, we will speak of a CPD for X given a partition of Ω.

Just as we limited ourselves to conditioning on finite sets of discrete variables in

Section 2.2.6, we will limit ourselves to countable partitions: that is, partitions with

countably many blocks. A partition Λ on a measurable space (Ω,F ) is measurable

if each block λ∈Λ is in F .

Definition 3.4. Let X be a discrete random variable defined on a measurable space

(Ω,F ), and let Λ be a countable, measurable partition of Ω. A conditional probabil-

90



Chapter 3. Contingent Probabilistic Models

ity distribution for X given Λ is a function c : range (X)× Λ → [0, 1] such that for

each block λ∈Λ, ∑
x∈ range(X)

c(x, λ) = 1

If P is a probability measure on (Ω,F ), then c is a version of P (X|Λ) if for each

x∈ range (X) and each λ∈Λ such that P (λ) > 0,

c(x, λ) = P (X =x|λ)

This definition is consistent with the one given in Definition 2.10 for a CPD given

a set of variables. For any set of variables W, {ev (σ) : σ ∈ range (W)} is a partition

of Ω; a CPD for X given W is simply a CPD for X given this partition. Conversely,

a CPD for X given a measurable partition Λ is essentially a CPD for X given the

random variable VΛ such that VΛ(ω) is equal to the unique block in Λ that contains

ω.1

Building on this generalized definition of a CPD, we introduce a generalization

of BNs that we call partition-based models.

Definition 3.5. Let V be a set of discrete random variables that is sufficient for

(Ω,F ). A partition-based model Γ over V specifies, for each X ∈V:

• a countable, measurable partition ΛX
Γ of Ω, where we write λX

Γ (ω) to denote the

block of the partition that the outcome ω belongs to;

• a CPD cXΓ for X given ΛX
Γ .

Note that any BN B can be represented as a PBM Γ: for each variable X, we

let ΛX
Γ = {ev (σ) : σ ∈ range (PaB(X))}. Figure 3.6 describes a PBM Γ for the

1The only difference is that the second argument of a CPD given a partition is an event, and
the second argument of a CPD given a variable is an instantiation.

91



Chapter 3. Contingent Probabilistic Models

urn-and-balls scenario (Example 3.1). Note that we do not have a formal syntax for

describing PBMs, so we use a combination of English words, mathematical notation,

and tables. The variable N , representing the number of balls, has a prior distribution

that does not depend on any other aspects of the outcome. So ΛN
Γ is the single-

block partition {Ω}. The distribution for N given this single block is a Poisson

distribution with mean 6. Each variable Ci, representing the color of the ith ball,

has a partition with two elements: one where (Ball, i) exists, and one where it does

not. The BallDrawn variables Bj have an infinite number of partition blocks, one for

each possible number of balls. If there are no balls, then Bj = null with probability

one; otherwise, Bj’s distribution is uniform over the balls that exist. Finally, each

ObsColor variable Oj has three partition blocks, one for each possible value of the

term TrueColor(BallDrawn(d)) (Figure 3.6 uses the notation introduced in Definition

2.7 for the denotation of a term given a model structure and an assignment of values

to logical variables). Note that this PBM captures the context-specific dependency

structure of this model much better than the graphical model in Figure 3.1 does:

each Oj variable has only three partition blocks in the PBM, while it has infinitely

many parents in Figure 3.1.

A PBM for the hurricane scenario of Example 3.2 is described in Figure 3.7.

The variable F that specifies which city is hit first has the trivial partition {Ω}.

The preparation variables Pc have four partition blocks: one for the case where c

is hit first, and three for the cases where c is not hit first and Damage(First) takes

one of the values {Severe,Mild, null}. The damage variables Dc have three partition

blocks, for the three possible values of [Prep]ω (c). In this PBM, the context-specific

structure we are capturing is in the dependency model for the Pc variables: in the

BN in Figure 3.2, each Pc variable has one 2-valued parent (F ) and one 3-valued

parent (a damage variable), but the partition for Pc in the PBM has only four blocks.

92



Chapter 3. Contingent Probabilistic Models

For the variable N :

ΛN
Γ = {Ω}

cNΓ (n,Ω) = Poisson[6](n)

For the variables {Ci}∞i =1:

ΛCi
Γ = {{ω ∈Ω : (Ball, i) ∈ [Ball]ω}, {ω ∈Ω : (Ball, i) /∈ [Ball]ω}}

cCi
Γ (c, {ω ∈Ω : (Ball, i) ∈ [Ball]ω}) =

c
Blue Green null

0 0 1

cCi
Γ (c, {ω ∈Ω : (Ball, i) /∈ [Ball]ω}) =

c
Blue Green null
0.5 0.5 0

For the variables {Bj}kj = 1:

Λ
Bj

Γ = {{ω ∈Ω : | [Ball]ω | = n}}n∈N

c
Bj

Γ (b, {ω ∈Ω : | [Ball]ω | = 0}) =

{
1 if b = null
0 otherwise

c
Bj

Γ (b, {ω ∈Ω : | [Ball]ω | = n}) =

{
1/n if b ∈ {(Ball, 1), . . . , (Ball, n)}
0 otherwise

, for n > 0

For the variables {Oj}kj = 1:

Λ
Oj

Γ ={{ω ∈Ω : [TrueColor(BallDrawn(d))]ω(d7→(Draw,j)) = c}}c∈{Blue,Green,null}

c
Oj

Γ (o, {ω ∈Ω : [TrueColor(BallDrawn(d))]ω(d7→(Draw,j)) = c})

=

o
c Blue Green null

Blue 0.8 0.2 0
Green 0.2 0.8 0
null 0 0 1

Figure 3.6: Partitions and CPDs for each variable in a PBM Γ for the urn-and-balls
scenario of Example 3.1, with k draws.

93



Chapter 3. Contingent Probabilistic Models

For the variable F :

ΛF
Γ = {Ω}

cFΓ (f, Ω) =
f

A B null
0.5 0.5 0

For the variables {Pc}c∈{A,B}:

ΛPc
Γ ={{ω ∈Ω : [First]ω = c}}

∪ {{ω ∈Ω : [First]ω 6= c and [Damage(First)]ω = d}}d∈{Severe,Mild,null}

cPc
Γ (p, {ω ∈Ω : [First]ω = c}) =

p
High Low null
0.5 0.5 0

cPc
Γ (p, {ω ∈Ω : [First]ω 6= c and [Damage(First)]ω = d})

=

p
d High Low null

Severe 0.9 0.1 0
Mild 0.1 0.9 0
null 0 0 1

For the variables {Dc}c∈{A,B}:

ΛDc
Γ = {{ω ∈Ω : [Prep]ω (c) = p}}p∈{High,Low,null}

cDc
Γ (d, {ω ∈Ω : [Prep]ω (c) = p}) =

d
p Severe Mild null

High 0.2 0.8 0
Low 0.8 0.2 0
null 0 0 1

Figure 3.7: Partitions and CPDs for each variable in a PBM Γ for the hurricane
scenario of Example 3.2.

94



Chapter 3. Contingent Probabilistic Models

3.4.2 Semantics

As we did with BNs, we would like to specify what it means for a probability measure

P on (Ω,F ) to satisfy a PBM Γ. We can easily state that for each variable X ∈V , cXΓ

must be a version of P (X|ΛX
Γ ). Our other requirement in the BN case (see Definition

2.19) was that P must satisfy the local Markov property : each variable is independent

of its nondescendants given its parents. But what are the nondescendants of a

variable in a PBM? The local Markov property turns out to be not so local, in

that it requires having a graph over all the variables so that we can identify the

nondescendants of each node.

Since it is not immediately obvious how to generalize a BN’s independence prop-

erties to PBMs, let us consider the factorization property given by condition (3) in

Theorem 2.10. This conditional requires that if vars (σ) is a finite, ancestral set in a

BN B, then:

P (σ) =
∏

X ∈ vars(σ)

cXB (σX , σ[PaB(X)]) (3.5)

We would like to state a similar factorization property for PBMs, but this requires

some appropriate generalization of the idea of an “ancestral set”. Notice that the

reason why vars (σ) must be an ancestral set in Equation 3.5 is so that σ assigns

values to PaB(X) for each X ∈ vars (σ). That is, σ determines which instantiation

of PaB(X) to pass into X’s CPD. The analogous requirement in a PBM Γ is that σ

must determine an element of the partition ΛX
Γ . In this case, we say that σ supports

X.

Definition 3.6. In a PBM Γ, an instantiation σ supports a variable X if σ is

achievable and there is some block λ∈ΛX
Γ such that ev (σ) ⊆ λ.

If σ supports X, then we will write λX
Γ (σ) for the unique element of ΛX

Γ that has

ev (σ) as a subset. Intuitively, σ supports X if knowing σ is enough to tell us which

95



Chapter 3. Contingent Probabilistic Models

block of ΛX
Γ we’re in; then we can use X’s CPD to obtain a conditional probability

for each possible value of X. In Example 3.1, (B1 = 8, C8 = Blue) supports O1, but

(B1 = 4, C8 = Blue) does not. In an ordinary BN, any instantiation of the parents of

X supports X.

Note that if σ supports X and ρ is an extension of σ, then ρ supports X as well

— unless ρ is not achievable. We require σ to be achievable in Definition 3.6 because

the event corresponding to an unachievable instantiation — namely the empty set

— is a subset of every element of ΛX
Γ , and thus does not uniquely identify a partition

block.

So an instantiation that supports X in a PBM is analogous to an instantiation of

X’s parents in a BN. We can now define a notion analogous to that of an ancestral

set.

Definition 3.7. In a PBM Γ, an instantiation σ is self-supporting if for each

X ∈ vars (σ), σ supports X.

If a set of variables is an ancestral set in a BN, then any instantiation of those

variables is self-supporting in the PBM representation of that BN. Note that being

self-supporting is a property of instantiations, not of sets of variables. Some in-

stantiations of a given set of variables may be self-supporting while others are not:

for instance, in Figure 3.5, the instantiation (N = 9, B1 = 8, C8 = Blue, O1 = Blue) is

self-supporting, but (N = 9, B1 = 4, C8 = Blue, O1 = Blue) is not. The need to talk

about instantiations rather than variables is a consequence of our choice to represent

contingent dependencies.

We now have a partition-based analogue of the notion of an ancestral set. It is

not immediately obvious how this helps us to generalize the local Markov property

of BNs, which talks about the nondescendants of a variable. However, it turns

out that the local Markov property can be reformulated in terms of ancestral sets.

96



Chapter 3. Contingent Probabilistic Models

The property states that under any probability measure P that satisfies a BN B,

X ⊥⊥P NonDescB(X) |PaB(X). This is equivalent to saying that for every finite subset

W ⊆ NonDescB(X), X ⊥⊥P W |PaB(X). But in a BN where every node has finitely

many ancestors, each finite W ⊆ NonDescB(X) can be extended to a finite ancestral

set W′ ⊆ NonDescB(X). The ancestral sets that are subsets of NonDescB(X) are

precisely those ancestral sets that do not containX. So for BNs that have topological

numberings, the local Markov property is equivalent to the following: if W is a finite

ancestral set that does not contain X, then X ⊥⊥P W |PaB(X). This observation

suggests the following definition for the semantics of a PBM.

Definition 3.8. Let Γ be a PBM for a set of variables V defined on an outcome

space (Ω,F ). A probability measure P on (Ω,F ) satisfies Γ if, for each X ∈V,

i. cXΓ is a version of P (X|ΛX
Γ );

ii. for every finite, self-supporting instantiation σ that does not instantiate X,

X ⊥⊥P σ |ΛX
Γ .

We will refer to part (ii) of this definition as the local Markov property for PBMs.

Note that it does not specify independence between variables, but rather between a

variable and certain events. A PBM is well-defined if there is exactly one probability

measure that satisfies it. The rest of this section is devoted to identifying conditions

under which a PBM is guaranteed to be well-defined.

3.4.3 Supportive split trees

Recall that most of our results about BNs rely on the assumption that the BN

has a topological numbering. To prove further results about PBMs, we will need

an analogous assumption. We already have a contingent analogue of a numbering,

97



Chapter 3. Contingent Probabilistic Models

namely the split tree, introduced in Section 3.3. We would like to define a class of

split trees that are analogous to topological numberings.

In a topological numbering for a BN B, the predecessor set for any variable X

includes PaB(X). One way to generalize this condition to split trees is to require

that if a node σ splits on a variable X, then σ must support X. This is essentially

the condition we will use, but it turns out that we can weaken it slightly (and this

weakening is useful; see Appendix 3.B). Specifically, we will not require σ to support

its split variable if it is directly disallowed, in the following sense.

Definition 3.9. An instantiation σ is directly disallowed in a PBM Γ if there is

some X ∈ vars (σ) and some sub-instantiation τ of σ that supports X, such that

cXΓ (σX , λ
X
Γ (τ)) = 0.

If σ is directly disallowed in Γ, then any probability measure that satisfies Γ

assigns probability zero to σ. To see this, observe that if cXΓ is a version of P (X|ΛX
Γ )

and cXΓ (σX , λ
X
Γ (τ)) = 0, then P (λX

Γ (τ) ∩ {X =σX}) = 0. Since ev (τ) ⊆ λX
Γ (τ), it

follows that P (τ ;X =x) = 0, and thus P (σ) = 0 if (τ ;X =x) is a sub-instantiation

of σ.

Because any directly disallowed instantiation σ has probability zero, the PBM

determines the value of P (σ;X =x) even when σ does not support X: P (σ;X =x) =

0. So we do not need to require that directly disallowed nodes support their split

variables. We define a contingent analogue of a topological numbering as follows:

Definition 3.10. A supportive split tree for a PBM Γ is a split tree for Γ’s variables

in which each non-leaf instantiation σ either supports its split variable Xσ
T , or is

directly disallowed.

98



Chapter 3. Contingent Probabilistic Models

3.4.4 Supportive numberings

In Section 2.4.2, our first step in deriving well-definedness conditions for BNs was to

prove that a BN determines the probabilities of the instantiations of finite prefixes

of any topological numbering. We can prove a similar result for the instantiations in

a supportive split tree for a PBM. This result is based on the fact that if an instan-

tiation in a supportive split tree is not directly disallowed, then it has a supportive

numbering.

Definition 3.11. A supportive numbering for an instantiation σ in a PBM is a

numbering π of vars (σ) such that for each X ∈ vars (σ), the instantiation σ[Predπ[X]]

supports X.

If a path from the root of a supportive split tree contains no directly disallowed

nodes, then the order in which variables are instantiated serves as a supportive num-

bering for instantiations on that path. This ordering also serves as a supportive

numbering for the first directly disallowed instantiation on a path. Subsequent in-

stantiations on the same path may not have supportive numberings, but they are all

directly disallowed. Thus, any node in a supportive split tree either has a supportive

numbering or is directly disallowed.

Having a supportive numbering is closely related to being self-supporting — in

fact, in our IJCAI paper on BLOG [Milch et al., 2005a], we used the term “self-

supporting” to refer to instantiations that have a supportive numbering. Unfortu-

nately, the two notions are not equivalent. It is true that if an instantiation has

a supportive numbering and is achievable, then it is self-supporting (unachievable

instantiations cannot be self-supporting because they do not support any variables).

But the converse does not hold: an achievable instantiation that is self-supporting

may fail to have a supportive numbering. As an example, consider a PBM Γ with just

one random variable, X, such that ΛX
Γ = {{X = 0}, {X = 1}}. That is, the condi-

99



Chapter 3. Contingent Probabilistic Models

tional distribution for X depends on X itself. A PBM such as this one will generally

not be well-defined, but it is still a PBM. Here the instantiation σ , (X = 1) is

self-supporting, but it does not have a supportive numbering. For any numbering π,

σ[Predπ[X]] is just >, which does not support X in this PBM.

We will now prove a factorization property for instantiations that have supportive

numberings.

Lemma 3.7. Let P be a probability measure that satisfies a PBM Γ for a set of

variables V. If σ is a finite, achievable instantiation on V that has a supportive

numbering, then:

P (σ) =
∏

X ∈ vars(σ)

cXΓ (σX , λ
X
Γ (σ)) (3.6)

Proof. We proceed by induction on |vars (σ) |. The base case, where vars (σ) = ∅, is

trivial: we get P (>) = 1. Now suppose the lemma holds for all instantiations of size

n, and consider any achievable instantiation σ of size n + 1 that has a supportive

numbering π. Let Y be the last element of vars (σ) according to π.

If P (σ−Y ) = 0, then by the inductive hypothesis, there is some X ∈ (vars (σ)\Y )

such that cXΓ (σX , λ
X
Γ (σ−Y )) = 0. Because σ is achievable, λX

Γ (σ) = λX
Γ (σ−Y ). Thus

the right hand side of Equation 3.6 evaluates to zero for σ as well. And since

ev (σ) ⊆ ev (σ−Y ), we know P (σ) = 0 too, so Equation 3.6 is satisfied in this case.

Otherwise, by the definition of conditional probability, P (σ) = P (Y =σY |σ−Y )P (σ−Y ).

Now since π is supportive and σ−Y = σ[Predπ[Y ]], we know σ−Y supports Y . Since

ev (σ−Y ) ⊆ λY
Γ (σ−Y ), we can express σ−Y as ev (σ−Y ) ∩ λY

Γ (σ−Y ). Therefore:

P (σ) = P (Y =σY | ev (σ−Y ) ∩ λY
Γ (σ−Y ))P (σ−Y )

We know that σ−Y has a supportive numbering, and it must be achievable because

σ is achievable. So σ−Y is a finite, self-supporting instantiation that does not instan-

100



Chapter 3. Contingent Probabilistic Models

tiate Y . So by the local Markov property for PBMs, Y ⊥⊥P σ−Y |ΛY
Γ . Thus:

P (σ) = P (Y =σY |λY
Γ (σ−Y ))P (σ−Y )

Then by the inductive hypothesis,

P (σ) = P (Y =σY |λY
Γ (σ−Y ))

∏
X ∈ vars(σ−Y )

cXΓ (σX , λ
X
Γ (σ−Y ))

Finally, because cYΓ is a version of P (Y |ΛY
Γ ), we have:

P (σ) =
∏

X ∈ vars(σ)

cXΓ (σX , λ
X
Γ (σ−Y ))

Since λX
Γ (σ) = λX

Γ (σ−Y ) for all variables X that σ−Y supports, we have shown that

P (σ) satisfies Equation 3.6.

3.4.5 Criteria for satisfying a PBM

We now know that if T is a supportive split tree for a PBM Γ, then Γ fully determines

the probabilities of all instantiations in the tree. By applying Theorem 3.6, we

will be able to show that there is a unique probability measure on Γ’s outcome

space that assigns the specified probabilities to all the instantiations. However, we

must also show that any such probability measure satisfies Γ. We faced the same

issue with BNs, where we had to show that assigning the correct probabilities to

all instantiations of prefixes of a topological numbering was sufficient for satisfying

a BN. As in the BN case, we will prove the equivalence of three conditions on a

probability measure P : P satisfies a given PBM; P assigns the correct probabilities

to instantiations in a supportive split tree; and P satisfies a certain factorization

property for all finite, self-supporting instantiations.

101



Chapter 3. Contingent Probabilistic Models

Lemma 3.8. Let Γ be a PBM for a set of variables V defined on an outcome space

(Ω,F ), let P be a probability measure on (Ω,F ), and let T be a supportive split tree

for Γ. Suppose that for every instantiation σ in T that has a supportive numbering,

P (σ) satisfies Equation 3.6. Then Equation 3.6 holds for every finite, self-supporting

instantiation σ on V.

Proof. Our proof proceeds by induction, and actually involves proving a stronger

statement than the one given in the lemma: if τ is a node in T , and σ is any finite

instantiation such that vars (σ) ∩ vars (τ) = ∅ and (τ ;σ) is self-supporting, then:

P (τ ;σ) = P (τ)
∏

X ∈ vars(σ)

cXΓ (σX , λ
X
Γ (τ ;σ)) (3.7)

Note that if τ is the empty instantiation (the root of T ), then P (τ) = 1 and we get

Equation 3.6.

Our induction is on the size of vars (σ). If |vars (σ) | = 0, then Equation 3.7

is just P (τ) = P (τ), which is trivially true. Now suppose Equation 3.7 holds for

instantiations of size n, and consider any σ of size n + 1. Let τ be a node in T

such that vars (σ) ∩ vars (τ) = ∅ (which implies that the path to τ does not split

on any variables in vars (σ)) and (τ ;σ) is self-supporting. Let R be the set of nodes

in the sub-tree induced by τ that are the first along their path from τ to split on

a variable in vars (σ). Because every non-truncated path splits on every variable,

there is an element of R on every non-truncated path from τ , and thus (by Lemma

3.4), {ev (ρ) : ρ∈R} is a partition of ev (τ).

Now consider any node ρ∈R that is not directly disallowed, and let W = Xρ
T .

Let ρ′ be the child of ρ such that ρ′W = σW . Then (ρ;σ) = (ρ′;σ−W ). Also, (ρ;σ)

is self-supporting: we know this because ρ is self-supporting, and every variable in

vars (σ) is supported by (τ ;σ), which is a sub-instantiation of (ρ;σ). So, applying

102



Chapter 3. Contingent Probabilistic Models

the inductive hypothesis to σ−W , we have:

P (ρ;σ) = P (ρ′)
∏

X ∈ (vars(σ)\W )

cXΓ (σX , λ
X
Γ (ρ;σ))

Because ρ is not directly disallowed, we know it has a supportive numbering. And

since T is supportive, we know ρ supports W , so this numbering can be extended to

a supportive numbering of ρ′. So P satisfies Equation 3.6 for both ρ and ρ′. This im-

plies P (ρ′) = P (ρ)cWΓ (ρ′W , λ
W
Γ (ρ′)). We chose ρ′ such that ρ′W = σW ; also, since ρ sup-

portsW , we have λW
Γ (ρ′) = λW

Γ (ρ). So we can replace P (ρ′) with P (ρ)cWΓ (σW , λ
W
Γ (ρ))

in our previous equation, yielding:

P (ρ;σ) = P (ρ)cWΓ (σW , λ
W
Γ (ρ))

∏
X ∈ (vars(σ)\W )

cXΓ (σX , λ
X
Γ (ρ;σ))

Note that we have both ev (ρ;σ) ⊆ ev (ρ) ⊆ λW
Γ (ρ) and ev (ρ;σ) ⊆ ev (τ ;σ) ⊆

λW
Γ (τ ;σ). So because the elements of ΛW

Γ are disjoint (and (ρ;σ) is self-supporting

and therefore achievable), it must be that λW
Γ (ρ) = λW

Γ (τ ;σ). Similarly, for each

X ∈ vars (σ) \W , λX
Γ (ρ;σ) = λX

Γ (τ ;σ). Thus:

P (ρ;σ) = P (ρ)
∏

X ∈ vars(σ)

cXΓ (σX , λ
X
Γ (τ ;σ))

This equation also holds trivially for nodes ρ that are directly disallowed: P (ρ) must

be zero because the first directly disallowed instantiation on the path to ρ has zero

probability according to Equation 3.6, and then P (ρ;σ) must be zero as well. Since

the equation holds for every ρ∈R, and {ev (ρ) : ρ∈R} is a partition of ev (τ), we

103



Chapter 3. Contingent Probabilistic Models

have:

P (τ ;σ) =
∑
ρ∈R

P (ρ;σ)

=
∑
ρ∈R

P (ρ)
∏

X ∈ vars(σ)

cXΓ (σX , λ
X
Γ (τ ;σ))

=

(∑
ρ∈R

P (ρ)

) ∏
X ∈ vars(σ)

cXΓ (σX , λ
X
Γ (τ ;σ))

= P (τ)
∏

X ∈ vars(σ)

cXΓ (σX , λ
X
Γ (τ ;σ))

This is the desired statement Equation 3.7.

Given that P (σ) satisfies Equation 3.6 for every finite, self-supporting instantia-

tion σ, it is trivial to show that P (X =x|σ) = cXΓ (x, λX
Γ (σ)) whenever σ is a finite,

self-supporting instantiation that supports X. However, it takes a bit of work to

show that P satisfies the PBM. The CPD constraint of Definition 3.8 involves a par-

tition block rather than an instantiation σ, and the local Markov property involves

a finite, self-supporting instantiation that may or may not support X.

Lemma 3.9. Let Γ be a PBM for a set of variables V defined on an outcome space

(Ω,F ). Assume Γ has a supportive split tree. If P is a probability measure on (Ω,F )

such that P (σ) satisfies Equation 3.6 for every finite, self-supporting instantiation σ

on V, then P satisfies Γ.

Proof. Let T be a supportive split tree for Γ, and consider any variable X ∈V . Let

x be any value in range (X), λ be any partition block in ΛX
Γ such that P (λ) > 0, and

σ be any finite, self-supporting instantiation that does not instantiate X. We will

show that P (σ;X =x |λ) = cXΓ (x, λ)P (σ|λ). First, let R be the set of instantiations

in T that split on X. There is one element of R on every non-truncated path from

the root of T , so by Lemma 3.4, {ev (ρ) : ρ∈R} is a countable partition of Ω.

104



Chapter 3. Contingent Probabilistic Models

Therefore:

P (σ;X =x|λ) =
∑
ρ∈R

P (σ; ρ;X =x|λ)

=
1

P (λ)

∑
ρ∈R

P (ev (σ; ρ;X =x) ∩ λ)

If an instantiation ρ∈R is directly disallowed, P (ρ) must be zero. To see this, note

that the first directly disallowed instantiation on the path to ρ is self-supporting; and

if a self-supporting instantiation is directly disallowed, then it must have probability

zero under Equation 3.6. So we can remove directly disallowed instantiations from

R without changing the sum in the equation above. Now consider an instantiation

ρ∈R that is not directly disallowed. By the definition of a supportive split tree, ρ

must support X. So either ev (ρ) ⊆ λ or ev (ρ) ∩ λ = ∅. For those instantiations

ρ with ev (ρ) ∩ λ = ∅, we can see that P (ev (σ; ρ;X =x) ∩ λ) = 0. Finally, this

probability is also zero if ρ contradicts σ. So without changing the result of the

summation, we can replace R with the set R′ of instantiations in R that represent

subsets of λ, are consistent with σ, and are not directly disallowed.

P (σ;X =x|λ) =
1

P (λ)

∑
ρ∈R′

P (σ; ρ;X =x)

Now note that for each ρ∈R′, both (σ; ρ) and (σ; ρ;X =x) are self-supporting in-

stantiations. So by Equation 3.6,

P (σ;X =x|λ) =
1

P (λ)

∑
ρ∈R′

cXΓ (x, λX
Γ (ρ))P (σ; ρ)

=
1

P (λ)
cXΓ (x, λ)

∑
ρ∈R′

P (σ; ρ)

Here we have used the fact that each ρ∈R′ represents a subset of λ. For the

105



Chapter 3. Contingent Probabilistic Models

same reason, we can write the sum in the previous equation more evocatively as∑
(ρ∈R′) P (ev (σ) ∩ λ ∩ ev (ρ)). It then becomes clear, given our construction of R′,

that this sum is equal to P (ev (σ) ∩ λ). So we have:

P (σ;X =x|λ) =
1

P (λ)
cXΓ (x, λ)P (ev (σ) ∩ λ)

= cXΓ (x, λ)P (σ|λ)

This is the equation we set out to prove. Note that for any given x∈ range (X)

and λ∈ΛX
Γ , setting σ = > (which is trivially a self-supporting instantiation) yields

P (X =x|λ) = cXΓ (x, λ). Therefore cXΓ is a version of P (X|ΛX
Γ ). Applying this con-

clusion to the equation we derived yields:

P (σ;X =x |λ) = P (X =x |λ)P (σ |λ)

Therefore X ⊥⊥P σ |ΛX
Γ . So both conditions of Definition 3.8 are satisfied, and P

satisfies Γ.

With these lemmas in hand, we can now prove the following equivalence result.

Theorem 3.10. Let Γ be a PBM for a set of random variables V defined on an

outcome space (Ω,F ), and let P be a probability measure on (Ω,F ). If T is a

supportive split tree for Γ, then the following three criteria are equivalent:

1. P satisfies Γ (in the sense of Definition 3.8).

2. For every instantiation σ in the tree T that has a supportive numbering, P (σ)

satisfies Equation 3.6.

3. For every finite, self-supporting instantiation σ on V, P (σ) satisfies Equa-

tion 3.6.

106



Chapter 3. Contingent Probabilistic Models

Proof. We use a circle of implications.

(1) ⇒ (2): If P satisfies Γ, then Lemma 3.7 implies that P (σ) satisfies Equa-

tion 3.6 for every finite, achievable instantiation σ that has a supportive numbering.

Every instantiation in a split tree is finite and (by Lemma 3.2) achievable. So in par-

ticular, P (σ) satisfies Equation 3.6 for every instantiation in T that has a supportive

numbering.

(2) ⇒ (3): This is Lemma 3.8.

(3) ⇒ (1): This is Lemma 3.9.

We have a reason to be interested in each of the criteria in Theorem 3.10. Cri-

terion (1) is the definition of PBM semantics based on CPDs and a local Markov

property, analogous to the definition for BNs in Section 2.4. Criterion (2) gives us

a connection to Theorem 3.6, which says that any consistent assignment of prob-

abilities to the instantiations in a split tree defines a unique probability measure.

And criterion (3) is used in the AI/Stats paper where we introduced PBMs [Milch et

al., 2005b] as the definition for when a probability measure satisfies a PBM. When

we wrote that paper, we had not yet figured out a straightforward way of stating

a local Markov property for PBMs. Theorem 3.10 confirms that the definitions are

equivalent when the PBM has a supportive split tree.

3.4.6 CPDs and outcome spaces

We have now shown that if a PBM Γ has a supportive split tree T , then a probability

measure P satisfies Γ if and only if P (σ) satisfies Equation 3.6 for every instantiation

σ in T that has a supportive numbering. But before we can apply our results

about split trees to show that Γ is well-defined, we must check that the probabilities

assigned to instantiations in T by Equation 3.6 are consistent. For any PBM Γ,

we can define a function fΓ on achievable instantiations that have a supportive

107



Chapter 3. Contingent Probabilistic Models

numbering or are directly disallowed, as follows:

fΓ(σ) =


∏

X ∈ vars(σ)

cXΓ (σX , λ
X
Γ (σ)) if σ has a supportive numbering

0 if σ is directly disallowed

(3.8)

If σ has a supportive numbering and is directly disallowed, then the two parts of

this definition agree. To see this, suppose σ is directly disallowed: that is, it has a

sub-instantiation τ and a variable X ∈ vars (σ) such that cXΓ (σX , λ
X
Γ (τ)) = 0. Since

σ is an achievable extension of τ , we know λX
Γ (σ) = λX

Γ (τ), so the factor for X in

the product expression for σ is zero as well.

If P satisfies a PBM Γ and T is a supportive split tree for Γ, then Theorem 3.10

implies that P (σ) = fΓ(σ) for every instantiation σ in T . So we must check that

this function fΓ satisfies the consistency condition of Theorem 3.6. That is, for each

non-leaf node σ, we must show that:

∑
ρ∈ chT (σ)

fΓ(ρ) = fΓ(σ)

Suppose σ is an instantiation in T that is not directly disallowed and that splits

on a variable X. Using Equation 3.8 and the fact that σ has one child for each

element of range (X|σ), it is easy to show that:

∑
ρ∈ chT (X)

fΓ(ρ) = fΓ(σ)
∑

x∈ range(X|σ)

cXΓ (x, λX
Γ (σ))

However, nothing we have said so far implies that cXΓ (x, λX
Γ (σ)) sums to one over

range (X|σ). The definition of a CPD just implies that cXΓ (x, λX
Γ (σ)) sums to one

over range (X), but some values of x that are not in range (X|σ) may get positive

probability. Thus, we need an additional assumption to ensure that fΓ does not

108



Chapter 3. Contingent Probabilistic Models

assign positive probability to unachievable instantiations.

One plausible assumption is that for each λ∈ΛX
Γ , cXΓ (x, λ) sums to one over

range (X|λ). However, this turns out to be insufficient. The problem is that a PBM’s

partitions may fail to respect the structure of the outcome space. For example,

suppose we have two binary variables X and Y , and our outcome space Ω consists

of just those instantiations σ of {X,Y } such that σX 6= σY . Now suppose we define

a PBM Γ in which neither variable depends on the other: each variable has the

trivial partition {Ω}. The assumption that cXΓ (x,Ω) sums to one over range (X|Ω)

is vacuous, because range (X|Ω) = {0, 1}; the same thing happens for cYΓ (y,Ω). So

the unachievable instantiations (X = 1, Y = 1) and (X = 0, Y = 0) may end up with

positive probability. We need a stronger assumption to rule out this phenomenon.

It turns out that the following condition does the trick:

Definition 3.12. A PBM Γ respects its outcome space if, whenever π is a supportive

numbering of an instantiation σ and σ is unachievable, then π yields a zero factor

on σ under Γ: that is, cXΓ (σX , λ
X
Γ (σ[Predπ[X]])) = 0 for some X ∈ vars (σ).

Note that if some supportive numbering of σ yields a zero factor, then σ is directly

disallowed. However, there are counterintuitive examples where the converse does

not hold.2

Lemma 3.11. Let Γ be a PBM that respects its outcome space, and let T be a

supportive split tree for Γ. Then for every non-leaf instantiation σ in T :

fΓ(σ) =
∑

ρ∈ chT (σ)

fΓ(ρ) (3.9)

2For example, suppose the instantiation σ , (X =1, Y =1) is unachievable. Because σ is not
achievable, its sub-instantiations may yield different blocks in Y ’s partition. Specifically, it is
possible that both (X =1) and (Y =1) support Y , but λY

Γ (X =1) = λ1 with cYΓ (1, λ1) > 0, while
λY

Γ (Y =1) = λ2 with cYΓ (1, λ2) = 0. Then a supportive numbering that puts X before Y may not
yield a zero factor, even though σ is directly disallowed.

109



Chapter 3. Contingent Probabilistic Models

Proof. Let σ be a non-leaf instantiation in T , and let X be the variable that σ splits

on. Because T is self-supporting, we know that either σ is directly disallowed, or

σ has a supportive numbering and supports X. If σ is directly disallowed, then all

its children are directly disallowed as well. So by Equation 3.8, fΓ(σ) = 0, and also

fΓ(ρ) = 0 for each ρ∈ chT (σ). So both sides of Equation 3.9 are zero.

Now suppose σ is not directly disallowed. Because cXΓ (x, λ) sums to one over

range (X) (which is countable), we can write:

fΓ(σ) = fΓ(σ)
∑

x∈ range(X)

cXΓ (x, λX
Γ (σ))

Consider any x ∈ range (X)\range (X|σ). By the definition of range (X|σ), we know

(σ;X =x) is not achievable. Because σ is a node in a supportive split tree and is not

directly disallowed, we know it has a supportive numbering, say π. Putting X at the

end of this numbering yields a supportive numbering π′ for (σ;X =x). Because Γ

respects its outcome space, it follows that π′ yields a zero factor. This factor cannot

involve the CPD for any variable in vars (σ), because then π would also yield a zero

factor and σ would be directly disallowed. So the zero factor must be cXΓ (x, λX
Γ (σ)).

Thus, we can remove all x values in range (X) \ range (X|σ) from the summation in

our last equation without changing the result. This yields:

fΓ(σ) = fΓ(σ)
∑

x∈ range(X|σ)

cXΓ (x, λX
Γ (σ))

=
∑

x∈ range(X|σ)

fΓ(σ)cXΓ (x, λX
Γ (σ))

=
∑

x∈ range(X|σ)

fΓ(σ;X =x) by Equation 3.8

Finally, recalling that in any split tree, chT (σ) = {(σ;X =x) : x ∈ range (X|σ)},

we get Equation 3.9.

110



Chapter 3. Contingent Probabilistic Models

3.4.7 Sufficient condition for being well-defined

Given all these results, it is now straightforward to prove our main theorem about

PBMs.

Theorem 3.12. Let Γ be a PBM that respects its outcome space. If there exists a

supportive split tree for Γ, then Γ is well-defined.

Proof. Let T be a supportive split tree for T . The function fΓ defined in Equation

3.8 assigns a number between 0 and 1 to each instantiation in this tree. Furthermore,

Lemma 3.11 ensures that fΓ satisfies the conditions of Theorem 3.6 on this tree. So

by Theorem 3.6, there is a unique probability measure P on the outcome space of

Γ such that P (σ) = fΓ(σ) for all σ in T . By the definition of fΓ, this P satisfies

Equation 3.6 for each instantiation in T that has a supportive numbering. So by

Theorem 3.10, P satisfies Γ.

To show uniqueness, consider any probability measure P ′ that satisfies Γ. By

Theorem 3.10, P ′ must satisfy Equation 3.6 for each instantiation in T that has a

supportive numbering. And as we argued after the definition of a directly disallowed

instantiation, any probability measure that satisfies Γ must assign probability zero

to directly disallowed instantiations. So P ′(σ) = fΓ(σ) for all σ in T . Thus the

uniqueness part of Theorem 3.6 implies P ′ = P . So there is exactly one probability

measure that satisfies Γ.

3.4.8 Supportive numberings for outcomes

It may not always be obvious when a PBM has a supportive split tree. However, it

may be easier to show that each outcome of a PBM has a supportive numbering. We

say that an outcome ω ∈Ω has a supportive numbering if the complete instantiation

corresponding to ω has a supportive numbering. It turns out that if the PBM

111



Chapter 3. Contingent Probabilistic Models

respects its outcome space, then supportive numberings for individual outcomes can

always be used to construct a supportive split tree — which, by definition, covers all

outcomes.

Theorem 3.13. Let Γ be a PBM over a set of random variables V defined on an

outcome space (Ω,F ). If Γ respects its outcome space and every outcome in Ω has

a supportive numbering, then Γ has a supportive split tree and hence is well-defined.

Proof. Let πg be an arbitrary “global” numbering of V . We will construct a support-

ive split tree T for Γ inductively. Let the root node of the tree be the empty instanti-

ation. Then, for each incomplete instantiation σ in the tree, define the children of σ

as follows. If σ is directly disallowed, then let Xσ
T be the first variable in the number-

ing πg that is not in vars (σ). Otherwise, let Xσ
T be the first variable not in vars (σ)

that is supported by σ. Let the children of σ be {(σ;Xσ
T =x) : x ∈ range (Xσ

T |σ)}.

To show that this construction is well-defined, we must show that for every

incomplete instantiation σ that is not directly disallowed, there is some variable not

in vars (σ) that is supported by σ. To see this, assume for contradiction that such

an instantiation σ does not support any variable not in vars (σ). Our construction

guarantees that each instantiation in the tree is achievable, by the same argument

as in the proof of Lemma 3.2. So let ω be any outcome in Ω that is consistent with

σ. By hypothesis, ω has a supportive numbering πω. Because σ is incomplete, there

is some variable not in vars (σ); let X be the first variable in the numbering πω that

is not in vars (σ). This implies that Predπω [X](ω) is a sub-instantiation of σ. But

by the definition of a supportive numbering, Predπω [X](ω) supports X. This means

σ supports X as well, contradicting our assumption.

Finally, we must show that T satisfies Definition 3.3(iii): each variable serves as

a split variable exactly once on each non-truncated path from the root. Since Xσ
T

is chosen from the variables that are not in vars (σ), a path cannot contain more

112



Chapter 3. Contingent Probabilistic Models

than one node that splits on a given variable. To show that each non-truncated path

from the root splits on each variable in V , consider any such path σ1, σ2, . . .. We

constructed T so that every incomplete instantiation has at least one child, so this

path cannot end with an incomplete instantiation; it must be infinite. First consider

the case where the path contains a directly disallowed instantiation σi. Then every

instantiation after σi in the path is also directly disallowed, so the split variables from

σi onward are simply selected according to the global numbering πg. The number of

steps from σi to a node that instantiates any variable X is at most πg(X).

If no instantiation in the path is directly disallowed, then consider the infinite

instantiation ∧iσi. We can construct a supportive numbering π for ∧iσi by letting

π(X) be the depth of the node in σ1, σ2, . . . that splits onX. Because no instantiation

on this path is directly disallowed, this numbering must not yield a zero factor. So

because Γ respects its outcome space, we know ∧iσi is achievable. Let ω be an

outcome consistent with ∧iσi, and let πω be a supportive numbering for ω. Now

assume for contradiction that there is some variable in V that the path σ1, σ2, . . .

does not split on. Let X be the first such variable, according to the numbering πω.

Then the path does split on every variable in the finite set Predπω [X], so the path

contains an instantiation σi that instantiates all of Predπω [X]. But because split

variables in T are selected according to the global numbering πg, σi can have at

most πg(X) consecutive descendants that split on variables other than X. So some

node in the path must split on X.

Thus, the tree constructed in this way is a supportive split tree for Γ. Since Γ

respects its outcome space, it follows by Theorem 3.12 that Γ is well-defined.

113



Chapter 3. Contingent Probabilistic Models

3.5 Contingent Bayesian networks

In a partition-based model, we do not need to specify the parents of a random

variable; we just specify probability distributions for the variable given a set of

events that partition the outcome space. However, for some purposes we would

like a more explicit representation: one that specifies directly the set of variables

that X depends on and the conditions under which these dependencies are active.

Contingent Bayesian networks (CBNs) provide such a representation.

3.5.1 Decision trees for defining partitions

Like many previous approaches [Boutilier et al., 1996], CBNs use decision trees to

represent context-specific dependencies. Decision trees are like split trees (Definition

3.3), but without the requirement that each non-truncated path must split on every

variable.

Definition 3.13. A decision tree T over a set of random variables V is a directed

tree where each node is an instantiation on V, such that:

• the root node is >;

• each non-leaf node σ splits on a variable Xσ
T /∈ vars (σ) such that the children

of σ are {(σ;Xσ
T =x) : x ∈ range (Xσ

T |σ)}.

Figure 3.8 shows decision trees for the variables in the urn-and-balls scenario of

Example 3.1, and Figure 3.9 does the same for the hurricane scenario of Example 3.2.

In some of these trees, there are nodes with infinitely many children; our definition

also allows decision trees to contain infinite paths.

An outcome ω matches a path θ in a decision tree if ω is consistent with every

node (instantiation) on the path. Note that although Definition 3.13 ensures that

114



Chapter 3. Contingent Probabilistic Models

For {Ci}∞i=1 and for {Bj}kj=1:

N=0

N=1

N=2

⊥

For {Oj}kj=1:

⊥

Bj=(Ball, 1)

Bj=null

Bj=(Ball, 2)

Bj=(Ball, 1), C1=null

Bj=(Ball, 1), C1=Green

Bj=(Ball, 1), C1=Blue

Bj=(Ball, 2), C2=null

Bj=(Ball, 2), C2=Green

Bj=(Ball, 2), C2=Blue

Figure 3.8: Decision trees for the variables in the urn-and-balls scenario with k
draws. For the variable N , the decision tree consists of just a root node.

each instantiation in a decision tree is achievable, an infinite path may not have any

matching outcomes (Definition 3.2 part (ii) does not apply because an infinite path

in a decision tree does not necessarily split on every variable). If the set of outcomes

that match θ is non-empty, we say θ is achievable. Recall that a non-truncated path

is one that is infinite or ends at a leaf. The achievable, non-truncated paths starting

from the root are mutually exclusive and exhaustive, so a decision tree defines a

partition of Ω.

Definition 3.14. Let V be a set of random variables defined on (Ω,F ). The

partition ΛT defined by a decision tree T over V consists of a block of the form

{ω ∈Ω : ω matches θ} for each achievable, non-truncated path θ starting at the root

115



Chapter 3. Contingent Probabilistic Models

For PA: For PB:

⊥

F=null

F=B, DB=Severe

F=A

F=B

F=B, DB=Mild

F=B, DB=null

⊥

F=null

F=A, DA=SevereF=A

F=B

F=A, DA=Mild

F=A, DA=null

For DA: For DB:

⊥

PA=High

PA=Low

PA=null
⊥

PB=High

PB=Low

PB=null

Figure 3.9: Decision trees for the variables in the hurricane scenario. For the variable
F , the decision tree consists of just a root node.

of T .

For a tree with no infinite paths, the partition just consists of one block for each

leaf node. For example, the decision tree for PA in Figure 3.9 defines the partition: ev (F = null) , ev (F = A) ,

ev (F = B, DB = null) , ev (F = B, DB = Mild) , ev (F = B, DB = Severe)


As another example, the decision tree for an ObservedColor node Oj in Figure 3.8

116



Chapter 3. Contingent Probabilistic Models

defines the partition:

{ev (Bj = null)} ∪
∞⋃
i=1


ev (Bj = (Ball, i), Ci = null) ,

ev (Bj = (Ball, i), Ci = Blue) ,

ev (Bj = (Ball, i), Ci = Green)


Note that this partition for Oj is considerably finer than the partition we used for Oj

in the PBM in Figure 3.6: that partition had only three blocks, one for each possible

value of TrueColor(BallDrawn(d)). There is no decision tree that represents the fact

that the events (Bj = (Ball, 1), C1 = Blue) and (Bj = (Ball, 8), C8 = Blue) are equiva-

lent as far as Oj is concerned (for that we would need a decision graph [Chickering et

al., 1997]). However, the partition defined by the decision tree still captures a great

deal of contingent structure, in that each block only specifies the color of the single

ball that serves as the value of Bj. The advantage of representing the partition for

a variable X as a decision tree (as opposed to in a more abstract form) is that it

reveals which variables X depends on in which contexts.

3.5.2 CBN structures

Once we have specified which variables depend on which others in which contexts,

we can represent these dependencies graphically in a CBN structure.

Definition 3.15. Let V be a set of random variables defined on an outcome space

(Ω,F ). A CBN structure G for V is a directed graph where the set of nodes is V,

and each edge is labeled with an event in F .

An edge fromW toX labeled with an event E, which we denote by (W → X | E),

means that X depends on W when E occurs. As examples, Figure 3.10 shows a

CBN structure for the urn-and-balls scenario, and Figure 3.11 shows a CBN struc-

ture for the hurricane scenario. In the urn-and-balls model, the edge C3 → O1

117



Chapter 3. Contingent Probabilistic Models

C1

N

C2 C3

O1 O2

B1

B2

B1=1

B2=1

B1=2

B2=2B1=3 B2=3

Figure 3.10: A CBN structure for the urn-and-balls scenario of Example 3.1.

F

PA PB

DA DB

F=B F=A

Figure 3.11: A CBN structure for the hurricane scenario of Example 3.2.

118



Chapter 3. Contingent Probabilistic Models

is labeled with the event B1 = 3, meaning that [ObsColor]ω ((Draw, 1)) depends on

[TrueColor]ω ((Ball, 3)) only when [BallDrawn]ω (Draw, 1) = (Ball, 3). In the hurricane

model, the edge DB → PA is labeled with F =B, indicating that [Prep]ω (A) de-

pends on [Damage]ω (B) only when [First]ω = A. Edges that are left unlabeled in our

diagrams are formally labeled with the uninformative event Ω.

Given an outcome ω, an edge (W → X | E) is said to be active if ω ∈E, and

inactive otherwise. A partial instantiation σ activates (W → X | E) if σ implies E

(that is, ev (σ) ⊆ E) and deactivates it if σ contradicts E (that is, ev (σ) ∩E = ∅).

For example, in Figure 3.10, the instantiationB1 = 3 activates the edgesB1 → O1 and

(C3 → O1 | B1 = 3), and deactivates all the other edges into O1. If an instantiation

σ neither activates nor deactivates a given edge, we say this edge is potentially active

given σ.

If we take a CBN structure G and retain just those edges that are active in an

outcome ω (or activated by an instantiation σ), we get the context-specific graph Gω

(or Gσ). A variable W is an active parent of X given σ if it is a parent of X in Gσ

— or equivalently, if an edge from W to X is activated by σ. The active ancestors

of X given σ are those variables that are ancestors of X in Gσ.

For each variable X in a CBN B, we specify a decision tree TX
B , thus defining a

partition ΛX
B , Λ(T X

B ). To complete the parameterization, we also specify a CPD cXB

for X given ΛX
B . However, the decision tree for X must respect the CBN structure

in the following sense.

Definition 3.16. A decision tree T respects the CBN structure G at X if for every

node σ ∈T that splits on a variable W , there is an edge (W → X | E) in G that is

activated by σ.

For example, the decision trees for the urn-and-balls and hurricane scenarios in

Figures 3.8 and 3.9 all respect the CBN structures in Figures 3.10 and 3.11. Note

119



Chapter 3. Contingent Probabilistic Models

X

V W

W=1 V=1

Figure 3.12: A CBN structure in which no decision tree can split on V or W while
respecting the structure at X, despite the fact that V and W are parents of X.

that a decision tree T can respect a CBN structure atX even if does not split on all of

X’s parents. In fact, there are some CBN structures where it is impossible for a tree

to split on certain parents while respecting the CBN structure. For example, consider

the CBN structure in Figure 3.12. A decision tree that respects this structure at

X cannot split on V except at a node where W has already been instantiated to 1,

and it cannot split on W except where V has been set to 1. Thus, the tree cannot

split on either variable. Only a trivial single-node decision tree respects this CBN

structure at X. CBN structures of this kind are likely to be confusing, and should

be avoided; however, our results still hold for them.

3.5.3 Structurally well-defined CBNs

We are now ready to give a formal definition of a CBN.

Definition 3.17. Let V be a set of discrete random variables that is sufficient for

(Ω,F ). A contingent Bayesian network (CBN) B for V consists of a CBN structure

GB, and for each variable X ∈V:

• a decision tree TX
B that respects GB at X and defines a countable partition

ΛX
B , Λ(T X

B );

• a CPD cXB for X given ΛX
B .

120



Chapter 3. Contingent Probabilistic Models

It is clear that a CBN is a kind of PBM, since it defines a partition3 and a

CPD for each variable. Thus, our definitions for PBMs also specify what it means

for a distribution to satisfy a CBN, and for a CBN to be well-defined. But the

CBN representation provides additional insight: we can use graphical criteria to

check when an instantiation supports a variable, and when an instantiation is self-

supporting.

Proposition 3.14. Let X be a variable in a CBN B, and let σ be an achievable

instantiation on B’s variables. If the active parents of X given σ are all in vars (σ),

then σ supports X.

Proof. Suppose all the active parents of X given σ are in vars (σ). By Definition 3.17,

we know the decision tree TX
B respects GB at X. We claim that there is a unique

non-truncated path from the root of TX
B on which every node is a sub-instantiation

of σ. We can construct this path τ0, τ1, . . . as follows. Let τ0 be the root node >,

which is clearly a sub-instantiation of σ. Now suppose we have constructed the path

up through τn. If τn is a leaf node, then τ0, . . . , τn is a non-truncated path, and we

are done. Otherwise, by Definition 3.16, the variable W that τn splits on is an active

parent of X given τn. But by construction, τn is a sub-instantiation of σ, so W is

an active parent of X given σ as well. Therefore, W ∈ vars (σ). So because σ is

achievable, the instantiation (τ ;W =σW ) is one of τn’s children, and we can let this

instantiation be τn+1. This is the only child of τn that is a sub-instantiation of σ,

because each of τn’s other children assigns a different value to W .

Let θ be the path constructed in this manner. Then every outcome ω ∈ ev (σ)

matches θ. By Definition 3.14, there is a block in the partition ΛT X
B

consisting of

those outcomes that match θ. It follows that ev (σ) is a subset of this block, so σ

3Definition 3.17 requires the decision trees to define countable partitions (ruling out decision
trees with uncountably many paths from the root). And if V is a set of discrete random variables
that is sufficient for (Ω,F ), then any partition defined by a decision tree over V is measurable.

121



Chapter 3. Contingent Probabilistic Models

supports X.

Proposition 3.15. Let B be a CBN and σ be an instantiation on B’s variables. If

vars (σ) is an ancestral set in Gσ
B, then σ is self-supporting.

Proof. Consider any X ∈ vars (σ). By the definition of an ancestral set, vars (σ)

includes the parents of X in Gσ
B. So by Proposition 3.14, σ supports X.

We can also use graphical criteria to determine whether a CBN is well-defined.

Theorem 3.12 Our main theorem on well-definedness of PBMs is Theorem 3.12; it

requires that the PBM have a supportive split tree. Theorem 3.13 tells us that a

PBM has a supportive split tree if each of its outcomes has a supportive numbering.

Conveniently, in the CBN case, we can assure ourselves that an outcome ω has

a supportive numbering by considering certain properties of Gω
B . In the following

lemma, recall that an infinite receding chain is an infinite sequence of nodes X1 ←

X2 ← X3 ← · · · such that for each n, Xn+1 is a parent of Xn.

Lemma 3.16. Let ω be an outcome in a CBN B. The following two conditions are

equivalent and imply that ω has a supportive numbering:

i. in Gω
B , there are no cycles and no infinite receding chains, and every variable has

finitely many parents;

ii. in Gω
B , there are no cycles and every variable has finitely many ancestors.

Proof. The equivalence of conditions (i) and (ii) follows from Prop. 2.6, which says

that in a directed graph, every variable has finitely many ancestors if and only if

there are no infinite receding chains and every variable has finitely many parents.

Also, by Theorem 2.4, condition (ii) implies that Gω
B has a topological numbering.

Let X0, X1, . . . be an enumeration of V according to some topological numbering of

Gω
B .

122



Chapter 3. Contingent Probabilistic Models

We will show thatX0, X1, . . . is a supportive numbering for ω. For any n < |V|, let

σ be the instantiation of X0, . . . , Xn−1 that agrees with ω. Then the edges activated

by σ in B are a subset of those that are active given ω, so the parents of Xn in Gσ
B

are all in {X0, . . . , Xn−1}. Therefore, by Proposition 3.14, σ supports Xn.

Lemma 3.16 deals with the context-specific graph for a particular outcome. How-

ever, we can use it to derive a graphical criterion that looks directly at the CBN

structure GB. We call a set of edges in GB consistent if the events on the edges have

a non-empty intersection: that is, if there is some outcome that makes all the edges

active.

Theorem 3.17. Suppose a CBN B over random variables V respects its outcome

space and satisfies the following:

(A1) No consistent path in GB forms a cycle.

(A2) No consistent path in GB forms an infinite receding chain.

(A3) No variable X ∈V has an infinite, consistent set of incoming edges in GB.

Then every outcome in B has a supportive numbering, and B is well defined.

Proof. Consider any outcome ω ∈Ω. By conditions A1-A3 and the definition of

a consistent set of edges, Gω
B contains no cycles, no infinite receding chains, and

no infinite parent sets. So condition (i) of Lemma 3.16 is satisfied, and ω has a

supportive numbering. Since this is true for all outcomes, Theorem 3.13 implies that

B has a supportive split tree; then Theorem 3.12 implies that B is well defined.

A CBN that satisfies the conditions of Theorem 3.17 is said to be structurally

well-defined. If a CBN has a finite set of variables, we can check the conditions

directly. For instance, the hurricane CBN in Figure 3.11 is structurally well-defined:

123



Chapter 3. Contingent Probabilistic Models

although it contains a cycle, the cycle is not consistent. The urn-and-balls CBN

in Figure 3.10) has infinitely many nodes, so we cannot check mechanically that it

is structurally well-defined. However, it is clear from the representation in Figure

3.10 that the CBN contains no cycles or infinite receding chains. Also, although the

ObsColor nodes O1 and O2 have infinitely many incoming edges, the labels on these

edges ensure that exactly one of them is active in each outcome. So this CBN is also

structurally well-defined.

We conclude this subsection with a lemma about the context-specific graphs

that can be derived from structurally well-defined CBNs (the lemma will be used in

Chapter 5). These graphs always have topological numberings. To understand this,

it is important to remember that an instantiation σ activates an edge (X → Y | E)

just when σ entails E. If σ neither entails nor contradictes E, then (X → Y | E) is

not active given σ.

Lemma 3.18. If a CBN B is structurally well-defined, each context-specific graph

Gω
B for an outcome ω ∈Ω, or Gσ

B for an achievable instantiation σ, has a topological

numbering.

Proof. First consider any outcome ω ∈Ω. By the conditions in Theorem 3.17 and the

definition of a consistent set of edges, Gω
B contains no cycles, infinite receding chains,

or infinite parent sets. So by Proposition 2.6 and Theorem t̊hm:finite-anc-topo-num,

it follows that Gω
B has a topological numbering.

Now consider an achievable instantiation σ. Because σ is achievable, there is

some outcome ω ∈ ev (σ). The set of edges activated by σ is a subset of those active

in ω. So Gσ
B is a subgraph of Gω

B . Thus because Gσ
B has a topological numbering, Gσ

B

has that same topological numbering as well.

124



Chapter 3. Contingent Probabilistic Models

3.5.4 CBNs as implementations of PBMs

In a PBM, we specify an arbitrary partition for each variable; in CBNs, we restrict

ourselves to partitions generated by decision trees. But given any partition Λ, we

can construct a decision tree T that yields a partition at least as fine as Λ—that is,

such that each block λ∈ΛT is a subset of some λ′ ∈Λ. In the worst case, every path

starting at the root in T will need to split on every variable. Thus, every PBM is

implemented by some CBN, in the following sense:

Definition 3.18. A CBN B implements a PBM Γ over the same set of variables

V if, for each variable X ∈V, each block λ∈ΛX
cbn is a subset of some block λ′ ∈ΛX

Γ ,

and cXB (x, λ) = cXΓ (x, λ′) for all x∈ range (X).

Proposition 3.19. If a structurally well-defined CBN B implements a PBM Γ, then

Γ is also well-defined, and B and Γ are satisfied by the same unique distribution.

Proof. The first thing we show is that if an instantiation σ supports a variable X

in B, then σ supports X in Γ as well. To see this, note that if σ supports X in B,

then there is a block λ∈ΛB
X such that ev (σ) ⊆ λ. But then because B implements

Γ, there is a block λ′ ∈ΛΓ
X such that λ ⊆ λ′, and hence ev (σ) ⊆ λ′.

Therefore, if an instantiation is self-supporting in B then it is also self-supporting

in Γ. Also, the stipulation in Definition 3.18 that cXB (x, λ) = cXΓ (x, λ′) implies that B

and Γ assign the same probabilities to all finite instantiations that are self-supporting

in B. So by Theorem 3.10, any probability measure that satisfies Γ also satisfies B.

Now since B is well-defined, there is exactly one probability measure P that satisfies

it. This P is the only probability measure that could possibly satisfy Γ, because any

other satisfiers of Γ would satisfy B as well.

So we just have to show that Γ is well-defined, and hence has some satisfier. Our

observations so far imply (by Definition 3.11) that if π is a supportive numbering for

125



Chapter 3. Contingent Probabilistic Models

an outcome ω under B, then it is also a supportive numbering for ω under Γ. Given

that B is structurally well-defined, every outcome has a supportive numbering under

B, and hence under Γ as well. So by Theorem 3.12, Γ is also well-defined.

Proposition 3.19 gives us a way to show that a PBM Γ is well-defined: construct

a CBN B that implements Γ, and then use Theorem 3.17 to show that B is struc-

turally well-defined. However, there may be multiple ways to implement a PBM as

a CBN. As the following example illustrates, even if some of these implementations

are structurally well-defined, others may not be.

Example 3.3. Consider predicting who will go to a weekly book group meeting.

Suppose it is usually Bob’s responsibility to prepare questions for discussion, but if

a historical fiction book is being discussed, then Alice prepares questions. In general,

Alice and Bob each go to the meeting with probability 0.9. However, if the book

is historical fiction and Alice isn’t going, then the group will have no discussion

questions, so the probability that Bob bothers to go is only 0.1. Similary, if the book

is not historical fiction and Bob isn’t going, then Alice’s probability of going is 0.1.

We will use H, GA and GB to represent the binary variables “historical fiction”,

“Alice goes”, and “Bob goes”.

This scenario is most naturally represented by a PBM. The probability that Bob

goes is 0.1 given ((H = 1)∧ (GA = 0)) and 0.9 otherwise, so the partition for GB has

two blocks. The partition for GA has two blocks as well.

The CBNs in Figure 3.13 both implement this PBM. There are no decision trees

that yield exactly the desired partitions for GA and GB: the trees in Figure 3.13

yield three blocks instead of two. Because the trees on the two sides of the figure

split on the variables in different orders, they respect CBN structures with different

labels on the edges. The CBN on the left has a consistent cycle, while the CBN on

the right is structurally well-defined.

126



Chapter 3. Contingent Probabilistic Models

H

GA GB

GA=0GB=0

GB=1

GB=0
H=1

H=0

0.9

0.1

0.9
GA:

GA=1

GA=0
H=1

H=0

0.1

0.9

0.9
GB:

H

GA GB
H=1

H=0

H=1

H=0
GB=1

GB=0

0.9

0.1

0.9
GA:

H=1

H=0

GA=1

GA=0

0.9

0.1

0.9

GB:

Figure 3.13: Two CBNs for Example 3.3, with decision trees for GA and GB. The
numbers at the leaves of the trees are the probabilities of the value 1 given that leaf.

Thus, there may be multiple CBNs that implement a given PBM, and it may be

that some of these CBNs are structurally well-defined while others are not. Even

if we are given a well-defined PBM, it may be non-trivial to find a structurally

well-defined CBN that implements it. Thus, algorithms that apply to structurally

well-defined CBNs — such as the ones we define in Chapter 5 — cannot be extended

easily to general PBMs.

127



Chapter 3. Contingent Probabilistic Models

Appendix 3.A Another factorization property

Theorem 3.10 tells us that if a PBM Γ has a supportive split tree, then a probabil-

ity measure P satisfies Γ if and only if P (σ) satisfies Equation 3.6 for every finite,

self-supporting instantiation σ. In our IJCAI paper on BLOG [Milch et al., 2005a],

however, we use a different factorization property. Here we show that this alterna-

tive property is also necessary and sufficient for showing that a probability measure

satisfies a PBM.

Proposition 3.20. Let Γ be a PBM for a set of variables V defined on (Ω,F ),

and let P be a probability measure on (Ω,F ). Suppose Γ respects its outcome space

and has a supportive split tree. Then P satisfies Γ if and only if, for each finite

instantiation σ on V that has a supportive numbering, there is a supportive numbering

π such that:

P (σ) =
∏

X ∈ vars(σ)

cXΓ (σX , λ
X
Γ (σ[Predπ[X]])) (3.10)

Before proving this proposition, we prove the following lemma.

Lemma 3.21. If an instantiation σ has a supportive numbering and is achievable,

then P (σ) satisfies Equation 3.10 for some supportive numbering if and only if it

satisfies Equation 3.6.

Proof. The only difference between these two equations is that in Equation 3.10, the

partition block passed into X’s CPD is λX
Γ (σ[Predπ[X]]), while in Equation 3.6, it

is λX
Γ (σ). But σ is an achievable extension of σ[Predπ[X]], so we know λX

Γ (σ) =

λX
Γ (σ[Predπ[X]]).

Proof of Prop. 3.20. First suppose P satisfies Γ, and consider any instantiation σ

that has a supportive numbering. If σ is achievable, then it is self-supporting. So by

Theorem 3.10, P (σ) satisfies our earlier factorization equation Equation 3.6. Then

128



Chapter 3. Contingent Probabilistic Models

Lemma 3.21 implies that P (σ) satisfies Equation 3.10 for some supportive numbering.

Now suppose σ is not achievable. Then because Γ respects its outcome space, each

supportive numbering of σ yields a zero factor. This implies that the right hand

side of Equation 3.10 is zero for each supportive numbering. Also, since σ is not

achievable and P is a probability measure on Ω, we know P (σ) = 0. So Equation 3.10

is satisfied.

For the converse, suppose P (σ) satisfies Equation 3.10 for some supportive num-

bering of each instantiation σ that has such a numbering. Then by Lemma 3.21,

P (σ) satisfies Equation 3.6 for each instantiation σ that has a supportive numbering.

In particular, if we let T be a supportive split tree for Γ, then Equation 3.6 is satisfied

for every instantiation in T that has a supportive numbering. So by Theorem 3.10,

P satisfies Γ.

Appendix 3.B Supportive split trees revisited

Definition 3.10 says that a supportive split tree for a PBM is a split tree in which each

non-leaf instantiation either supports its split variable, or is directly disallowed. This

loophole for directly disallowed instantiations complicates the proofs of Lemmas 3.8

and 3.9. One might wonder if we are making our task unnecessarily difficult by not

using a stricter definition of a supportive split tree that requires all nodes to support

their split variables. It turns out that the loophole is necessary: without it, Theorem

3.13 — which guarantees the existence of a split tree when every outcome has a

supportive numbering — would no longer hold. The following example describes a

PBM in which every outcome has a supportive numbering, but for which there is no

split tree in which every node supports its split variable.

Example 3.4. Consider a variant of the urn-and-balls example where the blue and

green balls are in separate urns. One urn contains a random, finite number of blue

129



Chapter 3. Contingent Probabilistic Models

balls. There is an infinite sequence of draws: on each draw, a blue ball is picked

randomly and then returned to the urn. The number of green balls in the other urn

is equal to the index of the first draw that yields the same ball as an earlier draw.

There must be some such draw in every outcome, because the sequence of draws is

infinite and the number of distinct blue balls is finite.

As in the original urn-and-balls example, we will represent outcomes as model

structures of a logical language with types Color, Ball, and Draw. The function sym-

bols of our language are TrueColor and BallDrawn; we are not modeling the observed

colors of the balls in this example. Our outcome space Ω consists of model structures

ω where [Color]ω = {Blue,Green}, [Ball]ω = {(Ball,Blue, i)}ni=1 ∪ {(Ball,Green, i)}mi=1

for some natural numbers n and m, and [Draw]ω = {(Draw, j)}∞j=0. We also constrain

the outcome space so the function TrueColor is nonrandom. Specifically, for any ball

(Ball, c, i), TrueColor((Ball, c, i)) = c. On this outcome space, we can define random

variables NBlue, NGreen, and {Bj}∞j=0 as follows:

NBlue(ω) = |{b∈ [Ball]ω : [TrueColor]ω (b) = Blue}|

NGreen(ω) = |{b∈ [Ball]ω : [TrueColor]ω (b) = Green}|

Bj(ω) = [BallDrawn]ω ((Draw, j))

Our event space F is the σ-field generated by these random variables. Note that

the only way a complete instantiation of these variables can be unachievable is if

some BallDrawn variable Bj is assigned a value (Ball, c, i) such that i > Nc. So

any unachievable complete instantiation has an unachievable sub-instantiation of

size two. Thus, these variables are sufficient (in the sense of Definition 3.2) for the

outcome space we have defined.

Figure 3.14 describes a PBM Γ over these variables. For brevity, we use the

notation RepeatIndices(ω) to denote the set of natural numbers j such that for some

130



Chapter 3. Contingent Probabilistic Models

For the variable NBlue:

ΛNBlue
Γ = {Ω}

cΓΓNBlue(n,Ω) = Poisson[6](n)

For the variables {Bj}∞j = 0:

Λ
Bj

Γ = {{ω ∈Ω : |{b∈ [Ball]ω : [TrueColor]ω (b) = Blue}| = n}}n∈N

c
Bj

Γ (b, {ω ∈Ω : |{b∈ [Ball]ω : [TrueColor]ω (b) = Blue}| = 0}) =

{
1 if b = null
0 otherwise

c
Bj

Γ (b, {ω ∈Ω : |{b∈ [Ball]ω : [TrueColor]ω (b) = Blue}| = n})

=

{
1/n if b ∈ {(Ball,Blue, 1), . . . , (Ball,Blue, n)}
0 otherwise

, for n > 0

For the variable NGreen:

ΛNGreen
Γ ={{ω ∈Ω : min{j : j ∈ RepeatIndices(ω)} = j∗}}∞j∗=0

cNGreen
Γ (m, {ω ∈Ω : min{j : j ∈ RepeatIndices(ω)} = j∗}) =

{
1 if m = j∗

0 otherwise

Figure 3.14: Partitions and CPDs of a PBM Γ for Example 3.4.

j′ < j, [BallDrawn]ω ((Draw, j)) = [BallDrawn]ω ((Draw, j′)). Note that because [Ball]ω

is finite in every outcome ω ∈Ω, the function [BallDrawn]ω cannot yield distinct values

on an infinite sequence of draws. Thus RepeatIndices(ω) is non-empty for each ω ∈Ω.

Let us consider what instantiations support each variable in this PBM. The

variable NBlue is supported by any instantiation, because ΛNBlue
Γ is the trivial partition.

Each BallDrawn variable Bj is supported by any instantiation that includes NBlue,

because the distribution for Bj depends only on the number of blue balls. As to

NGreen, it is supported by any instantiation σ that includes a prefix B0, . . . , Bj of the

BallDrawn variables such that σBj
= σBj′

for some j′ < j.

This PBM allows us to prove the follow proposition.

Proposition 3.22. There is a PBM that supports its outcome space, and in which

131



Chapter 3. Contingent Probabilistic Models

every outcome has a supportive numbering, but that has no split tree in which every

node supports its split variable.

Proof. The PBM described in Figure 3.14, over the random variables and outcome

space described earlier in this section, is such a PBM. To show that this PBM

respects its outcome space (Definition 3.12), consider any instantiation σ that has a

supportive numbering. If σ instantiates any BallDrawn variables, then it must also

instantiate NBlue. If σ instantiates each BallDrawn variable Bj to a value (Ball,Blue, i)

where i ≤ σNBlue
, then σ is achievable. And if σ instantiates any Bj to a value outside

this set, then the CPDs for the Bj variables in Figure 3.14 make σ directly disallowed.

So every instantiation that has a supportive numbering is either achievable or directly

disallowed.

We now claim that every outcome has a supportive numbering under this PBM.

This follows from our earlier conclusion that RepeatIndices(ω) is non-empty for each

ω ∈Ω. For any outcome ω, we can obtain a supportive numbering by taking NBlue

first, then B0, . . . , Bj∗ where j∗ = min{j : j ∈ RepeatIndices(ω)}, then NGreen, then

the remaining Bj variables in order by their indices.

Now we will show that this PBM has no split tree in which every node supports

its split variable. Assume for contradiction that T is such a tree. Because NGreen is

not supported unless some Bj variables are instantiated, and no Bj node is supported

unless NBlue is instantiated, the root node of T must split on NBlue. We claim that T

must have an infinite path starting at the root on which every node except the root

splits on a BallDrawn variable, and the value assigned to the ith BallDrawn variable

in the path is (Ball,Green, i). Note that the path consisting of just the root node

trivially satisfies this property. Now consider any n-node path with this property,

and let σ be the last node in this path. If σ is the root node (i.e., n = 1), then

let σ′ be an arbitrary child of σ. Otherwise, the property implies that σ splits on

132



Chapter 3. Contingent Probabilistic Models

a BallDrawn variable Bj, and this is the (n − 1)th BallDrawn variable on the path

to σ. Let σ′ = (σ;Bj = (Ball,Green, n − 1)). We know σ′ is a child of σ in T

because there are some outcomes consistent with σ in which NGreen ≥ n − 1, and

thus (Ball,Green, n− 1) ∈ range (Bj|σ). Furthermore, regardless of whether σ is the

root node, σ′ does not assign the same value to any two BallDrawn variables. Thus

σ′ does not support NGreen, so it must split on a BallDrawn variable. Thus the n-node

path to σ can be extended to an (n+1)-node path to σ′ with the stated property. So

T contains an infinite sequence of paths θ1, θ2, . . . satisfying the property, such that

θi is a proper prefix of θi+1. Taking the union of these paths yields an infinite path

in which no node splits on NGreen, contradicting the assumption that T is a split tree

(specifically, contradicting Definition 3.3(iii)).

As guaranteed by Theorem 3.13, there is a tree that satisfies our weaker definition

of a supportive split tree for this PBM. The CPDs given for the BallDrawn nodes Bj

in Figure 3.14 assign zero probability to all non-blue balls. Thus, all instantiations

that assign values of the form (Ball,Green, j) to BallDrawn variables are directly

disallowed. So we can construct a split tree in which such instantiations split on the

variable NGreen, even if they do not support it. Exploiting this loophole for directly

disallowed instantiations is the only way to construct a supportive split tree for this

PBM.

133



Chapter 3. Contingent Probabilistic Models

134



Chapter 4

Bayesian Logic (BLOG)

We began the previous chapter by observing that standard Bayesian networks (BNs)

are insufficient for representing certain scenarios involving unknown objects and

relational uncertainty. We then introduced partition-based models (PBMs) and

contingent Bayesian networks (CBNs): generalizations of BNs that explicitly rep-

resent the contingent nature of dependencies among variables. But on their own,

these formalisms are not satisfactory languages for describing probabilistic models

in machine-readable form.

The first shortcoming of PBMs and CBNs is that they do only part of the job of

describing a probabilistic model. The first step in describing a probabilistic model

is to specify the outcome space; often the second step is to define a set of random

variables on that space. But a PBM or CBN applies to an outcome space and

a set of variables that have already been specified. In fact, for the urn-and-balls

example (Example 3.1) and the hurricane example (Example 3.2), we spent several

paragraphs describing the outcome spaces and random variables that we used. In

standard BNs, specifying the outcome space is not such a complex task: one simply

specifies a range for each random variable, and the outcome space is the Cartesian

135



Chapter 4. Bayesian Logic (BLOG)

product of these ranges. But the task becomes more complicated when the outcomes

are relational structures.

PBMs and CBNs also fall short in that they are propositional rather than first-

order. That is, every variable is treated separately; there is no generalization across

variables that represent the same attributes or relations on different objects. Of

course, we did generalize across objects in our descriptions of PBMs: in Figure 3.6,

we made general statements about classes of variables Ci, Bj, and Oj, rather than

individual variables such as C8 and B3. We could not possibly have described the

partition and CPDs for each variable separately because there are infinitely many

of them in the urn-and-balls model. Similarly, in the CBN in Figure 3.10, we used

an ellipsis to indicate an infinite sequence of TrueColor variables Ci. But we did not

have any formal language for describing large or infinite models concisely.

Furthermore, our goal is not just to provide a language for describing PBMs or

CBNs compactly, but also to facilitate the process of modeling scenarios with un-

known objects. In such scenarios, it is often far from obvious how to formalize the

possible outcomes: should the outcomes include objects that are not directly observ-

able? Should they just include partitions of the observable objects? Choosing the set

of random variables in a PBM or CBN raises similar questions: should variables be

indexed by unobservable objects? Should we include variables that count the number

of objects of some type, or variables that indicate whether particular objects exist?

If we wish to apply the theory developed in the previous chapter, then these choices

are subject to certain constraints. The random variables must be sufficient for the

outcome space (Definition 3.2): intuitively, all measurable sets must be expressible

in terms of instantiations of the random variables. And the probability model must

respect the outcome space (Definition 3.12) so that unachievable instantiations re-

ceive zero probability. We would like a modeling language that reduces the need for

the modeler to worry about these conditions for each new domain.

136



Chapter 4. Bayesian Logic (BLOG)

This chapter introduces Bayesian logic (BLOG), a language that concisely spec-

ifies probability distributions over relational structures with varying sets of objects.

The relational structures, or possible worlds, are model structures of a typed first-

order logical language (see Section 2.1). There are two complementary ways of

understanding BLOG semantics. The first is that the BLOG model defines a ran-

domized generative process that constructs a world step by step. The generative

steps are of two kinds: steps that add a random number of objects to the world, and

steps that set the value of a function on a tuple of arguments. The more formal and

declarative perspective on BLOG semantics is that a BLOG model defines a PBM

whose outcome space is the set of possible worlds. The variables of this PBM are

defined implicitly by the BLOG model, in such a way that they are always sufficient

for the outcome space. Also, the PBM defined by a BLOG model never assigns

positive probability to unachievable instantiations.

We begin in Section 4.1 by presenting BLOG models for four example scenar-

ios. Two of these are the urn-and-balls scenario (Example 3.1) and the hurricane

scenario (Example 3.2) from the previous chapter. The other two are more realistic:

one involves disambiguating bibliographic citations, and the other involves tracking

aircraft. We explain these BLOG models at an intuitive level, in terms of the gener-

ative world-construction processes that they describe. In Section 4.2, we give a more

formal and systematic explanation of BLOG syntax. Section 4.3 gives declarative

semantics for BLOG in terms of PBMs, showing that every BLOG model defines a

PBM that respects its outcome space.

In Section 4.4, we discuss how to evaluate expressions in a BLOG model given

a partial instantiation of the model’s random variables. This section introduces

object generation graphs, which help to limit the set of objects we iterate over when

evaluating expressions, and thus prevent infinite loops in certain cases. Finally,

Section 4.5 discusses automatically checkable conditions under which a BLOG model

137



Chapter 4. Bayesian Logic (BLOG)

is guaranteed to define a unique distribution. Along the way, it defines the canonical

contingent BN for a BLOG model, which plays a role in our inference algorithms in

Chapter 5.

4.1 Examples

Our first BLOG model is for the urn-and-balls scenario of Example 3.1. Recall that

in this scenario, we have an urn containing a finite but unknown number of balls,

each of which is either blue or green. We repeatedly draw a ball from the urn,

observe its color (with some probability of error), and return it to the urn. Given

these observations, we may want to obtain a posterior probability distribution on

the number of balls in the urn, or find the posterior probability that the first and

second draws yielded the same ball.

Figure 4.1 shows a BLOG model for this scenario. The first 6 lines of this

model define the particular logical language whose model structures are to serve as

possible worlds. Line 1 says that the language contains three types: Color, Ball, and

Draw. Lines 2–4 say that the language includes three function symbols, TrueColor,

BallDrawn and ObsColor, which are all random: their interpretations vary from world

to world. The argument types and return types of these functions are given in a

syntax reminiscent of C or Java. Line 5 asserts that two colors, denoted by the

constant symbols Blue and Green, are guaranteed to exist in all possible worlds; line

6 makes a similar assertion about draws.

In the hypothetical stochastic process for constructing a possible world, we begin

with just the colors and draws that are guaranteed to exist. Then the number

statement on line 7 says that we add a random number of balls, sampled according

to a Poisson distribution with mean 6. Line 8 says that for each ball b, TrueColor(b)

is sampled according to a probability table that puts probability 0.5 on Blue and 0.5

138



Chapter 4. Bayesian Logic (BLOG)

1 type Color; type Ball; type Draw;

2 random Color TrueColor(Ball);

3 random Ball BallDrawn(Draw);

4 random Color ObsColor(Draw);

5 guaranteed Color Blue, Green;

6 guaranteed Draw Draw1, Draw2, Draw3, Draw4;

7 #Ball ∼ Poisson[6]();

8 TrueColor(b) ∼ TabularCPD[[0.5, 0.5]]();

9 BallDrawn(d) ∼ Uniform({Ball b});

10 ObsColor(d)

11 if (BallDrawn(d) != null) then

12 ∼ TabularCPD[[0.8, 0.2], [0.2, 0.8]]

13 (TrueColor(BallDrawn(d)));

Figure 4.1: BLOG model for balls in an urn (Example 3.1) with four draws.

on Green (the ordering of the probabilities in the vector [0.5, 0.5] corresponds to the

order in which Blue and Green were introduced on line 5). Next, for each draw d,

line 9 tells us to sample the value of BallDrawn(d) uniformly from the set of balls

that exist. Finally, lines 10–13 tell us how to sample the observed color for each ball

d. If BallDrawn(d) 6= null, then ObsColor(d) is sampled according to a tabular CPD

that conditions on TrueColor(BallDrawn(d)). The case where BallDrawn(d) = null

occurs only when the number of balls in the world happens to be zero; in this case,

ObsColor(d) gets a default value of null. The statements on lines 8 and 10–13 are

called dependency statements.

This generative process defines a prior probability distribution over possible

worlds. If we condition on observed values for certain random variables, such

139



Chapter 4. Bayesian Logic (BLOG)

1 type City; type PrepLevel; type DamageLevel;

2 random City First;

3 random PrepLevel Prep(City);

4 random DamageLevel Damage(City);

5 guaranteed City A, B;

6 guaranteed PrepLevel High, Low;

7 guaranteed DamageLevel Severe, Mild;

8 First ∼ Uniform({City c});

9 Prep(c)

10 if First = c then ∼ TabularCPD[[0.5, 0.5]]

11 else ∼ TabularCPD[[0.9, 0.1], [0.1, 0.9]](Damage(First));

12 Damage(c) ∼ TabularCPD[[0.2, 0.8], [0.8, 0.2]](Prep(c));

Figure 4.2: A BLOG model for the hurricane scenario (Example 3.2).

as (ObsColor(Draw1) = Blue, ObsColor(Draw2) = Blue), then a query event such

as BallDrawn(Draw1) = BallDrawn(Draw2) has a well-defined posterior probability.

Computing posterior probabilities is the task of the inference algorithms that we

discuss in Chapter 5.

Our next BLOG model, shown in Figure 4.2, is for the hurricane scenario of

Example 3.2. The premise for this scenario is that a hurricane is going to strike

two cities, A and B, but it is unknown which city will be struck first. The level of

damage that each city sustains depends on its level of preparations; also, the level

of preparations in the second city to be hit depends on the level of damage in the

first. The logical language used for this scenario has three types, City, PrepLevel and

DamageLevel, and three random functions, First, Prep and Damage. Note that First is

a random zero-ary function; in other words, it is a constant symbol whose denotation

is random. In this model, the only objects that exist are guaranteed objects: the

140



Chapter 4. Bayesian Logic (BLOG)

cities A and B, the preparation levels High and Low, and the damage levels Severe

and Mild.

Line 8 says that the denotation of First is chosen uniformly at random from the

set of cities. Lines 9–11 give the probability model for Prep(c): if c is the first city hit,

then Prep(c) has a uniform 0.5–0.5 prior distribution; otherwise, Prep(c) depends on

Damage(First) through a tabular CPD. Finally, line 12 says that Damage(c) depends

on Prep(c) through a certain CPD.

Our next example is a simplified version of the bibliographic citation matching

problem [Lawrence et al., 1999b; Pasula et al., 2003].

Example 4.1. Suppose we have collected a set of citation strings from the works

cited sections of online papers. The citations may be in many different formats; they

may use various abbreviations; and they may contain typographical errors. The task

is to construct a database containing exactly one record for each publication that is

cited and each researcher who is mentioned in these citations. This database should

specify the correct names and titles of the entities, as well as the mapping from

publications to their authors.

A possible world for this scenario includes both the citations, which we ob-

serve, and the researchers and publications that underlie them. We can think of

these worlds as model structures of a first-order language with types Researcher,

Publication, Citation and String (the String type is actually built into BLOG). This

language includes a function Name that maps researchers to strings; a function Title

that maps publications to strings, and a function Author that maps publications to

researchers. We also have a function PubCited that maps citations to the publica-

tions they refer to, and a function Text that maps citations to their observed text

strings.

Figure 4.3 shows a BLOG model for this example, based on the model in [Pasula

141



Chapter 4. Bayesian Logic (BLOG)

1 type Researcher; type Publication; type Citation;

2 random String Name(Researcher);

3 random String Title(Publication);

4 random NaturalNum NumAuthors(Publication);

5 random Researcher NthAuthor(Publication, NaturalNum);

6 random Publication PubCited(Citation);

7 random String Text(Citation);

8 guaranteed Citation Cit1, Cit2, Cit3, Cit4;

9 #Researcher ∼ NumResearchersPrior();

10 #Publication ∼ NumPubsPrior();

11 Name(r) ∼ NamePrior();

12 Title(p) ∼ TitlePrior();

13 NumAuthors(p) ∼ NumAuthorsPrior();

14 NthAuthor(p, n)

15 if n < NumAuthors(p) then ∼ Uniform({Researcher r});

16 PubCited(c) ∼ Uniform({Publication p});
17 Text(c) ∼ NoisyCitationGrammar

18 (Title(PubCited(c)),

19 {n, Name(NthAuthor(PubCited(c), n))

20 for NaturalNum n : n < NumAuthors(PubCited(c))});

Figure 4.3: BLOG model for Example 4.1 with four observed citations.

et al., 2003]. The model makes the simplifying assumption that in the academic

field we are dealing with, there is a pool of researchers who are all equally likely to

write papers. Line 9 describes the step that generates these researchers; the number

of researchers is chosen from a CPD called NumResearchersPrior. Similarly, we

assume that there is a pool of publications (generated by line 10) that are all equally

likely to be cited. The name of each researcher and the title of each publication

are sampled from certain prior distributions (lines 11 and 12). Each publication

142



Chapter 4. Bayesian Logic (BLOG)

has some number of authors; each author is sampled uniformly from the pool of

researchers (lines 14–15). Then, for each citation, the publication cited is chosen

uniformly from the pool of publications (line 16). The text of a citation c depends

on the title of PubCited(c) and the names of its authors.

Note that under this model, a possible world may contain publications that are

not referred to by any citation (and also researchers that are not authors of any

publication). This is realistic: a finite collection of citations may not cover all the

publications that could be cited. This model also ensures that questions such as,

“What is the probability that an author named “Leslie Kaelbling” has written a

paper that is not cited in our collection?” have well-defined answers. One might

worry that if our queries are just about cited publications, then having a potentially

large number of uncited publications in our possible worlds would make inference

slower than necessary. However, as we will see in Chapter 5, there are inference

algorithms that simply ignore the attributes of such irrelevant objects.

For our final example, we move from citations to radar blips. We describe a fairly

standard version of the multitarget tracking problem [Bar-Shalom and Fortmann,

1988].

Example 4.2. An unknown number of aircraft exist in some volume of airspace. An

aircraft’s state (position and velocity) at each time step depends on its state at the

previous time step. We observe the area with radar: aircraft may appear as identical

blips on a radar screen. Each blip gives the approximate position of the aircraft that

generated it. However, some blips may be false detections, and we may not get a blip

for every aircraft at every time step. The questions we would like to answer include:

What aircraft exist? What are their trajectories? Are there any aircraft that have

not been observed?

The possible worlds of this scenario specify the trajectories of all the aircraft over

143



Chapter 4. Bayesian Logic (BLOG)

time, as well as the time stamps and locations of all radar blips that appear. We

will model the states of the aircraft at an infinite sequence of time steps 0, 1, 2, . . .,

although events at “future” time steps after our last observation will be irrelevant for

inference (unless we explicitly ask queries about the future). These possible worlds

can be represented as model structures of a first-order language with types Aircraft

and Blip, as well as built-in types that represent natural numbers (time steps) and

real vectors. The trajectories of the aircraft are represented by a function State(a, t)

which maps aircraft a and natural numbers t to six-dimensional real vectors (three

dimensions for the aircraft’s position and three for velocity). A function MeasuredPos

from blips to R3 represents the range, azimuth, and elevation that are measured for

each blip. There is also a function Source that maps each blip to the aircraft that

generated it; false detection blips have Source values of null. Finally, a function Time

maps each blip to the time when it appeared (a natural number).

The BLOG model for this scenario (Figure 4.4) describes the following process:

first, sample the number of aircraft in the area. Then, for each time step t (starting

at t = 0), choose the state of each aircraft given its state at time t − 1. Also, for

each aircraft a and time step t, possibly generate a radar blip b with Source(b) = a

and Time(b) = t. Whether a blip is generated or not depends on the state of the

aircraft. Also, at each step t, generate some false-alarm blips b′ with Time(b′) = t

and Source(b′) = null. Note that the origin functions Source and Time are set on

each blip when it is generated; they are not set in separate random sampling steps.

Finally, sample the position for each blip given the true state of its source aircraft

(or using a default distribution for a false-alarm blip).

This generative process is different from those in the previous examples in that

the objects of each type are not all created in a single step. Here, there are many

generative steps that add blips to the world: one for each aircraft a and each time

t, plus additional steps that generate false-alarm blips. Intuitively, objects are gen-

144



Chapter 4. Bayesian Logic (BLOG)

1 type Aircraft; type Blip;

2 random R6Vector State(Aircraft, NaturalNum);

3 random R3Vector MeasuredPos(Blip);

4 origin Aircraft Source(Blip);

5 origin NaturalNum Time(Blip);

6 #Aircraft ∼ NumAircraftPrior();

7 State(a, t)

8 if t = 0 then ∼ InitState()

9 else ∼ StateTransition(State(a, Pred(t)));

10 #Blip(Source = a, Time = t) ∼ DetectionCPD(State(a, t));

11 #Blip(Time = t) ∼ NumFalseAlarmsPrior();

12 MeasuredPos(b)

13 if (Source(b) = null) then ∼ FalseAlarmDistrib()

14 else ∼ MeasurementCPD(State(Source(b), Time(b)));

Figure 4.4: BLOG model for Example 4.2.

erating other objects. Furthermore, the numbers of blips generated can depend on

the values of the State function, so the probability model does not easily decompose

into a portion that defines a distribution for what objects exist and a portion that

defines distributions for attribute values given object existence. Uncertainty about

what objects exist is fully integrated with uncertainty about attributes and relations.

4.2 Syntax

This section provides a more formal definition of BLOG syntax. A BLOG model

consists of a sequence of statements, separated by semicolons. Thus, for example, line

1 of Figure 4.1 contains three statements, while lines 10–13 of that figure constitute

145



Chapter 4. Bayesian Logic (BLOG)

Type symbol Extension Examples of built-in constants
Boolean {true, false} true, false
NaturalNum N 0, 1, 2
Real R 3.14, -2.7, 1.0
RkVector (for k ≥ 2) Rk

String Finite character strings "", "hello", "R2-D2"

Table 4.1: Built-in types, their extensions, and some illustrative built-in constant
symbols denoting objects of each type. The Real type and the RkVector types are
not included in discrete BLOG.

a single statement. There are six kinds of statements in BLOG: type declarations,

function declarations, guaranteed object statements, nonrandom function definitions,

dependency statements, and number statements. A BLOG model M defines a typed

first order language LM , a set of possible worlds ΩM , and (if it is well-defined) a

probability measure PM on ΩM .

4.2.1 Built-in types and functions

The language defined by a BLOG model always includes a set of built-in types,

summarized in Table 4.1. Each built-in type has a fixed extension in all possible

worlds: for instance, the extension of NaturalNum is always the natural numbers.

For most built-in types, there are also built-in constant symbols that denote objects

of that type. Numerals without decimal points are constant symbols denoting objects

of type NaturalNum; numerals with decimal points denote objects of type Real; strings

enclosed in double quotes denote objects of type String. The interpretations of these

constant symbols are fixed across all possible worlds.

Types representing real-valued vectors are a special case. For every natural num-

ber k ≥ 2, there is a built-in type RkVector; examples include R2Vector, R3Vector,

etc. Vectors are denoted not by constant symbols, but by terms using built-in func-

tions, which we will introduce below.

146



Chapter 4. Bayesian Logic (BLOG)

Function symbol Arguments Return type Shorthand
Succ NaturalNum n NaturalNum
Pred NaturalNum n NaturalNum
Sum NaturalNum n, NaturalNum m NaturalNum n + m
Diff NaturalNum n, NaturalNum m NaturalNum n - m
LessThan NaturalNum n, NaturalNum m Boolean n < m
GreaterThan NaturalNum n, NaturalNum m Boolean n > m
LessThanOrEqual NaturalNum n, NaturalNum m Boolean n <= m
GreaterThanOrEqual NaturalNum n, NaturalNum m Boolean n >= m
ConstructRkVector Real r1, . . . , Real rk RkVector [r1, . . ., rk]

Concat String s1, String s2 String

Table 4.2: Built-in functions, their argument types (with variables standing for the
arguments) and return types, and any special syntax that is used for them.

The Real type and the RkVector types have uncountable extensions, but our

development of PBMs in Chapter 3 is limited to discrete variables. This discrepancy

reflects a difference between our implemented BLOG engine, which supports models

with continuous variables, and our theoretical results, which do not yet apply to such

models. We discuss continuous types here to show that BLOG syntax is general

enough to handle them. However, our formal results in this thesis apply only to

discrete BLOG, a version of BLOG without the Real and RkVector types.

We now move on to BLOG’s built-in functions, listed in Table 4.2. Like the built-

in types, these functions are included in the language defined by each BLOG model.

The built-in functions include Succ and Pred, which yield the successor and prede-

cessor of a natural number (Pred(0) returns null). There are also built-in functions

Sum and Diff on natural numbers; Diff(n,m) evaluates to null when n is less than

m. Standard comparison functions such as LessThan are also built in. Furthermore,

rather than requiring modelers to write terms such as LessThan(3, 4), BLOG sup-

ports infix operators as a shorthand. Thus, one can use terms such as 3 < 4. Next,

for each natural number k ≥ 2, BLOG includes a function ConstructRkVector that

takes real numbers r1, . . . , rk and returns the vector (r1, . . . , rk). The shorthand way

147



Chapter 4. Bayesian Logic (BLOG)

to invoke such a function is to include k real-valued terms in square brackets: for

example, [0.2, 1.9, -2.0]. The advantage of treating these expressions as func-

tion applications rather than just large constant symbols is that the vector elements

can be represented by arbitrary terms, not just numerals. Finally, there is a built-in

function Concat that returns the concatenation of two strings.

BLOG currently has no built-in constructs for referring to lists of objects, except

for vectors of real numbers. As we saw in the citation model (Figure 4.3, we can

represent lists using functions that take a natural number as an argument, such as

NthAuthor(p, n). However, lists are not treated as objects, and thus cannot serve

as arguments or values of functions. This limitation may be remedied in a future

version of BLOG.

4.2.2 Type and function declarations

Type and function declarations do most of the work of defining a domain-specific

logical language for a BLOG model (guaranteed object statements do some of this

work as well). A type declaration has the form:

type τ;

where τ is an identifier (a string of alphanumeric characters) that will serve as the

symbol for the type. A function declaration has one of the following forms:

random r f(a1, . . . , ak);

nonrandom r f(a1, . . . , ak);

origin r f(a);

Here f is an identifier that will serve as symbol for the function, r is a previously

declared type symbol identifying the function’s return type, and a1, . . . , ak are pre-

viously declared type symbols identifying the function’s argument types. If k = 0

148



Chapter 4. Bayesian Logic (BLOG)

— that is, if f is a constant symbol — then the parentheses may be omitted. The

keywords random, nonrandom and origin specify how a function’s values are deter-

mined. Random functions are those whose values vary across possible worlds; they

have their values set (on each tuple of arguments) by steps in the generative process.

The values of nonrandom functions are fixed across all worlds. Origin functions

play a special role in scenarios where objects generate other objects, as discussed in

Sec. 4.2.6 below. Note that an origin function must take exactly one argument.

4.2.3 Guaranteed object statements

A guaranteed object statement asserts that certain objects are known to exist and to

be distinct, and also declares constant symbols for these objects. For instance, line

5 of Figure 4.1 asserts that in every possible world, there are two distinct objects of

type Color denoted by the constant symbols Blue and Green. The general form of a

guaranteed object statement is:

guaranteed τ c1, . . . , cn;

where τ is a user-defined (i.e., not built-in) type symbol and c1, . . . , cn are identifiers

that will serve as constant symbols. A BLOG model may contain multiple guar-

anteed object statements for the same type: all the constant symbols in all these

statements denote distinct objects of the given type (it is an error to include the

same constant symbol more than once). Thus, a single guaranteed object statement

is not necessarily an exhaustive list of the guaranteed objects of a given type. How-

ever, the full set of guaranteed object statements in a model is exhaustive, in that

each object that exists in any possible world must be introduced in some guaranteed

object statement or be generated by some number statement (this will be enforced by

Definition 4.10). The order in which guaranteed objects are introduced is relevant:

149



Chapter 4. Bayesian Logic (BLOG)

CPDs such as TabularCPD interpret their probability parameters as corresponding

to guaranteed objects in they order they were declared.

BLOG also includes a shorthand syntax for defining many guaranteed objects at

once. One can write a statement of the form:

guaranteed τ c[n];

to define n guaranteed objects of type τ , denoted by the symbols c1, c2, c3, . . .. For

instance, we could abbreviate line 6 in Figure 4.1 as:

guaranteed Draw Draw[4];

The guaranteed object statements for type τ in M jointly define a set of guar-

anteed objects GuarM(τ). We let the constant symbols in these statements serve as

their own denotations, so GuarM(τ) is just the set of constant symbols introduced

by guaranteed object statements for type τ .1 For built-in types τ , GuarM(τ) is the

same in every model M : it is the extension given in Table 4.1. The object set for

type τ in model M is:

OM(τ) ,
⋃

ω ∈ΩM

[τ ]ω

Because the set of objects of type τ can vary from world to world, OM(τ) may be a

strict superset of GuarM(τ). The non-guaranteed objects of type τ in model M are:

NonGuarM(τ) , OM(τ) \GuarM(τ)

We will also write NonGuarM for the union of NonGuarM(τ) over all types τ in LM .

1This does not preclude the possibility that some other constant symbols — introduced in
function declarations rather than guaranteed object statements — might end up denoting the same
objects.

150



Chapter 4. Bayesian Logic (BLOG)

4.2.4 Nonrandom function definitions

We mentioned above that a function symbol can be declared as nonrandom, meaning

that it has the same interpretation in all possible worlds. Nonrandom function

symbols serve two main purposes. First, they may represent mathematical functions

that are not built into BLOG. For instance, in the aircraft tracking example, we

could include a nonrandom function IsInSphere(s, r), which takes an aircraft state

vector s and returns true if the position portion of that vector is in the sphere

of radius r around the origin. However, nonrandom function symbols can also be

used to represent known, scenario-specific information about guaranteed objects.

For instance, suppose that in the urn-and-balls scenario, each draw from the urn is

performed by some person; perhaps the identity of that person influences the error

rate for ObsColor. If we know which person performed each draw, then there is no

reason to define a prior probability model for the function Agent(d) that returns the

person responsible for draw d. Instead, we can let Agent be nonrandom.

Considering the broad range of nonrandom functions that one might want to

define, we do not attempt to include general syntax for specifying interpretations

in BLOG. Existing programming languages are fine tools for specifying nonrandom

functions. Since our BLOG engine is implemented in Java, we specify functions

using instances of Java classes that implement an interface called FunctionInterp.

A nonrandom function definition binds a nonrandom function symbol to a Java

FunctionInterp object, using the syntax:

nonrandom f = interp c[p1, . . ., pn];

Here f is a k-ary function that has already been declared, c is the name of a Java

class that implements FunctionInterp, and p1, . . . , pn are expressions that serve as

parameters to c. For example, to specify the interpretation for Agent, we could write:

nonrandom Agent = interp DrawToPersonInterp["agents.dat"];

151



Chapter 4. Bayesian Logic (BLOG)

Here we are assuming that agents.dat is a file containing the mapping from draws

to people in some format, and DrawToPersonInterp is a class that can read that

format and define a function from guaranteed objects of type Draw to guaranteed

objects of type Person. When the BLOG engine processes this statement while

loading a model, it creates an instance of class DrawToPersonInterp, passing the

string "agents.dat" to that instance’s constructor.

The expressions p1, . . . , pn that serve as parameters may be terms or formulas of

LM that are well-formed in the empty scope, or set expressions (see Section 4.2.8).

These expressions must be syntactically nonrandom: that is, they must not contain

any random function symbols, and must not include quantifiers or set expressions

ranging over types that have number statements in M . Furthermore, it must be

possible to compute the values of all the parameters without invoking the interpre-

tation of the function f — that is, the definitions of nonrandom functions must be

acyclic (the BLOG engine checks for cyclic definitions and gives error messages when

they occur). If there are no parameters in a nonrandom function definition, then the

square brackets after the class name can be omitted.

BLOG includes a standard FunctionInterp class called ConstantInterp that

can serve as an interpretation for zero-ary function symbols (that is, constant sym-

bols). The ConstantInterp class expects one parameter: a term specifying the value

of the constant symbol. In fact, BLOG includes a special syntax for definitions that

use ConstantInterp. A statement of the form:

nonrandom f = t;

where f is a zero-ary function and t is a syntactically nonrandom term, is an abbre-

viation for:

nonrandom f = interp ConstantInterp[t];

152



Chapter 4. Bayesian Logic (BLOG)

BLOG also allows nonrandom functions to be declared and defined in a single

statement. For instance, the statement:

nonrandom Person Agent(Draw d)

= interp DrawToPersonInterp["agents.dat"];

is both a declaration and a definition of the function Agent. A BLOG model must

contain exactly one function definition statement for each nonrandom function that

it declares.

We can also give a more mathematical definition of a nonrandom function inter-

pretation that does not depend on any particular implementation language (such as

Java).

Definition 4.1. In a BLOG model M , a nonrandom function interpretation for a

function with type signature (r, a1, . . . , ak) is a function from GuarM(a1) × cdots ×

GuarM(ak) to GuarM(r) ∪ {null}.

We will use [f ]M to denote the interpretation that M assigns to a nonrandom

function f .

4.2.5 Dependency statements

Dependency statements specify probability distributions for the values of random

functions. As an example, consider the dependency statement for State(a, t) in

Figure 4.4:

State(a, t)

if t = 0 then ∼ InitState()

else ∼ StateTransition(State(a, Pred(t)));

153



Chapter 4. Bayesian Logic (BLOG)

In the generative process, this statement is applied for every Aircraft object a and

every natural number t. If t= 0, the conditional distribution for State(a, t) is given

by the elementary CPD InitState; otherwise it is given by the elementary CPD

StateTransition, which takes State(a,Pred(t)) as an argument. These elementary

CPDs define distributions over objects of type R6Vector (the return type of State). In

our implementation, elementary CPDs are instances of Java classes that implement

an interface called CondProbDistrib.

A BLOG model contains exactly one dependency statement for each random

function (the order of these statements is irrelevant). The general syntax for a

dependency statement is as follows:

f(x1, . . ., xk)

if ϕ1 then ∼ c1(e11, . . ., e1n1)

elseif ϕ2 then ∼ c2(e21, . . ., e2n2)
...

else ∼ cm(em1, . . ., emnm);

The statement begins with a header, which includes the random function sym-

bol f and logical variables x1, . . . , xk that stand for f ’s arguments. This func-

tion f is called the child function in the dependency statement (by analogy to

the child variable for a CPD in a Bayesian network). The header defines a scope

βf = {(x1, a1), . . . , (xk, ak)}, where a1, . . . , ak are the types of f ’s arguments.

The remainder of the statement defines a sequence of clauses. A clause consists

of a condition ϕ, an elementary CPD c, and a tuple of expressions (e1, . . . , en) that

serve as arguments to the CPD. The syntactic representation of a clause begins with

if for the first clause, elseif for subsequent clauses, and else for the last clause:

as these keywords suggest, the clause that is active in a particular world is the first

clause whose condition is satisfied. The condition in a clause can be any formula

154



Chapter 4. Bayesian Logic (BLOG)

of LM that is well-formed in the scope βf . The condition for the last clause is not

specified explicitly: it is always simply true. If desired, the set of clauses (that is, the

portion of the dependency statement between the header and the final semicolon)

can be enclosed in curly braces for clarity.

After the condition, each clause specifies an elementary CPD for the range

OM(retf) ∪ {null}. This specification can consist of just a Java class name, such

as StateTransition, or it may consist of a Java class name followed by some pa-

rameters in square brackets. These parameters are not to be confused with the CPD

arguments that come after the elementary CPD; for instance, in:

TabularCPD[[0.8, 0.2], [0.2, 0.8]](TrueColor(BallDrawn(d)))

the vectors [0.8, 0.2] and [0.2, 0.8] are parameters, whereas TrueColor(BallDrawn(d))

is an argument. The parameters must be nonrandom, and cannot depend on the

function arguments x1, . . . , xk. Formally, the parameters may be any syntactically

nonrandom terms, formulas, or set expressions that are well-formed in the empty

scope. When a dependency statement is processed by the BLOG engine, the pa-

rameters of each elementary CPD are evaluated, and their values are passed to the

constructor of the given Java class to create a new instance. For example, if a model

includes two elementary CPD specifications Poisson[6] and Poisson[8], then the

engine creates two instances of the Java class Poisson, one with mean 6 and one

with mean 8. These Java objects define elementary CPDs, in a sense that we make

precise in Section 4.2.9.

Finally, a clause specifies a tuple of CPD arguments e1, . . . , en. Unlike CPD

parameters, which are evaluated at initialization time without reference to any par-

ticular world, CPD arguments take on values that depend on the possible world and

the assignment of values to the variables in βf . The arguments can be any terms,

155



Chapter 4. Bayesian Logic (BLOG)

formulas, or set expressions that are well-defined in βf . Examples of arguments in-

clude {Ball b} and Name(Author(PubCited(c))) in Figure 4.1, and State(a, t) in Figure

4.4.

We have given the syntax for fully general dependency statements, but our ex-

ample models rarely use this full-fledged if-then-else form: they use certain abbrevi-

ations. The allowed abbreviations are as follows.

• If we want to define a dependency model with just a single clause whose con-

dition is true, we can dispense with the if and then keywords and write a

statement of the form:

f(x1, . . ., xk) ∼ c(e1, . . ., en);

Line 12 of Figure 4.2 is a good example of this format.

• There is a special CondProbDistrib class called EqualsCPD that is used to

represent deterministic dependencies. EqualsCPD takes a single expression e

as an argument, and constrains the child function to take the value of that

expression with probability one. The expression e may be a term, in which case

the return type of the child function f must be the same as the type of the term;

a formula, in which case ret(f) must be Boolean; or a cardinality expression

(see Section 4.2.8 below), in which case ret(f) must be NaturalNum. Instead

of writing ∼ EqualsCPD(e), we can write = e as a shorthand. For example,

in a version of the urn-and-balls scenario with deterministic observations, we

could write:

ObsColor(d) = TrueColor(BallDrawn(d));

• If a dependency statement contains one or more clauses with the if and elseif

keywords but no else clause, then there is an implicit final clause of the form:

156



Chapter 4. Bayesian Logic (BLOG)

else = default

where default is false when the child function is Boolean, and null when the

child function has any other return type.

• If the child function has no arguments, then we can omit the empty parentheses.

We see this in the dependency statement for the random constant symbol First

in Figure 4.2. Similarly, if an elementary CPD takes no arguments, the empty

parentheses can be omitted after it.

Finally, just as we can combine function declarations with nonrandom function

definitions, BLOG also allows us to combine function declarations with dependency

statements. We simply add the random keyword and type information to the header.

So, for example, we could combine lines 3 and 9 in Figure 4.1 to yield:

random Ball BallDrawn(Draw d) ∼ Uniform({Ball b});

4.2.6 Number statements

Number statements specify how objects are added to the world in the generative

process described by a BLOG model. In the simple case, a model contains at most

one number statement for each type: then each number statement defines a distri-

bution for the total number of non-guaranteed objects of that type. However, as

we saw in the aircraft tracking example (Figure 4.4), it is not always convenient to

assume that all the non-guaranteed objects of a given type are added to the world

in a single generative step. The radar blips in this example are generated in many

separate steps: one for each aircraft at each time point, plus another step at each

time point to generate “false alarm” blips. We can think of blips as being generated

by other objects — namely aircraft and natural numbers (time points) — and being

tied back to those generating objects by the origin functions Source and Time. Line

157



Chapter 4. Bayesian Logic (BLOG)

10 in Figure 4.4 also specifies that the number of blips generated by aircraft a at

time t depends on State(a, t).

Thus, the general syntax of a number statement is as follows:

#τ(g1 = x1, . . ., gk = xk)

if ϕ1 then ∼ c1(e11, . . ., e1n1)

elseif ϕ2 then ∼ e2(e21, . . ., e2n2)
...

else ∼ cm(em1, . . ., emnm);

This is the same syntax as for dependency statements, except for the header. Here,

the header consists of a user-defined type symbol τ , a sequence of distinct origin

function symbols g1, . . . gk that take an argument of type τ , and a sequence of logical

variables x1, . . . , xk that stand for the generating objects, i.e., the return values

of the origin functions. The header defines a scope {(x1, r1), . . . , (xk, rk)}, where

r1, . . . , rk are the origin functions’ return types; expressions in the rest of the number

statement are evaluated in this scope. As usual, if a number statement involves no

origin functions, the empty parentheses can be omitted.

The header for a number statement does not need to include all the origin func-

tions for a given type: for example, line 11 in Figure 4.4 does not include the function

Source. When an origin function is not included, its value on the generated objects

defaults to null. A BLOG model can contain any number of number statements for a

given type, as long as no two number statements use the same set of origin functions.

This restriction ensures that one can always tell which number statement generated

a non-guaranteed object o by looking at the values of the origin functions on o.

After the header, a number statement defines a sequence of clauses, just as in

a dependency statement. The abbreviations that apply to dependency statements

(omitting “if...then” when the condition is just true, the implicit else clause, etc.)

158



Chapter 4. Bayesian Logic (BLOG)

can also be used in number statements. The only differences are that all the ele-

mentary CPDs used in a number statement must have N as their range set, and the

default value specified by the implicit else clause is zero rather than false or null.

Note that the number of objects added in any single generative step is always

finite. However, object generation can be recursive: objects can generate other

objects of the same type. For instance, consider a model of sexual reproduction in

which every male–female pair of individuals produces some number of offspring. We

could represent this with the number statement:

#Individual(Mother = m, Father = f)

if Female(m) & !Female(f) then ∼ NumOffspringPrior;

If a model contains recursive number statements, the total number of non-guaranteed

objects in a possible world may be infinite, even though each generative step adds a

finite number of them.

Another way to obtain an infinite set of non-guaranteed objects is by letting them

be generated by the natural numbers. For instance, to model a version of the urn-

and-balls scenario with infinitely many draws, we could use the following statements

instead of the guaranteed object statement for draws:

origin NaturalNum Index(Draw); #Draw(Index = n) = 1;

These statements ensure that for each natural number n, there is exactly one draw

whose index is n (recall that “= 1” is an abbreviation for “∼ EqualsCPD(1)”).

However, the statements do not give us any constant symbols, or even any terms,

that we can use to refer to draws. We can remedy this with the following statements:

random Draw NthDraw(NaturalNum);

NthDraw(n) ∼ Iota({Draw d: Index(d) = n});

159



Chapter 4. Bayesian Logic (BLOG)

Logical syntax BLOG syntax
t1 = t2 t1 = t2
t1 6= t2 t1 != t2
¬ψ !ψ
ψ ∧ χ ψ & χ
ψ ∨ χ ψ | χ
ψ → χ ψ -> χ
∀ τ v ψ forall τ v ψ
∃ τ v ψ exists τ v ψ

Table 4.3: Standard syntax and BLOG syntax for logical formulas.

Here Iota is an elementary CPD that takes in a set of size one, and defines a

distribution that puts probability one on the sole element of that set (if the given

set is not of size one, it puts probability one on null). Once these statements are

included, we can refer to draws using terms such as NthDraw(14). This is admittedly

a rather complicated solution for a simple modeling task; future versions of BLOG

may include syntax to make this more straightforward.

4.2.7 Logical formulas

We have said in a BLOG model M , the formulas of the logical language LM can

serve as constituents in nonrandom function definitions, dependency statements,

and number statements. However, when we defined first-order logical languages in

Section 2.1.3, we used non-ASCII characters such as ¬, ∧, and ∀. Table 4.3 shows

how we replace such characters with ASCII equivalents.

4.2.8 Set expressions

In this section, we give an overview of the set expressions that BLOG supports,

followed by a formal definition of their syntax and semantics. As we shall see, the

term “set expression” is something of a misnomer: while some of these expressions do

160



Chapter 4. Bayesian Logic (BLOG)

denote sets, others denote multisets, and one kind of set expression denotes a number

that is the cardinality of a set. However, “set expression” remains a convenient way

of referring to these various expressions that use set notation.

We have seen several places in our examples where a set expression is used as an

argument to an elementary CPD. The first of these is on line 9 of Figure 4.1, where

we pass {Ball b} into the Uniform CPD. In an alternative version of the urn-and-

balls model where there are multiple urns, we could use a set expression such as

{Ball b : In(b, Urn1)}. In these cases, the goal is to define a distribution over

a set of objects that varies from world to world; the CPD needs to take this set as

an argument so that it can define the desired distribution.

The Uniform CPD selects uniformly from a given set, but what if we want a

CPD to do weighted sampling? For example, we might want to model a scenario

where the chance that a ball is selected on any given draw depends on its color. In

this case, we could use an elementary CPD SampleGivenColor that takes not just

a set of balls, but a set of pairs (b, c) where b is a ball and c is its color. The BLOG

syntax for this is:

{b, TrueColor(b) for Ball b}

We call this kind of expression a tuple multiset expression; it defines a multiset

of tuples. A multiset U consists of a set setU and a function multU : setU → N that

returns a multiplicity for each element of setU , representing the number of times

that element occurs. In our example, the multiplicity of each tuple is one, because

each value of the logical variable b yields a different tuple. But if the expression

were simply {TrueColor(b) for Ball b}, several values of b could yield the same

tuple (here each tuple has just one element, which is a color). If U is a multiset,

we will simply write o ∈ U to mean o ∈ setU . Also, if S is a set, we will use the

notation {|f(x) : x∈S|} to represent the multiset U with setU = {f(x) : x∈S}

161



Chapter 4. Bayesian Logic (BLOG)

and multU(o) = |{x∈S : f(x) = o}|. We will use the same notation to define one

multiset in terms of another one: if U is a multiset, then {|f(x) : x∈U |} is the

multiset U ′ with setU ′ = {f(x) : x∈U} and multU ′(o) =
∑

(x∈U : f(x)= o) multU(x).

Set expressions are also useful when a conditional distribution depends on the

attributes of a set of objects. For instance, lines 17–20 in Figure 4.3 say that the

text of a citation c depends on the names of all the authors of PubCited(c). The

tuple multiset expression used here is:

{n, Name(NthAuthor(PubCited(c), n))

for NaturalNum n : n < NumAuthors(PubCited(c))}

This expression evaluates to a multiset of pairs (n, s) where n is a natural number

and s is a string (an author name); these pairs help determine the distribution

over citation strings. The numbers need to be included in these pairs so that the

distribution over citation strings reflects the order of the authors (a future version

of BLOG may include a new kind of set expression that evaluates to a list rather

than a multiset). CPDs with tuple multisets as arguments can also perform more

standard aggregation operations, such as taking an average or median of a set of real

numbers. For instance, suppose the chance of a paper being accepted to a conference

depends on the average intelligence of its authors. If Intelligence is a function from

Researcher to Real, then we can write the dependency statement:

Accepted(p) ∼ AcceptanceCPD({Intelligence(NthAuthor(p, n))

for NaturalNum n : n < NumAuthors(p)});

This AcceptanceCPD could, for example, take the average of the real numbers passed

into it, and pass this average through a logistic function to get the probability of ac-

ceptance. It might be useful in future version of BLOG to allow aggregation functions

162



Chapter 4. Bayesian Logic (BLOG)

(such as Average) to be separated from CPDs, so elementary CPDs and aggregation

functions could be mixed and matched in a compositional way. Currently, however,

BLOG has no facility for defining functions on sets or multisets.

There are two other kinds of set expressions that BLOG supports. One is an

explicit set expression, in which the elements of the set are listed explicitly. For

example, in the hurricane model (Figure 4.2), we could use the explicit set expression

{A, B} rather than the implicit set expression {City c} on line 8. The last kind

of set expression is a cardinality expression, which yields the size of an implicitly

defined set. In the urn-and-balls example, we could use the cardinality expression

#{Ball b: TrueColor(b) = Blue} to represent the number of blue balls in the urn.

We now formally define the syntax of BLOG set expressions. This definition uses

the notion of a scope (a mapping from logical variables to types) from Section 2.1.3.

Definition 4.2. A well-formed set expression of a BLOG model M in a scope β has

one of the following forms:

• an explicit set expression {t1, . . ., tk}, where t1, . . . , tk are well-formed terms

of LM in scope β;

• an implicit set expression {τ x : ϕ}, where τ is a type in M , x is a logical

variable symbol, and ϕ is a formula of LM that is well-formed in the scope

(β;x 7→ τ);

• a tuple multiset expression {t1, . . ., tk for τ1 x1, . . ., τn xn : ϕ}, where

τ1, . . . , τn are types in M , x1, . . . , xn are logical variable symbols, t1, . . . , tk are

terms of LM that are well-formed in the scope β′ ≡ (β;x1 7→ τ1, . . . , xk 7→ τn),

and ϕ is a formula of LM that is well-formed in β′;

• a cardinality expression #s, where s is a well-formed implicit set expression of

M in β.

163



Chapter 4. Bayesian Logic (BLOG)

If the condition ϕ in an implicit set expression or tuple multiset expression is

simply true, then the condition and the colon that precedes it can be omitted. {Ball

b} is an example of such an abbreviated expression.

A set expression may represent an infinite set, such as {NaturalNum n}, or

{Individual i : Female(i)} in the recursive sexual reproduction model that we

mentioned near the end of Section 4.2.6. In our Java implementation of BLOG, we

do not have a general way to represent infinite sets or multisets so that they can be

passed as arguments to elementary CPDs. Furthermore, since the number of infinite

subsets of a given universe is uncountable, set expressions that can denote infinite

sets cannot be thought of as discrete random variables. Thus, the elementary notion

of conditional probability that we use throughout this thesis (see Section 2.2.6) does

not allow us to define a CPD for a random variable given the value of such a set

expression. To avoid these difficulties, we adopt the convention that a set expres-

sion that would otherwise denote an infinite set or multiset actually denotes null.

Similarly, a cardinality expression involving an infinite set also denotes null.

Just as we defined the denotation of a term given a model structure and an

assignment of values to logical variables (Definition 2.7), we can make a similar

definition for set expressions.

Definition 4.3. Let ω be a model structure of LM , α be an assignment that is valid

in ω, and s be a set expression of M that is well-formed in domain(α). Then the

denotation of s in ω under α, denoted [s]ωα, is defined as follows:

• if s is an explicit set expression {t1, . . ., tk}, then [s]ωα is the set {[ti]ωα :

i∈{1, . . . , k}};

• if s is an implicit set expression {τ x : ϕ}, then [s]ωα is the set {o∈ [τ ]ω :

ω |=(α,(x,τ) 7→o) ϕ}, or null if that set is infinite;

164



Chapter 4. Bayesian Logic (BLOG)

• if s is a tuple multiset expression {t1, . . ., tk for τ1 x1, . . ., τn xn : ϕ}

and we define A to be the set of valid assignments α′ = (α; (x1, τ1) 7→ o1, . . . , (xn, τn) 7→

on) in ω such that ω |=α′ ϕ, then [s]ωα is the multiset {|([t1]ωα′ , . . . , [tk]
ω
α′) :

α′ ∈A|}, or null if A is infinite;

• if s is a cardinality expression #s′, then [s]ωα is | [s′]ωα |, or null if [s′]ωα = null.

Thus set expressions, like terms and formulas, can be evaluated to yield values in

a possible world. The values of set expressions are always finite sets, finite multisets,

natural numbers (for cardinality expressions), or null. From here on, we will refer

to terms, formulas, and set expressions collectively as BLOG expressions. Also, for

consistency, we will sometimes use the notation [ϕ]ωα for the value of a formula ϕ in

a model structure ω. That is, [ϕ]ωα equals true if ω |=α ϕ, and equals false otherwise.

4.2.9 Elementary CPDs

We have said so far that an elementary CPD is an instance of a Java class that

implements a certain interface. But we would like our definition of a BLOG model

to be independent of any particular implementation language. Thus, we give a more

mathematical definition of an elementary CPD below. This definition enforces two

assumptions, which can be stated informally as follows. If an elementary CPD is

used in a model M and invoked with argument values q1, . . . , qn:

1. the CPD can assign positive probability to an object o only if o is a guaranteed

object in M or is contained in the argument tuple (q1, . . . , qn);

2. if h is a permutation of the non-guaranteed objects in M , then the probability

that the CPD assigns to a non-guaranteed object o given q1, . . . , qn is the same

as it assigns to h(o) given h(q1), . . . , h(qn).

165



Chapter 4. Bayesian Logic (BLOG)

The first condition ensures that the CPD does not assign positive probability to ob-

jects that do not exist. The second condition asserts that non-guaranteed objects —

for example, the balls in the urn-and-balls example — are treated interchangeably.

Note that elementary CPDs are allowed to make distinctions among guaranteed ob-

jects: for instance, the tabular CPD for Damage in Figure 4.2 distinguishes between

the two guaranteed PrepLevel objects that might be passed into it.

The way we stated these assumptions above ignores the fact that the arguments

passed into an elementary CPD are not necessarily individual objects; they may be

sets of objects, or multisets of tuples of objects, defined by a set expression. Thus, we

need to be more careful in saying what it means for an expression value to “contain”

an object, and what it means to apply a permutation h to an expression value.

Definition 4.4. In a BLOG model M , an expression value q contains an object o if

either q = o, or q /∈ NonGuarM and one of the following conditions holds:

• q is a set and for some q′ ∈ q, q′ contains o;

• q is a multiset and for some q′ ∈ q, q′ contains o;

• q is a tuple (q1, . . . , qk) and for some i∈{1, . . . , k}, qi contains o.

Note that the recursion in this definition stops when it hits a non-guaranteed

object, even if that non-guaranteed object happens to be a tuple (we will see in

Section 4.3 that it is convenient to let non-guaranteed objects be tuples).

Definition 4.5. Let M be a BLOG model, and let h be a permutation of NonGuarM :

that is, a bijection from NonGuarM to itself. The extension of h to argument values

in M , denoted h̄, is defined as follows on any expression value q:

• if q ∈ NonGuarM , then h̄(q) = h(q);

• otherwise:

166



Chapter 4. Bayesian Logic (BLOG)

– if q is a set, then h̄(q) = {h̄(q′) : q′ ∈ q};

– if q is a multiset, then h̄(q) = {|h̄(q′) : q′ ∈ q|};

– if q is a tuple (q1, . . . , qk), then h̄(q) = (h̄(q1), . . . , h̄(qk));

– otherwise, h̄(q) = q.

We can now state a formal definition of an elementary CPD, including the re-

strictions that we stated less formally at the beginning of this section.

Definition 4.6. An elementary CPD for a range set S in a discrete BLOG model

M is a function c from the set of pairs (o, (q1, . . . , qk)), where o ∈ S and (q1, . . . , qk)

is any tuple of expression values, to [0, 1], such that:

• for each tuple of expression values (q1, . . . , qk),
∑

(o∈S) c(o, (q1, . . . , qk)) = 1;

• if c(o, (q1, . . . , qk)) > 0, then o ∈ (GuarM(τ)∪{null}) or qi contains o for some

i∈{1, . . . , k};

• for any permutation h on NonGuarM ,

c(o, (q1, . . . , qk)) = c(h̄(o), (h̄(q1), . . . , h̄(qk)))

for any object o and expression values (q1, . . . , qk).

Intuitively, the value c(o, (q1, . . . , qk)) is to be interpreted as the conditional prob-

ability of the value o given the CPD arguments q1, . . . , qk. As specified in previous

sections, elementary CPDs in the dependency statement for a random function with

return type r must have OM(r)∪ {null} as their range set; the range set for elemen-

tary CPDs in number statements must be N. Section 4.3.4 describes more formally

the role that elementary CPDs play in the semantics of BLOG. In the full version of

BLOG that includes Real and RkVector types, c(o, (q1, . . . , qk)) is to be interpreted

167



Chapter 4. Bayesian Logic (BLOG)

as a density at o rather than a probability; in this case, the value can range over

[0,∞), not just [0, 1].

Definition 4.6 requires an elementary CPD to accept any tuple of expression

values (q1, . . . , qk) as arguments. In practice, an instance of the TabularCPD class

expects a certain number of arguments, each being a single object; an instance of

class Uniform, on the other hand, expects a single set as an argument. Currently,

our interface for elementary CPDs does not include any facility for checking, when

the model is loaded, that an argument list matches the CPD’s expectations. During

inference, if an elementary CPD gets an argument that it is not expecting, it can

just assign probability 1 to null, and probability zero to all other values.

4.3 Declarative semantics

Generative processes provide an intuitive way to understand the semantics of BLOG

models. However, we run into some difficulties if we try to formalize this generative

process intuition. In what order can the generative steps be executed? Could the

distribution over possible worlds depend on the execution order? Even if we did

specify the generative process precisely enough for its semantics to be well-defined,

such a procedural semantics might be unwieldy for deriving learning and inference

algorithms and proving their correctness.

Thus, we provide a declarative semantics for discrete BLOG models, based on

the partition-based models (PBMs) of Chapter 3. We will describe how a BLOG

model M defines a set of possible worlds ΩM , a set of basic random variables VM ,

and a PBM ΓM over these variables. A PBM is a declarative representation: it

specifies conditional probabilities for each random variable given a certain class of

events, along with a set of conditional independence properties. The basic result from

Chapter 3 (Theorem 3.13) is that if a PBM satisfies certain conditions, then there

168



Chapter 4. Bayesian Logic (BLOG)

is exactly one probability measure over possible worlds in which these conditional

probabilities and independence properties hold. This is the probability measure that

the PBM represents.

4.3.1 Event spaces for BLOG models

The set of possible worlds ΩM of a BLOG model M consists of model structures of

the logical language LM . Even before defining ΩM precisely (which we do in Section

4.3.2.3), we can consider how we will define an event space on ΩM . Note that even in

discrete BLOG, ΩM will often be uncountable: for instance, if M includes a random

function on the natural numbers, then that function has uncountably many possible

interpretations.

A natural way to define an event space on a set of model structures is to use

the σ-field (see Section 2.2.1) generated by events that assign a value to a function

on a particular tuple of arguments, or assert the existence of a particular object.

In keeping with our assumptions from Chapter 3, we assume that functions take

values in discrete spaces. That is, we assume that for each type τ in LM , OM(τ) is

countable.

Definition 4.7. The event space FM for a discrete BLOG model M is the σ-field

generated by the following events:

• for each function symbol f in LM with type signature (r, a1, . . . , ak), each argu-

ment tuple (o1, . . . , ok)∈OM(a1)× · · · × OM(ak), and each value o∈OM(r) ∪

{null}, the event:

{ω ∈ΩM : o1 ∈ [a1]
ω , . . . , ok ∈ [ak]

ω and [f ]ω (o1, . . . , ok) = o};

169



Chapter 4. Bayesian Logic (BLOG)

• for each type τ in LM and each object o∈OM(τ), the event:

{ω ∈ΩM : o∈ [τ ]ω}.

In Appendix 4.A, we show that all expressions (terms, formulas, and set expres-

sions) in a discrete BLOG model can be seen as random variables on this event space:

the event that an expression takes on any given value is measurable. We could ex-

tend Definition 4.7 to handle real-valued functions f by replacing [f ]ω (o1, . . . , ok) = o

with [f ]ω (o1, . . . , ok) ∈ A, where A ranges over the Borel subsets of R.

4.3.2 Possible worlds and basic random variables

4.3.2.1 Models with fixed object sets

If a BLOG model M contains no number statements, then the only objects that can

exist in possible worlds are guaranteed objects. In this case, defining the semantics

of the model is straightforward. In all possible worlds ω ∈ΩM , [τ ]ω = GuarM(τ) for

each type τ . The set of possible interpretations for a random function symbol f with

type signature (r, a1, . . . , ak) is the set of functions from GuarM(a1)×· · ·×GuarM(ak)

to GuarM(r). The outcome space ΩM contains one possible world for each way of

assigning an interpretation to each random function.

Now for each random function f with type signature (r, a1, . . . , ak), and each

tuple of arguments o1, . . . , ok ∈GuarM(a1)×· · ·×GuarM(ak), we can define a function

application variable:

Vf [o1, . . . , ok] (ω) , [f ]ω (o1, . . . , ok)

It is easy to see that the function application variables generate FM . Furthermore,

170



Chapter 4. Bayesian Logic (BLOG)

every partial or complete instantiation on these basic random variables is achievable

(i.e., corresponds to a possible world). So the set of function application variables is

sufficient for (ΩM ,FM) (Definition 3.2), and any PBM over these random variables

respects its outcome space (Definition 3.12). The dependency statements of a BLOG

model define a partition and CPD for each function application variable, as we will

discuss below.

4.3.2.2 Models with at most one number variable per type

To increase our ambitions gradually, let us now focus on models which have unknown

objects, but in which all the objects of each type are generated in a single step. These

are models where the number statements do not include any origin functions, such

as our models for the urn and balls and the citation scenario. We now need a more

diverse set of possible worlds: the worlds differ in what objects exist, not just in

the interpretations of function symbols. If the model includes a number statement

for a type τ , then in each possible world, the extension of τ will include some set

of non-guaranteed objects. Let us assume that these non-guaranteed objects are

pairs (τ, 1), (τ, 2), (τ, 3), etc. For instance, in the citation model, (Publication, 7) is a

non-guaranteed object of type Publication.

The function application variables are now defined not just for argument tuples

consisting of guaranteed objects, but also for tuples that include non-guaranteed

objects. On worlds where some of the arguments o1, . . . , ok do not exist, a function

application variable Vf [o1, . . . , ok] yields the value null. To complete the set of basic

random variables for this kind of model, we add a number variable Nτ for each type

τ that has a number statement:

Nτ (ω) = | [τ ]ω \GuarM(τ)|

171



Chapter 4. Bayesian Logic (BLOG)

Note that we end up with one basic RV for each function-value-setting or object-

generating step that could take place in a run of this model’s generative process.

CPDs for these basic RVs are specified by the dependency and number statements.

To make these basic RVs sufficient for the set of possible worlds, we need to

impose a restriction: ΩM includes only those model structures ω where for each

type τ , {n : (τ, n)∈ [τ ]ω} = {1, 2, . . . , n∗} for some natural number n∗. Thus, for

natural numbers n ≥ 1, the event {ω ∈ΩM : (τ, n)∈ [τ ]ω} is identical to the event

{ω ∈ΩM : Nτ (ω) ≥ n}. From a generative standpoint, we are saying that when

a step adds n∗ objects to the world, these objects are pairs (τ, 1), (τ, 2), . . . , (τ, n∗),

not some arbitrary set of pairs.

4.3.2.3 Models with multiple number variables per type

As we noted in the aircraft tracking example, it is sometimes convenient to think of

the objects of a particular type (such as Blip) as being generated in many separate

steps, rather than all at once. In such models, some types have multiple number

variables.

Let us put aside generative processes for a moment and just consider PBMs

over sets of variables that include both function application variables and num-

ber variables — where by “number variables” we mean random variables that re-

turn the number of objects having a particular property in a given world. The

properties that the number variables refer to cannot be chosen arbitrarily. For in-

stance, in the citation example (Figure 4.3), suppose we introduce number variables

NPublication[o] for each researcher o, returning the number of publications q that have

[NthAuthor]ω (q, n) = o for any number n. If we still include function application vari-

ables for NthAuthor, then these function application variables are highly constrained

by the NPublication[o] variables. For example, in a world where NPublication[o] = 4, there

must be exactly four variables of the form VNthAuthor [q, n] that have o as their value.

172



Chapter 4. Bayesian Logic (BLOG)

In order to respect its outcome space, a PBM would need to define tight dependen-

cies between such variables. On the other hand, if we omit the function application

variables for NthAuthor, we get an underspecified model that is not sufficient for the

outcome space. Such a model does not specify the chance that two given researchers

end up as authors of the same publication.

The system of origin functions and number statements in BLOG is crafted to

avoid such difficulties. For each number statement for type τ with origin functions

g1, . . . , gk, and each tuple of appropriately typed generating objects o1, . . . , ok, there

is a number variable Nτ [g1 = o1, . . . , gk = ok]. The value of this number variable in a

world ω is the number of non-guaranteed objects that satisfy this number statement

applied to these generating objects, in the following sense.

Definition 4.8. Consider a number statement for type τ with origin functions

g1, . . . , gk. In a model structure ω, an object q ∈ [τ ]ω satisfies this number state-

ment applied to o1, . . . , ok in ω if [gi]
ω (q) = oi for i= 1, . . . , k, and [g]ω (q) = null for

all other τ -origin functions g.

Note that this definition implies that a given object can satisfy at most one

number statement applied to at most one tuple of generating objects in a given world.

As a shorthand, we will sometimes say that an object satisfies a number variable

Nτ [g1 = o1, . . . , gk = ok], when we mean that it satisfies that variable’s underlying

number statement applied to the generating objects o1, . . . , ok. Because the sets of

objects that satisfy distinct number variables are necessarily disjoint, we do not have

to worry about defining the probability that an object is in two such sets. And to

avoid conflicts with function application variables for the origin functions, we simply

omit those function application variables from our basic variable set.

However, there is still an issue to resolve: although the number variables for

type τ jointly specify how many objects of type τ exist in a given world, they do

173



Chapter 4. Bayesian Logic (BLOG)

not directly specify which objects satisfy which number statement applications. For

instance, the number variables might specify that there is one blip whose source

is (Aircraft, 20) and whose time is 8, but no blips whose source is (Aicraft, 21) and

whose time is 8. But given such an instantiation, there is still ambiguity about which

blip — out of the infinite number of blips that may exist in a possible world — has

source (Aircraft, 20) and time stamp 8. This is a symptom of an underspecification

in our generative process: we have not specified which objects are added by which

generative steps (only how many are added by each step).

Thus, we need to further constrain the outcome space to allow these basic random

variables to generate the event space FM (particularly those events that specify the

values of origin functions on objects). There are two paths we could take to do this.

The first is to define an ordering on the number variables for each type. The ordering

could be based on the sum of the indices of the generating objects: thus the ordering

on aircraft-time pairs would begin ((Aircraft, 0), 0), ((Aircraft, 0), 1), ((Aircraft, 1), 0),

etc. Then non-guaranteed objects could be assigned to number variables in numer-

ical order. For example, in each possible world, (Blip, 0) would be assigned to the

first number variable with a nonzero value; (Blip, 1) would satisfy the same num-

ber variable if its value was greater than 1, and the next nonzero number variable

otherwise; and so on.

This approach can be made to work, in the sense of ensuring that the basic

RVs defined above are sufficient for the set of possible worlds. But under this ap-

proach, determining the value of an origin variable on an object (τ, n) in a given

world involves iterating over all the number variables in order until the sum of

their values reaches n. And we need to find the values of origin variables in or-

der to identify the dependencies between basic RVs: for instance, MeasuredPos(b)

depends on State(Source(b),Time(b)). Thus, the current approach leads to two prob-

lems: finding the values of origin functions is time-consuming, and variables such as

174



Chapter 4. Bayesian Logic (BLOG)

MeasuredPos(b) end up depending probabilistically on all the number variables that

could be relevant in determining what Source(b) and Time(b) are. These are prob-

lems for inference algorithms, not for the semantics of the model. However, since we

will be developing inference algorithms in the next chapter, we would like to avoid

imposing these problems on ourselves if possible.

In fact, there is a second way to resolve the ambiguity about which objects

satisfy which number variables. The trick is to change the representation of non-

guaranteed objects so that each object lists its own generating objects. Specifically,

in a world where a number variable Nτ [g1 = o1, . . . , gk = ok] has the value n∗, the

objects that satisfy it will be tuples (τ, (g1, o1), . . . , (gk, ok), n) for n∈{1, . . . , n∗}.

This representation boils down to our earlier pair representation for objects with no

generating objects: thus aircraft are still represented as (Aircraft, 0), (Aircraft, 1), etc.

But a single blip generated by (Aircraft, 20) at time 8 is represented as:

(Blip, (Source, (Aircraft, 20)), (Time, 8), 0)

Thus, the representations for non-guaranteed objects end up being nested tuples that

encode their whole generation history. Determining the values of origin functions on

an object is no longer an expensive task, and no longer introduces unnecesssary

probabilistic dependencies into the model.

The following definitions formalize this approach to defining possible worlds and

basic random variables. First, we define the universe for each type: the set of objects

that may be in the extension of that type in some possible world.

Definition 4.9. In a BLOG model M , the sets U i
M(τ) of level–i objects for each

175



Chapter 4. Bayesian Logic (BLOG)

type τ are defined inductively for natural numbers i, as follows:

U0
M(τ) = GuarM(τ)

U i+1
M (τ) = U i

M(τ) ∪
⋃

(g1,...,gk)

 (τ, (g1, o1), . . . , (gk, ok), n) :

o1 ∈U i
M(a1), . . . , ok ∈U i

M(ak), n∈{1, 2, 3, . . .}


where (g1, . . . , gk) ranges over the origin function tuples for number statements of

type τ in M , and a1, . . . , ak are the return types of g1, . . . , gk. The universe for type

τ is:

UM(τ) ,
∞⋃
i=0

U i
M(τ)

Note that if GuarM(τ) is countable — which is true for all types in discrete

BLOG — then UM(τ) is countable as well. We can now define the set of possible

worlds for a BLOG model.

Definition 4.10. For a BLOG model M , the set of possible worlds ΩM is the set of

model structures ω of LM such that:

i. for each type τ , GuarM(τ) ⊆ [τ ]ω ⊆ UM(τ);

ii. for each nonrandom function f in M with type signature (r, a1, . . . , ak), and each

tuple of argument values (o1, . . . , ok)∈ [a1]
ω × · · · × [ak]

ω,

[f ]ω (o1, . . . , ok) =

 [f ]M (o1, . . . , ok) if oi ∈ GuarM(ai) for i∈{1, . . . , k}

null otherwise;

iii. for each origin function g in M with argument type τ , and each argument value

q ∈ [τ ]ω,

[g]ω (q) =

 o if q has the form (τ, . . . , (g, o), . . .) for some o∈ [ret(g)]ω

null otherwise;

176



Chapter 4. Bayesian Logic (BLOG)

iv. for each number statement in M with type τ and origin functions g1, . . . , gk, and

each tuple of generating objects (o1, . . . , ok)∈ [ret(g1)]
ω × · · · × [ret(gk)]

ω, there

is a natural number N (possibly zero) such that:

{n∈N : (τ, (g1, o1), . . . , (gk, ok), n) ∈ [τ ]ω} = {1, . . . , N}.

Part (i) of this definition ensures that the guaranteed objects exist in each possible

world. It also asserts that for each type τ , there are no other objects besides those

in UM(τ). This is a kind of domain closure assumption, but a very weak one: unlike

standard domain closure assumptions [Reiter, 1980], it does not require that the

objects be referred to by constant symbols or even ground terms in the language.

Part (ii) of this definition ensures that the nonrandom functions have the desired

interpretations. On argument tuples that consist solely of guaranteed objects, a

nonrandom function yields the value specified by its definition in the model; on

other tuples, it yields null.

Part (iii) specifies the interpretations of origin functions g on objects q. If q is

a tuple (τ, . . . , (g, o), . . .), then [g]ω (q) = o in every world ω where q exists. Other-

wise, [g]ω (q) = null. Thus origin functions always yield null on guaranteed objects,

which are not tuples of the form (τ, . . .). On non-guaranteed objects, the definition

is unambiguous because a number statement cannot use the same origin function

more than once (and every non-guaranteed object in UM(τ) corresponds to an ap-

plication of some number statement). Another consequence of this assertion is that

if (τ, (g1, o1), . . . , (gk, ok), n) ∈ [τ ]ω, then its generating objects o1, . . . , ok must exist

in ω as well. This follows from the definition of a model structure (Definition 2.6):

the values of functions (in this case, origin functions) in ω must be objects that exist

in ω. Finally, part (iv) implies that in each world, the objects satisfying a given

application of a number statement are numbered 1, 2, . . . , N for some finite N . This

177



Chapter 4. Bayesian Logic (BLOG)

rules out having an infinite set of objects that satisfy a given number statement

application. It also implies that if we know how many objects satisfy a number

statement application, then we know which objects they are.

Note that although we refer to ΩM as the set of “possible worlds” of model M ,

the model may assign probability zero to some of these worlds. For instance, if M

is the urn-and-balls model shown in Figure 4.1, then ΩM includes worlds ω where

[Ball]ω is non-empty but [BallDrawn]ω (Draw1) = null, even though such worlds have

probability zero under the model. This choice of definitions means that changing the

dependency statements in a BLOG model cannot change the set of possible worlds;

it only changes the probability distribution over these worlds.

Now that we have defined the outcome space for a BLOG model, we will give a

formal definition of the set of basic random variables.

Definition 4.11. For a BLOG model M , the set VM of basic random variables

consists of:

• for each random function f in M with type signature (r, a1, . . . , ak) and each

tuple of arguments (o1, . . . , ok)∈UM(a1)×· · ·×UM(ak), a function application

variable:

Vf [o1, . . . , ok] (ω) ,

 [f ]ω (o1, . . . , ok), if oi ∈ [ai]
ω for i∈{1, . . . , k}

null, otherwise

• for each number statement with type τ and origin functions g1, . . . , gk that have

return types τ1, . . . , τk, and each tuple of objects (o1, . . . , ok) ∈ UM(τ1)× · · · ×

UM(τk), a number variable Nτ [g1 = o1, . . . , gk = ok] (ω) equal to the number of

objects that satisfy this number statement applied to o1, . . . , ok in ω.

For functions with no arguments and number statements with no origin functions,

we will omit the empty brackets when referring to the corresponding basic variables.

178



Chapter 4. Bayesian Logic (BLOG)

Intuitively, each step in the generative world-construction process determines the

value of a basic variable. The range of a function application variable for a function

with return type r is OM(r)∪ {null}, and the range of a number variable is N. Note

that if the objects o1, . . . , ok do not exist in a world ω, then any number variable

Nτ [g1 = o1, . . . , gk = ok] has the value zero in ω, because no objects can satisfy that

number variable in ω.

4.3.3 Achievable instantiations of basic random variables

It is fairly obvious that in any BLOG model, a complete instantiation of the basic

random variables corresponds to at most one possible world. Such an instantiation

specifies the interpretations of the random functions and the number of objects sat-

isfying each number statement application; given these constraints, there is at most

one model structure that satisfies Definition 4.10. However, some instantiations

are not achievable: they do not correspond to any model structure. For instance,

in the urn-and-balls model, the instantiation (NBall = 4, VTrueColor [(Ball, 8)] = Blue)

is unachievable, because (Ball, 8) cannot exist in a world ω where NBall = 4, and

VTrueColor [(Ball, 8)] must yield null on worlds where (Ball, 8) does not exist. Another

unachievable instantiation is (NBall = 4, VBallDrawn [Draw1] = (Ball, 8)), in which the

value of VBallDrawn [Draw1] is an object that does not exist. A less obvious exam-

ple is the infinite instantiation (VTrueColor [(Ball, 1)] = Blue, VTrueColor [(Ball, 2)] = Blue,

VTrueColor [(Ball, 3)] = Blue, . . .). This instantiation is unachievable because there is no

possible world in which infinitely many balls exist. Any completion of this instan-

tiation would have to assert NBall = n for some finite number n, contradicting the

assertions VTrueColor [(Ball,m)] = Blue for all m > n.

Fortunately, there is a reasonably simple way to check that an instantiation (com-

plete or partial) on the VM is achievable. To state this condition, we need to introduce

179



Chapter 4. Bayesian Logic (BLOG)

some terminology. If o is a non-guaranteed object (τ, (g1, o1), . . . , (gk, ok), n), then

its governing number variable, denoted No, is Nτ [g1 = o1, . . . , gk = ok]. The number

n in the tuple representation of o will be denoted index (o).

An instantiation σ uses an object o as an argument if vars (σ) includes a number

variable N with o as an argument such that σN 6= 0, or a function application

variable V with o as an argument such that σV 6= null. The instantiation σ uses o

as a value if there is some X ∈ vars (σ) such that σX = o. We will also say simply

that an instantiation uses o if it uses o as an argument or value.

Definition 4.12. In a BLOG model M , an instantiation σ on VM is governing-

variable complete if, for every non-guaranteed object o that σ uses, σ instantiates

No to a value greater than or equal to index (o).

Lemma 4.1. In any BLOG model M , if an instantiation σ on VM is governing-

variable complete, then it is achievable.

Proof. Suppose σ is governing-variable complete. We can construct a model struc-

ture ω consistent with σ as follows. For each type τ , let [τ ]ω consist of:

1. the guaranteed objects GuarM(τ); and

2. for each number variable N = Nτ [g1 = o1, . . . , gk = ok] in vars (σ), the set of

non-guaranteed objects {(τ, (g1, o1), . . . , (gk, ok), n) : n∈{1, . . . , σN}} (note

that this is an empty set if σN = 0).

Thus, uninstantiated number variables get no satisfiers. Let the interpretations of

the nonrandom functions and origin functions in ω be as specified in Definition 4.10.

Finally, for each random function symbol f with argument types (a1, . . . , ak), let

[f ]ω be the function on tuples (o1, . . . , ok)∈ [a1]
ω × · · · × [ak]

ω such that:

[f ]ω (o1, . . . , ok) =

 σVf [o1,...,ok] if Vf [o1, . . . , ok] ∈ vars (σ)

null otherwise

180



Chapter 4. Bayesian Logic (BLOG)

So function application variables that are not instantiated are treated as if they were

set to null.

First we will check that this ω is indeed a model structure: that is, for each

function symbol f , the values of [f ]ω are all in [ret(f)]ω ∪ {null}. For nonrandom

functions f , this is ensured by the definition of [f ]M . Now consider any origin

function g with argument type τ , and any object o∈ [τ ]ω such that [g]ω (o) 6= null.

Since the interpretations of origin functions in ω are given by Definition 4.10(iii),

we know that o is of the form (τ, (g1, o1), . . . , (gk, ok), n), and [g]ω (o) = oi for some

i∈{1, . . . , k}. Given our construction of ω, the fact that o is in [τ ]ω implies that σ

instantiates No to a value greater than or equal to n. But No has oi as an argument,

so this means σ uses oi as an argument. Therefore, since σ is governing-variable

complete, it also instantiates N(oi) to a value greater than or equal to index (oi). So

oi ∈ [r]ω.

Now consider any random function f and any argument tuple (o1, . . . , ok) such

that [f ]ω (o1, . . . , ok) = q 6= null. Then our construction ensures that q = σVf [o1,...,ok].

So σ uses q as a value. If q is a guaranteed object then it is automatically in

[ret(f)]ω; otherwise, the fact that σ is governing-variable complete implies that σ

must instantiate Nq to a value greater than or equal to index (q). So by construction,

q ∈ [r]ω.

It is easy to check that ω is in ΩM , as defined in Definition 4.10. Our construction

also makes it clear that for each X ∈ vars (σ), X(ω) = σX . So ω is a world in ΩM

that is consistent with σ.

An instantiation on VM may be achievable even if it is not governing-variable

complete: for example, the instantiation (VTrueColor [(Ball, 1)] = Blue) is achievable.

Thus, the converse of this lemma does not hold. However, we can use it to show

that in every BLOG model M , the basic variables are sufficient for (ΩM ,FM), in

181



Chapter 4. Bayesian Logic (BLOG)

the sense of Definition 3.2.

Lemma 4.2. In any discrete BLOG model M , the set of basic random variables VM

is sufficient for (ΩM ,FM).

Proof. First we must show that FM is generated by events of the form {X =x}

for X ∈VM . It suffices to show that these events generate the basis events for

FM described in Definition 4.7. First, for any type τ in LM and any object

o∈OM(τ), consider the event {ω ∈ΩM : o∈ [τ ]ω}. If o ∈ GuarM(τ), then this

event is simply ΩM . Otherwise, Definitions 4.10(i) and 4.9 imply that o has the

form (τ, (g1, o1), . . . , (gk, ok), n). Then by Definition 4.10(iv), {ω ∈ΩM : o∈ [τ ]ω} =

{Nτ [g1 = o1, . . . , gk = ok] ≥ n}. This event is clearly generated by events of the form

{Nτ [g1 = o1, . . . , gk = ok] = x}. Now consider the other basis events for FM , which

have the form {ω ∈ΩM : o1 ∈ [a1]
ω , . . . , ok ∈ [ak]

ω and [f ]ω (o1, . . . , ok) = o}. In the

case where o 6= null, each such event is equal to {Vf [o1, . . . , ok] = o}. For o = null,

we need to be more careful, because null serves as a value for Vf [o1, . . . , ok] when the

function takes the value null and when one of the arguments does not exist. However,

we have already shown how to generate events of the form {ω ∈ΩM : oi ∈ [ai]
ω}. So

we can generate the desired events as follows:

{ω ∈ΩM : o1 ∈ [a1]
ω , . . . , ok ∈ [ak]

ω and [f ]ω (o1, . . . , ok) = o}

= {Vf [o1, . . . , ok] = null} ∩
k⋂

i=1

{ω ∈ΩM : oi ∈ [ai]
ω}

For the second part of the definition of a sufficient set of variables, consider any

complete instantiation σ of VM of which each finite sub-instantiation is acheivable.

We will show that σ itself is achievable. By Lemma 4.1, it suffices to show that σ is

governing-variable complete. So consider any non-guaranteed object o that σ uses.

Because σ is complete, it instantiates No to some value. Assume for contradiction

182



Chapter 4. Bayesian Logic (BLOG)

that σNo < index (o). Then let τ be the restriction of σ to the variables {No, X},

where X is any variable in vars (σ) that uses o. Since τ is a finite sub-instantiation

of σ, it must be achievable; let ω be any world consistent with τ . Because No(ω) <

index (o), No must have fewer than index (o) satisfiers in ω. Given this fact, parts

(iii) and (iv) of Definition 4.10 imply that o does not exist in ω.

Now suppose the variable X that uses o is a number variable. This means that

X has o as an argument and σX > 0. By Definitions 4.11 and 4.8, this implies that ω

contains a nonzero number of objects that are mapped to o by some origin function

g. But this is impossible, because [g]ω can only map arguments to values that exist

in ω. We get a similar result if X is a function application variable Vf [o1, . . . , ok]

that uses o. Then either σX = o, or oi = o for some i∈{1, . . . , k} and σX 6= null.

The first option implies [f ]ω (o1, . . . , ok) = o, which violates the definition of a model

structure since o does not exist in ω. The second option violates 4.11, which asserts

that Vf [o1, . . . , ok] (ω) = null when one of o1, . . . , ok does not exist in ω. So in all

cases, we have a contradiction.

Thus, every BLOG model M defines a set of basic random variables VM that is

sufficient for (ΩM ,FM). We now move on to discuss the probability model that M

defines over these variables.

4.3.4 The PBM defined by a BLOG model

The dependency statements and number statements of a BLOG model define condi-

tional probability distributions (CPDs) for the basic random variables. Specifically,

the dependency statement for a random function f defines CPDs for all function

application variables that involve f , and the number statement with origin functions

(g1, . . . , gk) defines CPDs for all number variables involving that tuple of origin func-

tions. But the dependency statement for a variable X is made up of formulas and

183



Chapter 4. Bayesian Logic (BLOG)

other BLOG expressions; it does not directly say which basic variables X depends

on, or under what conditions these dependencies are active.

Of course, we could define rules for extracting such variable-level dependencies

from formulas, terms, and set expressions. However, the partition-based models

(PBMs) defined in Section 3.4 allow us to define the semantics of dependency state-

ments at a more fundamental level. For each random variable X, a PBM specifies

a set of events that form a partition of the outcome space, as well as a conditional

probability for each value of X given each event in that partition. In a BLOG model

M , the dependency statement for a basic variable X (with the logical variables in

its header set equal to X’s arguments) defines such a partition ΛX
M and CPD cXM as

follows. Each partition block is a set of worlds where a particular clause i is the first

clause whose condition is satisfied, and the CPD arguments in clause i have some

particular values qi1, . . . , qini
. The probability of X taking a value x given this event

is ci(x, (qi1, . . . , qini
)), where ci is the elementary CPD in clause i.

To formalize this definition, recall from Section 4.2.5 that each dependency state-

ment or number statement defines a scope β and a sequence of clauses of the form

{(ϕi, ci, (ei1, . . . , ei(ni)))}mi=1. The scope β consists of the variables introduced to rep-

resent function arguments in a dependency statement or generating objects in a

number statement; the formulas ϕi and arguments eij are well-formed in this scope.

Also, the condition ϕm in the last clause is always simply true. Given a possible

world ω and an assignment α whose domain is β, the active clause index is the

first index i such that ω |=α ϕi. Note that some such index always exists because

ϕm = true.

Definition 4.13. In a BLOG model M , let X be a function application variable

Vf [o1, . . . , ok] or a number variable Nτ [g1 = o1, . . . , gk = ok]. Consider the depen-

dency statement for f or the number statement for τ with origin functions (g1, . . . , gk).

184



Chapter 4. Bayesian Logic (BLOG)

Let {(x1, τ1), . . . , (xk, τk)} be the scope defined by the header of this number state-

ment, and α be the assignment that maps (xi, τi) to oi for i∈{1, . . . , k}. Suppose

this statement defines clauses {(ϕi, ci, (ei1, . . . , ei(ni)))}mi=1. Then let ∼ be the equiv-

alence relation on ΩM such that ω1 ∼ ω2 if:

• α is invalid in both ω1 and ω2, or;

• α is valid in both ω1 and ω2, ω1 and ω2 have the same active clause index i

given α, and [eij]
ω1

α = [eij]
ω2

α for j ∈{1, . . . , ni}.

Then ΛX
M is the set of equivalence classes ΩM/∼, and the CPD cXM is defined as

follows:

• for the block λ0 ∈ΛX
M (if any) such that α is invalid in all worlds in λ0,

cXM(x, λ0) =

 δ(x, null) if X is a function application variable

δ(x, 0) if X is a number variable

• for each other block λ where for all ω ∈λ, the active clause index is i and

[eij]
ω
α = qj for j ∈{1, . . . , ni},

cXM(x, λ) = ci (x, (q1, . . . , qni
)) .

To see how this definition works, let’s start with a very simple dependency state-

ment:

TrueColor(b) ∼ TabularCPD[[0.5, 0.5]];

Consider a particular ball (Ball, 3). To get the partition and CPD for the function

application variable X = VTrueColor [(Ball, 3)], we use the assignment α = ((b,Ball) 7→

185



Chapter 4. Bayesian Logic (BLOG)

(Ball, 3)). Now, this dependency statement has only one clause and no CPD ar-

guments. So ΛX
M has just two blocks: one where α is valid, and one where it is

not. The block where α is invalid corresponds to the event that (Ball, 3) does not

exist. This is the same as the event {NBall(ω) < 3}, but we did not have to define

this variable-level dependency explicitly; it falls out of our general definition. Given

that α is invalid, the CPD cXM gives probability one to null, which is the value that

function application variables take on when their arguments do not exist. Given the

other block, where α is valid, cXM puts probability 0.5 on each of the two guaranteed

Color objects, Blue and Green. Note that the partition defined by this dependency

statement depends on the value assigned to b. Thus, a dependency statement does

not just define a single partition: it is a first-order specification that maps logical

variable assignments to partitions and CPDs.

As a slightly more complicated example, consider the dependency statement:

ObsColor(d)

if (BallDrawn(d) != null) then

∼ TabularCPD[[0.8, 0.2], [0.2, 0.8]]

(TrueColor(BallDrawn(d)));

For the basic variableX = VObsColor [(Draw, 1)], we use the assignment α = ((d,Draw) 7→

(Draw, 1)). This assignment is valid in all possible worlds, since (Draw, 1) is a guar-

anteed object. So there is no partition block where α is invalid. There are three

partition blocks where the first clause is active: these correspond to the events {ω |=α

(BallDrawn(d) 6= null)}∩{[TrueColor(BallDrawn(d))]ωα = c}, for c∈{Blue,Green, null}.

Finally, there is a partition block where the implicit else clause is active: this is the

event {ω |=α (BallDrawn(d) = null)}.

As a whole, the urn-and-balls BLOG model in Figure 4.1 defines the same PBM

that we described explicitly in Figure 3.6. In fact, the BLOG model does more than

186



Chapter 4. Bayesian Logic (BLOG)

Figure 3.6 does: not only does it specify partitions and CPDs, but it also specifies

the outcome space (via Definition 4.10) and defines the random variables on this

outcome space (via Definition 4.11). We used two paragraphs of text and equations

to define these aspects of the model in Section 3.1. Even as a means for describing

the model to another human being, the BLOG model is much clearer and more

concise than our earlier presentation; on top of that, the BLOG model has a formal,

machine-readable syntax.

The following proposition affirms that the partitions and CPDs defined in Defi-

nition 4.13 indeed satisfy the definition of a PBM.

Proposition 4.3. For any discrete BLOG model M , there is a PBM ΓM over VM

such that for each variable X ∈VM , ΛX
ΓM

= ΛX
M and cXΓM

= cXM .

Proof. The definition of a PBM (Definition 3.5) requires that VM be sufficient for the

outcome space on which they are defined, that each partition ΛX
M be measurable and

countable, and that each function cXM satisfy the definition of a CPD. The fact that

VM is sufficient for (ΩM ,FM) is given by Lemma 4.2. The fact that the blocks in

each partition ΛX
M are measurable follows directly from Lemma 4.17, which asserts

that the event in which a BLOG expression takes on a particular value is always

measurable. Furthermore, any expression in discrete BLOG denotes either an object

in the countable universe UM(τ) for some type τ , or a finite set of such objects, or a

finite multiset of tuples of such objects, or null. Thus, the set of all possible values of

expressions in a given discrete BLOG model is countable. A block in ΛX
M (other than

the “assignment invalid” block) is defined by an index i and a finite tuple (q1, . . . , qni
)

of such values, so ΛX
M is countable as well. Finally, the definition of an elementary

CPD ensures that for any X ∈VM and λ∈ΛX
M , the function cXM(x, λ) yields values

in [0, 1] and sums to one over x∈ range (X). Thus, cXM is indeed a CPD for X given

ΛX
Γ , as defined by Definition 3.4.

187



Chapter 4. Bayesian Logic (BLOG)

We can now define what it means for a probability measure to satisfy a BLOG

model.

Definition 4.14. A probability measure P on (ΩM ,FM) satisfies a discrete BLOG

model M if it satisfies ΓM . A BLOG model M is well-defined if there is exactly one

probability measure that satisfies it.

4.3.5 Ruling out unachievable instantiations

Theorem 3.13 states that a PBM is well-defined if it satisfies two conditions: it

respects its outcome space, and each of its outcomes has a supportive numbering.

Intuitively, a PBM respects its outcome space (Definition 3.12) if any instantiation

of the basic variables that has a supportive numbering but is not achievable has

probability zero. The other requirement, that every outcome have a supportive

numbering, is a less restrictive, context-specific version of the requirement that a

Bayesian network have a topological numbering.

It is possible to write down BLOG models whose possible worlds do not have

supportive numberings. However, every discrete BLOG model respects its outcome

space. To see why this is true, recall that by Lemma 4.1, any instantiation on the

basic random variables that is governing-variable complete is achievable. Thus, the

only way an instantiation can fail to be achievable is if it uses a non-guaranteed

object o without instantiating the governing number variable No to a value greater

than or equal to index (o). We will show that if an instantiation with a supportive

numbering does this, then it must have probability zero. We begin with the following

lemmas:

Lemma 4.4. In a discrete BLOG model M , let X be a basic random variable with

function arguments or generating objects o1, . . . , ok of types τ1, . . . , τk. Suppose λ ∈

ΛX
M and o ∈ range (X). If cXM(o, λ) > 0, then:

188



Chapter 4. Bayesian Logic (BLOG)

i. if X is a function application variable and o 6= null, or X is a number variable

and o 6= 0, then oi ∈ [τi]
ω for all i∈{1, . . . , k} and all ω ∈λ;

ii. if o is a non-guaranteed object of type τ , then o∈ [τ ]ω for all ω ∈λ.

Proof. For part (i), let x1, . . . , xk be the logical variables introduced in the header

of the the dependency or number statement for X. Let α be the assignment that

maps (xi, τi) to oi for i∈{1, . . . , k}. Recall from Definition 4.13 that ΛX
M includes

at most one block λ0 containing worlds where α is invalid — that is, where some of

the objects o1, . . . , ok do not exist. Given λ0, c
X
M assigns probability one to the value

null for function application variables, and the value 0 for number variables. So if

cXM(o, λ) > 0 and o is not this “invalidity” value, then λ 6= λ0. Therefore α is valid

in all worlds in λ.

For part (ii), suppose o is a non-guaranteed object of type τ . Then the fact that

cXM(o, λ) > 0 implies λ 6= λ0. So λ corresponds to the event that α is valid, the

active clause index in the dependency or number statement is some index i, and

the CPD arguments eij have some particular denotations qj for j ∈{1, . . . , ni}. The

definition of an elementary CPD stipulates that if o is a non-guaranteed object and

ci(o, (q1, . . . , qni
)) > 0, then one of the argument values q1, . . . , qni

contains o. It

is easy to see from the definitions of the denotations of terms (Definition 2.7) and

set expressions (Definition 4.3) that if an assignment α is valid in a world ω, then

the denotation [e]ωα of any expression e contains only objects that exist in ω. Thus

q1, . . . , qni
contain only objects that exist in all worlds ω ∈λ. So since cXM(o, λ) > 0,

o must exist in all these worlds.

Lemma 4.5. Let M be a BLOG model and σ be an instantiation on VM that is

governing-variable complete. Let o be a non-guaranteed object of type τ . If o ∈ [τ ]ω

for all ω ∈ ev (σ), then σ instantiates No to a value greater than or equal to index (o).

189



Chapter 4. Bayesian Logic (BLOG)

Proof. We will prove the contrapositive: if σ does not instantiate No to a value

greater than or equal to index (o), then there is some ω ∈ ev (σ) such that o /∈ [τ ]ω.

First suppose σ instantiates No to a value less than index (o). Then the definition of

a number variable and parts (iii) and (iv) of Definition 4.10 imply that o /∈ [τ ]ω for

each ω ∈ ev (σ). And since σ is governing-variable complete, Lemma 4.1 guarantees

that it is achievable, so at least one such ω exists. For the remaining case, suppose σ

does not instantiate No at all. Then let σ′ = (σ;No = 0). Because a number variable

that is instantiated to zero does not use its arguments (by the definition of “use”

that we gave before Definition 4.12), σ′ uses the same set of objects as σ. Thus σ′ is

also governing-variable complete. So, as we argued for the first case, there is a world

ω ∈ ev (σ′) such that o /∈ [τ ]ω. Since ev (σ′) ⊆ ev (σ), this ω is also in ev (σ).

Proposition 4.6. If M is a discrete BLOG model, then ΓM respects its outcome

space.

Proof. By the definition of respecting an outcome space, we must show that if π

is a supportive numbering of an unachievable instantiation σ, then π yields a zero

factor on σ: that is, one of the factors cXM(σX , λ
X
Γ (σ[Predπ[X]])) is equal to zero. We

will show the contrapositive: that if π does not yield a zero factor on σ, then σ is

achievable. We begin with an inductive proof that if σ is a finite instantiation with a

supportive numbering that does not yield a zero factor, then σ is governing-variable

complete, and thus achievable by Lemma 4.1.

The base case, where σ = >, is trivial because > does not use any objects.

Now suppose the claim holds for instantiations of size n, and let π be a supportive

numbering that does not yield a zero factor on an instantiation σ of size n+ 1. Let

Y be the last variable in vars (σ) according to π. Since π is a supportive numbering,

we know σ−Y supports Y . Also, since π does not yield a zero factor on σ, we know

cYM(σY , λ
Y
M(σ−Y )) > 0.

190



Chapter 4. Bayesian Logic (BLOG)

Now consider any non-guaranteed object o that is used by σ but not by σ−Y .

Such an object must be either the value σY , or an argument of the basic variable Y .

If σY is a non-guaranteed object o of type τ , then by Lemma 4.4(ii), o ∈ [τ ]ω for all

ω ∈λY
M(σ−Y ). Similarly, if the instantiation (Y =σY ) uses o as an argument, then

Lemma 4.4(i) implies o ∈ [τ ]ω for all ω ∈λY
M(σ−Y ). In either case, since ev (σ−Y ) ⊆

λY
M(σ−Y ), we have σY ∈ [τ ]ω for all ω ∈ ev (σ−Y ). We also know by the inductive

hypothesis that σ−Y is governing-variable complete. So by Lemma 4.5, σ−Y must

instantiate No to a value greater than or equal to index (o). Thus, σ is governing-

variable complete as well.

This inductive argument applies to all finite instantiations. Now suppose π is a

supportive numbering that does not yield a zero factor on an infinite instantiation σ.

Consider any object o that is used by σ. This object must be used by some variable;

let X be the first variable (according to π) that uses it. Then the instantiation σ′

obtained by restricting σ to X is a finite instantiation with a supportive numbering;

hence, it is governing-variable complete. Since σ′ uses o, it must instantiate No to

a value greater than or equal to index (o). Therefore σ instantiates No to the same

value. Since this holds for all objects that σ uses, σ is governing-variable complete.

So by Lemma 4.1, it is achievable.

4.3.6 Well-defined BLOG models

Given the results of the previous section, it is now straightforward to prove our main

theorem about BLOG. This theorem uses the notions of a supportive numbering

and a self-supporting instantiation from Section 3.4. An instantiation σ supports a

variable X if it picks out a unique block in ΛX
M (Definition 3.6). In other words, σ

supports X if all the worlds in ev (σ) agree on the active clause index in X’s depen-

dency/number statement and the denotations of the CPD arguments in this clause

191



Chapter 4. Bayesian Logic (BLOG)

(or if each world in σ denies the existence of some arguemnt of X). Thus, for ex-

ample, the instantiation (VBallDrawn [Draw1] = (Ball, 3), VTrueColor [(Ball, 3)] = Blue) sup-

ports the variable VObsColor [Draw1]. An instantiation is self-supporting (Definition

3.7) if it supports every variable it instantiates; self-supporting instantiations are

analogous to instantiations of ancestral sets in a Bayesian network. A supportive

numbering of a world ω is a numbering of VM such that for each X ∈VM , the in-

stantiation of Predπ[X] in ω supports X. Supportive numberings are analogous to

topological numberings of the variables in a BN, but they can be specific to particular

worlds.

Theorem 4.7. Let M be a discrete BLOG model in which each possible world ω ∈ΩM

has a supportive numbering. Then M is well-defined: that is, there is a unique

probability measure PM on (ΩM ,FM) such that for each basic variable X ∈VM ,

• cXM is a version of PM(X|ΛX
M);

• for every finite, self-supporting instantiation σ on VM that does not instantiate

X, X ⊥⊥(PM ) σ |ΛX
M .

Proof. By Proposition 4.3, M defines a PBM ΓM . By Proposition 4.6, this PBM

respects its outcome space. So if every possible world has a supportive numbering,

then Theorem 3.13 ensures that ΓM is well-defined. This is the same as saying that

M is well-defined. The remainder of the theorem simply reiterates the definition of

a probability measure that satisfies a PBM from Definition 3.8.

The probability measure PM described in this theorem is the probability measure

represented by the BLOG model M . The theorem reiterates what it means for a

probability measure to satisfy a PBM in order to emphasize the declarative nature

of BLOG models: like a BN, a BLOG model specifies a CPD for each variable, along

with certain conditional independence properties.

192



Chapter 4. Bayesian Logic (BLOG)

Theorem 4.7 requires that every possible world ω have a supportive numbering.

All the BLOG models we have used as examples satisfy this condition. In the urn-

and-balls model of Figure 4.1, we can construct a supportive numbering for any

possible world ω as follows. First take NBall, then the variables VTrueColor [(Ball, i)] for

i∈{1, . . . , NBall(ω)}. Then take VBallDrawn [d] followed by VObsColor [d] for each draw

d. Finally, take the remaining basic variables — the variables VTrueColor [(Ball, i)] for

i > NBall(ω) — in any order. Note that there is no single numbering that is supportive

for all worlds: such a numbering would have to put all the infinitely many TrueColor

variables before the first ObsColor variable, because for every ball (Ball, i), there is

some world where BallDrawn(Draw1) denotes (Ball, i).

In the hurricane model of Figure 4.2, a supportive numbering for a world ω

begins with VFirst. If VFirst(ω) = A, then VPrep [A] and VDamage [A] come next, followed

by VPrep [B] and then VDamage [B]. If VFirst(ω) = B, then the variables defined on B

precede the variables defined on A.

Now consider the citation model of Figure 4.3. A supportive numbering for a

world ω starts withNResearcher, followed by VName [(Researcher, i)] for i ≤ NResearcher(ω)}.

Next comes NPublication. Then, we can take the variables VTitle [(Publication, i)] and

VNumAuthors [(Publication, i)] for i < N(Publication)(ω). The next variables to take are

VNthAuthor [(Publication, i), n] for pairs i, n such that i ≤ N(Publication)(ω) and n <

VNumAuthors [(Publication, i)] (ω). Then for each citation c, take VPubCited [c] and then

VText [c]. Finally, take the remaining basic variables in any order. The remaining

variables are those whose arguments are researchers or publications that do not ex-

ist in ω, along with VNthAuthor [(Publication, i), n] variables such that n is greater than

VNumAuthors [(Publication, i)] (ω).

The aircraft tracking model of Figure 4.4 is not a discrete BLOG model. However,

if we define a partition for each basic variable in the same way we did in Definition

4.13, we can construct a supportive numbering for a world ω in this model as follows.

193



Chapter 4. Bayesian Logic (BLOG)

First take NAircraft. Then do the following for each natural number t in numerical or-

der. Take VState [(Aircraft, i), t] and then NBlip [Source = (Aircraft, i),Time = t] for each

i ≤ NAircraft(ω). Then take NBlip [Time = t]. Next, take VMeasuredPos [b] for each blip

b of the form (Blip, (Source, (Aircraft, i)), (Time, t), n) where i ≤ NAircraft(ω) and n ≤

NBlip [Source = (Aircraft, i),Time = t] (ω), and each blip b of the form (Blip, (Time, t), n)

where n ≤ NBlip [Time = t] (ω). This numbering covers all basic variables defined on

objects that exist in ω. However, we still need to cover the other basic variables;

and since the numbering we just described is infinite (there is no upper bound on

t), we cannot just add the remaining variables at the end. What we can do is in-

terleave them with the variables already included. Specifically, after the variables

defined on existing objects for time t, we can add all basic variables (not included

so far) that are defined on time steps t′ ≤ t and objects of the form (Aircraft, i),

(Blip, (Source, (Aircraft, i)), (Time, t′′), n) or (Blip, (Time, t′′)) where i, n, t′′ ≤ t.

We have shown that in the four BLOG models we have used as examples, ev-

ery possible world has a supportive numbering. In general, however, determining

whether a BLOG model has this property is an undecidable problem.

Proposition 4.8. The problem of determining whether every possible world of a

given BLOG model has a supportive numbering is undecidable.

Proof. Our proof builds on standard results from first-order logic [Enderton, 2001].

By Church’s theorem [1936], the problem of determining whether a given sentence

of a first-order logical language is satisfiable (i.e., is true in some model structure)

is undecidable. In fact, this remains true if we restrict the first-order language to

consist of a single binary predicate symbol [Kalmár, 1936]. We will reduce this

problem to that of determining whether every possible world in a BLOG model has

a supportive numbering.

Consider any sentence ϕ of an untyped first-order language L with a single binary

194



Chapter 4. Bayesian Logic (BLOG)

predicate symbol P . Let M be a BLOG model with one user-defined type Obj, one

random function symbol P : (Obj,Obj) → Boolean, and one origin function symbol

Parent : Obj → Obj. Let M include one guaranteed object statement, one number

statement, and one dependency statement:

guaranteed Obj Root;

#Obj(Parent = x) ∼ Poisson[1];

P(x1, x2) ∼ TabularCPD[[0.5, 0.5]];

Thus, every world ω in ΩM contains at least one object of type Obj, called Root, and

for each object o of type Obj there may be some other objects q with [Parent]ω (q) = o.

So for every natural number n > 0, there are worlds ω ∈ΩM such that | [Obj]ω | =

n; there are also possible worlds where [Obj]ω is countably infinite (note that we

are not making any claims about whether such worlds have positive probability).

Furthermore, the interpretation of P is unrestricted. So for every model structure

of L containing a finite or countably infinite set of objects, there is model structure

in ΩM that is isomorphic (if one ignores types other than Obj and function symbols

other than P).

We can convert the sentence ϕ into a sentence of the typed language LM by

letting all quantifiers range over type Obj. Then ϕ is satisfied by some finite or

countably infinite model structure of L if and only if ϕ′ is satisfied by some world in

ΩM . And by the Löwenheim-Skolem theorem [Löwenheim, 1915; Skolem, 1920], if ϕ

is satisfiable at all, then it is satisfiable in a finite or countably infinite structure.

Now extendM to include two more random Boolean functions with no arguments;

call them A and B. Then add the dependency statements:

A {

if ϕ′ then ∼ TabularCPD[[0.1, 0.9],

[0.9, 0.1]](B)

195



Chapter 4. Bayesian Logic (BLOG)

else ∼ TabularCPD[[0.5, 0.5]]

};

B ∼ TabularCPD[[0.9, 0.1],

[0.1, 0.9]](A);

Thus in worlds where ϕ′ is false, A depends on nothing and B depends on A. But in

worlds where ϕ′ is true, A and B depend on each other, and there is no supportive

numbering. So every possible world has a supportive numbering if and only if ϕ is

unsatisfiable.

This result is not surprising, given that we allow BLOG models to include un-

restricted first-order formulas. The absence of an algorithm for seeing if a BLOG

model is well-defined does not disqualify BLOG as a representation language: after

all, programming languages are useful, and the problem of telling whether a program

terminates on all inputs is also undecidable. Section 4.5 gives some criteria that are

sufficient to ensure that a BLOG model is well-defined, but these criteria are quite

far from being complete enough to identify all well-defined BLOG models.

4.4 Evaluating expressions

As we will see in Chapter 5, one of the basic operations that a BLOG inference algo-

rithm must perform is to determine whether a partial instantiation supports a given

basic variable, and if so, to find the applicable elementary CPD and CPD argument

values. In order to perform this operation, we need to be able to compute the values

of the BLOG expressions that occur in dependency and number statements.

Definition 4.15. Let e be a BLOG expression, and α be an assignment of values to

logical variables such that e is well-formed in domain(α). An achievable instantiation

196



Chapter 4. Bayesian Logic (BLOG)

σ supports e under α if there is some value q such that for all worlds ω ∈ ev (σ),

[e]ωα = q. In this case, we say that q is the value of e under α given σ.

In this section, we define a function Eval-Expr(e, σ, α) for evaluating expres-

sions given a partial instantiation. If Eval-Expr determines that σ does not support

e under α, it returns a special value undet. This function is incomplete in two senses:

it does not always terminate, and it sometimes fails to detect that σ supports e, and

thus returns undet unnecessarily. In fact, the task we have laid out for Eval-Expr

is undecidable in general: if ϕ is a first-order sentence, then a perfect implementa-

tion of Eval-Expr(ϕ, >, ∅) would return false if ϕ is unsatisfiable, true if ¬ϕ is

unsatisfiable, and undet if both ϕ and ¬ϕ are satisfiable. At the end of this section

we will show that there is a large class of BLOG expressions (including all those

that appear in our running examples) on which Eval-Expr is at least guaranteed

to terminate. However, even on these expressions, Eval-Expr may return undet

unnecessarily.

4.4.1 Main evaluation functions

Rather than writing Eval-Expr as a single giant function, we will break it down

into a hierarchy of subroutines. Our Eval-Expr function is shown in Figure 4.5; it

is just a dispatcher that calls Eval-Formula, Eval-Term, or Eval-Set-Expr,

depending on the type of expression passed in.

Figure 4.6 shows the function Eval-Term, which is also fairly straightforward.

If the term is a logical variable, its value is given by the assignment that is passed in.

If the term is an application of a function symbol to a tuple of arguments (an empty

tuple if we are dealing with a constant symbol), then Eval-Term calls itself recur-

sively to evaluate each argument term, and then calls Get-Func-Value to evaluate

the function. This recursion terminates at logical variables and constant symbols.

197



Chapter 4. Bayesian Logic (BLOG)

function Eval-Expr(e, σ, α)
returns an object, a finite set or multiset, null, or undet
inputs: e, a BLOG expression

σ, a finite instantiation of basic random variables
α, an assignment to the free logical variables in e

if e is a term
return Eval-Term(e, σ, α)

if e is a formula
return Eval-Formula(e, σ, α)

if e is a set expression
return Eval-Set-Expr(e, σ, α)

Figure 4.5: The top-level dispatcher function for evaluating expressions.

Note that Eval-Term maintains a distinction between undet, which indicates that

σ does not determine the denotation of a term, and null, which can actually serve

as the denotation of a term. The function Get-Func-Value contains separate

code for getting the values of nonrandom functions, origin functions, and random

functions. For random functions, it returns the value obtained by passing a function

application variable to Get-Var-Value; the returned value is undet if σ does not

instantiate this variable.

The function Eval-Formula is shown in Figure 4.7. This function includes

straightforward code for handling simple atomic formulas, equality formulas, nega-

tions, and conjunctions. The only thing to note in this part of the function is

the short-circuit evaluation for conjunctions: if the first conjunct is false, we do

not try to evaluate the second conjunct. This reduces the set of inputs on which

Eval-Formula returns undet.

The most interesting case in Eval-Formula is for existentially quantified for-

mulas (universally quantified formulas are handled using the equivalence between

∀ τ x ψ and ¬∃ τ x ¬ψ). Here we have to iterate over all objects that could

possibly satisfy the subformula ψ when bound to x. This is done using an itera-

198



Chapter 4. Bayesian Logic (BLOG)

function Eval-Term(t , σ, α)
returns an object or null, or undet
inputs: t , a logical term

σ, a finite instantiation of basic random variables
α, an assignment to the logical variables in t

if t is a logical variable x
return α(x)

if t is a function application term f (t1, . . . , tk), possibly with k = 0
(o1, . . . , ok)← a new array of length k
for i = 1 to k do

oi←Eval-Term(ti, σ, α)
if oi = undet return undet
if oi = null return null

return Get-Func-Value(f , (o1, . . . , ok), σ)

function Get-Func-Value(f , (o1, . . . , ok), σ)
returns an object or null, or undet
inputs: f , a function symbol

(o1, . . . , ok), a tuple of objects (possibly empty)
σ, a finite instantiation on the basic random variables

if f is a nonrandom function symbol
interp←Get-Nonrandom-Interp(f )
return interp(o1, . . . , ok)

if f is an origin function symbol
if o1 is a non-guaranteed object of the form (. . . , (f, o), . . .)

return o
return null

if f is a random function symbol
return Get-Var-Value(σ, Vf [o1, . . . , ok])

Figure 4.6: Functions for evaluating logical terms.

199



Chapter 4. Bayesian Logic (BLOG)

function Eval-Formula(ϕ, σ, α)
returns a truth value or undet
inputs: ϕ, a logical formula

σ, a finite instantiation of basic random variables
α, an assignment to the free variables in ϕ

if ϕ is a Boolean term t
val←Eval-Term(t , σ, α); if val = undet return undet
if val = true return true
return false

if ϕ has the form t1 = t2
val1←Eval-Term(t1, σ, α); if val1 = undet return undet
val2←Eval-Term(t2, σ, α); if val2 = undet return undet
if val1 = val2 return true
return false

if ϕ has the form ¬ ψ
val←Eval-Formula(ψ, σ, α); if val = undet return undet
if val = true return false
return true

if ϕ has the form ψ ∧ χ
val1←Eval-Formula(ψ, σ, α); if val1 = undet return undet
if val1 = false return false
val2←Eval-Formula(χ, σ, α); if val2 = undet return undet
if val2 = false return false
return true

if ϕ has the form ∃ τ x ψ
iter←Get-Potential-Satisfiers-Iter(τ , x, ψ, {x}, σ, α)
while Can-Determine-Next(iter) and Has-Next(iter) do

o←Get-Next(iter)
α′← (α; (x, τ) 7→ o)
val←Eval-Formula(ψ, σ, α′); if val = undet return undet
if val = true return true

if not Can-Determine-Next(iter) return undet
return false

if ϕ has the form t1 6= t2 return Eval-Formula(¬(t1 = t2), σ, α)
if ϕ has the form ψ ∨ χ return Eval-Formula(¬(¬ ψ ∧ ¬ χ), σ, α)
if ϕ has the form ψ → χ return Eval-Formula(¬(ψ ∧ ¬ χ), σ, α)
if ϕ has the form ∀ τ x ψ return Eval-Formula(¬ ∃ τ x ¬ ψ, σ, α)

Figure 4.7: Function for evaluating logical formulas.

200



Chapter 4. Bayesian Logic (BLOG)

tor returned by Get-Potential-Satisfiers-Iter. A perfect implementation of

Get-Potential-Satisfiers-Iter would return an iterator over exactly those ob-

jects that satisfy ψ when bound to x, if this set is the same in all worlds consistent

with σ. However, the implementation that we will describe in Section 4.4.2 is not so

precise. The returned iterator may range over a larger set, although it is limited to

objects that exist in all worlds in ev (σ).

The function Can-Determine-Next(iter) tries to determine what object the

iterator iter should return next. This may involve looking at the values of some ran-

dom variables in σ; Can-Determine-Next returns true just when all the variables

it tries to look at are instantiated in σ. The function Has-Next returns true if the

iterator has another object to return, and Get-Next returns the next object that

has not been returned so far. Because the objects returned by the iterator may or

may not actually satisfy ψ, Eval-Formula checks each object individually using a

recursive call on ψ. If Can-Determine-Next ever returns false, Eval-Formula

returns undet. If the end of the iteration is reached without any objects satisfying

ψ, Eval-Formula returns false.

Finally, the last few lines of Eval-Formula handle the remaining types of

formulas by reducing them to the ones handled by the earlier cases. Inequality

formulas are reduced to negated equalities; disjunctions and implications are reduced

to negated conjunctions (with one or both of the sub-formulas negated), and universal

formulas are reduced to negated existential formulas.

We still have to specify how to evaluate set expressions: this is done by the

function Eval-Set-Expr shown in Figure 4.8. An explicit set expression can be

evaluated simply by evaluating each term that it contains. For an implicit set ex-

pression, the code is similar to that for an existentially quantified formula. The

main difference is that with the existential quantifier, we could short-circuit when

we found one object satisfying the subformula ψ; with the set expression, we have

201



Chapter 4. Bayesian Logic (BLOG)

function Eval-Set-Expr(e, σ, α)
returns a finite set or multiset, a natural number, or undet
inputs: e, a set expression

σ, a finite instantiation of basic random variables
α, an assignment to the free variables in e

if e is an explicit set expression {t1, ..., tk}
S← an empty set
for i = 1 to k do

o←Eval-Term(ti, σ, α)
if o = undet return undet
Add-To-Set(S , o)

return S

if e is an implicit set expression {τ x : ϕ}
S← an empty set
iter←Get-Potential-Satisfiers-Iter(τ , x , ϕ, {x}, σ, α)
while Can-Determine-Next(iter) and Has-Next(iter) do

o←Get-Next(iter)
α′← (α; (x, τ) 7→ o)
val←Eval-Formula(ϕ, σ, α′)
if val = undet return undet
if val = true

Add-To-Set(S , o)
if not Can-Determine-Next(iter) return undet
return S

if e is a tuple multiset expression {t1, ..., tk for τ1 x1, ..., τn xn : ϕ}
return Eval-Tuple-Multiset-Expr

((t1, . . . , tk), ((x1, τ1), . . . , (xn, τn)), ϕ, σ, α)

if e is a cardinality expression #s
S←Eval-Set-Expr(s, σ, α)
if S = undet return undet
return |S|

Figure 4.8: Function for evaluating set expressions.

202



Chapter 4. Bayesian Logic (BLOG)

to accumulate all satisfiers in a set. The same idea applies to tuple multiset expres-

sions, although the implementation is more complicated. We use a recursive function

Eval-Tuple-Multiset-Expr, shown in Figure 4.9. The insight behind this func-

tion is that the assignments to x1, . . . , xn that satisfy ϕ can be partitioned according

to the value that they assign to x1. For each possible value of x1, we can evaluate

a tuple multiset expression over x2, . . . , xn, and so on. The base case is when the

tuple multiset expression does not range over any variables; then the assignment α

can be used to evaluate the condition ϕ and the terms t1, . . . , tk.

Note that in Eval-Tuple-Multiset-Spec, we end up calling Get-Potential-

Satisfiers-Iter(τ, x , ϕ,F , σ, α) with a set of free variables F that includes not just

x, but also other logical variables that may occur in ϕ and are not included in α.

This means that the iterator must return all values for x that satisfy ϕ with some

assignment of values to the remaining variables in F .

4.4.2 Enumerating objects that may satisfy a formula

We will now examine how to implement the function Get-Potential-Satisfiers-

Iter, which returns an iterator over objects that may satisfy a formula ϕ when

bound to a logical variable x in the worlds consistent with an instantiation σ. One

of the arguments to Get-Potential-Satisfiers-Iter is a tuple b of variable-type

pairs, which includes a type τ for x. Thus, one simple way to implement the function

is to return an iterator over all objects of type τ . If σ does not determine which

non-guaranteed objects of type τ exist, then Can-Determine-Next will return

false on the iterator at some point.

This implementation is fine for evaluating some of the set expressions we have

used in our examples, such as {Ball b} in the urn-and-balls model and {Publication

p} in the citations model. In these cases, the set of objects of the relevant type is de-

203



Chapter 4. Bayesian Logic (BLOG)

function Eval-Tuple-Multiset-Expr(t, b, ϕ, σ, α)
returns a finite multiset of tuples, or undet
inputs: t, a tuple of terms (t1, . . . , tk)

b, a tuple of variable-type pairs
ϕ, a formula
σ, a finite instantiation of basic random variables
α, an assignment to the free variables in t and ϕ that are not in b

if b is empty
val←Eval-Formula(ϕ, σ, α); if val = undet return undet
if val = true

(o1, . . . , ok)← a new array of length k
for i = 1 to k do

oi←Eval-Term(ti, σ, α); if val = undet return undet
return a multiset consisting of the single tuple (o1, . . . , ok)

return an empty multiset

(x, τ)←First(b)
b′←Rest(b)
F← the set of variables in b
M ← an empty multiset
iter←Get-Potential-Satisfiers-Iter(τ , x , ϕ, F , σ, α)
while Can-Determine-Next(iter) and Has-Next(iter) do

o←Get-Next(iter)
α′← (α; x 7→ o)
N ←Eval-Tuple-Multiset-Expr(t, b′, ϕ, σ, α′); if N = undet return undet
Merge-Into-Multiset(M , N )

if not Can-Determine-Next(iter) return undet
return M

Figure 4.9: Function for evaluating tuple multiset expressions.

204



Chapter 4. Bayesian Logic (BLOG)

termined by a single number variable. If σ does not instantiate this number variable,

then the first call to Can-Determine-Next on the iterator returns false; other-

wise, the iterator ranges over a finite set, because the number of objects satisfying a

given number variable is finite in each possible world (by Definition 4.10(iv)).

However, consider the tuple multiset expression that we use in the citations model

in Figure 4.3:

{n, Name(NthAuthor(PubCited(c), n))

for NaturalNum n : n < NumAuthors(PubCited(c))}

To evaluate this expression, it is not sufficient to iterate over all natural numbers and

check whether each one is less than the value denoted by NumAuthors(PubCited(c)).

The problem is that although the iterator iter may eventually return all the natu-

ral numbers less than this upper bound, Eval-Tuple-Multiset-Expr does not

stop iterating until Has-Next(iter) returns false — which will never happen if the

iterator ranges over all natural numbers.

Another case where the naive implementation of Get-Potential-Satisfiers-

Iter falls short is in the aircraft tracking model, if we introduce random constant

symbols to refer to the blips that we observe at certain times (this idea is discussed

further in Section 5.1.3). Suppose we take the model in Figure 4.4 and add a new

dependency statement:

random Blip Blip1 ∼ Uniform({Blip b : (Time(b) = 8)});

This statement asserts that Blip1 denotes some blip the appears at time 8 (or null in

worlds where no such blip exists). It uses an implicit set expression containing those

blips that, when bound to the logical variable b, satisfy the formula Time(b) = 8.

However, we cannot evaluate this expression just by iterating over all blips that

205



Chapter 4. Bayesian Logic (BLOG)

exist in a world. Since the aircraft model includes an infinite sequence of time steps,

the full set of blips in a possible world is determined by an infinite sequence of

number variables. A finite instantiation σ cannot instantiate all of these variables;

thus, if we try to evaluate this set expression using an iterator over all radar blips,

Eval-Set-Expr will always end up returning undet. This is unnecessary, because

the number of blips at time 8 is governed by one number variable per aircraft (plus

one variable for false alarm blips) and the number of aircraft in each world is finite.

4.4.3 Object generation graphs

To handle cases like those described above, we need to use iterators that range over

more tightly defined sets. Specifically, we would like to constrain the magnitudes of

natural numbers, and constrain the values of origin functions (such as Time) on non-

guaranteed objects. Such constrained sets of objects can be represented by object

generation graphs (OGGs). Semantically, an OGG behaves like a set expression:

given a world ω and a logical variable assignment α, an OGG G denotes a set of

objects [G]ωα. The objects in this set are said to satisfy G in ω given α. The point of

representing a constrained set of objects with an OGG, rather than with a standard

set expression, is that we have an algorithm for iterating over exactly those objects

that satisfy a given OGG; we have no such algorithm for set expressions in general.

As an example, consider the object generation graphs in Figure 4.10. In any given

world ω, the graph in part (a) represents the set of all objects of type Blip that exist

in ω. It contains three kinds of nodes: type nodes labeled with the types Blip and

Aircraft; number statement nodes labeled with the headers of number statements;

and a guaranteed object node for type NaturalNum. The graph in part (b), on the

other hand, represents a constrained set of blips: those on which the origin function

Time returns 8. This graph contains an additional kind of node: a term node labeled

206



Chapter 4. Bayesian Logic (BLOG)

Blip

#Blip(Source = a, Time = t) #Blip(Time = t)

guaranteed:
NaturalNum

Aircraft

#Aircraft()

TimeTimeSource

(a) {Blip b}

Blip

#Blip(Source = a, Time = t) #Blip(Time = t)

term: 8
Aircraft

#Aircraft()

TimeTimeSource

(b) {Blip b: Time(b) = 8}

Figure 4.10: Object generation graphs for two set expressions involving radar blips.

with a logical term, in this case the constant “8”.

Each OGG contains a distinguished target node, shown with a double oval in

our diagrams. The objects that satisfy the OGG are those that satisfy this target

node, in a sense that we will make precise below. Intuitively, the graph specifies the

ways in which objects satisfying the target node can be generated. In Figure 4.10(a),

blips can satisfy one of two number statements: one with origin functions Source and

Time, and one with a single origin function Time (for false detections). The aircraft

that serve as values for Source are, in turn, generated by a number statement for

aircraft. The value of Time can be any guaranteed object of type NaturalNum. The

difference in Figure 4.10(b) is that only one natural number can serve as a value for

Time, namely the number denoted by the term “8”.

There is one more kind of node that can occur in OGGs: bounded number nodes,

which represent subsets of the natural numbers upper-bounded by the values of

certain terms. Such a node can be used, for example, to define the set of satisfiers

for {NaturalNum n : n < NumAuthors(p)}, as shown in Figure 4.11(b). In this

figure, the bounded number node constitutes the whole OGG on its own, but such

207



Chapter 4. Bayesian Logic (BLOG)

guaranteed:
NaturalNum

(a) {NaturalNum n}

bounded number:
NumAuthors(p)

(b) {NaturalNum n :
n <
NumAuthors(p)}

Figure 4.11: Single-node object generation graphs for two set expressions involving
natural numbers.

nodes can also be used in larger graphs. For example, we could replace the term

node in Figure 4.10(b) with a bounded number node to define the set of nodes

whose Time value is less than 8. In general, a bounded number node can include a

set of terms that serve as upper bounds: then a natural number satisfies the node

if it is less than the denotations of all the listed terms. This allows us to represent,

for example, {NaturalNum n : n < NumAuthors(p) & n < 2}. In some worlds and

under some logical variable assignments, NumAuthors(p) may provide a tighter bound

than “2”, whereas “2” may provide the tighter bound in other contexts. We adopt

the convention that if a term denotes null, then no number is less than it.2

In models with recursive number statements, OGGs may contain cycles. For

instance, consider the following BLOG model for asexual reproduction:

type Individual;

origin Individual Parent(Individual);

guaranteed Individual Founder1, Founder2, Founder3;

#Individual(Parent = i) ∼ NumChildrenPrior;

In this model, individuals can generate other individuals ad infinitum. Figure 4.12(a)

2This is consistent with the fact that the formula n < null is always false — which is the case
because the term LessThan(n, null) denotes null, and an atomic formula is satisfied just when the
underlying term denotes true (see Definition 2.8).

208



Chapter 4. Bayesian Logic (BLOG)

Individual

#Individual(Parent = p)

Parent

guaranteed:
Individual

(a) {Individual i}

#Individual(Parent = p)

Parent

#Individual(Parent = p)

Parent

term: Founder3

Individual

Individual

(b) {Individual i :
Parent(Parent(i))
= Founder3}

Figure 4.12: Object generation graphs for two set expressions in a model of asexual
reproduction.

shows an OGG that has the same denotation as the unconstrained set expression

{Individual i}. An individual can be a guaranteed individual, or it can be gener-

ated by a parent; that parent, in turn, can either be guaranteed or have a parent, and

so on. Thus, this graph is cyclic. Figure 4.12(b) shows an acyclic OGG denoting the

set of individuals that are “grandchildren” of Founder3. This graph illustrates that

an OGG may contain several type nodes labeled with the same type, and several

number statement nodes labeled with the same number statement. Because these

nodes have different parents, they are satisfied by different objects: in the figure,

the top Individual node is satisfied by children of Founder3, and the bottom one is

satisfied by the grandchildren of Founder3.

209



Chapter 4. Bayesian Logic (BLOG)

We are now ready to give a formal definition of an OGG.

Definition 4.16. In a BLOG model M , an object generation graph (OGG) is a

finite directed graph in which each node may be of one of the following five kinds:

• a type node, labeled with a user-defined type symbol from M ;

• a number statement node, labeled with the header of a number statement from

M ;

• a guaranteed object node, labeled with the keyword guaranteed and a type sym-

bol from M ;

• a term node, labeled with a term of LM ;

• a bounded number node, labeled with the keyword boundednumber and a set of

terms of LM .

The parents of a type node labeled with τ must be number statement nodes or guar-

anteed object nodes for type τ . Edges into number statement nodes are labeled with

origin functions; a number statement with origin functions g1, . . . , gk must have ex-

actly one incoming edge labeled with each of these functions. Also, exactly one node

is marked as the target node for the OGG.

An OGG G is well-formed in a scope β if every term in G is well-formed in that

scope and all the terms used by bounded number nodes have type NaturalNum. We

will now define what it means for an object to satisfy a node in an OGG.

Definition 4.17. Let G be an OGG for a BLOG model M , ω be a possible world

of M , and α be an assignment that is valid in ω, such that G is well-formed in

domain(α). Let u be a node in G, and o be an object in UM(τ) for some type τ .

Then o satisfies u in ω under α if one of the following conditions holds:

210



Chapter 4. Bayesian Logic (BLOG)

• u is a type node, and o satisfies one of the parents of u;

• u is a number statement node for type τ with origin functions g1, . . . , gk, o is a

non-guaranteed object in [τ ]ω that has the form (τ, (g1, o1), . . . , (gk, ok), n), and

for each i∈{1, . . . , k}, oi satisfies the parent of u whose edge into u is labeled

with gi;

• u is a guaranteed object node for type τ and o ∈ GuarM(τ);

• u is a term node labeled with a term t and o = [t]ωα;

• u is a bounded number node labeled with terms {ti}ki=1 and o is a natural number

that is less than [ti]
ω
α for all i∈{1, . . . , k} (where we consider no natural number

to be less than null).

The denotation of a node u in ω under α, written [u]ωα, is the set of objects that

satisfy u in ω under α. The denotation of G is the denotation of its target node.

Two of the cases in this definition are recursive: o satisfies a type node if it satisfies

one of the node’s parents, and o satisfies a number statement node if its generating

objects satisfy the node’s parents. To see that this recursion is well-founded even for

cyclic OGGs, note that we can define the satisfaction relation first for guaranteed

objects, then for non-guaranteed objects whose tuple representations only have one

level of nesting, then for non-guaranteed objects with two levels of nesting, etc. By

Definition 4.9, each tuple in UM(τ) is nested to some finite depth. When defining

the satisfaction relation for a given object o, we can begin by defining the conditions

under which it satisfies number statement nodes and guaranteed object nodes. These

are the only kinds of nodes that can be parents of type nodes, so next we can define

when o satisfies type nodes. Finally, we can handle term nodes and bounded number

nodes. Thus, our recursive definition is well-formed.

211



Chapter 4. Bayesian Logic (BLOG)

The following lemma gives conditions under which the set of objects satisfying

an OGG is finite.

Lemma 4.9. In a BLOG model M , if G is an object generation graph that is acyclic

and does not contain guaranteed object nodes for any infinite built-in types, then [G]ωα

is finite for every world ω ∈ΩM and every assignment α that is valid in ω.

Proof. The definition of an OGG stipulates that G must be a finite graph, so if G

is acyclic, then it has a topological numbering. We can show by induction on this

numbering that each node has finitely many satisfiers. Consider any node u in this

numbering, and assume that each of its predecessors has finitely many satisfiers. If

u is a term node, then it has just one satisfier (or zero if the term evaluates to null

in ω under α). If u is a guaranteed object node, then it must be for a finite built-in

type (namely Boolean) or for a user-defined type, which can only have finitely many

guaranteed objects. If u is a bounded number node, then it has at least one upper-

bound term t, which evaluates to a finite number (or null) in ω under α. In this case,

the set of satisfiers of u has size at most [t]ωα, or zero if the term denotes null.

Now suppose u is a number statement node for type τ with origin functions

g1, . . . , gk and corresponding parents v1, . . . , vk. Then the objects that satisfy u are

in [τ ]ω and have the form (τ, (g1, o1), . . . , (gk, ok), n), where (o1, . . . , ok) ∈ [v1]
ω
α×· · ·×

[vk]
ω
α. Since v1, . . . , vk are all predecessors of u, we know they have finite satisfier

sets. Thus the number of tuples (o1, . . . , ok) in [v1]
ω
α × · · · × [vk]

ω
α is finite. For each

such tuple, the number of generated objects (τ, (g1, o1), . . . , (gk, ok), n) in [τ ]ω is finite

by Definition 4.10(iv). So u has finitely many satisfiers.

Finally, if u is a type node, then its satisfier set is the union of its parents’ satisfier

sets. Since its parents’ satisfier sets are finite, u’s satisfier set is finite as well.

This lemma implies that the OGG for {Blip b: Time(b) = 8}, shown in Fig-

ure 4.10(b), has finitely many satisifiers. The same is true of the OGG for {NaturalNum

212



Chapter 4. Bayesian Logic (BLOG)

n: n < NumAuthors(p)}, shown in Figure 4.11(b), and the OGG for {Individual

i : Parent(Parent(i)) = Founder3}, shown in Figure 4.12(b). The lemma does

not apply to the graphs in part (a) of these Figures: the graphs in Figure 4.10(a)

and 4.11(a) contain guaranteed object nodes for the infinite type NaturalNum, and

the graph in Figure 4.12(a) contains a cycle.

4.4.4 Constructing object generation graphs for a formula

We now discuss an algorithm for constructing OGGs automatically: for example,

taking the set expression {Blip b: Time(b) = 8} and constructing the OGG in

Figure 4.10(b). Recall that our purpose in using OGGs is to enumerate all the objects

that might satisfy a formula when bound to a certain variable. When we actually

enumerate such objects in Eval-Expr and its subroutines, we are working in the

context of a particular instantiation σ and logical variable assignment α. However,

our procedure does not take any particular σ or α into account: it constructs OGGs

that can be used under all instantiations and assignments. This means that we

can construct OGGs for the formulas and set expressions in a BLOG model in a

preprocessing step, before beginning to evaluate expressiosn or run an inference

algorithm. Our procedure for constructing OGGs, called Construct-OGGs, is

shown in Figure 4.13. We show at the end of this section that Construct-OGGs

is sound, in that we will not miss any formula satisfiers if we iterate over all the

satisfiers of the constructed OGGs.

In general, Construct-OGGs returns not just one OGG, but a list of them.

This is useful for representing the satisfier sets of disjunctive expressions, such as

{Blip b: Time(b) = 3 | Time(b) = 8}: we end up with one OGG per disjunct.

The arguments to Construct-OGGs are the satisfier type τ , the variable x to

which potential satisfiers are bound, the formula ϕ to be satisfied, and a set F of free

213



Chapter 4. Bayesian Logic (BLOG)

variables that includes x. The constructed OGGs should not use terms containing

any of these free variables. As an example of a case where F consists of more than one

variable, consider the following tuple multiset expression in our asexual reproduction

model (with an additional function symbol Distance):

{Distance(i, j) for Individual i, Individual j : Parent(i) = j}

When evaluating this expression, Eval-Tuple-Multiset-Expr iterates over bind-

ings to i in an outer loop, and for each possible value of i, it iterates over possible

bindings to j. Thus, the OGG used for iterating over i must treat both i and j as

free variables: neither of these variables has a fixed value throughout the iteration.

On the other hand, the OGG for iterating over j can treat i as a bound variable.

As we can see in Figure 4.13, the first thing that Construct-OGGs does is

convert the given formula ϕ to disjunctive normal form (DNF): that is, a disjunc-

tion of conjunctions (see Enderton [2001]). In general, converting a first-order for-

mula to disjunctive normal form involves moving all quantifiers to the beginning of

the formula, and replacing existentially quantified variables with Skolem constants.

However, we use a “shallow” version of DNF in which we do not modify quantified

sub-formulas of ϕ. Thus, the conjunctions in the resulting DNF formula can contain

both literals — that is, atomic formulas and equality formulas, possibly negated —

and quantified sub-formulas. The rest of our OGG construction algorithm simply ig-

nores the constraints imposed by the quantified subformulas; this does not jeopardize

the soundness of the algorithm, because ignoring certain constraints only enlarges

the set of objects that satisfy an OGG. Because of this shallow conversion, the func-

tion Get-Shallow-DNF can just use a version of the algorithm for converting a

propositional formula to DNF.

Construct-OGGs begins with an empty graph for each disjunct in the DNF

214



Chapter 4. Bayesian Logic (BLOG)

function Construct-OGGs(τ , x, ϕ, F )
returns a list of object generation graphs
inputs: τ , a type

x, a logical variable
ϕ, a formula
F , a set of logical variables, including x

(c1, . . . , cm)←Get-Shallow-DNF(ϕ)
(G1, . . . , Gm)← a list of m empty object generation graphs
for i = 1 to m do

L←Select-Literals-Containing(ci, x)
u←Get-Or-Add-OGG-Node(Gi, τ , x, L, F )
Set-Target-Node(Gi, u)

return (G1, . . . , Gm)

function Get-Or-Add-OGG-Node(G , τ , t, L, F )
returns a node in G , possibly added to G by this function
inputs: G , an object generation graph

τ , a type
t, a term
L, a list of literals, each of which contains t
F , a set of logical variables

for each literal ` in L do
if ` has the form t = t′ where t′ does not contain any variables in F

return Get-Or-Add-Term-Node(G , t′)

if τ is built-in
if τ = NaturalNum

bounds← empty set
for each literal ` in L do

if ` has the form t < t′ where t′ does not contain any variables in F
Add-To-Set(bounds, t′)

if bounds is not empty
return Get-Or-Add-Bounded-Number-Node(G , bounds)

return Get-Or-Add-Guaranteed-Obj-Node(G , τ)
return Get-Or-Add-Type-Node(G , τ , t, L, F )

Figure 4.13: Functions used to construct an object generation graph for a variable
in a formula.

215



Chapter 4. Bayesian Logic (BLOG)

formula. Then for each disjunct, it calls Get-Or-Add-OGG-Node to add the de-

sired target node to the graph. As a side effect, this function adds any ancestors of the

target node that need to be included. Pseudocode for Get-Or-Add-OGG-Node

is also given in Figure 4.13. In general, this function returns a node whose satisfiers

include all the possible values of a term t given the constraints imposed by the literals

L; for now, t will simply be the variable x. The function begins by checking whether

any of the literals asserts that t is equal to a particular term t′ (containing none of

the free variables in F ). If there is such a literal, then Get-Or-Add-OGG-Node

returns a term node for t′, adding it to the graph if it does not already exist. Oth-

erwise, the kind of node returned depends on the type τ . If τ is NaturalNum, then

the function scans the literals for upper bounds on t. If it finds some, then it returns

a bounded number node. Otherwise, it reverts to its default behavior for built-in

types, which is to return a guaranteed object node. If τ is not built-in, then the

function returns a type node with certain parents; this node is constructed by the

function Get-Or-Add-Type-Node.

Figure 4.14 gives pseudocode for Get-Or-Add-Type-Node (the other Get-

Or-Add functions are trivial). Recall that an OGG may contain several type nodes

for the same type, having different parents and thus different satisfier sets. However,

if Get-Or-Add-Type-Node is invoked with an empty list of literals L, then the

satisfier set of the resulting type node will be all objects of that type; there is no point

in creating multiple such nodes. Thus, the OGG data structure keeps track of an

unconstrained type node for each user-defined type: this node is accessed with Get-

Unconstrained-Type-Node and set with Set-Unconstrained-Type-Node.

If L is empty and an unconstrained type node already exists for type τ , then Get-

Or-Add-Type-Node simply returns that node. Otherwise, it creates a new node,

and sets it as the unconstrained type node for type τ if appropriate.

The next order of business is to determine the parents of the new type node.

216



Chapter 4. Bayesian Logic (BLOG)

function Get-Or-Add-Type-Node(G , τ , t, L, F )
returns a user-defined type node in G , possibly added by this function
inputs: G , an object generation graph

τ , a type
t, a term
L, a list of literals, each of which contains t
F , a set of logical variables

if L is empty
u←Get-Unconstrained-Type-Node(G , τ)
if u 6= null return u

u←Add-Type-Node(G , τ)
if L is empty

Set-Unconstrained-Type-Node(G , τ , u)

nonNullFuncs← an empty set
for each origin function g for type τ do

for each literal ` in L do
t′←Make-Term(g , (t))
if (` has the form t1 6= null where t1 contains t′)

or (` has the form t1 = t2 where t1 contains t′

and t2 is a variable or a nonrandom constant not denoting null)
Add-To-Set(nonNullFuncs, g)

if nonNullFuncs is empty and GuarM (τ) is not empty
v←Get-Or-Add-Guaranteed-Obj-Node(G , τ)
Add-Edge(G , v , u)

for each number statement s for type τ do
if the origin functions in s include all of nonNullFuncs

v←Add-Num-Stmt-Node(G , s)
Add-Edge(G , v , u)
for each origin function g in s do

t′←Make-Term(g , (t))
L′←Select-Literals-Containing(L, t′)
w←Get-Or-Add-OGG-Node(G , ret(g), t′, L′, F )
Add-Edge-With-Label(G , w , v , g)

return u

Figure 4.14: Function that constructs a user-defined type node in an OGG.

217



Chapter 4. Bayesian Logic (BLOG)

Recall that in general, the parents of a type node can include a guaranteed object

node and number statement nodes for that type. However, if L contains literals

asserting that certain origin functions yield non-null values on t, then we can limit

the set of parent nodes while still preserving soundness. If an origin function g

yields a non-null value on t, then the value of t cannot be a guaranteed object, and

must satisfy a number statement that uses g. Thus, Get-Or-Add-Type-Node

constructs a set of origin functions called nonNullFuncs . Each origin function g is

added to nonNullFuncs if some literal implies that the term t′ = g(t) has a non-null

value. There are several ways that a literal can imply this. First, since all function

application terms denote null when one of their arguments denotes null (Definition

2.7), it suffices to imply that some term t1 containing t′ has a non-null value. This

can be implied by the formula t1 6= null, or by a formula t1 = t2 where t2 is a term

that cannot denote null in any world under any valid assignment — namely a logical

variable, or a nonrandom constant symbol denoting a non-null value. For example,

the literal Time(b) = 8 implies that Time has a non-null value on b, and the literal

Parent(Parent(i)) = Founder3 implies that Parent has a non-null value on both i and

Parent(i).

Once the set of non-null origin functions is determined, parents can be added to

the type node. If nonNullFuncs is empty, then t may denote a guaranteed object, so

a guaranteed object node is added as a parent. A parent node is also added for each

number statement that includes all the necessary origin functions. Number statement

nodes may also need parents, one for each origin function. The parent corresponding

to origin function g is obtained using a recursive call to Get-Or-Add-OGG-Node,

passing in ret(g) as the type and g(t) as the term whose possible values must be

represented. The set of literals passed in is limited to those that contain g(t). To

see that this recursion eventually terminates, note that if the depth of recursion

exceeds the maximum depth of nested terms in the original formula ϕ passed to

218



Chapter 4. Bayesian Logic (BLOG)

Construct-OGGs, the set of literals will be empty. At this point, any type nodes

that are created will serve as the unconstrained nodes for their types. There can

be at most one additional call to Get-Or-Add-OGG-Node for each type before

Get-Or-Add-Type-Node starts returning unconstrained nodes that already exist.

Thus, regardless of the structure of the BLOG model, Construct-OGGs always

terminates and returns a value.

We can now define the sense in which Construct-OGGs is correct: the re-

turned list of OGGs covers the variable x in the formula ϕ.

Definition 4.18. In a BLOG model M , let x be a logical variable, ϕ be a formula,

and βF be a scope that assigns types to x and possibly to some other variables. A

list of object generation graphs G1, . . . , Gm covers x in ϕ with free-variable scope βF

if the following condition holds. Let ω be any world in ΩM and α be any assignment

that is valid in ω, such that ϕ is well-formed in the scope (domain(α); βF ). Then

G1, . . . , Gm are well-formed in domain(α), and for any assignment αF to βF that is

valid in ω,

ω |=(α;αF ) ϕ implies αF (x) ∈
m⋃

i=1

[Gi]
ω
α

To understand this definition better, consider the simple case where βF consists

of a single variable-type pair (x, τ). Then the condition states that for any o∈ [τ ]ω,

ω |=(α;(x,τ) 7→o) ϕ implies o ∈
m⋃

i=1

[Gm]ωα

In other words, if ϕ is true in ω under α with x bound to o, then o is in the union

of the denotations of G1, . . . , Gm.

Lemma 4.10. Suppose Construct-OGGs(τ , x , ϕ, F ) returns a list of OGGs

G1, . . . , Gm. Let βF be any scope that assigns types to the variables in F such that

βF (x) = τ . Then the list G1, . . . , Gm covers x in ϕ with free variable scope βF .

219



Chapter 4. Bayesian Logic (BLOG)

Proof. Consider any world ω ∈ΩM and any assignment α that is valid in ω, such

that ϕ is well-formed in (domain(α), βF ). First, note that the scope domain(α) must

assign types to all the free variables in ϕ that are not in F , such that those terms in

ϕ that do not contain any variables in F are well-formed in domain(α). These are

the only terms that Construct-OGGs uses in term nodes and bounded number

nodes, so we know G1, . . . , Gm are well-formed in domain(α).

Now consider any assignment αF to βF that is valid in ω, and suppose ω |=(α;αF )

ϕ. We must show that αF (x) ∈
⋃m

i=1 [Gi]
ω
α. First, let c1, . . . , cm be the clauses

(disjuncts) returned by Get-Shallow-DNF(ϕ). In order to satisfy ϕ, ω must

satisfy at least one of c1, . . . , cm under (α;αF ). Let ci be the first clause that ω

satisfies under this assignment. We will show that αF (x) satisfies the target node in

the corresponding OGG Gi.

To show this, we will prove the following property of the Get-Or-Add-OGG-

Node function: if ω |=(α;αF ) ` for each `∈L and Get-Or-Add-OGG-Node(G ,

τ ′, t , L, F ) returns a node u, then [t]ω(α;αF ) is either null or an object in [u]ωα.3 This

property is sufficient to prove the lemma because the target node in Gi is obtained by

calling Get-Or-Add-OGG-Node(Gi, τ , x , L, F ) with L being the set of literals

in ci that contain x, and ω must satisfy all these literals under (α;αF ) in order to

satisfy ci.

The proof of this property goes by induction on the depth of nesting in the

tuple representation of [t]ω(α;αF ). This is really an induction on terms: the result is

proven first for terms t such that [t]ω(α;αF ) is either null or a “depth-zero” object (a

guaranteed object, or a non-guaranteed object with no generating objects), then for

terms that denote depth-one objects, and so on. The interesting thing is that the

order of induction depends on the world ω and the assignment (α;αF ), not just some

3The denotation of u depends on what u’s ancestors are in the graph G. But Construct-
OGGs never removes nodes from a graph, so the denotation of u cannot shrink after u is added to
the graph.

220



Chapter 4. Bayesian Logic (BLOG)

syntactic properties of t. Note that when Get-Or-Add-Type-Node(G , τ , t , L,

F ) calls Get-Or-Add-OGG-Node recursively, it passes in the term t′ = g(t). By

the definition of possible worlds (Definition 4.10(iii)), the value of an origin function

on an object o is always either null or some object in o’s tuple representation, which

is necessarily less deeply nested than o. Thus [t′]ω(α;αF ) always has smaller depth than

[t]ω(α;αF ), so (since all objects have finite depth) the induction is well-founded. The

remaining details of the inductive proof are straightforward to fill in.

4.4.5 Enumerating objects using object generation graphs

We are finally in a position to explain how the function Get-Potential-Satisfiers-

Iter works. Figure 4.15 shows a simple implementation of this function. It begins

by calling Construct-OGGs to get a list of OGGs G1, . . . , Gm; in a more sophisti-

cated implementation, the necessary OGGs would be constructed in a preprocessing

step and just retrieved when needed. The function then constructs the set of ob-

jects that satisfy at least one of G1, . . . , Gm given the instantiation σ and the logical

variable assignment α. Of course, σ may not be complete enough to determine the

satisfier sets of these OGGs: the worlds ω ∈Fσ may yield different values for [Gi]
ω
α.

In this case, one of the calls to Get-OGG-Node-Satisfiers returns undet, and

Get-Potential-Satisfiers-Iter returns an iterator on which Can-Determine-

Next immediately returns false. If σ does determine the satisfier sets of G1, . . . , Gm,

then the function returns a simple iterator over the constructed set of objects.

The auxiliary function Get-OGG-Node-Satisfiers is shown in Figure 4.16.

It includes a case for each of the five kinds of nodes that can be found in an

OGG. The cases for number statement nodes and type nodes call Get-OGG-Node-

Satisfiers recursively to get the satisfiers of their parents. Note that if the given

node u is part of a cycle, then this recursion will not terminate. Also, if Get-OGG-

221



Chapter 4. Bayesian Logic (BLOG)

function Get-Potential-Satisfiers-Iter(τ , x , ϕ, F , σ, α)
returns an iterator over objects that may satisfy ϕ when bound to x
inputs: τ , a type

x , a logical variable
ϕ, a formula
F , a set of logical variables, including x
σ, an instantiation of some basic random variables
α, an assignment of values to logical variables

(G1, . . . , Gm)←Construct-OGGs(τ , x , ϕ, F )
S← an empty set
for i = 1 to m do

u← the target node of Gi

satisfiers←Get-OGG-Node-Satisfiers(u, σ, α)
if satisfiers = undet

return iterator on which first call to Can-Determine-Next returns false
S←S ∪ satisfiers

return iterator over S

Figure 4.15: A simple implementation of Get-Potential-Satisfiers-Iter.

Node-Satisfiers is invoked on a guaranteed object node for an infinite built-in

type, then it will not terminate because it will attempt to return an infinite set.

There are three places where the behavior of Get-OGG-Node-Satisfiers de-

pends on the instantiation σ and assignment α that are passed in as arguments: the

call to Eval-Term for term nodes, the calls to Eval-Term for the upper-bound

terms in bounded number nodes, and the calls to Get-Var-Value for number vari-

ables when u is a number statement node. In each of these places, the function

returns undet if σ does not instantiate the necessary random variables.

If all the OGGsG1, . . . , Gm are acyclic and contain no guaranteed object nodes for

infinite built-in types, then each call to Get-OGG-Node-Satisfiers terminates

in a finite amount of time and returns a finite set (or undet). However, cycles and

infinite guaranteed object nodes prevent this implementation of Get-Potential-

Satisfiers-Iter from terminating. In the BLOG inference engine, we use a more

222



Chapter 4. Bayesian Logic (BLOG)

function Get-OGG-Node-Satisfiers(u, σ, α)
returns a set of objects, or undet
inputs: u, a node in an object generation graph

σ, an instantiation of some basic random variables
α, an assignment of values to logical variables

if u is a term node with term t
val←Eval-Term(t , σ, α); if val = undet return undet
if val = null return ∅
return {val}

if u is a guaranteed object node for type τ
return GuarM (τ)

if u is a bounded number node with upper bounds t1, . . . , tn
minBound←∞
for i = 1 to n do

val←Eval-Term(ti, σ, α); if val = undet return undet
if val = null

minBound← 0
minBound←Min(minBound , val)

return {0, . . . , minBound − 1}
if u is a number statement node for type τ with origin functions g1, . . . , gk

(O1, . . . , Ok)← a tuple of k sets, initially empty
for i = 1 to k do

vi← the source node of the edge into u labeled with gi

Oi←Get-OGG-Node-Satisfiers(vi, σ, α)
if Oi = undet return undet

S← an empty set
for each (o1, . . . , ok) in O1 × · · · × Ok do

num←Get-Var-Value(σ, Nτ [g1 = o1, . . . , gk = ok])
if num = undet return undet
S←S ∪ {(τ, (g1, o1), . . . , (gk, ok), n) : n ∈ {1, . . . , num}}

return S
if u is a type node

S← an empty set
for each parent v of u do

O←Get-OGG-Node-Satisfiers(v , σ, α)
if O = undet return undet
S←S ∪ O

return S

Figure 4.16: A function that returns the set of objects satisfying a node in an OGG.

223



Chapter 4. Bayesian Logic (BLOG)

sophisticated implementation that enumerates the objects in response to calls to

Can-Determine-Next, rather than attempting to assemble all the objects into

a set at the beginning. Thus, even if the OGGs have infinitely many satisfiers or

their satisfier sets are not fully determined by σ, the iterator may still be able to

return some objects that satisfy one of the OGGs in all worlds consistent with σ. If

the iterator is being used to evaluate an existential formula, then Eval-Formula

can return true as soon as it finds some object that satisfies the formula. Thus, our

more sophisticated iteration algorithm allows Eval-Formula to return a true/false

value in some cases where it would otherwise return undet or loop forever. For our

purposes in this thesis, however, the simple implementation in Figures 4.15 and 4.16

is sufficient.

4.4.6 Termination conditions and correctness

We have now described all the subroutines that the top-level function Eval-Expr

invokes as it determines the value of an expression given a partial instantiation. As

we have mentioned along the way, there are cases where this computation does not

terminate. To specify a condition under which it is guaranteed to terminate, we

adopt the following definition.

Definition 4.19. An object generation graph is structurally bounded if it satisfies

the conditions of Lemma 4.9: that is, it is acyclic and it does not contain guaranteed

object nodes for any infinite built-in types. This notion is extended to quantified

formulas and set expressions as follows:

• An existentially quantified formula ∃ τ x ϕ is structurally bounded if the graphs

returned by Construct-OGGs(τ , x, ϕ, {x}) are all structurally bounded.

• A universally quantified formula ∀ τ x ϕ is structurally bounded if ∃τ x (¬ϕ)

is structurally bounded.

224



Chapter 4. Bayesian Logic (BLOG)

• An explicit set expression is always structurally bounded.

• An implicit set expression {τ x : ϕ} is structurally bounded if the graphs

returned by Construct-OGGs(τ , x, ϕ, {x}) are all structurally bounded.

• A tuple multiset expression {t1, ..., tk for τ1 x1, ..., τn xn : ϕ} is struc-

turally bounded if for each i∈{1, . . . , n}, the graphs returned by Construct-

OGGs(τi, xi, ϕ, {xi, . . . , xn}) are all structurally bounded.

• A cardinality expression #s is structurally bounded if the implicit set expression

s is structurally bounded.

We can be happy to note that in the BLOG models we have used as running

examples, all the quantified formulas and set expressions are structurally bounded

(in fact, we have not used quantified formulas in these examples). In the urn-and-

balls model (Figure 4.1), there is only one set expression, {Ball b}. The implicit

formula in this expression is simply true, and when we call Construct-OGGs(Ball,

b, true, {b}), we get a single OGG with two nodes: a type node for Ball, and a number

statement node for Ball with no origin functions. Clearly, this OGG contains no

cycles or infinite guaranteed object nodes. In the hurricane model (Figure 4.2), the

only set expression is {City c}. Here we also get a single OGG with two nodes:

a type node for City, and a guaranteed object node for City. Again, this OGG is

structurally bounded.

In the citation model (Figure 4.3), we find two set expressions, {Researcher r}

and {Publication p}, that are analogous to the expression {Ball b} in the urn-

and-balls-model. It is clear that they are structurally bounded. We also find the

225



Chapter 4. Bayesian Logic (BLOG)

tuple multiset expression:

{n, Name(NthAuthor(PubCited(c), n))

for NaturalNum n : n < NumAuthors(PubCited(c))}

This tuple multiset expression has just one variable, n, and its formula is n <

NumAuthors(PubCited(c)). Running Construct-OGGs on this variable and for-

mula yields the OGG shown in Figure 4.11(b), which is structurally bounded as

well.

The aircraft tracking model (Figure 4.4) does not itself contain any set expres-

sions, but if we assert evidence using the macro discussed in Section 5.1.3, we end

up with implicit set expressions such as:

{Blip b : (Time(b) = 8) & (b != Blip1)}

Construct-OGGs does nothing with the literal b 6= Blip1, but it exploits the literal

Time(b) = 8 to construct the OGG in Figure 4.10(b). This OGG is structurally

bounded.

We noted above that even our simple implementation of Get-Potential-Satisfiers-

Iter is guaranteed to terminate when all the OGGs it deals with satisfy the con-

ditions of Lemma 4.9. The following lemma extends this termination result to the

top-level Eval-Expr function. Note that it is not sufficient to stipulate that the ex-

pression e passed to Eval-Expr is itself structurally bounded, because a structurally

bounded expression may contain a subformula that is not structurally bounded.

Thus, we require that e occur in a BLOG model where every expression is struc-

turally bounded. Also, the lemma must include an exception for unachievable in-

stantiations, because an instantiation may agree with an achievable one on all the

226



Chapter 4. Bayesian Logic (BLOG)

variables that Eval-Expr accesses, but assign values to some other variables that

make it unachievable.

Lemma 4.11. Let M be a BLOG model in which all the quantified formulas and

set expressions are structurally bounded. Let e be an expression in M , α be an

assignment such that e is well-formed in domain(α), and σ be a finite instantiation

on VM . Then Eval-Expr(e, σ, α) terminates in a finite amount of time. If the

function returns a value q other than undet, then either σ is unachievable, or σ

supports e and [e]ωα = q for all ω ∈ ev (σ).

Proof. We begin by showing that Eval-Expr(e, σ, α) terminates. First, inspection

of Figures 4.7–4.9 reveals that Get-Potential-Satisfiers-Iter is called only

with certain values for its first four arguments (τ, x, ϕ, F ). Specifically, these ar-

guments are exactly the ones mentioned as arguments to Construct-Obj-Gen-

Graph in the definition of a structurally bounded expression. So all calls to Get-

Potential-Satisfiers-Iter on M result only in structurally bounded OGGs.

Since the OGGs obtained at the beginning of Get-Potential-Satisfiers-

Iter are all structurally bounded, we know that Get-Potential-Satisifiers-

Iter terminates in finite time. It cannot go into infinite recursion because the

OGGs are acyclic, and it cannot get stuck returning an infinite set because the

OGGs contain no guaranteed object nodes for infinite built-in types. Further-

more, Get-Potential-Satisfiers-Iter returns either an iterator on which Can-

Determine-Next returns false immediately, or an iterator over a finite set. There-

fore the iteration over objects returned by this iterator in Eval-Formula, Eval-

Set-Expr, or Eval-Tuple-Multiset-Expr halts after finitely many steps. This,

in turn, implies that Eval-Expr terminates in finite time.

Now suppose σ is achievable and Eval-Expr does not return undet. The proof

that the returned value is correct basically amounts to making sure that the functions

227



Chapter 4. Bayesian Logic (BLOG)

we have defined match the definitions that they are supposed to implement. First, we

can check that for any node u in a structurally bounded OGG, Get-OGG-Node-

Satisfiers(u, σ, α) returns the satisfier set [u]ωα, if this is the same for all ω ∈ ev (σ).

We can verify this by comparing the pseudocode in Figure 4.16 with Definition 4.17.

Moving up a level, we know by Lemma 4.10 that the OGGs constructed at the

beginning of a call to Get-Potential-Satisfiers-Iter(τ , x, ϕ, F , σ, α) cover

x in ϕ. Combining this fact with the result that Get-OGG-Node-Satisfiers

correctly computes the satisfier set of an OGG, we can conclude that the resulting

iterator includes all objects that satisfy ϕ when bound to x in any world consistent

with σ.

Building on this result, we can show the correctness of Eval-Formula, Eval-

Set-Expr, and Eval-Tuple-Multiset-Expr, by comparison with Definitions 2.8

and 4.3. The correctness of Eval-Term follows by comparison with Definition 2.7.

Thus Eval-Expr also correctly returns the value that is the denotation of e in all

worlds consistent with σ.

Thus, in BLOG models where all quantified formulas and set expressions are

structurally bounded, we can be sure that all non-undet values returned by Eval-

Expr are correct. However, Eval-Expr may still return undet in some cases where

σ supports e. For instance, if σ instantiates VSlippery to false, then it fully determines

the truth value of the formula Raining∧ Slippery. But Eval-Formula would try to

evaluate Raining first, and end up returning undet if VRaining /∈ vars (σ). In this sense,

Eval-Expr is incomplete.

228



Chapter 4. Bayesian Logic (BLOG)

4.5 Structurally well-defined BLOG models

Theorem 4.7 tells us that a BLOG model is well-defined if each of its possible worlds

has a supportive numbering. We showed in Section 4.3.6 that this property holds

for each of the four BLOG models that we have used as examples. We also showed

that in general, checking whether a given BLOG model is well-defined is undecid-

able (Proposition 4.8). However, it would still be useful to define a limited class

of BLOG models that are known to be well-defined, along with an algorithm for

checking whether a model belongs to this class. To define such a class, we will use

a formalism that explicitly represents the dependencies between random variables,

and the conditions under which these dependencies are active. This is the formalism

of contingent Bayesian networks (CBNs), which we introduced in Section 3.5.

Recall that a CBN is a kind of PBM in which the partition for each variable is

defined by a decision tree that splits on the values of certain other variables. A CBN

can be represented as a directed graph in which each edge X → Y is labeled with

an event, indicating the conditions under which Y ’s decision tree splits on X. The

difficulty with CBNs, as we observed in Section 3.5.4, is that some partitions cannot

be represented exactly as decision trees. In such cases, a CBN that implements a

given PBM (or BLOG model) must use a decision tree that represents a strictly

finer partition than the one in the PBM. There may be many decision trees that

implement different refinements of the same partition. For example, if a dependency

statement in a BLOG model uses the formula Raining∧ Slippery, there is no decision

tree over basic random variables that exactly implements the corresponding partition

{{ω ∈ΩM : ω |= Raining ∧ Slippery}, {ω ∈ΩM : ω 2 Raining ∧ Slippery}}. The

229



Chapter 4. Bayesian Logic (BLOG)

decision tree must either split on VRaining first, yielding the partition:


ev (VRaining = true, VSlippery = true) ,

ev (VRaining = true, VSlippery = false) ,

ev (VRaining = false)


or split on VSlippery first, yielding another three-block partition. In general, as we saw

in Section 3.5.4, some choices of decision trees may yield a structurally well-defined

CBN, while others may not.

This problem is similar to the problem of choosing an evaluation strategy in a

logic programming language such as Prolog. We adopt a similar solution: we define

a canonical way of constructing a decision tree for a basic random variable in a given

BLOG model. Our strategy is to define a procedure Get-CPD-And-Args, which

takes as inputs a basic random variable X and an instantiation σ. This procedure

follows the semantics of dependency (and number) statements as defined in Section

4.3.4, making calls to Eval-Expr to determine the elementary CPD and CPD

argument values that are applicable for X given σ (if σ does not support X, the

procedure returns the special value undet). The decision tree for X is then defined

to split on basic variables in the order they are accessed by Get-CPD-And-Args.

Specifically, on each path in the decision tree, the split order is determined by the

behavior of Get-CPD-And-Args on instantiations σ consistent with that path.

A path terminates when Get-CPD-And-Args returns a value; thus, each leaf in

the decision tree corresponds to a particular elementary CPD and tuple of argument

values, and hence to a block in the PBM partition for X.

A consequence of this approach is that the order in which the decision trees split

on basic random variables is determined by the order of conjuncts and disjuncts in

BLOG formulas. Thus, while the formulas Raining ∧ Slippery and Slippery ∧ Raining

230



Chapter 4. Bayesian Logic (BLOG)

have the same semantics (both in pure logic and in the dependency statement se-

mantics given in Definition 4.13), they yield different decision trees. Each of these

decision trees is “correct”, in that the partition it defines is a refinement of the

partition defined by the dependency statement in the BLOG model.

4.5.1 Determining applicable CPDs and argument values

Figure 4.17 shows a function Get-CPD-And-Args that takes as input a BLOG

model M , a basic random variable X, and an instantiation σ, and returns either the

applicable elementary CPD and argument values for X given σ, or a special value

undet to indicate that σ does not support X. Like Eval-Expr, this function may

fail to terminate, and may return undet in cases where σ actually does support X.

However, if Get-CPD-And-Args does terminate and return an elementary CPD

and argument values, then the CPD and arguments are guaranteed to be correct. We

have motivated Get-CPD-And-Args just as a means for defining the canonical

CBN for a BLOG model, but of course it will be useful for inference algorithms as

well.

The function Get-CPD-And-Args in Figure 4.17 first looks at the objects

o1, . . . , ok that serve as indices for X: these are function arguments if X is a function

application variable, and generating objects if X is a number variable. The function

checks whether σ implies the existence of each non-guaranteed object oi, by looking

at the value that σ assigns to the number variable governing oi’s existence. If σ

does not instantiate the governing number variable, the function returns undet; if σ

instantiates the number variable to a value smaller than oi’s index, then it returns a

tuple indicating that X takes on its “invalidity value” (null for function application

variables, zero for number variables) with probability one. Note that the code does

not look at other number variables — for instance, those that generate ancestors of

231



Chapter 4. Bayesian Logic (BLOG)

function Get-CPD-And-Args(M , X , σ)
returns an elementary CPD and argument values, or undet
inputs: M , a BLOG model

X , a basic random variable in M
σ, a finite instantiation of basic random variables

(o1, . . . , ok)←Get-Basic-Var-Objs(X )
for i = 1 to k do

if Is-Non-Guar-Obj(oi)
No←Get-Governing-Var(oi)
if No /∈ vars (σ)

return undet
if Get-Var-Value(σ, No) < Get-Obj-Index(oi)

return (EqualsCPD , Get-Invalidity-Val(X ))

((x1, τ1), . . . , (xk, τk))←Get-Dep-Stmt-Scope(M , X )
α← assignment that maps (xi, τi) to oi for i = 1 to k
(clause1, . . . , clausen)←Get-Dep-Stmt-Clauses(M , X )
for i = 1 to n− 1 do

val←Eval-Formula(Get-Cond(clausei), σ, α)
if val = undet return undet
if val = true

return Get-CPD-And-Args-From-Clause(clausei, σ, α)
return Get-CPD-And-Args-From-Clause(clausen, σ, α)

function Get-CPD-And-Args-From-Clause(clause, σ, α)
returns an elementary CPD and argument values, or undet
inputs: clause, a clause from a dependency or number statement

σ, a finite instantiation of basic random variables
α, an assignment to the free variables in clause

(e1, . . . , em)←Get-Arg-Expressions(clause)
(q1, . . . , qm)← a new array of length m
for j = 1 to m do

qj←Eval-Expr(ej , σ, α)
if qj = undet return undet

return (Get-Elem-CPD(clause), (q1, . . . , qm))

Figure 4.17: Functions for finding the applicable elementary CPD and argument
values for a basic random variable.

232



Chapter 4. Bayesian Logic (BLOG)

oi in the generative process — whose values might imply that oi does not exist. This

is the one way in which Get-CPD-And-Args is incomplete.

If σ implies that all of (o1, . . . , ok) exist, then Get-CPD-And-Args gets the

n clauses from X’s dependency or number statement. It uses the function Eval-

Formula to determine if the condition for one of the first n−1 clauses is satisfied (re-

call that the condition for the last clause is always simply true). If Eval-Formula

returns undet on one of these conditions, then Get-CPD-And-Args returns undet

as well. Once the active clause is identified, the auxiliary function Get-CPD-And-

Args-From-Clause is called to evaluate the argument expressions.

We can prove a termination and correctness theorem for Get-CPD-And-Args,

similar to the lemma we proved in the previous section for Eval-Expr.

Theorem 4.12. Let M be a BLOG model in which all the quantified formulas and

set expressions are structurally bounded. Let X be any basic random variable in

VM and σ be any finite instantiation on VM . Then Get-CPD-And-Args(M , X,

σ) terminates in a finite amount of time. If Get-CPD-And-Args(M , X, σ)

returns an elementary CPD c and a tuple of argument values (q1, . . . , qn) (rather

than returning undet), then either σ is unachievable, or σ supports X in M and

c(o, (q1, . . . , qn)) = cXM(o, λX
M(σ))

for each o∈ range (X).

Proof. The fact that Get-CPD-And-Args terminates is a direct consequence of

the fact that each call to Eval-Expr and Eval-Formula terminates, which we

know from Lemma 4.11. Now suppose σ is achievable and Get-CPD-And-Args

does not return undet. The fact that the returned CPD and argument values define

a distribution that matches cXM follows by comparing Get-CPD-And-Args with

233



Chapter 4. Bayesian Logic (BLOG)

Definition 4.13, which specifies how ΛX
M and cM are derived from X’s dependency or

number statement.

4.5.2 The canonical CBN for a BLOG model

The fact that Get-CPD-And-Args accesses basic random variables in a particular

order is a useful thing for us, since it allows us to define a canonical contingent

Bayesian network (CBN) for a BLOG model. As we mentioned at the beginning of

Section 4.5, the decision tree for each basic variable in the canonical CBN is based

on the order in which Get-CPD-And-Args accesses variables.

Recall that the nodes in a decision tree are finite instantiations of random vari-

ables. Each node σ splits on a variable W /∈ vars (σ), such that the children of σ

are {(σ;W =w) : w ∈ range (W |σ)} (see Definition 3.13). Decision trees for the

variables in the urn-and-balls and hurricane models are shown in Figures 3.8 and

3.9. A decision tree T defines a partition ΛT of the possible worlds, with one block

for each non-truncated path starting at the root (Definition 3.14). If all the paths

in T end at leaves rather than continuing infinitely, then ΛT just consists of a block

ev (σ) for each leaf σ.

The canonical decision tree for a basic random variable X in a BLOG model M is

defined by the following construction process. We start with the empty instantiation

> as the root node. Then, for each node σ, we see whether Get-CPD-And-

Args(M , X, σ) ever calls Get-Var-Value on a variable that is not in vars (σ).

If so, we let this uninstantiated variable serve as the split variable for σ, and add

children to σ appropriately. Otherwise, we let σ be a leaf node. This construction

process yields an infinite tree whenever some of the split variables have infinite

ranges, so we cannot actually execute it in most BLOG models. Still, it provides a

recursive definition of the tree. Note that this definition does not assume the calls

234



Chapter 4. Bayesian Logic (BLOG)

to Get-CPD-And-Args all terminate: if Get-CPD-And-Args(M , X, σ) runs

forever without calling Get-Var-Value on an uninstantiated variable, then σ is a

leaf node.

Let us examine how this process works for the variable VObsColor [Draw1] in the urn-

and-balls model. The decision tree constructed turns out to be the same as the one

on the right hand side of Figure 3.8 (although that figure uses different names for the

random variables). We start by calling Get-CPD-And-Args(M , VObsColor [Draw1],

>). Then Get-CPD-And-Args looks at the dependency statement for ObsColor,

which we repeat here (from Figure 4.1) for convenience:

ObsColor(d)

if (BallDrawn(d) != null) then

∼ TabularCPD[[0.8, 0.2], [0.2, 0.8]]

(TrueColor(BallDrawn(d)));

To determine whether the first clause is applicable, Get-CPD-And-Args calls

Eval-Formula on BallDrawn(d) 6= null, with d bound to Draw1. This results in a

call to Get-Var-Value on VBallDrawn [Draw1]. Since this variable is not included in

the empty instantiation, it is chosen as the split variable for the root node.

Now consider the children of the root node. One child is (VBallDrawn [Draw1] = null).

Given this instantiation, the call to Eval-Formula on BallDrawn(d) 6= null re-

turns false, so Get-CPD-And-Args-From-Clause is called on the implicit final

clause “else = null”. This yields no more calls to Get-Var-Value, so the node

(VBallDrawn [Draw1] = null) becomes a leaf node. Each other child of the root has

the form (VBallDrawn [Draw1] = (Ball, i)) for some natural number i. When invoked

on such an instantiation, Get-CPD-And-Args tries to evaluate the CPD argu-

ment TrueColor(BallDrawn(d)) (with d bound to Draw1). This results in calls to

Get-Var-Value on VBallDrawn [Draw1], which is already instantiated, and then on

235



Chapter 4. Bayesian Logic (BLOG)

VTrueColor [(Ball, i)], which is not instantiated and thus becomes the split variable. Note

that on each path from the root, we end up splitting on the true color of a different

ball. The grandchildren of the root node have the form (VBallDrawn [Draw1] = (Ball, i),

VTrueColor [(Ball, i)] = c) for some value c∈{Blue,Green, null}. Get-CPD-And-Args

successfully determines the CPD and argument values for VObsColor [Draw1] given these

instantiations, so they are leaves in the tree.

The next step in defining a CBN is to specify the CPDs. For each basic variable

X, the CBN includes a CPD for X given the partition defined by X’s decision tree.

We will show below that if the BLOG model M contains only structurally bounded

formulas and set expressions, then the canonical decision trees contain no infinite

paths. Thus, the partition for X just consists of events corresponding to the leaves

in X’s tree. Also, under the same assumptions about M , we will show that all

the leaves are instantiations on which Get-CPD-And-Args returns an elementary

CPD and argument values for X. Thus, we can use these return values to define a

conditional distribution for X. In fact, as we will show below, this yields a CBN

that correctly implements the PBM defined by the BLOG model.

We last thing to specify is the graph structure of the canonical CBN: a directed

graph where edges are labeled with events indicating the conditions under which

they are active. We can construct such a graph by including an edge W → X

whenever the decision tree for X splits on W , and labeling it with the union of the

instantiations that split on W in X’s tree.

For instance, the CBN structure for the urn-and-balls example is shown in Figure

3.10. This figure uses short names for the random variables: N for NBall, Ci for

VTrueColor [(Ball, i)], Bj for VBallDrawn [Drawj], and Oj for VObsColor [Drawj]. The graph

includes unlabeled edges (active given the all-encompassing event ΩM) from NBall to

each TrueColor variable, because the first thing Get-CPD-And-Args does on these

variables is to check whether (Ball, i) exists. There are also unlabeled edges from

236



Chapter 4. Bayesian Logic (BLOG)

NBall to each BallDrawn variable. This is because Get-CPD-And-Args on these

variables ends up evaluating the set expression {Ball b}. This ultimately results in

a call to Get-OGG-Node-Satisfiers on a number statement node for type Ball,

which gets the value of NBall. For the ObsColor nodes, the incoming edges are derived

from the decision tree that we discussed above: each has an unlabeled edge from the

corresponding BallDrawn node, and an edge from each node VTrueColor [(Ball, i)] labeled

with the event ev (VBallDrawn [Drawj] = (Ball, i)). Note that in general, this definition

of the canonical CBN structure does not yield compact representations of the edge

labels: the labels can be unions over infinite sets of instantiations.

We now give a formal definition of the canonical CBN for a BLOG model. This

definition applies only to BLOG models in which all quantified formulas and set

expressions are structurally bounded. On other models, the calls to Get-CPD-

And-Args that define our canonical decision trees may fail to terminate; and even

if each call terminates or hits an uninstantiated variable, the resulting decision tree

may contain infinite paths that do not identify a CPD.

Definition 4.20. Let M be a BLOG model in which all quantified formulas and set

expressions are structurally bounded. The canonical CBN for M , denoted BM , is a

CBN over VM defined as follows.

i. For each basic variable X, the decision tree TX
BM

is defined by the following

construction. The root node is >. For each node σ in TX
BM

:

• if Get-CPD-And-Args(M , X, σ) calls Get-Var-Value on a basic

variable W that is not in vars (σ), then the first such W serves as σ’s

split variable, and σ has a child (σ;W =w) for each w∈ range (W |σ);

• otherwise, σ is a leaf node.

ii. For each basic variable X, the CPD cXBM
is defined as follows for each value

237



Chapter 4. Bayesian Logic (BLOG)

o∈ range (X) and each leaf node σ in TX
BM

:

cXBM
(o, ev (σ)) = c(o, (q1, . . . , qn))

where c and (q1, . . . , qn) are the elementary CPD and argument values returned

by Get-CPD-And-Args(M , X, σ).

iii. The CBN structure GBM
contains a node for each element of VM . For each pair

of basic random variables W,X such that W serves as the split variable for some

node in TX
BM

, GBM
contains an edge W → X labeled with the union of the events

ev (σ) for those nodes σ in TX
BM

that have W as their split variable.

The definition of the CPDs cXBM
assumes that the blocks in the partition ΛX

BM

all correspond to leaf nodes of TX
BM

, rather than infinite paths. It also assumes that

on each leaf node σ, Get-CPD-And-Args(M , X, σ) returns a CPD and tuple of

arguments, rather than returning undet or running forever. The following lemma

states that these assumptions are correct.

Lemma 4.13. Let M be a discrete BLOG model in which all quantified formulas

and set expressions are structurally bounded. Then the decision trees constructed by

the process in Definition 4.20 contain no infinite paths. Furthermore, for each basic

variable X and each leaf node σ in TX
BM

, Get-CPD-And-Args(M , X, σ) returns

a CPD and a tuple of argument values.

Proof. The second part of the lemma is easier, so we prove it first. Because all

quantified formulas and set expressions in M are structurally bounded, we can apply

Theorem 4.12 to conclude that Get-CPD-And-Args(M , X, σ) terminates in finite

time for any leaf node σ. And Get-CPD-And-Args returns undet only when it

has called Get-Var-Value on a variable W that is not instantiated in σ. If that

occurred, then our construction would force σ to split on that variable W , and thus

238



Chapter 4. Bayesian Logic (BLOG)

not be a leaf node. So Get-CPD-And-Args(M , X, σ) must return a CPD and a

tuple of argument values.

Now assume for contradiction that in the constructed decision tree for a vari-

able X, there is an infinite path σ0 → σ1 → σ2 → · · · . Let σ∗ be any complete

instantiation that is consistent with σi for all i∈N. Such an instantiation σ∗ exists

because the instantiations σi are not contradictory (we are not saying anything about

whether σ∗ is achievable).

In fact, the proof of this fact does not depend on the assumption that σ is finite.

So if we ran Get-CPD-And-Args(M , X, σ∗) with some representation for the

infinite instantiation σ∗, the function would terminate after some finite time.

Get-CPD-And-Args also has the property that if ρ is a sub-instantiation of

σ, then the behavior of Get-CPD-And-Args(M , X, ρ) is identical to that of

Get-CPD-And-Args(M , X, σ) up until the point (if any) where both runs of

the function try to access a basic variable W that is instantiated in σ but not in ρ.

Therefore, Get-CPD-And-Args(M , X, σ∗) must access every basic variable that

is accessed by Get-CPD-And-Args(M , X, σi) for any σi on the path. By our

construction of the decision tree, this implies that Get-CPD-And-Args(M , X,

σ∗) accesses all the basic variables that are instantiated on the path. But since the

path is infinite, there are infinitely many such variables, contradicting the fact that

Get-CPD-And-Args(M , X, σ) terminates in finite time.

We will now show that BM implements the BLOG model M in the sense of

Definition 3.18: that is, for each basic variable X, each block λ in ΛX
BM

is a subset

of some block λ′ in ΛX
M , and cXBM

(o, λ) = cXM(o, λ′) for each o∈ range (X).

Theorem 4.14. Let M be a discrete BLOG model in which all quantified formu-

las and set expressions are structurally bounded. Then the construction process in

Definition 4.20 defines a CBN BM that implements M .

239



Chapter 4. Bayesian Logic (BLOG)

Proof. Lemma 4.13 ensures that the construction process in Definition 4.20 is well-

defined. It is easy to check that the result is a CBN, that is, the decision trees respect

the graph structure (in the sense of Definition 3.16).

Now consider any basic variable X and any block λ∈ΛX
BM

. By the definition of

a CBN, ΛX
BM

contains a block for each non-truncated path in TX
BM

; and by Lemma

4.13, all these non-truncated paths end at leaves. So each block λ∈ΛX
BM

can be

expressed as ev (σ) for some leaf node σ in TX
BM

. Lemma 4.13 also tells us that on

this leaf node σ, Get-CPD-And-Args(M , X, σ) returns a CPD and argument

values. By Theorem 4.12, this implies that σ supports X in M , so ev (σ) is a subset

of the block λX
M(σ) in ΛX

M .

The last part of Theorem 4.12 says:

c(o, (q1, . . . , qn)) = cXM(o, λX
M(σ))

And the construction in Definition 4.20 specifies that:

cXBM
(o, ev (σ)) = c(o, (q1, . . . , qn))

So we have cXBM
(o, ev (σ)) = cXM(o, λX

M(σ)), as desired.

4.5.3 Symbol graphs

Theorem 3.17 gives criteria for determining whether a CBN is structurally well-

defined, and Proposition 3.19 tells us that if a structurally well-defined CBN im-

plements a PBM, then that PBM is well-defined as well. However, the canonical

CBN for a BLOG model is typically infinite. Thus, we cannot check the criteria of

Theorem 3.17 directly. Instead, we will consider a more abstract graph over function

symbols and types symbols, called the symbol graph for the BLOG model. The sym-

240



Chapter 4. Bayesian Logic (BLOG)

bol graph is similar to the dependency graph used in probabilistic relational models

[Koller and Pfeffer, 1998; Friedman et al., 1999].

Let us say that the corresponding symbol for a function application variable

Vf [o1, . . . , ok] is the function symbol f , and the corresponding symbol for a number

variable Nτ [o1, . . . , ok] is the type symbol τ . In the symbol graph, function symbols

stand in for all the variables that correspond to them.

Definition 4.21. The symbol graph for a BLOG model M is a directed graph whose

nodes are the user-defined types symobls and random function symbols of M , where

the parents of a type τ or function symbol f are:

i. the random function symbols that occur on the right hand side of the dependency

statement for f or some number statement for τ ;

ii. the types of variables that are quantified over in formulas or set expressions on

the right hand side of such a statement;

iii. the types of the arguments for f , or the return types of origin functions for τ .

The symbol graphs for our four running examples are shown in Figure 4.18. The

main property that symbol graphs satisfy is the following:

Lemma 4.15. Let BM be the canonical CBN for a BLOG model M . If there is an

edge (with any label) from a variable X to a variable Y in GBM
, then X’s corre-

sponding symbol is an ancestor of Y ’s corresponding symbol in the symbol graph for

M .

Proof. The construction process for GBM
in Definition 4.20(iii) includes X as a parent

of Y only if X serves as the split variable for some node in the decision tree for Y .

According to part (i) of that definition, this occurs only if there is some instantiation

241



Chapter 4. Bayesian Logic (BLOG)

TrueColor

BallDrawn

ObsColor

Color Ball Draw

City

First

Prep Damage

(a) (b)

Name

Title

PubCitedText

Researcher Publication

Citation

NumAuthors

NthAuthor

State MeasuredPos

Aircraft Blip

(c) (d)

Figure 4.18: Symbol graphs for (a) the urn-and-balls model in Figure 4.1; (b) the
hurricane model in Figure 4.2; (c) the bibliographic model in Figure 4.3; (d) the
aircraft tracking model in Figure 4.4. We use rectangles for type nodes and ovals for
function nodes.

σ such that a call to Get-CPD-And-Args(M , X, σ) calls Get-Var-Value on

X.

Now let us consider the places in Get-CPD-And-Args and its subroutines

where Get-Var-Value is called. One place is in the beginning of Get-CPD-And-

Args (Figure 4.17), where Get-Var-Value is called on the number variables No

242



Chapter 4. Bayesian Logic (BLOG)

that govern non-guaranteed arguments o of X. Part (iii) of the definition of a symbol

graph ensures that there is an edge from No’s type symbol to the corresponding

symbol for X in this case.

Another place where Get-Var-Value is called is in Get-Func-Value (in

Figure 4.6). It is easy to check that the only way a call to Get-CPD-And-Args

on X can result in a call to Get-Func-Value on f is if f appears in a term on

the right hand side of X’s dependency statement. In this case, part (i) of Definition

4.21 ensures that that f is a parent of X’s corresponding symbol.

The last place where Get-Var-Value is called is in Get-Node-Satisfiers,

shown in Figure 4.16. Here Get-Var-Value is called on a number variable to deter-

mine the satisfiers of a number statement node in an object generation graph. Sup-

pose that during a call to Get-CPD-And-Args(M , X, σ), an invocation of Get-

Node-Satisfiers on an OGGG ends up calling Get-Var-Value(σ, Nτ [o1, . . . , ok]).

Let τ0 be the type of the target node in G. Then we know that some expression on

the right hand side of X’s dependency statement quantifies over a logical variable

of type τ0. So by part (ii) of the definition of a symbol graph, τ0 is a parent of X’s

corresponding symbol. Furthermore, inspection of the functions the construct OGGs

in Figures 4.13 and 4.14 reveals that if a number statement node for type τ appears

in an OGG with target type τ0, then τ must have been reached from τ0 by following

origin functions. In other words, there must be a sequence of types τ0, τ1, . . . , τn with

τn = τ , such that each τi+1 is the return type of some origin function on τi. By part

(iii) of the symbol graph definition, this implies that there are edges τi+1 → τi in the

symbol graph for i∈{0, . . . , n − 1}. So τn = τ is an ancestor of X’s corresponding

symbol.

Given this result, it is fairly easy to prove our main theorem about symbol graphs

and well-definedness.

243



Chapter 4. Bayesian Logic (BLOG)

Theorem 4.16. Suppose M is a discrete BLOG model where:

i. each quantified formula and set expression is structurally bounded; and

ii. the symbol graph is acyclic.

Then the canonical CBN BM is structurally well-defined, and M is also well-defined.

In this case, M is referred to as structurally well-defined.

Proof. To prove that BM is structurally well-defined, we must show that it satisfies

the conditions of Theorem 3.17. The first condition is that no consistent path in

GBM
forms a cycle. In fact, we will show that GBM

contains no cycles at all. Assume

for contradiction that X0 ← X1 ← · · ·Xn−1 ← Xn = X0 is a cycle in GBM
. Then

by Lemma 4.15, Xi+1’s corresponding symbol is an ancestor of Xi’s corresponding

symbol for i∈{0, . . . , n − 1}. So there is a directed path from X0’s corresponding

symbol back to itself in the symbol graph, contradicting the assumption that the

symbol graph is acyclic.

The second condition is that no consistent path in GBM
forms an infinite receding

chain. Again, we will rule out infinite receding chains from GBM
entirely. Assume

for contradiction that X0 ← X1 ← X2 ← · · · is an infinite receding chain in GBM
.

This cannot correspond to an infinite receding chain in th symbol graph, because the

number of user-defined type symbols and random function symbols in M is finite.

This implies that some symbol f serves as the corresponding symbol for more than

one variable on the infinite receding chain. Let us choose two such variables Xi, Xj

such that i < j. Then there is a directed path from Xj to Xi in GBM
, and so by

Lemma 4.15, there is a directed path from f to f in the symbol graph. So again we

contradict the assumption that the symbol graph is acyclic.

Finally, the last condition in Theorem 3.17 is that no variable has an infinite,

consistent set of incoming edges in GB. Assume for contradiction that X is such

244



Chapter 4. Bayesian Logic (BLOG)

a node, and let the sources of the incoming edges be W0,W1,W2, . . .. Since these

edges are consistent, we can choose a possible world ω that activates all of them.

By Definition 4.20(iii), this implies that for each i∈N, there is an instantiation σi

that splits on Wi in X’s decision tree, such that ω ∈ ev (σi). Now recall that in a

decision tree, any two instantiations that do not lie along a common path from the

root are contradictory. Since ω is consistent with all these instantiations σi, they

must all be on the same path. Thus X’s decision tree contains an infinite path. But

by Lemma 4.13, this cannot occur in a model M where all quantified formulas and

set expressions are structurally bounded. So we have a contradiction.

Thus, all the conditions in Theorem 3.17 are satisfied, and BM is structurally

well-defined. We know by Theorem 4.14 that BM implements M , so by Proposition

3.19, M is well-defined as well.

The symbol graphs for the urn-and-balls model (Figure 4.18(a)) and the citation

model (Figure 4.18(c)) satisfy the acyclicity criterion, so these BLOG models are

structurally well-defined. But the symbol graph for the hurricane example, shown in

Figure 4.18(b), contains a cycle. So this BLOG model does not meet our criterion

for being structurally well-defined. However, since this model has only finitely many

basic random variables, we can check its canonical CBN (shown in Figure 3.11) and

determine directly that this CBN is structurally well-defined. The problem here is

that when we construct the symbol graph, we discard the edge conditions that allow

us to show well-definedness for the CBN. The symbol graph for the aircraft tracking

model (Figure 4.18(d)) also contains a cycle: specifically, a self-loop from State to

State. The criteria in Theorem 4.16 do not exploit the fact that State(a, t) depends

only on State(a,Pred(t)), and the nonrandom function Pred is acyclic.

Thus, our current definition of a structurally well-defined BLOG model is very

conservative. When we construct the symbol graph, we ignore all the structure in

245



Chapter 4. Bayesian Logic (BLOG)

the dependency statements and just check for the occurrence of function and type

symbols. In future work, we plan to extend these criteria at least to exploit acyclic

functions and relations, as done in the context of probabilistic relational models by

Friedman et al. [1999]. We may also be able to express contingent dependencies in

the symbol graph, and thus handle models like the hurricane example.

When we discuss inference in the next chapter, we will state all of our results for

structurally well-defined BLOG models. However, it will be clear from the proofs

that all we really require is for the models to have structurally well-defined canonical

CBNs. All of our running examples satisfy this less conservative criterion.

Appendix 4.A Measurability of BLOG expressions

If e is an expression (term, formula, or set expression) in a BLOG model M and α is

an assignment such that e is well-formed in domain(α), then for any possible value

q we can consider the event:

{[e]ωα = q} , {ω ∈ΩM : α is valid in ω and [e]ωα = q}

Note that this event excludes worlds where some of the objects in range (α) do not

exist. It turns out that all such events are measurable in FM .

Lemma 4.17. In a discrete BLOG model M , let e be an expression, α be an assign-

ment such that e is well-formed in domain(α), and q be a possible value of e. Then

the event {[e]ωα = q} is measurable in FM .

Proof. For the case where e is a term, we proceed by induction on the depth of

nesting in e. One base case is where e is a logical variable v. If α(v) = q, then

{[v]ωα = q} is simply {ω ∈Ω : α is valid in ω}; otherwise it is ∅. The set of worlds

where α is valid is just the intersection of the events {ω ∈ΩM : α(v)∈ [τ ]ω} for

246



Chapter 4. Bayesian Logic (BLOG)

(x, τ)∈ domain(α), and these are basis events for FM . So {[v]ωα = q} is measurable.

The other base case is where e is a constant symbol c. Then {[c]ωα = q} is the

intersection of {ω ∈Ω : α is valid in ω} with {ω ∈ΩM : [c]ω = q}, which is one of

the basis events for FM . Therefore {[c]ωα = q} is also measurable. Now suppose e

is a term f(t1, . . . , tk), where the argument types of f are a1, . . . , ak. Then for any

q 6= null:

{[e]ωα = q} =
⋃

o1 ∈OM (a1)

· · ·
⋃

ok ∈OM (ak)(
{ω ∈ΩM : o1 ∈ [a1]

ω , . . . , ok ∈ [ak]
ω and [f ]ω (o1, . . . , ok) = q} ∩

k⋂
i=1

{[ti]ωα = oi}

)

Here the events {ω ∈ΩM : oi ∈ [ai]
ω} and {ω ∈ΩM : [f ]ω (o1, . . . , ok) = q} are

basis events for FM , and the events {[ti]ωα = oi} are measurable by the inductive

hypothesis. Also, we are assuming each set OM(ai) is countable, so the unions in

the equation above are countable. Therefore {[e]ωα = q} is measurable. For q = null,

we just take the union of the expression above with
⋃k

i=1{[ti]
ω
α = null}, which is also

measurable.

Now consider the case where e is a formula ϕ. The only possible values for a

formula are true and false, so for any formula ϕ,

{[ϕ]ωα = false} = {ω ∈Ω : α is valid in ω} ∩ {[ϕ]ωα = true}c

We can also swap the rules of true and false in this equation, so {[ϕ]ωα = true} is

measurable if and only if {[ϕ]ωα = false} is. With this simplification in mind, we

proceed by induction on the depth of the formula. The base case is where ϕ is an

atomic formula f(t1, . . . , tk) where f is a Boolean function; then the result follows

from our proof for terms. If ϕ has the form ¬ψ, then {[ϕ]ωα = true} is equal to

247



Chapter 4. Bayesian Logic (BLOG)

{[ψ]ωα = false}, which is measurable by the inductive hypothesis. If ϕ has the form

ψ∧χ, then {[ϕ]ωα = true} is the intersection of {[ψ]ωα = true} and {[χ]ωα = true}, which

are both measurable by the inductive hypothesis. Finally, suppose ϕ has the form

∀ τ v ψ. In this case, it is easier to show that the event {[ϕ]ωα = false} is measurable.

The formula ϕ is false only in worlds where there is some binding o for v that makes

ψ false.

{[ϕ]ωα = false} =
⋃

o∈OM (τ)

{[ψ]ω(α;(v,τ) 7→o) = false}

The events {[ψ]ω(α;(v,τ) 7→o) = false} are measurable by the inductive hypothesis, and

the union is countable because OM(τ) is countable. So {[ϕ]ωα = false} is measurable.

The result follows for formulas involving ∨, → and ∃ because these can be rewritten

using only ¬, ∧ and ∀.

We now consider cases where e is a set expression. First suppose e is an ex-

plicit set expression {t1, . . ., tk}. Then the possible values of e are multisets whose

multiplicities sum to k. A particular multiset S of this kind serves as the denota-

tion of e just in worlds where for each o∈ setS, there are exactly multS(o) indices

i∈{1, . . . , k} such that [ti]
ω
α = o. Therefore:

{[e]ωα =S} =
⋂

o∈ setS

⋃
I⊆{1,...,k} :
|I|=multS(o)

(⋂
i∈ I

{[ti]ωα = o}

)
∩

 ⋂
i∈{1,...,k}\I

{[ti]ωα = o}c


We already know that events of the form {[ti]ωα = o} are measurable, and all the

unions and intersections in this equation are finite, so {[e]ωα =S} is measurable when

S is a multiset whose multiplicities sum to k. For all other multisets S, {[e]ωα =S} =

∅.

Now suppose e is an implicit set expression {τ x : ϕ}. Then the possible values

of e are finite sets, or null for cases where the denotation would otherwise be an

248



Chapter 4. Bayesian Logic (BLOG)

infinite set. A particular finite subset of OM(τ) serves as the denotation of e just in

worlds where the objects in S make ϕ true when bound to x, and no other objects

in OM(τ) do so. That is,

{[e]ωα =S} = {ω ∈ΩM : α is valid in ω}

∩

(⋂
o∈S

{[ϕ]ω(α,(x,τ) 7→o) = true}

)
∩

 ⋂
o∈OM (τ)\S

{[ϕ]ω(α,(x,τ) 7→o) = true}c


The intersections here are countable, so {[e]ωα =S} is measurable. As to {[e]ωα = null},

it can be expressed as:

{[e]ωα = null} = {ω ∈ΩM : α is valid in ω} ∩

 ⋃
S⊆OM (τ):

S finite

{[e]ωα =S}


c

Since the set of finite subsets of a countable set is countable, {[e]ωα = null} is measur-

able as well.

If e is a tuple multiset expression {t1, . . ., tk for τ1 x1, . . ., τn xn : ϕ},

then its possible denotations (besides null) are finite multisets of tuples (o1, . . . , ok)∈×k
i=1

(OM(ri) ∪ {null}), where ri is the type of ti. Let A be the set of all assignments

(α; (x1, τ1) → o1, . . . , (xn, τn) → on) such that oi ∈ OM(τi) for i ∈ {1, . . . , n}. Note

that since n is finite and each set OM(τi) is countable, A is a countable set. A par-

ticular multiset S serves as the denotation of e just in worlds where for each object

o∈ setS, the number of assignments α′ ∈A that are valid, make ϕ true, and make

t1, . . . , tk denote o1, . . . , ok is exactly multS. Let us use ō to represent (o1, . . . , ok),

and define:

{α′ yields ō in e} , {[ϕ]ωα′ = true} ∩
k⋂

i=1

{[ti]ωα′ = oi}

Given our results so far, it is clear that these sets are measurable. Now we can

249



Chapter 4. Bayesian Logic (BLOG)

express {[e]ωα =S} as follows:

{[e]ωα =S} = {ω ∈ΩM : α is valid in ω}∩

⋂
ō∈ setS

⋃
B⊆A :

|B|= multS(ō)

( ⋂
α′ ∈B

{α′ yields ō in e}

)
∩

 ⋂
α′ ∈A\B

{α′ yields ō in e}c


The unions and intersections in this equation above are countable, so {[e]ωα =S} is

measurable. As in the case of implicit set expressions, we can express {[e]ωα = null} as

the event that α is valid but [e]ωα is not any finite subset of ×k
i=1(OM(ri)∪{null}. Since

this product set is countable, it has countably many finite subsets, and {[e]ωα = null}

is measurable.

Finally, if e is a cardinality expression #s, then the possible values of e are natural

numbers and null. If s is an implicit set expression for type τ , then for any natural

number n,

{[e]ωα =n} =
⋃

S⊆OM (τ) :
|S|= n

{[s]ωα =S}

We have already shown that events of the form {[s]ωα =S} are measurable, so {[e]ωα =n}

is measurable as well. And if e = #s, then {[e]ωα = null} is equal to {[s]ωα = null}.

250



Chapter 5

Inference for BLOG Models

In a probabilistic model, inference is the task of computing the posterior probability

of some query event given some observed event: for example, the probability that

an urn contains exactly two balls, given that we made ten draws from the urn

and all the observed balls appeared blue. In Section 2.5, we mentioned several

exact and approximate inference methods for probabilistic models. We focused on

three sampling-based approximation algorithms: rejection sampling [Henrion, 1988],

likelihood weighting [Fung and Chang, 1990; Shachter and Peot, 1990], and Markov

chain Monte Carlo with a Metropolis-Hastings transition distribution [Metropolis et

al., 1953; Hastings, 1970].

In this chapter, we develop versions of these algorithms for approximate inference

on discrete BLOG models. The main difficulty in applying the algorithms from

Section 2.5 to BLOG directly is that a BLOG model may define infinitely many

random variables. At the end of Section 2.5.1, we discussed Bayesian networks

with infinitely many variables, observing that we can obtain correct probabilities by

doing inference on a reduced BN containing just the query and evidence nodes and

their ancestors. If the original BN has a topological numbering, this reduced BN is

251



Chapter 5. Inference for BLOG Models

guaranteed to be finite. We can apply the same reduction process to the canonical

contingent BN BM defined by a BLOG model M (see Section 4.5.2). However, the

reduced CBN consisting of the query and evidence nodes and their ancestors may

still be infinite. For instance, even though the urn-and-balls model in Figure 4.1

is structurally well-defined, the ObsColor nodes in its canonical CBN (Figure 3.10)

have infinitely many ancestors.

As we shall see, it is possible to surmount this difficulty by exploiting the con-

tingent dependency structure revealed by a BLOG model. Rather than having our

sampling algorithms generate complete instantiations of the variables in a reduced

model, we allow them to generate partial instantiations of the variables in the origi-

nal model. For each of our three algorithms, we show that samples can be generated

in finite time per sampling step, and that estimates based on the samples converge

with probability one to the desired posterior probabilities as the number of samples

goes to infinity. In the last section of this chapter, we describe a concrete application

of our MCMC algorithm to a bibliographic citation-matching task.

5.1 Evidence and queries

Before introducing our inference algorithms, we discuss how evidence and queries

can be specified in BLOG.

5.1.1 Evidence instantiations and query variables

According to the definition we used in Section 2.5, the inference task in a BLOG

model M is to compute PM(Q|E), where the evidence event E and query event

Q may be any events in FM . However, our inference algorithms will use a more

structured representation of evidence and queries. We will require the evidence to

252



Chapter 5. Inference for BLOG Models

be presented as an instantiation e of a finite set of evidence variables VE ⊆ VM . A

query event must be an instantiation q of a finite set of query variables VQ ⊆ VM .

In practice, we often want to compute posterior probabilities not just for a single

instantiation q, but for all instantiations of VQ. For instance, in the urn-and-balls

example, we may wish to compute the posterior distribution for the number of balls

in the urn: this involves computing the posterior probability of each instantiation of

the number variable NBall. Now, this variable has infinitely many possible values (the

natural numbers), so we cannot represent this posterior distribution explicitly as a

table mapping each element of the range of NBall to a probability. But our algorithms

are based on random sampling, and for any value of NBall that does not appear in

the generated samples, they will return an approximate probability of zero. So the

approximate posterior probabilities of all values of NBall an be represented in a table

that explicitly assigns probabilities to the finite set of values that appeared in the

samples, and implicitly assigns a probability of zero to all other values.

Thus, our algorithms will not take as input a particular instantiation of the query

variables. Instead, they will just take a set of query variables VQ, and return a table

that explicitly or implicitly assigns an approximate probability to each instantiation

of VQ. As we will see, this takes very little extra time compared to returning a

probability for a single instantiation.

5.1.2 BLOG expressions as evidence and queries

In some cases, we would like to assert observations and ask queries that do not corre-

spond directly to basic random variables. For instance, in the urn-and-balls model,

we might want to compute the probability that the sentence BallDrawn(Draw1) =

BallDrawn(Draw2) is true. We could compute this by letting VQ = {VBallDrawn [Draw1],

VBallDrawn [Draw2]}, and then adding up the computed probabilities of instantiations

253



Chapter 5. Inference for BLOG Models

where the two basic variables have the same value. But we would like to have an

easier way of making such queries. We might also want to assert this sentence as

evidence, which is impossible in the framework defined so far because there is no

instantiation of the basic random variables that corresponds exactly to the event

that this sentence is satisfied.

We would have no problem using BallDrawn(Draw1) = BallDrawn(Draw2) in ev-

idence or queries if we extended the BLOG model in Figure 4.1 with an additional

dependency statement:

random Boolean C1 = (BallDrawn(Draw1) = BallDrawn(Draw2));

This statement declares a random constant symbol (i.e., zero-ary function symbol)

C1, and asserts that it is deterministically equal to the truth value of the sentence

in question. As a result, the model includes a new basic variable VC1 that takes the

same value as the sentence in every possible world. So we can effectively condition on

the sentence by using the evidence instantiation (VC1 = true), and query the sentence

by using the query variable VC1.

BLOG syntax is powerful enough to define a new basic random variable corre-

sponding to any first-order sentence. However, we do not want to clutter up our

BLOG models by including an extra random constant symbol for each sentence that

we might ever use in evidence or queries. Thus, the BLOG inference engine al-

lows new dependency statements to be added to the model automatically when a

particular inference problem is presented.

Specifically, the engine allows the user to provide a file of evidence and query

statements. As it reads this file, the engine adds dependency statements to the

given BLOG model M to create an augmented model M ′, and also builds up an

evidence instantiation e and a set of query variables VQ. An evidence statement has

the form:

254



Chapter 5. Inference for BLOG Models

obs e = t;

where e is a term, formula, or cardinality expression1, and t is a syntactically non-

random term (and neither e nor t has any free variables). On reading this statement,

the engine adds to M ′ the dependency statement:

random τ C = e;

where τ is the return type of e, and C is a new symbol that is not used elsewhere.

The engine then evaluates the syntactically non-random term t, which has the same

value in every world, by calling Eval-Term(t, >, ∅) (see Figure 4.6). Let o be the

value returned by Eval-Term. Then the engine adds the assertion VC = o to the

evidence instantiation.

Thus, for example, the evidence statement:

obs TrueColor(BallDrawn(Draw1)) = Blue;

yields the dependency statement:

random Color C = TrueColor(BallDrawn(Draw1));

for some new symbol C. It also yields the evidence assertion VC = Blue.

We can assert the truth of a formula ϕ with the evidence statement:

obs ϕ = true;

As an abbreviation for this, we can use an alternative keyword obstrue and write a

statement of the form:

obstrue ϕ;

Thus, we can assert the truth of the sentence we discussed above by writing:

1We cannot use a set expression here because sets are not treated as objects in BLOG; thus we
cannot introduce a constant symbol that takes a set as its value.

255



Chapter 5. Inference for BLOG Models

obstrue BallDrawn(Draw1) = BallDrawn(Draw2);

A query statement has the form:

query e;

where e is a term, formula, or cardinality expression with no free variables. The

BLOG engine interprets this statement by adding to M ′ the dependency statement:

random τ C = e;

where τ is the return type of e and C is a new constant symbol. The engine then adds

the basic random variable VC to the set of query variables VQ. Thus, for example,

we can query the true color of the ball drawn on the first draw by writing:

query TrueColor(BallDrawn(Draw1));

In our implementation, the engine detects some cases where it does not actually

need to add a new random constant symbol for an expression e, because there is al-

ready a basic random variable in the model that is equivalent to e. This occurs when

e is a term of the form f(t1, . . . , tk), where f is a random function and t1, . . . , tk are

syntactically nonrandom. Then the corresponding variable is Vf [o1, . . . , ok], where

o1, . . . , ok are the values obtained by evaluating t1, . . . , tk.

The result of adding dependency statements to a given BLOG model M is a

new BLOG model M ′. Adding dependency statements as described above cannot

introduce any new consistent cycles into the CBN BM , because the added constant

symbols are not used anywhere else in the model, and thus the added basic vari-

ables have no children. However, if some of the quantified formulas and cardinality

expressions used in evidence or query statements are not structurally bounded (see

Definition 4.19), then M ′ is not structurally well-defined. Thus, there are limits on

the evidence and queries we can use while maintaining a structurally well-defined

model.

256



Chapter 5. Inference for BLOG Models

5.1.3 Evidence about unknown objects

Although the evidence and query statements we have discussed so far are quite

powerful, they are still insufficient for some cases where we need to assert evidence

about objects that were not initially known to exist. In the aircraft scenario, we

observe the radar blips that appear at each time step, and we need to assert their

measured positions as evidence. But we cannot use an evidence statement of the

form:

obs MeasuredPos(t) = [113, 2.9, 0.46];

because there are no terms t in the language of the aircraft model (Figure 4.4) that

denote radar blips.

To a certain extent, existential formulas solve this problem. For instance, if we

observe exactly one blip at time 8, we can write:

obstrue exists Blip b (Time(b) = 8

& MeasuredPos(b) = [113, 2.9, 0.46];

obs #{Blip b: Time(b) = 8} = 1;

However, this does not give us any way to refer to the observed blip later on. For

instance, if we observe blips at times 7 and 8 and assert evidence about them using

existential formulas, we have no straighforward way of querying whether the two

blips have the same source.

We have already allowed the user to implicitly add new random constant symbols

to the model to express evidence and queries. Thus, a natural solution to our current

problem is to let the user introduce new symbols to refer to radar blips. These

symbols will be different from the ones introduced implicitly by observation and

query statements in that the user will provide names for them, and possibly use

them in subsequent statements.

257



Chapter 5. Inference for BLOG Models

To introduce such symbols, we use a new kind of evidence statement called a

symbol evidence statement. These statements are designed for the case where the user

observes some new objects, introduces some new symbols, and assigns the symbols

to the objects in an uninformative order. For instance, if three radar blips appear

on the screen at time 8, one can assert:

obs {Blip b: Time(b) = 8} = {Blip1, Blip2, Blip3};

This statement asserts that there are exactly three radar blips at time 8, and intro-

duces new constants Blip1, . . . ,Blip3 in one-to-one correspondence with those blips.

In general, a symbol evidence statement has the form:

obs {τ x: ϕ} = {C1, ..., Cn};

where τ is a type symbol, x is a logical variable, ϕ is a formula that is well-formed

in the scope (x 7→ τ), and C1, . . . , Cn are distinct symbols that have not been used

before. When the engine reads this statement, it adds to M ′ n dependency state-

ments:

random τ C1 ∼ Uniform({τ x : ϕ});

random τ C2 ∼ Uniform({τ x : ϕ & x != C1});
...

random τ Cn ∼ Uniform({τ x: ϕ & x != C1 & ...& x != Cn−1})

The engine also adds a dependency statement and asserts evidence as if it had read

the evidence statement:

obs #{τ x: ϕ} = n;

Together, these statements assert that there are exactly n objects of type τ that

satisfy ϕ when bound to x, and that these objects are assigned to the symbols

258



Chapter 5. Inference for BLOG Models

C1, . . . , Cn by sampling without replacement. Thus, the symbols C1, . . . , Cn denote

distinct objects with probability one.

Continuing with our example, the symbol evidence statement:

obs {Blip b: Time(b) = 8} = {Blip1, Blip2, Blip3};

yields the dependency statements:

Blip1 ∼ Uniform({Blip b : (Time(b) = 8)});

Blip2 ∼ Uniform({Blip b : (Time(b) = 8) & (b != Blip1)});

Blip3 ∼ Uniform({Blip b : (Time(b) = 8) & (b != Blip1) & (b != Blip2)});

It also has the effect of asserting:

obs #{Blip b : Time(b) = 8} = 3;

Once the model has been extended this way, the user can make assertions and queries

about Blip1, Blip2, and Blip3, such as:

obs MeasuredPos(Blip1) = [113, 2.9, 0.46];

query Source(Blip1) = Source(Blip3);

The new constants introduced by a symbol evidence statement bear some re-

semblance to Skolem constants, which can be used to replace existentially quantified

variables in first-order formulas (see, e.g.,, Chapter 9 of Russell and Norvig [2003]).

However, there is an important semantic difference between existentially quantified

formulas, and assertions that involve constants introduced in a symbol evidence

statement. To see this, consider the simple BLOG model shown in Figure 5.1 for the

price levels of wines offered in restaurants. According to this model, each restaurant

offers from 6 to 15 wines. However, if a restaurant is fancy, then it offers from 1 to

5 reasonably-priced wines and from 5 to 10 expensive ones; whereas if a restaurant

is not fancy, it offers from 5 to 10 reasonable wines and from 1 to 5 expensive ones.

259



Chapter 5. Inference for BLOG Models

1 type Restaurant;

2 guaranteed Restaurant Jacks, Zazo, Timbuktu, Lucys;

3 random Boolean IsFancy(Restaurant r) ∼ Bernoulli[0.5];

4 type PriceLevel;

5 guaranteed PriceLevel Reasonable, Expensive;

6 type WineOffering;

7 origin Restaurant Provider(WineOffering);

8 origin PriceLevel Price(WineOffering);

9 #WineOffering(Provider = r, PriceLevel = p)

10 if IsFancy(r) & p = Reasonable then ∼ UniformInt[1, 5]

11 elseif IsFancy(r) & p = Expensive then ∼ UniformInt[5, 10]

12 elseif !IsFancy(r) & p = Reasonable then ∼ UniformInt[5, 10]

13 elseif !IsFancy(r) & p = Expensive then ∼ UniformInt[1, 5];

Figure 5.1: A pedagogical example of a BLOG model for wines offered in restaurants.

Now suppose we are looking at a wine list for Jack’s restaurant and trying to

figure out whether it is fancy. Consider the following evidence statements:

obs {WineOffering w: Provider(w) = Jacks}

= {W1, W2, W3, W4, W5, W6, W7};

obs PriceLevel(W1) = Expensive;

Recall that the denotation of W1 is chosen uniformly at random from the objects in

the set {WineOffering w: Provider(w) = Jacks}. Thus, asserting this evidence

is equivalent to saying that we chose a wine uniformly from the wine list and observed

that it was expensive. This raises the posterior probability that Jack’s is fancy above

0.5. On the other hand, suppose we assert the evidence:

obs exists WineOffering w ((Provider(w) = Jacks)

& PriceLevel(w) = Expensive);

260



Chapter 5. Inference for BLOG Models

This statement just asserts that there is some expensive wine on the list at Jack’s.

The posterior given this evidence is identical to the prior, because according to the

model, every restaurant has at least one expensive wine offering.

Thus, a symbol evidence statement followed by some other evidence statements

that use the introduced symbols is not, in general, equivalent to an existentially

quantified statement. The way we specify the evidence in a particular scenario should

reflect how the evidence was obtained. In this example, if we glanced randomly at a

single wine on the list and saw that it was expensive, then the first set of evidence

statements is appropriate. On the other hand, if we scanned down the list checking

for an expensive wine — or if a particularly high price on the menu “jumped out at

us” — then the existential statement is the one to use.

5.2 Rejection sampling

Our first inference algorithm for BLOG is a version of the rejection sampling algo-

rithm discussed in Section 2.5.1. As we noted in that section, rejection sampling is

completely impractical in cases where the prior probability of the evidence is very

small. The BLOG version of the algorithm has the same drawback, so it is not of

much practical use. However, this algorithm illustrates how we can do inference on a

BLOG model with infinitely many basic variables by sampling partial instantiations.

5.2.1 The algorithm

Pseudocode for our rejection sampling algorithm is shown in Figure 5.2. The top-

level function BLOG-Rejection-Sampling, repeatedly calls Get-Sample-RS

to generate the next sample σ, which is an instantiation that includes the evidence

and query variables. If σ is consistent with e, then the function increments the

261



Chapter 5. Inference for BLOG Models

function BLOG-Rejection-Sampling(M , e, VQ, N )
inputs: M , a discrete BLOG model

e, a finite evidence instantiation on VM

VQ, a set of query variables in VM

N , the number of samples to generate
returns a mapping from range (VQ) to probabilities, with implicit zeroes

W← a map from range (VQ) to real numbers, with values
lazily initialized to zero when accessed

for j = 1 to N do
σ←Gen-Sample-RS(M , vars (e) ∪ VQ)
if σ agrees with e on vars (e)

W[q]←W[q] + 1 where q = σ[VQ]
return Normalize(W)

function Gen-Sample-RS(M , VT )
inputs: M , a discrete BLOG model

VT , a set of target variables in VM

returns an instantiation that includes VT

σ←>
while VT \ vars (σ) 6= ∅ do

σ← Inst-One-Var(M , σ)
return σ

function Inst-One-Var(M , σ)
returns a version of σ with one more variable instantiated

iter←Get-Basic-Vars-Iter(M)
while Has-Next(iter) do

X ←Get-Next(iter)
if X /∈ vars (σ)

val←Get-CPD-And-Args(M , X , σ)
if val 6= undet

(c, (q1, . . . , qm))← val
x←Sample(c, (q1, . . . , qm))
return (σ; X = x)

error “Targets not instantiated, but no uninstantiated variable is supported.”

Figure 5.2: Functions that implement rejection sampling for BLOG models.

262



Chapter 5. Inference for BLOG Models

count for the query variable instantiation σ[VQ]; otherwise, it rejects the sample.

After generating N samples, the function returns a normalized version of the map

W. The function Normalize does nothing if all the entries in the map are zero;

otherwise, it divides each count in the mapping by the sum of the counts.

Get-Sample-RS is a very simple function that just starts with an empty in-

stantiation σ, and calls Inst-One-Var on σ repeatedly until all the target variables

(i.e., evidence and query variables) are instantiated. Inst-One-Var is more inter-

esting: its job is to iterate over all the basic random variables in M until it finds

a variable X that is not already in vars (σ), but is supported by σ (this the same

process we used to construct a supportive split tree in the proof of Theorem 3.13).

Then Inst-One-Var assigns X a value sampled from X’s CPD given σ. Note that

this is a completely unguided sampling process: we simply instantiate one variable

after another, trusting that eventually we will instantiate all the query and evidence

variables.

Inst-One-Var relies on two auxiliary functions: Get-Basic-Vars-Iter and

Sample. Get-Basic-Vars-Iter returns an iterator that ranges over all the ba-

sic variables of M according to some fixed numbering of the variables. We are

assuming that M is discrete, which implies that the universe of each type is count-

able, and hence VM is countable. So there is a way to put the elements of VM

in one-to-one correspondence with a prefix of N. More concretely, each basic vari-

able Vf [o1, . . . , ok] or Nτ [g1 = o1, . . . , gk = ok] can be assigned a “depth” which is the

maximum of the depths of nested tuples and the magnitudes of integers among its

arguments o1, . . . , ok. The number of variables at each given depth is finite. Thus,

we can enumerate first the variables at depth 0, then those at depth 1, depth 2, etc.

The function Sample(c, (q1, . . . , qm)) returns a sample from the conditional dis-

tribution c(·, (q1, . . . , qm)), such that the values returned by all calls to Sample are

independent. In our implementation, Sample is a method that is part of the Java

263



Chapter 5. Inference for BLOG Models

interface for elementary CPDs.

5.2.2 Termination

There are several places in our rejection sampling algorithm where infinite loops

could arise. One is in Gen-Sample-RS, which may instantiate an infinite sequence

of variables without instantiating all the variables in the target set VT . The subrou-

tine Inst-One-Var may also go into an infinite loop, iterating over basic random

variables forever without finding one that is supported by σ but not already in

vars (σ). Even the function Get-CPD-And-Args may fail to terminate on some

models. However, we will show that on structurally well-defined BLOG models, none

of these infinite loops can occur: Gen-Sample-RS returns an instantiation after a

finite amount of time with probability one.

We begin by noting that for any discrete BLOG model, all the instantiations σ

constructed in Gen-Sample-RS have supportive numberings and are achievable.

This fact will be helpful in later proofs.

Lemma 5.1. If σ is an instantiation constructed during a run of Gen-Sample-RS,

then the order in which variables were added to σ is a supportive numbering for σ,

and σ is achievable.

Proof. At the beginning of a run of Gen-Sample-RS, the instantiation σ con-

structed so far is the empty instantiation, which has a trivial supportive numbering

and is clearly achievable. As an inductive hypothesis, suppose the value of the

program variable σ after n calls to Inst-One-Var has the specified supportive

numbering and is achievable. If Inst-One-Var returns an instantiation (σ;X =x),

then we know Get-CPD-And-Args(M , X, σ) returned an elementary CPD c and

argument values (q1, . . . , qm). Since we know σ is achievable, Theorem 4.12 ensures

that σ supports X. Thus the new instantiation (σ;X =x) has the desired supportive

264



Chapter 5. Inference for BLOG Models

numbering. Theorem 4.12 also tells us:

c(o, (q1, . . . , qm)) = cXM(o, λX
M(σ))

for each o∈ range (X). Since x is sampled from Sample(c, q1, . . . , qm), it follows that

cXM(x, λX
M(σ)) > 0. Thus (σ;X =x) has a supportive numbering that yields no zero

factors, so by Proposition 4.6, it is achievable. The inductive step is complete.

The next lemma makes a connection between the basic variables accessed by

Get-CPD-And-Args and the labeled graph structure of the canonical CBN BM .

Recall that a variable W is an active parent of X given σ if there is an edge

(W → X | A) such that σ entails A, that is, ev (σ) ⊆ A.

Lemma 5.2. Let M be structurally well-defined BLOG model, and let BM be its

canonical CBN. Let X be any basic variable in VM and σ be any finite, achievable

instantiation on VM . Then all the variables on which Get-CPD-And-Args(M ,

X, σ) calls Get-Var-Value are active parents of X given σ in BM .

Proof. Because every quantified formula and set expression in M is structurally

bounded, we know by Theorem 4.12 that Get-CPD-And-Args(M , X, σ) termi-

nates in a finite amount of time. Therefore it calls Get-Var-Value on a finite

number of variables. Let W1,W2, . . . ,Wn be the distinct variables on which Get-

CPD-And-Args(M , X, σ) calls Get-Var-Value, in order by the first call for

each variable. Also, let σ0 = >, and let σi = σ[{W1, . . . ,Wi}] for i∈{1, . . . , n}.

Since the behavior of GEt-CPD-And-Args depends on σ only through calls to

Get-Var-Value, we know that Get-CPD-And-Args(M , X, σi) calls Get-Var-

Value on the variables W1, . . . ,Wi+1 in that order. We will show by induction that

the instantiations σ0, . . . , σn are all nodes in the decision tree TX
BM

, and W1, . . . ,Wn

are all active parents of X given σ in BM .

265



Chapter 5. Inference for BLOG Models

The base case is for σ0 and W1. Since σ0 = >, it is the root of TX
BM

. By

the construction in Definition 4.20, the split variable for σ0 is the first variable on

which Get-CPD-And-Args(M , X, σ0) calls Get-Var-Value, namely W1. By

the definition of a CBN, a node σ0 in a decision tree can split on a variable W1 only

if W1 is an active parent of X given σ0. Therefore W1 must be an active parent of

X given σ0, and hence given the extension σ as well.

For the inductive case, suppose σi is a node in TX
BM

with Wi+1 as its split variable,

and consider σi+1 = (σi;Wi+1 = σWi+1
). Since σ is achievable, we know σWi+1

∈

range (Wi+1|σi), so σi+1 is a child of σi in TX
BM

. By the same argument as in the base

case, σi+1 splits on Wi+2 and Wi+2 is an active parent of X given σ. So the induction

is complete.

We can now prove our first termination result, for the subroutine Inst-One-var.

Lemma 5.3. If M is a structurally well-defined BLOG model and σ is an achievable,

incomplete instantiation of VM , then the function Inst-One-Var(M , σ) returns an

instantiation after a finite amount of time.

Proof. Because M is structurally well-defined, we know by Theorem 4.12 that every

call to Get-CPD-And-Args on M terminates in finite time. So there are two ways

Inst-One-Var could fail to return an instantiation: it could finish iterating over all

the basic variables without instantiating any of them, reaching the error statement

at the end of the function; or it could iterate over the basic variables forever without

instantiating any of them. In either case, it must be that Get-CPD-And-Args(M ,

X, σ) returns undet on every variable X ∈VM \ vars (σ). Assume for contradiction

that this is true.

Consider the context-specific graph Gσ
M derived from the CBN BM by retaining

only those edges that are active given σ. Because M is structurally well-defined, we

266



Chapter 5. Inference for BLOG Models

know BM is structurally well-defined, and hence (by Lemma 3.18 and the fact that

σ is achievable) Gσ
M has a topological numbering πσ.

Because σ is incomplete, there is some variable in VM \ vars (σ). Let Y be the

first such variable according to πσ. This implies that Predπσ [Y ] ⊆ vars (σ), and thus

because πσ is topological, all the variables that are active parents of Y given σ are in

vars (σ). It follows by Lemma 5.2 that all the variables on which Get-CPD-And-

Args(M , Y , σ) calls Get-Var-Value are in vars (σ). Thus Get-CPD-And-

Args(M , Y , σ) cannot return undet, and we have the desired contradiction.

We can finally prove our main termination result for this rejection sampling

algorithm.

Theorem 5.4. Let M be a structurally well-defined BLOG model, and let VT be a

finite subset of VM . Then Gen-Sample-RS(M , VT ) returns an instantiation in a

finite amount of time.

Proof. By Lemma 5.1, we know all the instantiations σ constructed by Gen-Sample-

RS(M , VT ) are achievable and have a common supportive numbering. Because the

instantiations passed into Inst-One-Var are all achievable (and also incomplete,

because Gen-Sample-RS only continues running as long as some variables in VT

are not instantiated), Lemma 5.3 tells us that each call to Inst-One-Var returns

an instantiation in finite time. Thus, the only way Gen-Sample-RS can run for-

ever is if it increases the size of σ forever with calls to Inst-One-Var, without ever

instantiating all the variables in VT .

Assume for contradiction that this occurs. Let σ0, σ1, σ2, . . . be the sequence of

values of the program variable σ. Now consider the infinite conjunction ∧iσi. Because

the order in which the variables were instantiated is a supportive numbering for every

σi (by Lemma 5.1), it is a supportive numbering for ∧iσi as well; the fact that this

267



Chapter 5. Inference for BLOG Models

supportive numbering yields no zero factors also carries over to ∧iσi. So because all

BLOG models respect their outcome space (Proposition 4.6), ∧iσi is achievable.

Therefore by Lemma 3.18, the context-specific graph G∧iσi
BM

has a topological

numbering π. Because there is no i such that VT ⊆ vars (σi), we know ∧iσi is not

complete. Let Y be the first variable according to π that is not in vars (∧iσi). Let

Pa∧iσi(Y ) be the set of active parents of Y given ∧iσi. Because π is topological,

we know this set is finite and is a subset of vars (∧iσi). Therefore there is some

instantiation σi in the sequence such that Pa∧iσi(Y ) ⊆ vars (σi). And σi activates

no more edges than ∧iσi does, so it follows that Paσi(Y ) ⊆ vars (σi). Thus by

Lemma 5.2, Get-CPD-And-Args(M , Y , σi) will not call Get-Var-Value on

any variable not in vars (σi); hence it will not return undet. The same holds for all

instantiations after σi in the sequence.

Thus, in calls to Inst-One-Var after the ith one, Get-CPD-And-Args(M ,

Y , σ) will not return undet. So at this point, Inst-One-Var will instantiate Y

as soon as it reaches Y in its iteration over basic variables. The iterator returned

by Get-Basic-Vars-Iter uses some global numbering πg of the basic variables.

So after the ith call, Inst-One-Var can instantiate at most πg(Y ) other variables

before instantiating Y . So Y is indeed included in σ at some point, contradicting

the assumption that it is not in vars (∧iσi).

5.2.3 Correctness

We have now shown that on a structurally well-defined BLOG model M , each call to

the function Gen-Sample-RS generates a sample in a finite amount of time. But

the sample is not an outcome in ΩM : it is a finite instantiation on the basic random

variables, which represents a set of outcomes. Thus, our algorithm is best viewed

as a rejection sampler not on the original outcome space ΩM , but on a space whose

268



Chapter 5. Inference for BLOG Models

elements are events in ΩM . Specifically, these events correspond to instantiations

returned by Gen-Sample-RS. We will call this set of events Σ.

We begin our correctness proof by showing that the proposal distribution defined

by Gen-Sample-RS has certain properties.

Lemma 5.5. Let M be a structurally well-defined BLOG model, e be a finite evidence

instantiation, and VQ be a finite set of query variables. Let q be the distribution on

return values defined by Gen-Sample-RS(M , vars (e) ∪ VQ). Let Σ be the set of

instantiations that have a positive probability of being returned. Then:

i. For each instantiation σ ∈Σ, q(σ) = PM(σ).

ii. The instantiations in Σ are mutually disjoint.

iii. For each instantiation σ ∈Σ, either ev (σ) ⊆ ev (e) or ev (σ) ∩ ev (e) = ∅.

iv. For each instantiation σ ∈Σ and each instantiation q of VQ, either ev (σ) ⊆

ev (q) or ev (σ) ∩ ev (q) = ∅.

Proof. The possible runs of Gen-Sample-RS can be thought of as paths through

a tree, where the nodes are instantiations that serve as values for the variable σ in

Gen-Sample-RS. All runs start at the root node, which is the empty instantiation.

At each node σ, the tree splits on the variable X found by Inst-One-Var; then

the children of σ have the form (σ;X =x). A particular run corresponds to a path

from the root of the tree. A run terminates when the evidence and query variables

have all been instantiated; we showed in Theorem 5.4 that this always occurs after

finitely many steps. Because the decision about whether to return an instantiation

or keep extending it is made deterministically based on whether the instantiation

includes all the target nodes, the instantiations that get returned are always leaves

in the tree: no trajectories go beyond them. These leaf nodes form the set Σ.

269



Chapter 5. Inference for BLOG Models

There cannot be more than one path from the root of this tree to the same

instantiation, because two paths that diverge at some node assign contradictory

values to the variable that was split on at that node. Thus, for any instantiation

σ ∈Σ, the proposal probability q(σ) is the probability of the unique path that reaches

σ. If a node τ in the tree splits on a variableX, then the Sample function generates a

particular value o∈ range (X) with probability c(o, (q1, . . . , qm)), where (c, q1, . . . , qm)

is the value returned by Get-CPD-And-Args(M , X, τ). By Theorem 4.12, this

probability is equal to cXM(o, λX
M(τ)). So the probability of a leaf node σ being

returned is:

q(σ) =
∏

X ∈ vars(σ)

cXM(σX , λ
X
M(σ))

By Lemma 3.7, this is equal to PM(σ), so we have proven part (i).

For part (ii), consider any two distinct leaf nodes σ and σ′. Let ρ be the last

node that is on the paths from the root to both σ and σ′. Then σ and σ′ disagree

on the value of the variable that ρ splits on, so they define disjoint events. For parts

(iii) and (iv), note that an instantiation is returned only if it assigns values to all the

query and evidence variables. If the values assigned to these variables by σ match

e or q exactly, then ev (σ) ⊆ ev (e) or ev (σ) ⊆ ev (q). Otherwise, σ must disagree

with the evidence or query insantiation on some variable, and thus defines a disjoint

event.

The next step is to prove a convergence result for the estimates returned by

BLOG-Rejection-Sampling. To apply our results from Section 2.5.1, we need

to view BLOG-Rejection-Sampling as a rejection sampler on Σ. This requires

some additional notation. Let Ẽ be the set of events in Σ that are consistent with

the evidence: Ẽ = {σ ∈Σ : ev (σ) ⊆ ev (e)}. For any given instantiation q of the

query variables, define the query event Q̃ analogously. We know from Lemma 5.5(i)

that the probability measure q on Σ defined by sampling from Gen-Sample-RS

270



Chapter 5. Inference for BLOG Models

has the property that q(σ) = PM(σ). The notational similarity here obscures the

difference between q and PM : PM is a probability measure on possible worlds, while

q is a probability measure on events represented by instantiations. Thus, we can

write q(Ẽ) to denote the sum of the probabilities of all the events consistent with

the evidence; PM(Ẽ) is not well-formed. We also define P̃ eE to be the probability

measure on Ẽ such that P̃ eE(σ) = q(σ)/q(Ẽ).

Lemma 5.6. Let M be a structurally well-defined BLOG model, e be a finite evidence

instantiation with PM(e) > 0, VQ be a finite set of query variables, and q be any

instantiation of VQ. Let P̃ , Ẽ, and Q̃ be derived from PM , e, and q as described

above. Then the table entry for q returned by BLOG-Rejection-Sampling(M ,

e, VQ, N ) converges with probability one to P̃ eE(Q̃ ∩ Ẽ) as N →∞.

Proof. The instantiations returned by Gen-Sample-RS are independent samples

from the proposal distribution q on Σ. By definition, P̃ eE(σ) is proportional to q(σ) on

Ẽ, with proportionality constant 1

q( eE)
. In BLOG-Rejection-Sampling, a sample

σ is tallied for some query instantiation if it is in Ẽ, and tallied for the particular

query instantiation q if it is in Q̃ ∩ Ẽ. The Normalize function divides all counts

by the sum of the counts at the end, which reproduces the estimate in Equation 2.6

because the sum of the counts is the number of samples that were in Ẽ. Thus, all the

conditions of Proposition 2.13 are satisfied, so the convergence property holds.

This convergence result may seem different from the one we want to prove: our

goal was to approximate PM(q|e), not P̃ eE(Q̃∩ Ẽ). It turns out, however, that these

quantities are the same. To prove this, we will use the following lemma. Note the

correspondence between the conditions in this lemma and the properties we proved

in Lemma 5.5.

Lemma 5.7. Let P be a probability measure on a countable set Ω, and let Σ be a

271



Chapter 5. Inference for BLOG Models

set of non-empty subsets of Ω. Also, let A be a subset of Ω and define Ã , {s∈Σ :

s ⊆ A}. If:

i.
∑

(s∈Σ) P (s) = 1;

ii. the sets in Σ are mutually disjoint; and

iii. for each s∈Σ, either s ⊆ A or s ∩ A = ∅,

then
∑

(s∈ eA) P (s) = P (A).

Proof. Because the sets in Σ are mutually disjoint, we know:

∑
s∈ eA

P (s) = P

⋃
s∈ eA

s


And since each s in Ã is a subset of A, we know

⋃
(s∈ eA) s ⊆ A. Therefore:

∑
s∈ eA

P (s) ≤ P (A)

Now let us introduce the sets B = Ω \ A and B̃ = {s∈Σ : s ⊆ B}. We can repeat

the argument above for B̃ and B, yielding:

∑
s∈ eB

P (s) ≤ P (B)

But A and B form a partition of Ω by definition, and Ã and B̃ form a partition of

Σ by condition (iii). So we can rewrite our last inequality as:

∑
s∈Σ

P (s)−
∑
s∈ eA

P (s) ≤ 1− P (A)

272



Chapter 5. Inference for BLOG Models

By condition (i), the first sum on the left hand side of this inequality is 1. So a bit

of algebra yields: ∑
s∈ eA

P (s) ≥ P (A)

Combined with the reverse result that we got earlier, this yields the desired equality.

We are now in a position to prove our main theorem about our rejection sampling

algorithm.

Theorem 5.8. Let M be a structurally well-defined BLOG model. Then for any fi-

nite evidence instantiation e, any finite set of query variables VQ ⊆ VM , and any in-

stantiation q of VQ, the probability estimates for q returned by BLOG-Rejection-

Sampling(M , e, VQ, N) converge to the posterior probability PM(q|e), taking finite

time per sampling step.

Proof. The fact that every sampling step terminates in finite time is given by Theo-

rem 5.4. We also know from Lemma 5.6 that the estimates in question converge to

P̃ eE(Q̃ ∩ Ẽ). We just need to check that this result, obtained by sampling events, is

still correct at the level of individual outcomes. We can write out the value to which

the estimates converge more explicitly as:

P̃ eE(Q̃ ∩ Ẽ) =
q(Q̃ ∩ Ẽ)

q(Ẽ)

=

∑
(σ ∈ eQ∩ eE) PM(σ)∑

(σ ∈ eE) PM(σ)

Here we have used the result from Lemma 5.5(i) that q(σ) = PM(σ).

We will use Lemma 5.7 to show that the sum in the numerator is equal to

PM(q; e), and the denominator is equal to PM(e). We must check that the conditions

273



Chapter 5. Inference for BLOG Models

for applying that lemma are satisfied. The outcome space called Σ in the lemma

will be the same as the outcome space we have been calling Σ, namely the set of

all instantiations that can be returned by Gen-Sample-RS. We know the proposal

distribution q is a probability distribution on Σ, so the first condition in Lemma

5.7 is satisfied. The second condition in Lemma 5.7 is guaranteed by the second

property in Lemma 5.5. The last condition in Lemma 5.7 depends on the particular

set A that we use. For the numerator we will use ev (q; e) as A, which means Ã is

Q̃ ∩ Ẽ; for the denominator we will use ev (e) as A, so that Ã is Ẽ. In both cases,

condition (iii) is guaranteed by the last two properties in Lemma 5.5.

So by two applications of Lemma 5.7, we get:

P̃ eE(Q̃ ∩ Ẽ) =
PM(q; e)

PM(e)

as desired.

5.3 Likelihood weighting

The rejection sampling algorithm described in the previous section suffers from two

serious drawbacks. One of these drawbacks is common to rejection sampling algo-

rithms in general: as the number of observed variables increases, the probability

of the evidence decreases exponentially, and thus the fraction of the samples that

are accepted becomes exponentially small. But our algorithm for rejection sampling

on partial instantiations has an additional drawback: the choice of which variable

to instantiate next is determined solely by the variable ordering defined by Get-

Basic-Vars-Iter, subject to the constraint that variables cannot be instantiated

until they are supported. The query and evidence play no role in determining which

variable to instantiate next. Thus, the algorithm often ends up instantiating far

274



Chapter 5. Inference for BLOG Models

more variables than it needs to in order to support the query and evidence variables.

To remedy both these drawbacks, we propose a guided form of likelihood weight-

ing over partial instantiations. Recall from Section 2.5.2 that in a likelihood weight-

ing algorithm, we sample values for the non-evidence variables according to their

CPDs, and deterministically instantiate the evidence variables to their observed

values. We then assign the sample a weight, which is the product of the proba-

bilities of the evidence variables given their parents. In our case, the samples are

self-supporting finite instantiations. The main innovation is that in order to avoid

instantiating variables unnecessarily, we maintain a stack of variables that we know

we must instantiate in order to obtain a self-supporting instantiation that includes

the query and evidence variables.

Pseudocode for our algorithm is shown in Figure 5.3. The top-level function

BLOG-Likelihood-Weighting simply gets weighted samples from Gen-Sample-

LW and tallies the results; most of the action is in Gen-Sample-LW. This function

begins with an empty instantiation and an empty stack of variables to instantiate. It

then pushes one of the query or evidence variables onto the stack — it is clear that

these variables will need to be instantiated at some point. Now the algorithm enters

the central “do...until” loop. Each time through this loop, the function looks at the

variable X on the top of the stack, and tries to determine its applicable CPD and

argument values given the current instantiation σ. If σ does not support X, then

Get-CPD-And-Args will end up calling Get-Var-Value on a variable that is

not instantiated, and returning undet. Now comes the main trick: the algorithm

identifies the uninstantiated variable V that was passed to Get-Var-Value, and

pushes it onto the stack of variables to instantiate. This makes sense because Get-

CPD-And-Args will always return undet on X until V is added to σ. If V is not

yet supported either, then the algorithm pushes another variable onto the stack, and

so on. This inner loop terminates when the algorithm finds that the variable on the

275



Chapter 5. Inference for BLOG Models

function BLOG-Likelihood-Weighting(M , e, VQ, N )
inputs: M , a discrete BLOG model

e, a finite evidence instantiation on VM

VQ, a set of query variables in VM

N , the number of samples to generate
returns a mapping from range (VQ) to probabilities, with implicit zeroes

W← a map from range (VQ) to real numbers, with values
lazily initialized to zero when accessed

for j = 1 to N do
(σ, w)←Gen-Sample-LW(M , e, VQ)
W[q]←W[q] + w where q = σ[VQ]

return Normalize(W)

function Gen-Sample-LW(M , e, VQ)
returns an instantiation and a weight

σ←>; stack← an empty stack; w← 1
loop

if stack is empty
if some X in (VQ ∪ vars (e)) is not in vars (σ)

Push(X , stack)
else

return (σ, w)

do
X ←Peek(stack)
val←Get-CPD-And-Args(M , X , σ)
if val = undet

V ← last uninstantiated variable on which Get-Var-Value was called
Push(stack , V )

until val 6= undet

X ←Pop(stack)
(c, (q1, . . . , qm))← val
if X in vars (e)

x← eX

w←w × Get-Prob(c, x, (q1, . . . , qm))
if w = 0 return (σ, w)

else
x←Sample(c, (q1, . . . , qm))

σ← (σ; X = x)

Figure 5.3: Likelihood weighting algorithm for BLOG.

276



Chapter 5. Inference for BLOG Models

top of the stack is supported by σ.

At this point, the algorithm pops the top variable X off the stack. Next come the

lines that distinguish this as a likelihood weighting algorithm: if X is an evidence

variable, then the function sets it equal to its observed value, rather than sampling

a value from its CPD. To account for this biased sampling, the probability of X’s

observed value given its parent values in σ is multiplied into the weight w. On the

other hand, if X is not an evidence variable, then the algorithm samples a value for

it using its CPD as usual.

As an example, consider the balls-and-urn model in Figure 4.1. If we want to

query the number variable NBall given some color observations, the algorithm begins

by pushing NBall onto the stack. Since NBall (which has no parents) is supported

by the empty instantiation, it is immediately removed from the stack and sampled.

Next, the first evidence variable VObsColor [Draw1] is pushed onto the stack. A call to

Get-CPD-And-Args on VObsColor [Draw1] returns undet because VBallDrawn [Draw1]

needs to be instantiated. So VBallDrawn [Draw1] is added to the stack, and is sam-

pled immediately because it is supported by σ (which now includes NBall). Now

VObsColor [Draw1] is on the top of the stack again, and the algorithm finds that

VTrueColor [(Ball, n)] (for n equal to the sampled value of VBallDrawn [Draw1]) is the next

variable that needs to be instantiated. This variable can be sampled immediately.

Now VObsColor [Draw1] is finally supported by σ, so it is removed from the stack and

instantiated to its observed value. This process is repeated for all the observations.

The resulting sample will get a high weight if the sampled true colors for the balls

match the observed colors.

Intuitively, this algorithm is the same as standard likelihood weighting, in that

we sample the variables in some topological order. The difference is that we sample

only those variables that are needed to support the query and evidence variables,

and we do not bother sampling any of the other basic variables of the BLOG model.

277



Chapter 5. Inference for BLOG Models

Since the weight for a sample only depends on the conditional probabilities of the

evidence variables, sampling additional variables would have no effect.

Lemma 5.9. Let M be a structurally well-defined BLOG model, e be a finite evidence

instantiation, and VQ be a finite set of query variables. Then each call to Gen-

Sample-LW(M , e, VQ) returns a weighted sample after a finite amount of time.

Proof. There are two loops in Gen-Sample-LW that could run forever. Let us

look first at the inner loop, “do...until val 6= undet”. Note that the instantiation

σ does not change inside this loop; it is also possible to show that the σ is always

achievable when this part of the code is reached (the argument is similar to that

for Lemma 5.1, with the additional note that if setting an evidence variable to its

observed value yields an unachievable instantiation, the weight w will be zero and

Gen-Sample-LW will return immediately).

Assume for contradiction that some execution of this loop does not terminate.

Let V0, V1, V2, . . . be the infinite sequence of variables that are pushed onto the stack.

Note that Vi+1 is pushed onto the stack only if Get-CPD-And-Args(M , Vi, σ) calls

Get-Var-Value on Vi+1. By Lemma 5.2, Vi+1 is an active parent of Vi in BM given

σ. Thus the sequence V0, V1, V2, . . . forms a path V0 ← V1 ← V2 ← · · · consisting

of edges that are activated by σ. If some variable occurs more than once in this

sequence, then it is a cycle; otherwise it is an infinite receding chain. But by Lemma

3.18, the context-specific graph gor any achievable instantiation in a structurally

well-defined CBN has a topological numbering, so we have a contradiction.

Now consider the outer loop in Gen-Sample-LW, which adds a variable to σ

each time it is executed. If this loop runs forever, then it generates an infinite se-

quence of instantiations σ0, σ1, σ2, . . .. The infinite conjunction ∧iσi has a supportive

numbering that yields no zero factors, so by Proposition 4.6, it is achievable. By

an extension of our argument in the previous paragraph, it is easy to show that

278



Chapter 5. Inference for BLOG Models

every variable pushed onto the stack is an active ancestor of some query or evidence

variable given ∧iσi. But this set of active ancestors cannot be infinite, because that

would imply that one of the finitely many query and evidence nodes has infinitely

many active ancestors, contradicting the existence of a topological numbering on the

context-specific graph G∧iσi
BM

. So the loop must stop after a finite amount of time.

Theorem 5.10. Let M be a structurally well-defined BLOG model. Then for any

finite evidence instantiation e with PM(e) > 0, any finite set of query variables

VQ ⊆ VM , and any instantiation q of VQ, the probability estimates for q returned by

BLOG-Likelihood-Weighting(M , e, VQ, N) converge to the posterior probabil-

ity PM(q|e), taking finite time per sampling step.

Proof. The fact that each sampling step takes finite time is given by Lemma 5.9. To

prove correctness, let Σ be the set of instantiations that have a positive probability

of being returned by Gen-Sample-LW. A proof similar to that of Lemma 5.5 shows

that the instantiations in Σ define disjoint sets, and the probability of an instantiation

σ ∈Σ being returned is:

q(σ) =
∏

X ∈ vars(σ)\VE

cXM(σX , λ
X
M(σ))

where VE = vars (e). It is also straightforward to show that the weight on an

instantiation σ is:

w(σ) =
∏

X ∈VE

cXM(σX , λ
X
M(σ))

As in the rejection sampling section, we define Ẽ to be {σ ∈Σ : ev (σ) ⊆ ev (e)}.

In the likelihood weighting case, every instantiation that is returned satisfies the

evidence, so Ẽ = Σ. We also define Q̃ in an analogous way based on q. Now define

279



Chapter 5. Inference for BLOG Models

P̃ eE to be the probability measure on Ẽ such that:

P̃ eE(σ) =
PM(σ)∑

(σ ∈ eE) PM(σ)

We claim that Gen-Sample-LW implements importance sampling (as described in

Section 2.5.2) with P̃ eE as the target distribution. To see this, note that by Lemma

3.7,

PM(σ) =
∏

X ∈ vars(σ)

cXM(σX , λ
X
M(σ))

So we have:

w(σ) =
PM(σ)

q(σ)

=
βP̃ eE(σ)

q(σ)

where β =
(∑

(σ ∈ eE) PM(σ)
)−1

. Thus, w(σ) satisfies Equation 2.8, and the condi-

tions of Theorem 2.14 are satisfied. Thus we know that the estimates returned by

Gen-Sample-LW converge with probability one to P̃ eE(Q̃ ∩ Ẽ) as N →∞.

We will now apply Lemma 5.7 to bring this result out of the realm of instan-

tiations and back to the realm of possible worlds. We can write the limit of the

estimates more explicitly as:

P̃ eE(Q̃ ∩ Ẽ) =

∑
(σ ∈ eQ∩ eE) PM(σ)∑

(σ ∈ eE) PM(σ)

Lemma 5.7 allows us to show that
∑

(σ ∈ eQ∩ eE) PM(σ) = PM(e;q), and
∑

(σ ∈ eE) PM(σ) =

PM(e). Thus we have the estimates converging to PM(e;q)/PM(e), as desired.

280



Chapter 5. Inference for BLOG Models

5.3.1 Experiments

We ran two sets of experiments using the likelihood weighting algorithm of Figure 5.3.

Both use the urn-and-balls model shown in Figure 4.1. The first experiment estimates

the number of balls in the urn given the colors observed on 10 draws; the second

experiment is an identity uncertainty problem. In both cases, we run experiments

with both a noiseless sensor model, where the observed colors of balls always match

their true colors, and a noisy sensor model, where with probability 0.2 the wrong

color is reported.

The purpose of these experiments is to show that inference over an infinite num-

ber of variables can be done using a general algorithm in finite time. We show

convergence of our results to the correct values, which were computed by enumer-

ating equivalence classes of outcomes with up to 100 balls. More efficient sampling

algorithms for these problems have been designed by hand [Pasula, 2003]; however,

our algorithm is general-purpose, so it needs no modification to be applied to a

different domain.

Number of balls given balanced observations. In the first experiment, we are

predicting the total number of balls in the urn. The prior over the number of balls is

a Poisson distribution with mean 6; each ball is blue with probability 0.5 and green

otherwise. The evidence consists of color observations for 10 draws from the urn:

five are blue and five are green. For each observation model, five independent trials

were run, each of 5 million samples.2

Fig. 5.4 shows the posterior probabilities for total numbers of balls from 1 to 15

computed in each of the five trials, along with the exact probabilities. The results

are all quite close to the true probability, especially in the noisy-observation case.

2 Our Java implementation averages about 1700 samples/sec. for the exact observation case and
1100 samples/sec. for the noisy observation model on a 3.2 GHz Intel Pentium 4.

281



Chapter 5. Inference for BLOG Models

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 2  4  6  8  10  12  14

P
ro

ba
bi

lit
y

Number of Balls

(a) Noise-free model

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 2  4  6  8  10  12  14

P
ro

ba
bi

lit
y

Number of Balls

(b) Noisy model

Figure 5.4: Posterior distributions for the total number of balls given 10 observations
(5 blue, 5 green) with two observation models. Exact probabilities are denoted by
’×’s and connected with a line; estimates from 5 sampling runs are marked with
’+’s.

The variance is higher for the noise-free model because the sampled true colors for

the balls are often inconsistent with the observed colors, so many samples have zero

weights.

Fig. 5.5 shows how quickly our algorithm converges to the correct value for a

particular probability, P (N = 2|obs). The run with deterministic observations stays

within 0.01 of the true probability after 2 million samples. The noisy-observation

run converges faster, in just 100,000 samples.

Number of balls given all-blue observations. The posterior distributions ob-

tained in the previous experiment are quite close to the prior, because observing five

blue balls and five green ones does not tell us much about the number of balls in the

urn (it does slightly favor even numbers of balls over odd numbers, and makes it very

unlikely that there is just one ball). To see how the likelihood weighting algorithm

performs when the posterior is more significantly different from the prior, we assert

282



Chapter 5. Inference for BLOG Models

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0  1e+06  2e+06  3e+06  4e+06  5e+06

P
ro

ba
bi

lit
y

Number of Samples

(a) Noise-free model

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0  1e+06  2e+06  3e+06  4e+06  5e+06

P
ro

ba
bi

lit
y

Number of Samples

(b) Noisy model

Figure 5.5: Probability that N = 2 given 10 observations (5 blue, 5 green) in (a)
the noise-free case and (b) the noisy case. Solid line indicates exact value; ’+’s are
values computed by 5 sampling runs at intervals of 100,000 samples.

different evidence: that all 10 of the balls that were drawn appeared blue. We use

the noisy-observation version of the BLOG model. Figure 5.6(a) shows that when

the prior for the number of balls is uniform over {1, . . . , 8}, the posterior puts more

weight on small numbers of balls; this makes sense because the more balls there are

in the urn, the less likely it is that they are all blue. Figure 5.6(b), using a Poisson(6)

prior, shows a similar but less pronounced effect.

Note that in Figure 5.6, the posterior probabilities computed by the likelihood

weighting algorithm are very close to the exact values (computed by exhaustive

enumeration of possible worlds with up to 170 balls). We were able to obtain this level

of accuracy using runs of 20,000 samples with the uniform prior, and 100,000 samples

using the Poisson prior. On a Linux workstation with a 3.2 GHz Pentium 4 processor,

the runs with the uniform prior took about 35 seconds (571 samples/second), and

those with the Poisson prior took about 170 seconds (588 samples/second). Such

results could not be obtained using any algorithm that constructed a single fixed

283



Chapter 5. Inference for BLOG Models

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1  2  3  4  5  6  7  8

P
ro

ba
bi

lit
y

Number of balls in urn

(a) Uniform prior

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0  5  10  15  20  25

P
ro

ba
bi

lit
y

Number of balls in urn

(b) Poisson prior

Figure 5.6: Distribution for the number of balls in the urn (Example 3.1) given
noisy observations and two different priors. Dashed lines are the prior; solid lines
are the exact posterior given that 10 balls were drawn and all appeared blue; and
plus signs are posterior probabilities computed by 5 independent runs of (a) 20,000
or (b) 100,000 samples.

BN, since the number of potentially relevant VTrueColor [b] variables is infinite in the

Poisson case.

Identity uncertainty. In the second experiment, three balls are drawn from the

urn: a blue one and then two green ones. We wish to find the probability that the

second and third draws produced the same ball. The prior distribution over the

number of balls is Poisson(6). Unlike the previous experiment, each ball is blue with

probability 0.3.

We ran five independent trials of 100,000 samples on the deterministic and noisy

observation models. Fig. 5.7 shows the estimates from all five trials approaching the

true probability as the number of samples increases. Note that again, the approxi-

mations for the noisy observation model converge more quickly. The noise-free case

stays within 0.01 of the true probability after 70,000 samples, while the noisy case

284



Chapter 5. Inference for BLOG Models

 0.2

 0.25

 0.3

 0.35

 0.4

 0  20000  40000  60000  80000  100000

P
ro

ba
bi

lit
y

Number of Samples

(a) Noise-free model

 0.2

 0.25

 0.3

 0.35

 0.4

 0  20000  40000  60000  80000  100000

P
ro

ba
bi

lit
y

Number of Samples

(b) Noisy model

Figure 5.7: Probability that draws two and three produced the same ball for (a)
noise-free observations and (b) noisy observations. Solid line indicates exact value;
’+’s are values computed by 5 sampling runs.

converges within 10,000 samples. Thus, we perform inference over a model with an

unbounded number of objects and get reasonable approximations in finite time.

5.4 Markov chain Monte Carlo

While likelihood weighting is efficient enough to yield results on some small problems,

its convergence becomes extremely slow if there are many hidden variables whose

values all have to be set consistently with the evidence. As we observed in Section

2.5.3, Markov chain Monte Carlo (MCMC) methods are a much better option for

problems with many hidden variables. In an MCMC algorithm, each sample is

generated by conditioning on the previous one. Thus, the sampler can gradually

move toward areas of the outcome space with high posterior probability, rather than

attempting to find a high-probability area independently on each sample.

In fact, MCMC algorithms have been used to achieve state-of-the-art results on

285



Chapter 5. Inference for BLOG Models

several real-world problems involving unknown objects. Pasula et al. [2003] apply an

MCMC algorithm to a citation matching task like the one in Example 4.1, and Oh

et al. [2004] apply MCMC to a multitarget tracking scenario similar to our Example

4.2. Both of these applications use the Metropolis-Hastings (M-H) algorithm that

we discussed in Section 2.5.3. The recent successes of Metropolis-Hastings suggest

that it could be applied usefully to other relational inference tasks, such as resolving

coreference among noun phrases in text. However, to recycle a comment that Gilks

et al. made about Gibbs sampling in 1994, “Until now all existing implementations

have involved writing one-off computer code in low or intermediate level languages

such as C or Fortran.” Although perhaps Matlab has replaced Fortran, this is still

true about implementations of non-Gibbs-sampling3 M-H algorithms today: the data

structures that represent MCMC states and the algorithms that compute acceptance

probabilities are application-specific. Tackling a new application — or even adding a

variable to an existing model — requires rewriting portions of the state representation

and acceptance probability code, in addition to modifying the proposal distribution.

We would prefer to have a general approximate inference system that computed

answers to queries based on a user-supplied probability model and proposal distri-

bution. We already have a formal language, namely BLOG, for representing the

models. But we still must determine how to represent MCMC states and compute

acceptance probabilities in a way that is flexible enough to support a variety of appli-

cations, yet exploits enough problem-specific structure to run at a reasonable speed.

We address these questions in this section.

In Section 5.4.1, we discuss the state space of our generic M-H algorithm. The

key point here is that it is impractical to use MCMC states that correspond to

single possible worlds; instead, states are represented with partial descriptions that

3The BUGS system, developed by Gilks and his colleagues [Thomas et al., 1992; Gilks et al.,
1994], has made Gibbs sampling much easier to use.

286



Chapter 5. Inference for BLOG Models

denote whole sets of worlds. We provide conditions under which MCMC over sets

of worlds yields asymptotically correct answers to queries. Taking advantage of this

theorem, we use state descriptions that are partial in two ways: they do not instan-

tiate irrelevant variables, and they abstract away the numbering of interchangeable

objects.

Section 5.4.2 discusses the data structures and algorithms necessary to make

generic M-H efficient. The goal here is to avoid having the time required to compute

the acceptance probability and update the MCMC state grow with the number of

hypothesized objects or the number of instantiated variables. We use data structures

that represent a proposed world as a set of differences with respect to the current

world (Section 5.4.2.1). More interestingly, we can determine which factors in the

acceptance probability need to be recomputed by maintaining a Bayes net over the

instantiated variables (Section 5.4.2.2). Section 5.5.4 presents experimental results

on the citation matching task, showing that our generic M-H system supports the

same proposal distribution that was used in a hand-coded implementation, and has

a running time of the same order of magnitude.

5.4.1 MCMC states

MCMC states serve as the interface between the general-purpose and application-

specific parts of a generic M-H system. The application-specific portions are an initial

state distribution q0, which generates an MCMC state, and a proposal distribution

q, which takes in an MCMC state xn and returns another MCMC state x′, along

with the proposal probability ratio q(xn|x′)/q(x′|xn).

The obvious way to apply MCMC to a BLOG model is to let the MCMC states

be possible worlds. However, proposal distributions that are used in practice often

do not propose complete partial worlds. For instance, the proposer used by [Pasula

287



Chapter 5. Inference for BLOG Models

et al., 2003] uses moves that split and merge publications. It only proposes titles

and author names for publications that are cited by some citation in the proposed

state. By contrast, a full possible world for a model such as the one in Figure 4.3

typically contains many publications that are not cited, that is, are not the value of

PubCited(c) for any citation c. The world must specify the values of the Title and

NthAuthor functions on all the publications that exist, including the uncited ones.

In fact, in our model for citations, the attributes of uncited publications are ir-

relevant for inference: in a world where a publication p is uncited, the Title and

NthAuthor variables defined on p are not active ancestors of query or evidence vari-

ables. Proposing values for these variables would be a waste of time. In fact, in some

BLOG models — such as a model for aircraft tracking with variables State(a, t) for

every aircraft a and natural number t — each possible world assigns non-null values

to infinitely many variables. In such models, proposing and storing full possible

worlds would require infinite time and space.

5.4.1.1 Events as MCMC states

Our generic MCMC architecture circumvents these difficulties by allowing proposal

distributions to use partial descriptions of possible worlds. For instance, the proposer

for citation matching specifies the values of the PubCited function on all citations,

and specifies attributes for the cited publications and their authors. Such a partial

specification can be thought of as an event: a set of full possible worlds that satisfy

the specification.

Thus, our system runs a Markov chain over a set Σ of events, which are subsets of

the outcome space Ω. The following theorem gives conditions under which a Markov

chain over Σ will yield correct answers to queries.

Theorem 5.11. Let P be a probability distribution over a set Ω, E and Q be subsets

288



Chapter 5. Inference for BLOG Models

of Ω, and Σ be a set of subsets of Ω. Suppose s1, s2, . . . , sN are samples from an

ergodic Markov chain over Σ with stationary distribution proportional to P (s). If:

1. Σ is a partition of E; and

2. for each s ∈ Σ, either s ⊆ Q or s ∩Q = ∅,

then 1
N

∑N
n=1 1sn⊆Q converges to p(Q|E).

Proof. Let π be the stationary distribution of the Markov chain, and let Q̃ = {s ∈

Σ : s ⊆ Q}. Then by standard results about ergodic Markov chains, 1
N

∑N
n=1 1sn⊆Q

converges to π(Q̃) as N → ∞. So it suffices to show that π(Q̃) = p(Q|E). By

definition, π(Q̃) =
∑

s∈ eQ π(s). Then since π(s) is defined on Σ and is proportional

to p(s):

π(Q̃) =

∑
s∈ eQ P (s)∑
s∈Σ P (s)

(5.1)

By the assumption that Σ is a partition of E, we know
∑

s∈Σ P (s) = P (E). We

now argue that Q̃ is a partition of Q ∩ E. To see this, consider any ω ∈Q ∩ E.

Because Σ is a partition of E, there is exactly one set s ∈ Σ such that ω ∈ s. Given

that ω ∈ s ∩ Q, it follows by assumption 2 that s ⊆ Q. Therefore s ∈ Q̃. Thus,

since Q̃ ⊆ Σ, there is exactly one s∈ Q̃ containing ω. So Q̃ is a partition of Q ∩ E

and
∑

s∈ eQ P (s) = P (Q ∩ E). Plugging into Eq. 5.1, we find that π(Q̃) = P (Q∩E)
P (E)

=

P (Q|E).

The next section discusses a way to choose the event set Σ.

5.4.1.2 Partial instantiations

The most straightforward events to use as MCMC states are those corresponding to

partial instantiations of the basic random variables. To satisfy Theorem5.11, these

partial instantiations must instantiate the evidence variables to their observed values,

289



Chapter 5. Inference for BLOG Models

instantiate the query variables, and define a partition of the worlds consistent with

the evidence.

Furthermore, to compute the acceptance probability given in Eq. 2.10, the system

must be able to compute the ratio P (s′)/P (sn) for events sn, s
′ ∈Σ. In general, it

is not easy to compute the probability of a partial instantiation: for instance, if

the instantiation just includes the evidence variables, then computing its probability

involves summing out all the hidden variables. In some cases it is possible to sum

out uninstantiated variables analytically, but our generic MCMC system currently

cannot do so.

Instead, we limit ourselves to partial instantiations whose probabilities are given

by simple product expressions. These are the self-supporting instantiations: those

that include all the active parents of the variables they instantiate. To say this

formally, we need a bit more background on contingent BNs (see Chapter 3 for

details). In a contingent BN, the conditional probability distribution (CPD) for a

variable V is given by a tree where each internal node is labeled with a parent variable

U , edges out of a node are labeled with values of U , and each leaf is labeled with

a probability distribution over V . A particular parent variable may occur on some

paths through the tree and not on others: for instance, in the tree for TitleText(Cit1),

the root is labeled with PubCited(Cit1), and the variable Title((Pub, 7)) occurs only

in the subtree where PubCited(Cit1) = (Pub, 7). An instantiation σ supports V if

it is complete enough so that only one path through the tree is consistent with σ.

This path leads to a leaf with some distribution over V ; we write pV (v|σ) for the

probability of the value v under this distribution.

An instantiation is self-supporting if it supports every variable that it instantiates.

By the semantics of a contingent BN, if σ is a finite, self-supporting instantiation,

290



Chapter 5. Inference for BLOG Models

then:

P (σ) =
∏

X ∈ vars(σ)

cX(σX , λ
X(σ)) (5.2)

where σX is the value that σ assigns to X. Thus, if we use self-supporting partial

instantiations as our MCMC states, we can compute P (s′)/P (sn) with no summa-

tions.

To satisfy the conditions of Theorem 5.11, we need to use self-supporting in-

stantiations that form a partition of E. In particular, we need to ensure that these

instantiations are mutually exclusive: if some of them define overlapping events, then

worlds occurring in several events will be overcounted. The following result ensures

that we can avoid overlaps by using “minimal” instantiations.

Definition 5.1. Let V be a set of random variables, and σ be a self-supporting in-

stantiation that instantiates V. Then σ is minimal beyond V if no sub-instantiation

of σ that instantiates V is self-supporting.

Proposition 5.12. Let V be a set of random variables in a contingent BN. The self-

supporting instantiations that are minimal beyond V are mutually contradictory.

Proof. Assume for contradiction that two distinct self-supporting instantiations σ

and τ that are minimal beyond V are both satisfied by some world ω. By definition,

neither σ nor τ can be a sub-instantiation of the other. Therefore σ instantiates a

variable, call it X∗, that τ does not instantiate. Consider a graph over vars (σ) where

there is an edge from X to Y if the path through Y ’s CPD tree that is consistent

with ω contains a node labeled with X. Since σ is minimal beyond V, there must

be a directed path in this graph from X∗ to V; otherwise the sub-instantiation

obtained by removing X∗ and all its descendents would still instantiate V and be

self-supporting. But since τ is also consistent with ω, τ must instantiate all the

variables along this directed path in order to be self-supporting. This contradicts

291



Chapter 5. Inference for BLOG Models

the assumption that τ does not instantiate X∗.

We have now identified a set of partial instantiations that satisfy the conditions

of Thm. 5.11 and have probabilities that are easy to compute. If the evidence

variables are VE and the query variables are VQ, we use the set of self-supporting

instantiations that assign the observed values to VE and are miminal beyond VE ∪

VQ.

5.4.1.3 Object identifiers

Recall that in a BLOG model, the objects that satisfy a given number statement are

numbered. For instance, in worlds where there are 10 publications, the publication

objects are (Pub, 1), . . . , (Pub, 10). We will refer to guaranteed and non-guaranteed

objects that exist in possible worlds as concrete objects. But the split-merge proposal

distributions used, for example, by Pasula et al. [2003] do not make any provisions

for numbering the publications they create. When the proposal takes a publication,

say (Pub, 7), and splits off some co-referring citations to join a new publication,

what number does this new publication get? In choosing a numbering scheme, we

have to ensure that merge moves — for example, eliminating (Pub, 3) and adding all

its citations to (Pub, 7) — are still reversible. That is, the probability of splitting

(Pub, 7) and getting (Pub, 3) back again must be nonzero. One solution is to choose

the new publication’s number randomly from the numbers that are unused in the

current partial instantiation. But then the proposer must take these numbering

choices into account when computing forward and backward proposal probabilities.

All this bother about numbering seems unnecessary, since the publication objects

are interchangeable. In fact, our general MCMC system includes an additional layer

of abstraction that can eliminate the need to worry about numbering when writing

proposal distributions. The idea is to specify MCMC states using abstract partial

292



Chapter 5. Inference for BLOG Models

instantiations, in which unnumbered object identifiers can be used as both arguments

and values for basic random variables. For instance, an abstract partial instantiation

could say: PubCited(Cit1) = Pub@A3F, Title(Pub@A3F) = “foo”.

Definition 5.2. An abstract function application variable has the form Af [o1, . . . , ok]

where f is a k-ary function symbol and o1, . . . , ok are concrete objects or object iden-

tifiers. An abstract partial instantiation σ consists of a set of number variables4 and

abstract function application variables, denoted vars (σ), and a function that maps

each element of vars (σ) to a concrete object or object identifier. For each type,

an abstract partial instantiation uses either object identifiers or concrete objects to

represent the non-guaranteed objects, not both.

Semantically, object identifiers can be thought of as existentially quantified logical

variables. The abstract partial instantiation used as an example above is equivalent

to ∃x((PubCited(Cit1) = x) ∧ (Title(x) = “foo”)). When an abstract instantiation

uses several object identifiers, they are also asserted to be distinct.

Definition 5.3. A partial instantiation τ is a concrete version of an abstract partial

instantiation σ if there is a one-to-one function h from object identifiers used in σ

to concrete objects that exist in some world consistent with τ , such that σ instantiates

Af [o1, . . . , ok] if and only if τ instantiates Vf [h(o1), . . . , h(ok)], and h(σ(Af [o1, . . . , ok])) =

τ (Vf [h(o1), . . . , h(ok)]). A world satisfies an abstract partial instantiation σ if and

only if it satisfies some concrete version of σ.

For instance, the abstract partial instantiation:

#Pub= 3, PubCited(Cit1) =Pub@A3F, Tit(Pub@A3F)= “foo”

has three concrete versions:

#Pub= 3, PubCited(Cit1) = (Pub, 1), Tit((Pub, 1))= “foo”

4In models where objects generate other objects, number variables can also be abstract.

293



Chapter 5. Inference for BLOG Models

#Pub= 3, PubCited(Cit1) = (Pub, 2), Tit((Pub, 2))= “foo”

#Pub= 3, PubCited(Cit1) = (Pub, 3), Tit((Pub, 3))= “foo”

Each abstract instantiation corresponds to an event, namely the set of possible

worlds that satisfy it. If Σ is a set of such events that obeys the conditions of

Thm. 5.11, then we can use Σ as our state space for MCMC. However, just as two

formulas that use different variable names may be satisfied by the same set of possible

worlds, two abstract instantiations with different object identifiers can represent the

same event. Thus, we must keep in mind that we are running MCMC over events, not

over abstract partial instantiations. In particular, the proposal probability q(s′|sn)

is the probability of one event given another; it cannot depend on how the event sn

is represented.

But how do we compute the probability of the event corresponding to an abstract

instantiation σ? Def. 5.2 stipulates that if an abstract instantiation uses object

identifiers for a type, it does not also use non-guaranteed concrete objects of that

type. This implies that the concrete versions of an abstract instantiation σ form an

isomorphism class: we can change one into another by permuting the non-guaranteed

objects. So all the concrete versions have the same probability, which we will denote

pc(σ). If the concrete versions are self-supporting, then pc(σ) can be computed using

a product expression. The question is, how many concrete versions does a given

abstract instantiation have?

If an abstract instantiation σ contains an instantiated number variable asserting

that there are n objects of a given type, and σ uses m object identifiers of that

type, then there are nPm , n!
(n−m)!

distinct functions that could play the role of h

in Def. 5.3. However, this does not always mean that σ has nPm distinct concrete

versions. For instance, suppose σ simply says: #Pub = 10, Title(Pub@A3F) = “foo”,

Title(Pub@B46) = “foo”. Here an h function that maps Pub@A3F to (Pub, 1) and

Pub@B46 to (Pub, 2) yields the same concrete instantiation as one that does the

294



Chapter 5. Inference for BLOG Models

opposite, since σ makes the same assertion about Pub@A3F and Pub@B46. Thus,

the number of distinct concrete versions is only 1
2
(10P2).

The difficulty in this example is that σ has a non-trivial automorphism: inter-

changing Pub@A3F and Pub@B46 yields σ itself. In general, the number of distinct

concrete versions of an abstract instantiation with a automorphisms is 1
a
(nPm). But

if the instantiation specifies relations among the non-guaranteed objects — for in-

stance, publications citing one another — then counting automorphisms becomes

difficult. Indeed, counting the number of automorphisms of an undirected graph is

polynomially equivalent to determining whether two graphs are isomorphic [Mathon,

1979], a problem for which no polynomial-time algorithm is known. This issue of

automorphisms does not just arise because we are trying to use abstract partial

instantiations as MCMC states: if we required the proposal distribution to assign

numbers to objects, its proposal probability calculations would need to determine

how many different numberings would yield the same proposal.

Fortunately, for many models of practical interest, there is a simple way to avoid

this issue. The abstract partial instantiations that we use for citation matching only

make assertions about cited publications. So if σ uses an object identifier i, then σ

asserts PubCited(c) = i for some citation c. Two h functions that map i to different

concrete objects cannot yield the same concrete instantiation, because they yield

different values for PubCited(c). In general:

Definition 5.4. An object identifier i is grounded in an abstract partial instantiation

σ if there is a logical ground term ti such that every mapping function h (as in

Def. 5.3) yields a concrete instantiation where h(i) is the value of ti.

Proposition 5.13. Suppose σ is an abstract partial instantiation whose concrete

versions are self-supporting instantiations having probability pc(σ). Let T be the

set of types for which σ uses identifiers, and assume that for every type τ ∈ T ,

295



Chapter 5. Inference for BLOG Models

σ instantiates a number variable asserting that there are nτ non-guaranteed objects

of type τ . Let s be the event corresponding to σ. If every identifier used in σ is

grounded, then:

P (s) = Pc(σ)
∏
τ∈T

nτPmτ (5.3)

where mτ is the number of identifiers of type τ used in σ.5

Logical ground terms include not just expressions such as PubCited(Cit1), but

also nested expressions such as NthAuthor(PubCited(Cit1), 1). The requirement that

object identifiers be grounded is not burdensome in scenarios — such as citation

matching — where the relevant objects are those connected to guaranteed objects

by some chains of function applications. In BLOG models that involve weighted

sampling or aggregation, non-guaranteed objects that do not serve as function values

may become relevant. In such cases, the proposer would need to represent such

objects concretely.

In cases where Prop. 5.13 applies, we can compute the probability of an abstract

instantiation by just computing the probability of one of its concrete versions and

then multiplying in an adjustment factor that is a product of factorials. In fact, the

ratio of these adjustment factors in the acceptance probability is the same as the

ratio of adjustments to the backward and forward proposal probabilities that would

emerge if we required the proposal distribution to choose numbers for objects. But

we have shifted this computation out of the application-specific proposal distribution

and into general-purpose code.

5This result can be extended to cases where objects generate objects; then the product is not
over types, but over applications of number statements to tuples of generating objects. Abstract
instantiations must be extended to specify the generating objects for each object identifier.

296



Chapter 5. Inference for BLOG Models

5.4.2 Performing M-H steps efficiently

Our overall goal is to compute the probability ratio and update the MCMC state

in time that does not grow with the number of existing objects or the number of

instantiated variables. This is not always possible, but application-specific imple-

mentations exploit various forms of structure to do these computations in constant

time. We are able to exploit some of the same structure in our generic system.

5.4.2.1 Difference data structures

We have said that the proposal distribution takes in an MCMC state sn and returns

a new state s′. Constructing s′ from scratch would take time linear in the number

of instantiated variables. However, proposals typically change only a small fraction

of the variables. Thus, our implementation represents s′ as a difference structure or

“patch” relative to the current state sn. This difference structure supports all the

same access methods as the original state: if a client asks for the value of a variable

that has not been changed, the request is just passed through to the original state.

Constructing s′ takes time that depends only on the number of changed variables.

If the proposal is rejected, the patch is simply discarded, and sn+1 is set equal to

sn. If the proposal is accepted, then sn+1 is obtained by applying the patch to sn,

which again takes time linear in the number of changed variables.

5.4.2.2 Computing the acceptance probability

Besides maintaining the MCMC state, the main task for our general-purpose code is

to compute the acceptance probability. The proposal distribution provides q(sn|s′)/q(s′|sn),

so we must compute the probability ratio P (s′)/P (sn). If sn and s′ are represented

297



Chapter 5. Inference for BLOG Models

as self-supporting partial instantiations σn and σ′, Eq. 5.2 tells us that this ratio is:

P (σ′)

P (σn)
=

∏
V ∈ vars(σ′) c

V (σ′V |σ′)∏
V ∈ vars(σn) c

V ((σn)V |σn)
(5.4)

Computing this ratio naively would require time proportional to the number of in-

stantiated variables in σ′ and σn. But fortunately, many of the factors in the numer-

ator and denominator may cancel.

Definition 5.5. If a partial instantiation σ supports a variable V , then the active

parents of V in σ are those variables that occur as labels on nodes in V ’s CPD tree

on the unique path that is consistent with σ.

Proposition 5.14. Suppose two partial instantiations σ and σ′ agree on a variable

V and all the variables that are active parents of V in σ. Then pV (σ′(V )|σ′) =

pV (σ(V )|σ). Also, V has the same active parents in σ′ as in σ.

Thus, we only need to compute the factors for variables that are newly instan-

tiated, uninstantiated, or changed in σ′, or whose parents have changed values.

Because we are explicitly representing the differences between σ′ and σn (see Section

5.4.2.1), we can identify changed variables efficiently.

However, it is not so easy to identify variables whose active parents have changed.

We can enumerate V ’s active parents in σn by walking through V ’s CPD tree. But if

only a few variables have changed, we don’t want to iterate over all variables, seeing

which ones happen to have a changed variable as an active parent.

To avoid this iteration, we maintain a graph over the instantiated variables,

containing those edges that are active given σn. Each variable V has pointers to

its children, that is, the variables of which it is an active parent in σn. Given

this data structure, we can efficiently enumerate the children of all variables that

are changed in σ′. The BN is constructed on the initial state, and then updated

298



Chapter 5. Inference for BLOG Models

after each accepted proposal. Conveniently, by Prop. 5.14, it suffices to update the

active parent sets for variables whose parent values have changed — which we are

enumerating anyway to recompute their probability factors.

If we use abstract partial instantiations, the probability ratio includes the facto-

rial adjustment factors given in Eq. 5.3. Again, computing these factorials naively

would take time linear in the magnitudes of the number variables. But if the pro-

posal makes small changes to the values of number variables and the number of used

identifiers, then most of the factors inside the factorials cancel out.

The calculation techniques presented here do have some limitations. One is

that a variable’s child set may grow linearly with the number of objects. In the

citation matching model, where the probability that a PubCited variable takes on

any particular value in a world with N publications is 1/N , the #Pub variable is

always an active parent of all PubCited variables. So the time required to compute the

acceptance probability for a proposal that changes the number of publications grows

linearly with the number of citations. This slowdown could be avoided by recognizing

that every PubCited variable makes the same contribution the probability ratio, so

we can compute this contribution once and raise it to the power of the number of

citations. However, our current implementation does not detect when this can be

done. Conversely, a variable’s active parent set may grow linearly with the number

of hypothesized objects: this happens in cases of weighted sampling or aggregation.

Finally, our approach does not allow the system to detect cancellations between the

P (s′) and q(s′|sn) factors, such as occur in Gibbs sampling [Gelman, 1992].

5.5 Application to citation matching

In this section, we discuss an application of the BLOG MCMC framework to a

real-world task: taking citations from the reference lists of online papers, and deter-

299



Chapter 5. Inference for BLOG Models

mining which ones refer to the same publications. Our research group developed a

probabilistic model and MCMC proposal distribution for this citation matching task

before we began developing BLOG [Pasula et al., 2003]. We shall evaluate how easy

it is to describe this model in BLOG; how well our MCMC framework supports the

previously developed proposal distribution; and how much speed we sacrifice in using

a general-purpose inference engine rather than an inference program hand-coded for

this application.

5.5.1 Citation matching

In the 1990s, as large numbers of scientists began making their papers available

online, the developers of the CiteSeer system [Giles et al., 1998] proposed to au-

tomatically construct a database of scientific literature using the citations at the

ends of these papers. An important challenge in constructing such a system is ci-

tation matching [Lawrence et al., 1999b]: determining when two citations, written

by different authors in different formats, refer to the same publication.6 Identifying

coreferent citations is important for avoiding duplicates when listing the papers by a

particular author; for listing all the places where a particular paper is cited; and for

constructing full bibliographic records (including page numbers, authors’ full names,

etc.) based on information in several citations.

Telling when two citations are coreferent is more challenging than it may seem.

Figure 5.8 shows three citations that look quite different, but in fact refer to the

same paper. One difficulty is the diversity of citation formats: for instance, the

second citation in Figure 5.8 puts the title before the author list, while the other

two citations do the reverse. Even distinguishing the fields in a given citation can be

6Another problem is determining when a particular PDF or PostScript file contains the paper
referred to by a set of citations; we do not address this problem here, although our model could be
extended to handle it.

300



Chapter 5. Inference for BLOG Models

[9] Lashkari, Yezdi, Metral, Max, and Maes Pattie, Collaborative

Interface Agents, Proceedings of the Twelfth National Conference

on Artificial Intelligence, MIT Press, Cambridge, MA, 1994.

[Lashkari et al 94] Collaborative Interface Agents, Yezdi Lashkari,

Max Metral, and Pattie Maes, Proceedings of the Twelfth National

Conference on Articial Intelligence, MIT Press, Cambridge, MA,

1994.

Metral M. Lashkari, Y. and P. Maes. Collaborative interface agents.

In Conference of the American Association for Artificial

Intelligence, Seattle, WA, August 1994.

Figure 5.8: Three citations that refer to the same publication.

difficult. In the second citation, if one did not realize that “Collaborative Interface

Agents” is much more likely to be a title than an author name, one could interpret

“Collaborative Interface Agents, Yezdi Lashkari, Max Metral, and Pattie Maes” as

an author list, and “Proceedings of the Twelfth National Conference on Articial

Intelligence” as the title of the publication being cited. Author names are written

in many different formats — in Figure 5.8 we see “Maes Pattie”, “Pattie Maes” and

“P. Maes”. All parts of a citation are subject to typographical errors and PostScript

extraction problems, as seen in “Articial” in the second citation. Even in the absence

of errors and formatting differences, people use different names to refer to conferences

(“National Conference on Artificial Intelligence” versus “Conference of the American

Association for Artificial Intelligence”) and mention objects whose relation to the

cited publication may be ambiguous (in Figure 5.8, “Cambridge, MA” is the place

where the proceedings were published, while “Seattle, WA” is the place where the

conference occurred).

Lawrence et al. [1999b] experiment with several methods for matching citations,

and achieve the best accuracy with one they call “Word and Phrase Matching”.

301



Chapter 5. Inference for BLOG Models

Roughly speaking, this algorithm clusters citations based on how many words and

phrases they have in common, where a “phrase” is a sequence of two consecutive

words. More details are given in their paper.

Lawrence et al. also introduce a methodology for evaluating the accuracy of a

citation matching system. The first step is to have humans identify the clusters of co-

referring citations in a sample of citations extracted from online papers. A random

sample might not yield enough co-referring papers to be interesting, so Lawrence et

al. use citation sets obtained by searching a large collection for a certain substring,

such as “face” or “constraint”. Then, to evaluate a given algorithm, Lawrence et

al. compute the fraction of true (human-identified) clusters that the system recovers

exactly. Wellner et al. [2004] refer to this metric as cluster recall.

5.5.2 BLOG model

We gave a simple model for citation matching in Chapter 4 (Figure 4.3). That

model represents three kinds of objects: citations, publications, and researchers.

The priors over researcher names and titles are defined by elementary CPDs called

NamePrior and TitlePrior, and the conditional distribution over citation strings

given the underlying titles and author names is defined by NoisyCitationGrammar.

The model used by Pasula et al. [2003] can be seen as an instance of this one,

with particular implementations of these CPDs. However, the details of these CPDs

are implicit in the Lisp code used for the Pasula et al. paper; we do not attempt to

reproduce them exactly in our BLOG implementation. Instead, we use essentially the

same model as an application-specific Java implementation that we developed in the

summer of 2003. This Java implementation serves as our reference for comparison.

It is worth noting that all these models are quite incomplete: they do not represent

all the entities that are mentioned in citation strings, such as journals, conferences,

302



Chapter 5. Inference for BLOG Models

1 type Researcher;

2 #Researcher ∼ RoundedLogNormal[100, 1];

3 random String Surname(Researcher r)

4 ∼ CharNgram["model/surname"];

5 random String GivenName(Researcher r)

6 ∼ GivenNameDistrib["model/given"];

7 type Publication;

8 #Publication ∼ RoundedLogNormal[1000, 1];

9 random String Title(Publication p)

10 ∼ CharNgram["model/Title"];

11 random NaturalNum NumAuthors(Publication p)

12 ∼ NatNumDistribWithTail[[0.01; 0.19; 0.5; 0.2; 0.1],

13 0.8, 0.1];

14 random Researcher NthAuthor(Publication p, NaturalNum n)

15 if n < NumAuthors(p) then

16 ∼ UniformChoice({Researcher r: !exists NaturalNum m

17 ((m < n) & (NthAuthor(p, m) = r))});

Figure 5.9: The beginning of the BLOG model used in our application.

publishers, and cities. We plan to develop BLOG models that incorporate these

additional objects in future work.

Looking at the BLOG model in Figure 4.3 provides little information about the

probability distributions for titles, author names, and citation strings; these details

are hidden inside elementary CPDs. In our experiments, we use a BLOG model

that makes this information more explicit and uses simpler elementary CPDs. This

explicitness also makes the model significantly longer than the one in Figure 4.3, so

we present it in several parts.

Figure 5.9 shows the beginning of the model, describing researchers and publi-

cations and their attributes. Note that all the dependency statements in this model

303



Chapter 5. Inference for BLOG Models

also serve as function declarations, as discussed at the end of Section 4.2.5. The

prior distributions for the numbers of researchers and publications are given by

RoundedLogNormal CPDs, which define very flat and broad distributions over natu-

ral numbers. A real-valued random variable X has a log-normal distribution if ln(X)

has a normal distribution. Under a rounded log-normal distribution, the probability

of a natural number n is the probability of the interval [n − 0.5, n + 0.5] under a

log-normal distribution, which is the probability of [ln(n − 0.5), ln(n + 0.5)] under

the underlying normal distribution.7 The parameters of a RoundedLogNormal CPD

are the mean of the desired distribution, and the variance of the underlying normal

distribution. Thus, RoundedLogNormal[100, 1] yields a distribution whose mean

is 100, and that assigns about 95% of its probability mass to numbers in the range

[100e−2, 100e2] ≈ [14, 738].

As shown in Figure 5.9, we model the surnames and given names of researchers

separately. The CPD for Surname is a character n-gram model trained on the sur-

names of authors appearing in a large BibTeX file from the University of Pennsyl-

vania. 8 It interpolates between unigram, bigram and trigram models using weights

estimated on held-out data [Bahl et al., 1983].

GivenName(r) actually represents researcher r’s whole given name string, which

may consist of several names and initials separated by spaces. The elementary CPD

GivenNameDistrib defines a distribution over strings obtained by first choosing how

many given names to include (according to a distribution specified internally), then

generating each given name from a character n-gram model, and concatenating the

names with spaces in between. The character n-gram model used here is trained on

7As an approximation, rather than integrating the normal density over the interval [ln(n −
0.5), ln(n + 0.5)], we just take the value of the normal density at ln(n) and multiply it by ln(n +
0.5)− ln(n− 0.5).

8This file contains about 10,500 BibTeX entries and is available at
http://liinwww.ira.uka.de/bibliography/Ai/pennbib.html.

304



Chapter 5. Inference for BLOG Models

given names and initials of authors in the U. Penn BibTeX file. The model does

not distinguish between full given names and initials: it just treats initials as names

that happen to consist of a single character. This means that if all the observed

references to a particular researcher use the given name string “James K.”, the model

will assign high posterior probability to worlds where this researcher’s GivenName

value is “James K”. The inference algorithm will not be forced to hypothesize worlds

where the “K” is expanded to some longer name. Of course, given names that are

written in full in a researcher’s GivenName string may be shortened to initials in

some citations; this phenomenon is handled later in the model.

The distribution for the title of a publication is also given by a character n-gram

model trained using the U. Penn BibTeX file. For the number of authors on a pub-

lication, the elementary CPD is NatNumDistribWithTail, which defines a mixture

between an explicitly specified distribution over the first few natural numbers and a

geometric distribution over the remaining numbers. For instance, the CPD on line

12 of Figure 5.9 specifies explicit probabilities for the numbers zero through four;

this distribution gets a mixture weight of 0.8, and is mixed with a geometric dis-

tribution with success probability 0.1 over the numbers greater than four. Now for

NthAuthor(p, n), we use a set expression to implement sampling without replacement

from the set of researchers. The formula in this set expression enforces the fact that

the nth researcher in an author list cannot be the same one that appears at an index

m < n.

We can now move on to the part of the model that deals with citations. As

shown in Figure 5.10, we declare a type Citation with a certain number of guaranteed

objects. The number of guaranteed citation objects (set to 349 in the figure) is

the number of citation strings we wish to reason about in a particular run.9 The

9The BLOG inference engine actually allows us to specify statements that are specific to a
particular run — such as this guaranteed object statement — separately from the main model file.
We include the statement in the model here for clarity.

305



Chapter 5. Inference for BLOG Models

1 type Citation;

2 guaranteed Citation Cit[349];

3 random Publication PubCited(Citation c)

4 ∼ UniformChoice(Publication p);

5 random String TitleAsCited(Citation c)

6 ∼ StringEditModel(Title(PubCited(c)));

7 random NaturalNum NumAuthorsDropped(Citation c)

8 ∼ Binomial[0.005](NumAuthors(PubCited(c)));

9 random NaturalNum NumAuthorsAdded(Citation c)

10 if (NumAuthorsDropped(c) = 0) then ∼ Geometric[0.001]

11 else = 0;

12 random NaturalNum NumAuthorsListed(Citation c)

13 = NumAuthors(PubCited(c))

14 - NumAuthorsDropped(c) + NumAuthorsAdded(c);

Figure 5.10: Portion of the BLOG model for citation matching that deals with the
titles and author lists that appear in citations.

publication cited by each citation is chosen uniformly from the set of citations. Next,

we introduce a string-valued function TitleAsCited(c), whose value is derived from

Title(PubCited(c)) according to the StringEditModel CPD. This elementary CPD

models typographical errors, using a probabilistic form of edit distance. The error

model is based on a generative process where characters are deleted, inserted, or

substituted for one another with certain probabilities. The probability of an output

string s given an input string t is the sum of the probabilities of the sequences of

operations that generate s from t; we use an algorithm of Bahl and Jelinek [1975] to

compute such probabilities in O(|s| × |t|) time. The probabilities of the individual

insertion, deletion, and substitution operations are set by hand.

The remaining statements in Figure 5.10 model the process by which people add

and drop authors when writing a citation. We use a simple model in which the cita-

306



Chapter 5. Inference for BLOG Models

tion writer either drops or adds authors, but does not do both; this means that the

number of authors dropped or added can be found simply by comparing the lengths of

the author lists in the citation and its underlying publication. Lines 7–8 specify that

the number of authors dropped has a binomial distribution, equivalent to that ob-

tained by dropping each author independently with probability 0.005. If no authors

are dropped, then line 10 says that the number added has a geometric distribution

with success probability 0.001. Again, these probabilities are set by hand. The last

few lines in Figure 5.10 introduce a function NumAuthorsListed(c) whose value is de-

rived deterministically from NumAuthors(PubCited(c)), NumAuthorsDropped(c) and

NumAuthorsAdded(c) using the built-in functions “+” and “-” (see Table 4.2). This

function is introduced solely to make subsequent statements simpler.

The next thing to model is how the text for each author name is generated in the

citation. Specifically, we introduce string-valued function symbols SurnameAsCited

and GivenNameAsCited, as well as a Boolean function symbol NameReversed spec-

ifying whether the surname is written first, and a string-valued function symbol

InternalSep specifying the characters that come after the surname if the name is re-

versed. We could index all these functions by citations c and natural numbers n, and

let them yield null values for n > NumAuthorsListed(c). But this would be somewhat

cumbersome. It is more intuitive to think of each citation as containing a sequence

of author mentions, with the random function symbols we have just discussed being

defined on AuthorMention objects.

Figure 5.11 shows how we implement this approach in our BLOG model. The

type AuthorMention has two origin functions, Container (yielding a citation) and Index

(yielding a natural number). AuthorMention has one number statement (lines 4–5),

specifying that the number of AuthorMention objects with container c and index

n is one if n < NumAuthorsListed(c), and (by default) zero otherwise. Next, we

introduce a function symbol Referent that maps author mentions to the researchers

307



Chapter 5. Inference for BLOG Models

1 type AuthorMention;

2 origin Citation Container(AuthorMention);

3 origin NaturalNum Index(AuthorMention);

4 #AuthorMention(Container = c, Index = n)

5 if n < NumAuthorsListed(c) then = 1;

6 random Researcher Referent(AuthorMention m)

7 if Index(m) < NumAuthors(PubCited(Container(m)))

8 then = NthAuthor(PubCited(Container(m)), Index(m));

9 random String SurnameAsCited(AuthorMention m)

10 if Referent(m) = null then ∼ CharNgram["model/surname"]

11 else ∼ StringEditModel(Surname(Referent(m)));

12 random String GivenNameAsCited(AuthorMention m)

13 if Referent(m) = null then ∼ GivenNameDistrib["model/given"]

14 else ∼ GivenNameEditModel(GivenName(Referent(m)));

15 random Boolean NameReversed(AuthorMention m)

16 if GivenNameAsCited(m) != "" then ∼ Bernoulli[0.5];

17 random Boolean HasComma(AuthorMention m)

18 if NameReversed(m) then ∼ Bernoulli[0.9];

19 random Boolean HasCommaSpace(AuthorMention m)

20 if HasComma(m) then ∼ Bernoulli[0.9];

21 random String InternalSep(AuthorMention m)

22 if HasCommaSpace(m) then = ", "

23 elseif HasComma(m) then = ","

24 elseif NameReversed(m) then = " ";

25 random String NameListed(AuthorMention m)

26 if NameReversed(m)

27 then = Concat(Concat(SurnameAsCited(m), InternalSep(m)),

28 GivenNameAsCited(m))

29 elseif GivenNameAsCited(m) != ""

30 then = Concat(Concat(GivenNameAsCited(m), " "),

31 SurnameAsCited(m))

32 else = SurnameAsCited(m);

Figure 5.11: Portion of the BLOG model dealing with author mentions.

308



Chapter 5. Inference for BLOG Models

they refer to. In a more sophisticated model, the dependency statement for Referent

might allow authors to be re-ordered, and allow authors to be dropped and added

anywhere in the author list. In this model, however, we assume that if the index

of a mention m is a valid index in the underlying publication’s author list, then

Referent(m) is the author at that index. Otherwise, Referent(m) defaults to null. The

SurnameAsCited and GivenNameAsCited values are generated from prior distributions

if Referent(m) is null; otherwise, they are generated according to string edit models.

GivenNameAsCited actually uses a special CPD GivenNameEditModel, which allows

names to be shortened to initials (with a certain probability) in addition to the usual

typographical errors.

Because we are defining a generative model for citation strings, we also need

to specify how the surname and given name strings are combined. NameReversed

is a Boolean function symbol that governs whether the surname comes first. If

NameReversed(m) is true, then HasComma(m) may be true to indicate that there is

a comma after the surname; if HasComma(m) is true, then HasCommaSpace(m) may

be true to indicate that there is a space after the comma. These functions determine

the string InternalSep(m) — representing the separator between the surname and

given names — which then contributes to determining NameListed(m), the name as

it actually appears in the citation string.

Thus, we have seen how the text of each author mention is generated. The next

step is to construct the full author list, including separators between the author

names, as well as any punctuation that marks the end of the list. Figure 5.12 shows

the statements the model this process. First, for each citation c and each natural

number n < NumAuthorsListed(c), NthMention(c, n) is deterministically equal to the

unique AuthorMention object whose container is c and whose index is n. Here we use

the Iota elementary CPD, which takes a singleton set as an argument and defines a

distribution assigning all probability to the sole element of that set.

309



Chapter 5. Inference for BLOG Models

1 random AuthorMention NthMention(Citation c, NaturalNum n)

2 if n < NumAuthorsListed(c)

3 then ∼ Iota({AuthorMention m :

4 Container(m) = c & Index(m) = n});

5 random String NthAuthorSeparator(Citation c, NaturalNum n)

6 if (NumAuthorsListed(c) > 1) & (n < Pred(NumAuthorsListed(c)))

7 then ∼ TokenUnigram["model/AuthorSep"];

8 random String AuthorListTerminator(Citation c)

9 ∼ TokenUnigram["model/AuthorTermin"];

10 random String FirstNAuthorsText(Citation c, NaturalNum n)

11 if n = 0 then = ""

12 elseif n < NumAuthorsListed(c)

13 then = Concat(Concat(FirstNAuthorsText(c, Pred(n)),

14 NameListed(NthMention(c, Pred(n)))),

15 NthAuthorSeparator(c, Pred(n)))

16 elseif n = NumAuthorsListed(c)

17 then = Concat(Concat(FirstNAuthorsText(c, Pred(n)),

18 NameListed(NthMention(c, Pred(n)))),

19 AuthorListTerminator(c));

20 random String AuthorText(Citation c)

21 = FirstNAuthorsText(c, NumAuthorsListed(c));

Figure 5.12: The portion of the BLOG model that generates the full author list in a
citation.

310



Chapter 5. Inference for BLOG Models

The next statement defines a distribution for NthAuthorSeparator(c, n), which is

the separator between the author mentions at indices n and n+ 1. The distribution

for separator strings is a token unigram model: a model that generates a sequence of

tokens independently and puts spaces between them with a certain probability. Here

a token is a punctuation character or a “word”: a maximal sequence of consecutive

non-space, non-punctuation characters. This type of model is more than we need to

represent author separators, which tend to consist of just one or two tokens (a comma,

the word “and”, or both — we are ignoring the fact that “and” is more likely to

occur in the last separator in an author list). However, we use token unigram models

for all the parts of citation strings that are not titles or author names. These models

are trained on a set of 515 citations that we parsed and annotated by hand. The

various token unigram CPDs in our BLOG model all use the same vocabulary of

tokens; token probabilities are smoothed and out-of-vocabulary tokens are handled

using the Simple Good-Turing technique [Gale and Sampson, 1995]. We see another

token unigram CPD on the next line of Figure 5.12 for AuthorListTerminator(c), the

punctuation mark (if any) that marks the end of the author list.

Our model’s next task is to describe how the complete author list is assembled

from these pieces. This is done using a function symbol FirstNAuthorsText(c, n),

whose value is a string containing all author mentions in citation c with indices less

than n, along with their trailing separators or terminator. FirstNAuthorsText(c, 0) is

an empty string, and the values of FirstNAuthorsText(c, n) for greater values of n are

built up recursively. Finally, the function symbol AuthorText(c) gets a value equal

to FirstNAuthorsText(c, NumAuthorsListed(c)).

The TitleAsCited function symbol defined in Figure 5.10 yields the title text in a

citation, so all that remains is to describe how the complete citation string depends

on TitleAsCited and AuthorText. This is done in the last part of our BLOG model,

shown in Figure 5.13. First, there is a Boolean function symbol AuthorsBeforeTitle(c)

311



Chapter 5. Inference for BLOG Models

1 random Boolean AuthorsBeforeTitle(Citation c) ∼ Bernoulli[0.99];

2 random String InitialFiller(Citation c)

3 ∼ TokenUnigram["model/initialFill"];

4 random String MiddleFiller(Citation c)

5 ∼ TokenUnigram["model/middleFill"];

6 random String FinalFiller(Citation c)

7 ∼ TokenUnigram["model/finalFill"];

8 random String Text(Citation c)

9 if AuthorsBeforeTitle(c)

10 then = Concat(InitialFiller(c),

11 Concat(AuthorText(c),

12 Concat(MiddleFiller(c),

13 Concat(TitleAsCited(c),

14 FinalFiller(c)))))

15 else = Concat(InitialFiller(c),

16 Concat(TitleAsCited(c),

17 Concat(MiddleFiller(c),

18 Concat(AuthorText(c),

19 FinalFiller(c)))));

Figure 5.13: The end of the BLOG model for our application.

representing the relative order of the title and author list in citation c. Given this

choice, there are three parts of the citation string that need to be filled in: the

initial segment before the first author or title segment (often empty, but sometimes

containing a citation key such as “[Lashkari et al 94]”); the middle segment between

the author and title (often a date); and the final segment after the last title or author

segment, which contains the conference or journal name, publisher, etc. The text of

each of these “filler” segments has a token unigram distribution. Finally, the text

of the citation, denoted by Text(c), is generated by concatenating these segments in

the order determined by AuthorsBeforeTitle(c).

Figures 5.9–5.13 show the entire BLOG model for our citation matching ap-

312



Chapter 5. Inference for BLOG Models

plication. This model reproduces the probability distribution used in our earlier

hand-coded Java implementation; and unlike the BLOG model we used in Chapter

4, it uses elementary CPDs that are in fact fairly elementary. The parameters of

many of these CPDs — specifically, the n-gram models for author names, titles, and

other parts of a citation — are learned from separate labeled data (it would also

be good to estimate the parameters of the string edit CPD and other parts of our

model from data, but we have not implemented this yet).

This BLOG model is admittedly rather long, but we see this as an unavoidable

consequence of representing such a detailed model in a general-purpose language.

Our BLOG inference engine can load the model and use it to define a prior dis-

tribution in our MCMC framework. The evidence we assert includes the value of

Text(Citi) for each guaranteed citation Citi, and we query the truth values of the sen-

tences PubCited(Citi) = PubCited(Citj) for each pair of distinct guaranteed citations

Citi, Citj.

5.5.3 Proposal distribution

We implemented an application-specific proposal distribution for our citation-matching

model. This proposer is based loosely on the one used by Pasula et al. [2003], and

more directly on our 2003 Java implementation of the MCMC citation matching

algorithm. Note that our 2003 implementation was entirely application-specific: all

parts of the software, including the data structures for representing MCMC states,

the code for computing acceptance probabilities, and the proposal distribution, were

hand-coded for the citation-matching task. The proposal distribution that we plug

into our MCMC framework reproduces only one component of the 2003 implemen-

tation.

Both the entirely hand-coded implementation and our BLOG proposal distribu-

313



Chapter 5. Inference for BLOG Models

tion use one basic kind of move, namely splitting and merging publications — or

to put it more accurately, splitting and merging the clusters of citations that re-

fer to hypothesized publications. When clusters are split or merged, the proposer

also proposes new values for the hidden attributes of the affected citations (such

as TitleAsCited) and the attributes of the affected publications and researchers. To

explore the full space of possible worlds, the proposer should also propose moves

that change the total numbers of publications and citations (including ones whose

attributes are not instantiated in the current MCMC state), as well as moves that

split and merge researchers. However, we did not include such moves in our entirely

hand-coded implementation, and we did not add them in our BLOG proposal dis-

tribution (this is one way in which our proposer is less sophisticated than that of

Pasula et al. [2003]). We simply fix the numbers of publications and researchers at

10 times the number of observed citations. As to the researchers, we create separate

Researcher objects for all authors of all publications: in our MCMC states, each hy-

pothesized Researcher object serves as the value of NthAuthor(p, n) for exactly one

pair (p, n). These simplifications make our proposer technically incorrect, but do

not seem to be the source of most of the errors that we see in the final citation

clusterings.

The method we use for proposing split-merge moves is the “simple random split-

merge procedure” of Jain and Neal [2004]. We begin by choosing two distinct ci-

tations c1 and c2. Let p1 and p2 be the publications referred to by these citations

in the current MCMC state. If p1 = p2, then we propose to split p1; otherwise, we

propose to merge p1 and p2. If we are proposing a split, then we introduce a new

object identifier p′ for the new publication. We set VPubCited [c1] to p1 and VPubCited [c2]

to p′. Then for each other citation c that currently refers to p1, we set VPubCited [c] to

either p1 or p′ with equal probability. For a merge move, we do not have any more

choices to make: we just assign all the citations currently referring to p2 to p1, so p2

314



Chapter 5. Inference for BLOG Models

is left with no citations. Note that if the move we propose is a split, then its reverse

move (used to compute the proposal ratio q(s|s′)/q(s′|s)) is a merge move, and vice

versa.

A naive implementation of this method would simply choose the two citations c1

and c2 uniformly at random. However, such a proposer would often propose merges

on citations that have nothing in common, and are clearly not coreferent. Thus,

following Pasula et al. [2003], we restrict the way c1 and c2 are chosen. Specifically,

in a preprocessing step, we group the citations into loose, potentially overlapping

clusters called canopies [McCallum et al., 2000] based on the fraction of words that

they have in common. To propose a split-merge move, we first choose a canopy

uniformly at random, and then choose two distinct citations uniformly at random

from that canopy. This technique vastly increases the proportion of plausible moves

among our split-merge proposals.

Taking advantage of the flexibility offered by our MCMC framework, our pro-

poser proposes MCMC states that are abstract partial instantiations of the basic ran-

dom variables. We use object identifiers to represent publications and researchers.

The variables instantiated in each proposed state are the active ancestors of the

query and evidence variables. Thus, when a researcher or publication no longer

serves as a value for any Referent or PubCited variables, we uninstatiate all vari-

ables defined on that researcher or publication. We also uninstantiate variables

defined on AuthorMention objects that do not exist in a proposed state, and vari-

ables such as FirstNAuthorsText(c, n) where n is not less than the proposed value of

NumAuthorsListed(n). Thus, the instantiations that we propose are minimally self-

supporting beyond the query and evidence variables, and thus define non-overlapping

sets.

Whenever we propose a split or merge move, we also propose changes to the

attributes of the affected publications, and the attributes of all citations that refer

315



Chapter 5. Inference for BLOG Models

to them. Our method for proposing values for these attributes works from the

bottom up. The first step is to propose values for the hidden attributes on each

citation and its associated author mentions — such as TitleAsCited, SurnameAsCited,

and NameReversed — that are consistent with a reasonable segmentation of the

citation into fields. To obtain reasonable segmentations, we use a hidden Markov

model (HMM) [Rabiner, 1989] in which the outputs are tokens and the hidden states

are segment labels such as title, author, authorSeparator, etc. This HMM is trained

on the same set of hand-parsed citations that we use to train the token unigram

distributions in our BLOG model. There are more recent segmentation techniques

that tend to be more accurate than an HMM [Lafferty et al., 2001], but our MCMC

process should converge to consistent segmentations for citations that refer to the

same publication, so this weak segmentation model should not hurt us too much.

Our proposer uses the HMM to compute the 20 best segmentations for each citation.

Then whenever it needs to propose new values for a citation’s attributes, the proposer

samples one of these segmentations (with probabilities proportional to their posterior

probabilities in the HMM) and sets the values of random variables on that citation

and its associated author mentions accordingly.

To propose attributes for a publication and its authors, our proposer uses a very

simple technique: it randomly chooses a citation referring to that publication, and

treats this citation’s attributes as “authoritative”. That is, it proposes values that

are equal to the TitleAsCited, SurnameAsCited, and GivenNameAsCited attributes on

the citation and its author mentions. This method again fails to explore most of the

outcome space, in that it does not propose attribute values that are not seen in the

observed citation strings.

The proposal distribution we have described here is not particularly sophisticated,

and includes a number of shortcuts that are not technically justified. However, this

the same proposal distribution that we used in our entirely hand-coded implemen-

316



Chapter 5. Inference for BLOG Models

tation in 2003. The main point is that our BLOG MCMC framework supports the

same proposal distribution, which proposes abstract partial instantiations. A sim-

pler MCMC framework that required full, concrete instantiations would not support

the same proposer.

5.5.4 Experimental results

We evaluated both our BLOG MCMC implementation and our entirely hand-coded

Java implementation on four files of citations originally used by Lawrence et al.

[1999b]. As we described in Section 5.5.1, these files were obtained by searching

for particular substrings — specifically “face”, “reinforcement”, “reasoning”, and

“constraint” — in a larger collection. The files contain between 295 and 514 citations,

which appear as raw text strings without any segmentation. Note that no parts of

our BLOG model or proposal distribution were trained on any of these files.

Table 5.1 shows accuracy and speed results for four systems on the four cita-

tion files. The accuracy metric here is cluster recall: the percentage of true citation

clusters recovered exactly. The first system in the table is a re-implementation

of the Lawrence et al. [1999a] phrase matching algorithm, written by Pasula et

al. [2003].10 This algorithm achieves the lowest accuracies overall. The next sys-

tem is the Metropolis-Hastings implementation by Pasula et al., which consists of

application-specific Lisp code with a sophisticated proposal distribution. This sys-

tem achieves the best accuracies by a considerable margin (its accuracy is comparable

to that of a more recent discriminative approach developed by Wellner et al. [2004]).

We do not know how many MCMC samples were used to generate the Pasula et al.

results, although we do know that the accuracy results were averaged over all the

10The accuracy results from this re-implementation are used in Pasula et al. [2003], although
they are considerably lower than the results reported by Lawrence et al. [1999a]. This may be
because Lawrence et al. preprocess the citations with certain normalization operations, which are
not fully described in their paper.

317



Chapter 5. Inference for BLOG Models

Face Reinforcement Reasoning Constraint
349 citations 406 citations 514 citations 295 citations

Phrase matching
accuracy 94% 79% 86% 89%

M-H: Pasula et al.
accuracy (avg) 97% 94% 96% 93%

M-H: hand-coded
accuracy (avg) 95.5% 81.5% 88.6% 91.7%

accuracy (final) 96.1% 86.2% 90.0% 92.0%
time 14.3 s 19.4 s 19.5 s 12.2 s

M-H: BLOG
accuracy (avg) 95.5% 78.3% 88.7% 90.9%

accuracy (final) 96.4% 82.9% 90.4% 91.5%
time 71.7 s 99.3 s 99.7 s 60.3 s

Table 5.1: Citation matching results for the phrase matching algorithm of [Lawrence
et al., 1999], the hand-coded M-H implementation used by [Pasula et al., 2003], a
simpler M-H implementation hand-coded in Java, and the BLOG inference engine.
Results for the last two systems are averaged over 10 independent runs.

MCMC samples in each run. We also lack data on how long these runs took.

We are primarily interested in comparing the last two systems in the table: our

entirely application-specific Java implementation from 2003, and the BLOG MCMC

engine using our custom proposal distribution. For these systems, we did 10 sepa-

rate runs of 10,000 MCMC samples each. We report two versions of the accuracy

metric: one averaged over all the MCMC samples (with no burn-in period), and one

computed just on the final MCMC state. The two systems achieve similar accura-

cies, which is to be expected since they implement approximately the same model

and proposal distribution. Reflecting the shortcomings of this proposal distribution

(and perhaps the model as well), these accuracies are considerably lower than those

achieved by Pasula et al.

The most interesting aspect of these results is the running times, which tell us

how much we sacrifice by using a general-purpose MCMC implementation rather

318



Chapter 5. Inference for BLOG Models

than one coded entirely for a specific application. The timing results in Table 5.1

reflect the time required to initialize the system and run MCMC for 10,000 samples.

Both systems display significant variation in run time across data sets; this reflects

differences in the average number of citations affected by split-merge moves (the data

sets have different ratios of citations to publications) and differences in the fraction

of proposals that are accepted.

Despite this variation, the BLOG engine consistently takes five times as long as

the hand-coded Java implementation. One reason why the BLOG engine is slower

is that it must store all basic variable values in a general-purpose data structure

(a hash table) rather than using Java classes specific to publications and citations.

Another reason is that when computing acceptance probabilities, the BLOG engine

must determine which factors need to be computed by looking at a context-specific

dependency graph, as described in Section 5.4.2.2. The hand-coded implementation

contains special code to compute acceptance probabilities for the particular moves

that we use. Finally, the compute the probability of a variable given its active

parents, the BLOG engine evaluates the terms, formulas, and set expressions in the

relevant dependency statement. In the hand-coded version, this evaluation is again

implemented by application-specific code.

Still, our notes from the summer of 2003 indicate that the hand-coded implemen-

tation ran in about 120 seconds with the computers and Java runtime environment

that we had then. In other words, our computing infrastructure has improved enough

that a general-purpose system runs as fast as a hand-coded system did three years

ago. It is also notable that the speed ratio between the BLOG implementation and

the hand-coded one is constant, regardless of variations in the size of the citation

file. This suggests that we have been successful in our efforts to make the per-sample

computation time independent of the number of instantiated variables, as discussed

in Section 5.4.2.2.

319



Chapter 5. Inference for BLOG Models

320



Chapter 6

Related Work

The standard formalisms for probabilistic knowledge representation are Bayesian

networks (BNs) and their undirected analogues, which explicitly represent a finite

set of variables with a fixed dependency structure. There have been many proposals

for formalisms that go beyond this baseline by allowing contingent dependencies

or infinite sets of variables, or by specifying the model at a first-order rather than

propositional level. In this chapter, we review some of these formalisms and discuss

their relationship to BLOG.

6.1 Contingent dependencies

There are a number of formalisms for representing context-specific independence

(CSI) in BNs. Boutilier et al. [1996] use decision trees, just as we do in CBNs. Poole

and Zhang [2003] use a set of parent contexts (partial instantiations of the parents)

for each node; such models can be represented as PBMs, although not necessarily as

CBNs. Neither paper discusses infinite or cyclic models. The idea of labeling edges

with the conditions under which they are active may have originated with Fung and

Shachter [1990] (a working paper that is no longer available); it was recently revived

321



Chapter 6. Related Work

by Heckerman et al. [2004].

Bayesian multinets [Geiger and Heckerman, 1996] can represent models that

would be cyclic if they were drawn as ordinary BNs. A multinet is a mixture of BNs:

to sample an outcome from a multinet, one first samples a value for the hypothesis

variable H, and then samples the remaining variables using a hypothesis-specific BN.

We could extend this approach to CBNs, representing a structurally well-defined

CBN as a (possibly infinite) mixture of acyclic, finite-ancestor-set BNs. However,

the number of hypothesis-specific BNs required would often be exponential in the

number of variables that govern the dependency structure. On the other hand, to

represent a given multinet as a CBN, we simply convert each edge X → Y in the

hypothesis-specific BN for hypothesis h into a CBN edge X → Y with the label

H =h.

6.2 Infinite models

As we mentioned at the beginning of Section 2.4.2, several other authors have dis-

cussed conditions under which a BN with infinitely many nodes defines a unique

distribution. Pfeffer [2000] and Kersting and de Raedt [2001a] give essentially the

same results we gave for non-contingent BNs in Section 2.4.2, although their theo-

rems make reference to particular first-order languages for describing such BNs.

We are not aware of any previous work that exploits the contingent nature of de-

pendencies to obtain stronger results on when a model defines a unique distribution.

However, there are some other results that go beyond ours in the non-contingent

case. Jaeger [1998] states that an infinite BN defines a unique distribution if there

is a well-founded topological ordering (not necessarily a numbering) on its variables:

that condition is more complete than the ones we give for CBNs in that it allows

a node to have infinitely many active parents, but less complete in that it requires

322



Chapter 6. Related Work

a single ordering for all contexts. Laskey [2006] shows that an infinite BN is well-

defined if its nodes can be grouped into a sequence of numbered levels, such that each

edge into a level-d node comes from a node at level d−1 or earlier. This criterion al-

lows infinite parent sets, but is weaker than Jaeger’s well-founded ordering criterion

in that it does not allow a node X to have parents at an infinite number of levels

(then there would be no subsequent level for X to be in). Pfeffer and Koller [2000]

point out that a network containing an infinite receding path X1 ← X2 ← X3 ← · · ·

may still define a unique distribution if the CPDs along the path form a Markov

chain with a unique stationary distribution.

Another line of work on infinite models deals with the case of undirected graphical

models, also called Markov networks or Markov random fields. Most work on Markov

networks in AI deals with finite networks [Pearl, 1988]; for the infinite case, see

Georgii [1988]. In a Markov network, the joint distribution is specified not with

conditional probabilities, but with local potential functions ψi that assign weights to

the instantiations of certain sets of random variables Si. The set of random variables

over which a potential function is defined must be a clique in the network: that is,

there must be an edge between each pair of variables in the set. In the finite case,

the probability of a complete instantiation σ is given by:

P (σ) =
1

Z

∏
i

ψi(σ[Si])

where Z is a normalizing constant that makes the distribution sum to one.

When there are infinitely many variables, the Markov network asserts that for

each finite subset S of the variables, the conditional distribution on S given any

instantiation of its boundary (i.e., those neighbors of variables in S that are not

themselves S) is given by the equation above. A Gibbs measure for the network is

a probability measure for all the variables that satisfies these constraints. Thus, to

323



Chapter 6. Related Work

find an analogue to our results about infinite BNs and PBMs, we should ask under

what conditions an infinite Markov network has a unique Gibbs measure. It turns

out that the uniqueness of the Gibbs measure depends on the parameters of the

potential functions: as the parameters are changed, the network can go through a

phase transition where it switches from one Gibbs measure to another. These results

contrast with our results for directed models, where the uniqueness conditions are

purely structural and make no mention of the parameters of local distributions.

6.3 First-order probabilistic languages

First-order probabilistic languages (FOPLs) differ from propositional representations

such as Bayesian networks in the same way first-order logic differs from propositional

logic: they allow the modeler to make statements about all the objects in some class,

rather than modeling each object individually. A large number of FOPLs have been

proposed by various authors over the last 15 years or so, yielding a sometimes bewil-

dering array of languages. In this section, we discuss some of the major dimensions

along which these languages differ, and note now they compare with BLOG. Our

discussion yields a classification scheme for FOPL models, shown in Figure 6.1.

Our comparisons of various FOPLs will use the following pedagogical example.

Because many FOPLs do not have features for representing unknown objects or con-

tingent dependencies, we use an example where the objects and dependency structure

are known.

Example 6.1. Suppose we are given a list of papers that have been submitted to a

conference over several years. Each paper is either accepted or not accepted. We

are also given a list of researchers, which includes the primary author of each paper.

Suppose that each researcher can be classified as brilliant or not brilliant, and the

probability that a paper is accepted depends on whether its primary author is brilliant

324



Chapter 6. Related Work

Outcome Space

Specificity

Parameterization

Decomposition

Set of Objects

relational
structures

proofs, 
tuples of ground termsnested 

data structures

constraints
full distribution

CPDs weights

independent
choices

probabilistic
dependencies

known unknown

IBAL SLPs

Halpern’s logic,
PLPs

RMNs, 
Markov logic

PHA, ICL,
PRISM, LPADs

PRMs, BLOG, MEBNBUGS, RBNs, BLPs,
DAPER models

Figure 6.1: A classification scheme for first-order probabilistic languages.

or not. Given the authorship and acceptance status of certain papers, we would like

to predict which other papers will be accepted.

6.3.1 Outcome spaces

The most basic way in which certain FOPLs differ from others is in their outcome

spaces. In most FOPLs, the outcome space is a set of relational structures, which

specify a set of objects and some relations (or functions) on these objects. For

instance, a relational structure for Example 6.1 specifies a set of papers, a set of

researchers, a unary predicate called Accepted on papers, a unary predicate called

325



Chapter 6. Related Work

Brilliant on researchers, and a function called PrimaryAuthor that maps papers to

researchers. Depending on the what aspects of the scenario are known in advance,

the outcomes may share some relational skeleton [Friedman et al., 1999]: for instance,

they may all have the same sets of objects and the same PrimaryAuthor function.

One reason for the diversity of FOPLs is that different communities talk about

relational structures in different ways. In this thesis we have taken an approach based

on first-order logic, where the relational structures are logical model structures. The

idea of defining probability distributions over model structures dates back at least

to a paper by Gaifman [1964]. Gaifman shows that if one specifies the probabilities

of the events {ω : ω |=α ϕ} for all quantifier-free formulas ϕ and all assignments

α to the free variables in ϕ, then the satisfaction probabilities for sentences with

quantifiers are uniquely determined. Gaifman does not actually define a modeling

language, i.e., a way of specifying all the necessary probabilities in a finite amount

of space.

Since Gaifman’s work, however, researchers have proposed many FOPLs that de-

fine distributions over logical model structures. Examples include Halpern’s logic of

probability on possible worlds [Halpern, 1990], probabilistic Horn abduction (PHA)

[Poole, 1993], relational Bayesian networks (RBNs) [Jaeger, 1997], PRISM [Sato and

Kameya, 1997], Markov logic [Richardson and Domingos, 2006] and multi-entity

Bayesian networks (MEBN) [Laskey, 2006]. In some other areas of computer sci-

ence, relational structures are thought of as instances of a relational database schema.

This view has led to a distinct set of FOPLs, including probabilistic relational mod-

els (PRMs) [Koller and Pfeffer, 1998; Friedman et al., 1999] and relational Markov

networks [Taskar et al., 2002].

The statistics community thinks of possible outcomes in yet another way: as

instantiations of a set of random variables. The statistical analogue of the unary

predicate Accepted is a family of binary-valued random variables Ai, indexed by nat-

326



Chapter 6. Related Work

ural numbers i that represent papers. Similarly, the function PrimaryAuthor can be

represented as an indexed family of random variables Pi, whose values are natural

numbers representing researchers. Thus, the instantiations of a set of random vari-

ables can represent relational structures (at least when the set of objects is fixed).

Indexed families of random variables can be represented graphically using “plates”

that contain co-indexed nodes; they also form the foundation for the modeling lan-

guage used by the BUGS system [Thomas et al., 1992].

Bayesian logic programs (BLPs) [Kersting and De Raedt, 2001a] also fall into this

variable-based category, although in a somewhat counterintuitive way. A BLP uses

a logic program to define a Bayesian network: the variables in the BN correspond

to ground atoms (atomic formulas) that are provable in the logic program. Whereas

logical atoms take on Boolean values by definition, the variable corresponding to a

ground atom such as Height(John) may be real-valued. Thus, while the BN defined

by a BLP can be thought of as defining a distribution over relational structures,

these are not model structures for the logical language used in the program.

There are two well-known FOPLs whose possible outcomes are not relational

structures in the sense we have defined. One is stochastic logic programs (SLPs)

[Muggleton, 1996]. An SLP defines a distribution over proofs from a given logic

program. If a particular goal predicate R is specified, then an SLP also defines a

distribution over tuples of logical terms: the probability of a tuple (t1, . . . , tk) is

the sum of the probabilities of proofs of R(t1, . . . , tk). SLPs are useful for defining

distributions over objects that can be encoded as terms, such as strings or trees;

they can also emulate more standard FOPLs [Puech and Muggleton, 2003].

The other prominent FOPL with a unique outcome space is IBAL [Pfeffer, 2001],

a programming language that allows stochastic choices. An IBAL program defines

a distribution over environments that map symbols to values. These values may be

individual symbols, like the values of variables in a BN; but they may also be other

327



Chapter 6. Related Work

environments, or even functions. An IBAL program could implement a BLOG-like

generative process if the output values were interpreted as logical model structures.

But since this interpretation would not be explicit in the language, the declarative

semantics of such a program would be less clear than the corresponding BLOG

model.

6.3.2 Specificity

Among the FOPLs that define distributions over relational structures, the first dis-

tinction we can draw is between languages that fully define a distribution, and those

that only impose constraints on a distribution. As an example of the latter type,

Halpern’s logic of probability on possible worlds [Halpern, 1990] allows statements

such as ∀xP (Brilliant(x)) = 0.3. Such statements just specify particular marginal

probabilities: in general, they do not fully define a distribution. Probabilistic logic

programs (PLPs) [Ng and Subrahmanian, 1992] are essentially a version of Halpern’s

language restricted to Horn clauses, although one can obtain a full distribution from

a PLP by finding the maximum entropy distribution consistent with the PLP’s con-

straints [Lukasiewicz and Kern-Isberner, 1999].

In BLOG, on the other hand, we consider a model well-defined only if it fully

defines a distribution over relational structures. Most of the other FOPLs we have

mentioned also fall into this category; we will focus on them from here on.

6.3.3 Conditional probabilities versus weights

In the propositional realm, Bayesian networks are directed models that specify a

conditional probability distribution (CPD) for each variable given some parent vari-

ables, whereas Markov networks are undirected models that use weights to define the

relative probabilities of instantiations. This distinction carries over to the first-order

328



Chapter 6. Related Work

Brilliant(Res1)

Accepted(Pub1)

(a)

Brilliant(Res1)

Accepted(Pub1) Accepted(Pub2)

(b)

Figure 6.2: BNs defined by a directed FOPL model whose relational skeleton includes
(a) one paper, or (b) two papers.

case. Besides BLOG, the CPD-based or directed FOPLs include BUGS [Thomas et

al., 1992], PRISM [Sato and Kameya, 1997], PRMs [Koller and Pfeffer, 1998], BLPs

[Kersting and De Raedt, 2001a], and MEBN [Laskey, 2006]. The principal weight-

based or undirected formalisms are relational Markov networks [Taskar et al., 2002]

and Markov logic [Richardson and Domingos, 2006].

To understand the trade-offs between directed and undirected representations,

consider a directed FOPL model for Example 6.1 with the following CPDs:

Brilliant(r) ∼
True False

0.2 0.8

Accepted(p) ∼

Accepted(p)

Brilliant(PrimaryAuthor(p)) True False

True 0.8 0.2

False 0.3 0.7

If the relational skeleton contains just one paper Pub1 and just one researcher Res1,

with PrimaryAuthor(Pub1) = Res1, then this model defines the BN in Figure 6.2(a).

If there are two papers by Res1, we get the BN in Figure 6.2(b).

329



Chapter 6. Related Work

This directed model has several attractive properties. First, the parameters have

clear interpretations as prior and conditional probabilities, and can be estimated

from fully observed data using elementary formulas. Even more importantly, the

parameters are modular : they reflect causal processes that apply regardless of the

relational skeleton. Thus, if we estimate the parameters using only examples with one

paper per researcher, we will get the same CPDs that we would get from examples

with two papers per researcher. We can also exploit a related modularity property

when performing inference: rather than doing inference on the whole BN defined by

the FOPL model, it suffices to use the subgraph consisting of the query and evidence

nodes and their ancestors [Ngo and Haddawy, 1997].

The drawback of directed models is that they must not have any cycles. This

requirement is especially burdensome in FOPLs, because we must ensure that the

probability model is acyclic for every relational skeleton in some class. Also, certain

properties of relations are difficult to describe in a directed model: for instance, we

cannot easily specify that a relation on a set of interchangeable objects is symmetric.

Undirected models, on the other hand, have no acyclicity constraints. As we

mentioned in Section 6.2, an undirected model is defined by potential functions that

assign weights to instantiations based on some subsets of the random variables.

The weight of an instantiation is the product of the weights assigned by all the

potentials; these weights are then normalized to yield a probability distribution. In

the first-order case, a model specifies potential function templates that apply to all

sets of variables that satisfy certain conditions. For instance, in Example 6.1, we can

include a potential template that applies to Brilliant(r) for every researcher r, and

another template that applies to {Brilliant(r),Accepted(p)} for all pairs (r, p) such

that PrimaryAuthor(p) = r. Figure 6.3 shows the Markov networks that result when

these templates are applied to relational skeletons with one or two papers.

This undirected FOPL model can reproduce the distributions defined by our

330



Chapter 6. Related Work

Brilliant(Res1)

Accepted(Pub1)

(a)

Brilliant(Res1)

Accepted(Pub1) Accepted(Pub2)

(b)

Figure 6.3: Markov networks defined by an undirected FOPL model whose relational
skeleton includes (a) one paper, or (b) two papers. Dotted ovals indicate sets of
variables that are in the domain of the same potential function.

directed model above: we can simply set the potential on Brilliant(r) equal to the

CPD for Brilliant(r), and the potential on {Brilliant(r),Accepted(p)} to the CPD for

Accepted(p). However, suppose we estimate our parameters solely on examples with

one paper per researcher (recall that this caused no problems in the directed case).

For the network in Figure 6.3(a), the following parameterization assigns the same

weight to each full instantiation as the CPD-like one does:

∀ r :

Brilliant(r)

True False

1 1

∀ (r, p) s.t. PrimaryAuthor(p) = r :

Accepted(p)

Brilliant(r) True False

True 0.16 0.04

False 0.24 0.56

331



Chapter 6. Related Work

A learning algorithm has no reason to prefer the CPD-like parameterization to this

one, because both yield the same probability distribution. However, the meanings

of the parameters are no longer so clear. For instance, although the potential on

Brilliant(r) is all 1’s, Brilliant(Res1) is still more likely to be True than False in Fig-

ure 6.3(a) because the event Brilliant(Res1) = False receives greater total weight in

the potential over {Brilliant(Res1),Accepted(Pub1)}. Because of this coupling be-

tween potentials, maximum-likelihood parameters for Markov networks cannot be

found with simple formulas: one must use a gradient-based optimization algorithm

[Richardson and Domingos, 2006].

Now consider what happens if we apply the undirected probability model above to

the two-paper network in Figure 6.3(b). Then the template for pairs (r, p) such that

PrimaryAuthor(p) = r applies twice, and the marginal distribution on Brilliant(Res1)

ends up being proportional to (0.22, 0.82). If the actual probability that a researcher

is brilliant is 0.2, then these parameters are sub-optimal: we would not learn them if

we had instances with two papers in our training set.1 Thus, unlike in the directed

case, we need to ensure that the relational skeletons in our training set reflect the

diversity of relational skeletons that we may encounter in test data.

6.3.4 Independent choices versus probabilistic dependencies

The category of CPD-based languages for defining complete distributions over rela-

tional structures is still quite large. However, two of the languages we have men-

tioned, namely PHA [Poole, 1993] and PRISM [Sato and Kameya, 1997], stand out

from the rest in that they represent only deterministic dependencies and independent

random choices. That is, each variable either has no parents, or has a deterministic

1The problem actually gets worse if we eliminate the apparently redundant potential template on
Brilliant(r): then there is no parameterization that yields the desired distribution for all relational
skeletons.

332



Chapter 6. Related Work

CPD. Other FOPLs that take this approach include independent choice logic (ICL)

[Poole, 1997] and logic programs with annotated disjunctions (LPADs) [Vennekens

et al., 2004].

It may not be immediately obvious how independent choices could suffice to

represent all the randomness in a probabilistic model. First, consider the directed

model that we defined in the previous section for Example 6.1. To sample a value

for an Accepted(p) variable in that model, we flip a coin with a bias determined

by the value of Brilliant(PrimaryAuthor(p)). The trick used in PHA and PRISM

is, conceptually, to flip coins for all possible values of Brilliant(PrimaryAuthor(p))

ahead of time, and then choose which coin flip to use based on the actual value of

Brilliant(PrimaryAuthor(p)). The initial coin flips can be represented by an auxiliary

predicate Accepted given Brilliant(p, b), which represents the value that Accepted(p)

would have if Brilliant(PrimaryAuthor(p)) were equal to b. The probability model for

Accepted given Brilliant is as follows:

Accepted given Brilliant(p,True) ∼
True False

0.8 0.2

Accepted given Brilliant(p, False) ∼
True False

0.3 0.7

Now the probability model for Accepted is deterministic (note that we are treating

Brilliant here as a Boolean function, yielding values in {True,False}):

Accepted(p) = Accepted given Brilliant(p,Brilliant(PrimaryAuthor(p)))

The advantage of this technique is that it completely separates the logical and

probabilistic parts of the language. This separation can be exploited to obtain effi-

333



Chapter 6. Related Work

cient algorithms for certain tasks [Sato and Kameya, 2001]. However, this decompo-

sition often makes the representation considerably less intuitive.

6.3.5 Known versus unknown objects

The last distinction in our classification scheme is whether a language requires the set

of objects to be specified in the relational skeleton, or allows the set of objects to be

unknown. Most FOPLs assume that the objects are in one-to-one correspondence

with a given set of symbols. Some logic-based FOPLs assume that the objects

correspond one-to-one with the ground terms of the language; thus, they define a

distribution just over Herbrand models. The CPD-based FOPLs that make such

assumptions include BUGS [Thomas et al., 1992] (where the objects correspond

to specified sets of natural numbers), RBNs [Jaeger, 1997], BLPs [Kersting and

De Raedt, 2001a], and directed acyclic probabilistic entity-relationship (DAPER)

models [Heckerman et al., 2004]. One can model unknown objects to some extent

in these languages by adding an Exists predicate, but one still has to specify all the

objects that could exist, and craft the probability models so that objects for which

Exists is false cannot serve as values for functions or have any probabilistic influence

on other objects.

The need to handle unknown objects has been appreciated since the early days

of FOPL research: Charniak and Goldman’s plan recognition networks [1993] can

contain unbounded numbers of objects representing hypothesized plans. However,

external rules are used to decide what objects and variables to include in a net-

work. While each possible plan recognition network defines a distribution on its

own, Charniak and Goldman do not claim that the various networks constructed by

their system are all approximations to some single distribution over outcomes.

Some more recent FOPLs directly define a distribution over outcomes with vary-

334



Chapter 6. Related Work

ing objects. PRMs and their extensions include various constructs for modeling

different kinds of uncertainty about object existence. An early PRM paper [Koller

and Pfeffer, 1998] allows number uncertainty : uncertainty about the number of ob-

jects that stand in a given relation to a single parent object, such as the number

of passengers in a car. Getoor et al. [2001] introduce existence uncertainty : uncer-

tainty about whether there exists an object that stands in a certain relation to two

or more given objects, such as a role for a given actor in a given movie. Finally,

Pasula et al. [2003] augment PRMs with what could be called domain uncertainty :

uncertainty about the total number of objects of some class, such as the number of

publications in a field. However, there is no unified syntax or semantics for dealing

with unknown objects in PRMs. MEBNs [Laskey, 2006] take yet another approach:

an MEBN model includes a set of unique identifiers, and there is a random variable

for each identifier indicating whether the object it denotes exists or not. However,

the modeler must still specify the list of objects that may exist.

Our approach to unknown objects in BLOG can be seen as unifying the PRM

and MEBN approaches. Number statements neatly generalize the various ways of

handling unknown objects in PRMs: number uncertainty corresponds to a number

statement with a single origin function; existence uncertainty can be modeled with

two or more origin functions (and a CPD whose support is {0, 1}); and domain

uncertainty corresponds to a number statement with no origin functions. There is

also a correspondence between BLOG and MEBN logic: the tuple representations

in a BLOG model can be thought of as unique identifiers in an MEBN model. The

difference is that BLOG determines which objects actually exist in a world using

number variables rather than individual existence variables.

There is also a relatively new FOPL called dynamical grammars [Mjolsness, 2006]

that can be seen as going even farther than BLOG in the direction of unknown

objects. The basic element in dynamical grammars is a parameterized term, which

335



Chapter 6. Related Work

represents an object and all its properties. For instance, the term bacterium(x)

represents a bacterium whose position is a vector x. A dynamical grammar specifies

a probabilistic model of how a multiset of terms evolves over time. The grammar

consists of rules that replace a set of input terms with a set of output terms. Each rule

has a “firing rate” expression that defines the probability of the rule being executed

on any given set of input terms per infinitessimal unit of time. For example, a rule

could specify that a bacterium and an immune system cell are replaced with just an

immune system cell (the bacterium is engulfed) with some firing rate that depends

on the position vectors in the two input terms. This language is well suited for

describing how objects are created and destroyed over time, but it also has some

awkward features: for instance, the term representation of an object must have an

argument for each attribute of that object that is relevant in any part of the model.

336



Chapter 7

Conclusion

7.1 Contributions of this thesis

This thesis has introduced a new framework for probabilistic reasoning about un-

known objects, ranging from the unknown aircraft that generated a set of radar

blips to the unknown publications that underlie a set of bibliographic citations. The

centerpiece of the thesis is Bayesian logic (BLOG), a representation language that

concisely defines probability distributions over possible worlds with varying sets of

objects and varying relations among the objects.

Representing probability distributions over such complex outcome spaces has re-

quired us to address a number of technical challenges. One difficulty is that when

the relationships between objects vary from outcome to outcome, the probabilistic

dependencies between random variables often vary as well. That is, the dependencies

become contingent rather than fixed. For example, in our hurricane scenario (Exam-

ple 3.2), the dependencies between damage levels and preparations in different cities

are contingent on which city is hit first. Another difficulty is that if the number of

objects in the world is unknown and unbounded, then the number of variables in the

337



Chapter 7. Conclusion

model often must be infinite. For instance, in the urn-and-balls example (Example

3.1), we cannot limit ourselves to any finite number of TrueColor variables, because

then we could not represent outcomes where the number of balls exceeded that upper

bound. A third issue is that when the set of objects is unknown, it may no longer be

appropriate for the outcome space to be the product space of a fixed set of random

variables. For instance, a variable representing the true color of ball 37 should not

be allowed a full range of values in worlds where the number of balls is only 12.

We addressed all these challenges in Chapter 3, where we defined two new declar-

ative modeling formalisms: partition-based models (PBMs) and contingent Bayesian

networks (CBNs). Both of these formalisms allow infinite sets of variables, as well as

non-product outcome spaces in which some instantiations of the random variables

may be unachievable. PBMs are very abstract and general: they allow one to specify

conditional probabilities for a random variable not just given some parent variables,

but given an arbitrary partition of the outcome space. In Section 3.4, we proved that

the probability distribution defined by a PBM can be characterized either by certain

context-specific independence properties, or equivalently by factorization properties

for certain finite instantiations of the random variables (Theorem 3.10). We also gave

a general condition under which a PBM is guaranteed to define a unique distribution

(Theorem 3.13).

CBNs are more down-to-earth, using decision trees to define partitions, and rep-

resenting contingent dependencies by labeling graph edges with the conditions under

which they are active. Using decision trees to define the partitions deprives CBNs of

some expressive power, but also facilitates the development of inference algorithms

(such as the likelihood weighting algorithm in Section 5.3). The graphical represen-

tation also allows us to define graph-based criteria for checking that a CBN defines

a distribution (Theorem 3.17). These criteria can be satisfied even when the CBN

contains cycles, or when some nodes in the CBN have infinitely many parents —

338



Chapter 7. Conclusion

as long as the edges involved in these cycles or infinite parent sets are labeled with

contradictory conditions.

In Chapter 4, we introduced the BLOG language itself. BLOG is intended to

be a convenient modeling language for scenarios with unknown objects, as well as

for a full range of other probabilistic knowledge representation tasks. Intuitively, a

BLOG model can be thought of as defining a generative process that constructs a

possible world step by step. In addition to setting the values of functions on tuples

of objects, these steps can add varying numbers of new objects to the world. One of

the distinctive features of BLOG is that it lets a modeler define processes in which

objects generate other objects — for example, aircraft generate radar blips — and

the number of objects generated can depend on various attributes of the generating

objects.

More formally, a BLOG model is a concise description of a PBM, specifying

conditional probability distributions and context-specific independence properties.

In general, defining a PBM for a scenario with unknown objects can be tricky: one

needs to make sure that the random variables in the PBM resolve all questions about

the outcomes (e.g., which unknown objects end up playing which roles in a relational

structure), and also that unachievable instantiations of the random variables (instan-

tiations not corresponding to any outcome) get probability zero. In Section 4.3, we

described a semantics for BLOG that frees the modeler from the need to worry about

such issues: it is impossible to write a BLOG model that creates a mismatch between

the random variables and the outcome space (see Lemma 4.2 and Proposition 4.6).

Then in Section 4.3.6, we built on our results from Chapter 3 to define a class of

structurally well-defined BLOG models, which are guaranteed to define probability

distributions.

Chapter 5 discussed the task of doing inference in BLOG models. We presented

variants of three standard sampling-based inference techniques: rejection sampling,

339



Chapter 7. Conclusion

likelihood weighting, and Markov chain Monte Carlo (MCMC). In all three cases, we

extended the standard algorithms to avoid constructing complete instantiations of

the set of random variables, which is often infinite. Instead, they operate on partial

descriptions of possible worlds. The rejection sampling and likelihood weighting

algorithms are guaranteed to converge to correct posterior probabilities for all queries

on structurally well-defined BLOG models. However, these guarantees are only

asymptotic: in practice, these algorithms often fail to yield useful results even with

hours of computation time.

We were able to do some experiments on our urn-and-balls model using the

likelihood weighting algorithm. For a real test, however, we turned to our MCMC

framework. This framework (Section 5.4) allows a programmer to plug in an arbi-

trary proposal distribution, which can guide the Markov chain toward worlds with

high posterior probability. The proposals may be partial world descriptions that

only instantiate context-specifically relevant variables; they may even abstract away

the identities of interchangeable objects. As described in Section 5.5, we evaluated

this framework on a real-world task that involves clustering bibliographic citation

strings into groups that refer to the same publication. Using a customized proposal

distribution, we were able to generate 10,000 samples and achieve reasonable accu-

racy in just 1 or 2 minutes. This was not as fast as an MCMC program written by

hand for a particular model and proposal distribution, but it is still an encouraging

result.

Our inference engine is implemented in Java, and is publicly available from the

author’s home page. The engine can read in any BLOG model from a file and com-

pute posterior probabilities using either rejection sampling or likelihood weighting.

It can also run our MCMC algorithm using either a very weak default proposal

distribution, or a special-purpose proposer implemented by the user as a Java class.

340



Chapter 7. Conclusion

7.2 Directions for future research

This thesis opens up a number of interesting avenues for future research. One impor-

tant shortcoming of the current work is that PBMs and CBNs are limited to discrete

random variables. Much of the development of PBMs revolves around instantiations

of the random variables — which would all have probability zero if the variables were

continuous. It seems that it should be possible to generalize PBMs and CBNs to deal

with probability densities on the random variables, but it is not yet clear how to do

this. Another goal is to allow variables in CBNs to have infinitely many active par-

ents. This would require moving from numberings of the variables to well-founded

orderings (as suggested by Jaeger [1998]), and using transfinite induction. However,

this extension raises some of the same difficulties as allowing continuous random

variables, since an instantiation of an infinite set of discrete random variables also

has probability zero in most cases.

There are also some ways in which we could improve the syntax and expres-

siveness of BLOG. For instance, it would be convenient to treat sets and lists as

first-class objects. A major but probably desirable change would be to make BLOG

more compositional — so that, for example, one BLOG model could be used as an

elementary CPD within a larger BLOG model. This would require some BLOG

models to define conditional distributions, rather than just prior distributions; it is

not yet obvious how the semantics would work.

In terms of inference for BLOG models, we are still quite far from our goal of

letting a user write down a new model for a complex scenario, provide some ob-

served data, press “Go”, and get accurate results from an inference engine within

a reasonable amount of time. Currently, achieving efficient inference on a complex

model requires using our MCMC framework with a customized proposal distribu-

tion. And implementing a proposal distribution is difficult: the programmer must

341



Chapter 7. Conclusion

handle all the details of determining which variables need to be instantiated in a

proposed state, computing the forward and backward proposal probabilities, and so

on. We would like to develop an architecture that allows proposal distributions to

be assembled from components. Then rather than implementing a domain-specific

proposal distribution from scratch, a user could choose appropriate components from

a library, or write new components for particular parts of a model. It might also help

to allow certain parameters in a proposal distribution to be adapted as the chain is

running, as in the work of Haario et al. [2001]. Another obvious improvement to

our inference engine’s capabilities would be to include an implementation of Gibbs

sampling, as in the BUGS system [Thomas et al., 1992]. There is some research to

be done on extending Gibbs sampling to deal with partial instantiations, as we did

with likelihood weighting and general Metropolis-Hastings algorithms.

Although we have focused on sampling-based approaches to inference in this

thesis, the declarative semantics of BLOG yields inference problems that could be

tackled with any class of algorithms. Implementing a variety of algorithms in our

BLOG engine would allow users more flexibility in choosing the right algorithm for

a particular model. Among approximate inference algorithms, the most promising

candidates for implementation are loopy belief propagation [Murphy et al., 1999] and

a structured mean-field algorithm [Xing et al., 2003]. Extending these algorithms to

handle infinite models with contingent dependencies is an interesting research topic.

We would also like to investigate the application of exact inference algorithms to

BLOG models — either on their own, or in combination with an MCMC method

that samples values for some of the random variables and allows the exact infer-

ence algorithm to sum out the rest (a strategy called Rao-Blackwellisation [Casella

and Robert, 1996]). There is a large amount of intriguing work these days on ex-

act inference algorithms that exploit determinism and context-specific dependencies,

using techniques such as compilation to an arithmetic circuit [Chavira et al., 2006]

342



Chapter 7. Conclusion

or weighted model counting on propositional formulas [Sang et al., 2005]. BLOG

models reveal a great deal of structure that such algorithms could exploit. Lifted

inference algorithms that exploit generalization across objects [Pfeffer et al., 1999;

Poole, 2003; de Salvo Braz et al., 2005] also apply naturally to BLOG, and might

yield dramatic speed-ups on some problems.

There is also a set of questions regarding dynamic BLOG models: models that

describe the evolution of a set of objects over time. BLOG can already represent

such models — the aircraft-tracking model in Figure 4.4 is one of them — but our

inference algorithms run on a single batch of observed data, rather than updating

state estimates incrementally over time. We would like to develop filtering algorithms

that allow a system to compute posterior probabilities for random variables at the

current time step, based on the probabilities computed at the previous time step and

any new observations that were received. Ideally, such filtering algorithms should

require a constant amount of computation per time step. But in models where

one can observe different sets of objects over time, and objects that are no longer

observed may still reappear or have some effect on the query variables, it is not clear

if constant-time filtering is possible. A system that always reasons about the current

states of all the objects it has ever observed will get slower and slower over time.

Thus, one research goal is to develop approximate filtering algorithms that avoid

such slowdowns.

Learning BLOG models is also a major topic for future research. Parameter

estimation from complete data is straightforward; for incomplete data, we plan to

add a Monte Carlo version of the expectation maximization (EM) algorithm [Wei

and Tanner, 1990] to our MCMC engine. Learning the dependency structure of

BLOG models is a more difficult issue. There are known algorithms for learning

the structure of probabilistic relational models (PRMs) [Friedman et al., 1999], but

the dependencies between variables in a PRM are represented just with slot chains,

343



Chapter 7. Conclusion

which are much less expressive than BLOG’s dependency statements. Thinking even

more ambitiously, we would like to go beyond learning the dependency structure of

a model with known object types and function symbols: we would like to have the

learner invent new types and functions to explain the observed data. This idea has

been studied in the inductive logic programming community under the heading of

predicate invention [Muggleton and Buntine, 1988]. Recently there has been some

work on extending predicate invention techniques to probabilistic models [Otero and

Muggleton, 2006; Revoredo et al., 2006]; in a probabilistic setting, inventing a new

random predicate corresponds to inventing an indexed family of hidden variables

[Elidan and Friedman, 2005].

Finally, we would like to explore further applications of BLOG to real-world

problems. The citation-matching model and proposal distribution that we described

in Section 5.5 do not yield accuracies as high as state-of-the-art systems [Pasula et

al., 2003; Wellner et al., 2004]. Also, identifying citations that refer to the same

publication is only part of the task of constructing a bibliographic database: we

would also like to identify the distinct authors, journals, conferences, and publishers

that are mentioned in a set of citations. There has been work on such multi-type

coreference resolution in other probabilistic frameworks [Culotta and McCallum,

2005; Singla and Domingos, 2006]. Representing multiple types of objects BLOG is

straightforward, but implementing a good proposal distribution for such an extended

model becomes very complex. Applying MCMC to such complex models will be much

easier if we develop a component-based architecture for proposal distributions.

There are many other real-world tasks where the BLOG approach should be

useful. Examples include: determining when several noun phrases refer to the same

object, either within a single document [Soon et al., 2001] or across documents [Li

et al., 2004]; identifying multiple web pages that offer the same product in an online

shopping system; reconstructing phylogenetic trees for sets of species based on their

344



Chapter 7. Conclusion

genomes [Felsenstein, 2003]; or keeping track of the people and objects encountered

by a mobile robot. Tackling such a wide range of tasks will require improved general-

purpose algorithms for inference and learning in BLOG. In the longer term, a BLOG-

like language could serve as the foundation for general-purpose question-answering

systems, personal assistants, or autonomous robots. Such systems would need to

learn models for many different domains, from transportation to basic medicine to

cooking. Perhaps the most exciting aspect of BLOG is that it gives us an idea of

how such general-purpose systems might represent and reason about the world.

345



Chapter 7. Conclusion

346



Bibliography

[Andrieu et al., 2003] C. Andrieu, N. de Freitas, A. Doucet, and M. I. Jordan. An
introduction to MCMC for machine learning. Machine Learning, 50:5–43, 2003.

[Bahl and Jelinek, 1975] L. R. Bahl and F. Jelinek. Decoding for channels with
insertions, deletions, and substitutions with applications to speech recognition.
IEEE Trans. Inform. Theory, 21(4):404–411, 1975.

[Bahl et al., 1983] L. R. Bahl, F. Jelinek, and R. L. Mercer. A maximum likelihood
approach to continuous speech recognition. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 5(2):179–190, 1983.

[Bar-Shalom and Fortmann, 1988] Y. Bar-Shalom and T. E. Fortmann. Tracking
and Data Association. Academic Press, Boston, 1988.

[Billingsley, 1995] P. Billingsley. Probability and Measure. Wiley, New York, 3rd
edition, 1995.

[Borchers et al., 2002] D. L. Borchers, S. T. Buckland, and W. Zucchini. Estimating
Animal Abundance. Springer, New York, 2002.

[Boutilier et al., 1996] C. Boutilier, N. Friedman, M. Goldszmidt, and D. Koller.
Context-specific independence in Bayesian networks. In Proc. 12th Conf. on Un-
certainty in Artificial Intelligence, pages 115–123, 1996.

[Casella and Robert, 1996] G. Casella and C. P. Robert. Rao-Blackwellisation of
sampling schemes. Biometrika, 83(1):81–94, 1996.

[Charniak and Goldman, 1993] E. Charniak and R. P. Goldman. A Bayesian model
of plan recognition. Artificial Intelligence, 64(1):53–79, 1993.

[Chavira et al., 2006] M. Chavira, A. Darwiche, and M. Jaeger. Compiling relational
Bayesian networks for exact inference. Int’l J. Approximate Reasoning, 42:4–20,
2006.

347



BIBLIOGRAPHY

[Cheeseman et al., 1988] P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor, and
D. Freeman. AutoClass: A Bayesian classification system. In Proc. 5th Int’l
Conf. on Machine Learning, pages 54–64, 1988.

[Chickering et al., 1997] D.M. Chickering, D. Heckerman, and C. Meek. A Bayesian
approach to learning Bayesian networks with local structure. In Proc. 13th
Conf. on Uncertainty in Artificial Intelligence, pages 80–89, 1997.

[Church, 1936] A. Church. A note on the Entscheidungsproblem. J. Symbolic Logic,
1(1):40–41, 1936. Corrected in J. Symbolic Logic 1(3):101–102, 1936.

[Ciesielski, 1997] K. Ciesielski. Set Theory for the Working Mathematician. Cam-
bridge, 1997.

[Cowell et al., 1999] R. G. Cowell, S. L. Lauritzen, D. J. Spiegelhalter, and A. P.
Dawid. Probabilistic Networks and Expert Systems. Springer, New York, 1999.

[Culotta and McCallum, 2005] A. Culotta and A. McCallum. Joint deduplication of
multiple record types in relational data. In Proc. 14th Conf. on Information and
Knowledge Management, 2005.

[de Salvo Braz et al., 2005] R. de Salvo Braz, E. Amir, and D. Roth. Lifted first-
order probabilistic inference. In Proc. 19th International Joint Conference on
Artificial Intelligence, pages 1319–1325, 2005.

[Dechter, 1999] R. Dechter. Bucket elimination: A unifying framework for reasoning.
Artificial Intelligence, 113:41–85, 1999.

[Durrett, 1996] R. Durrett. Probability: Theory and Examples. Wadsworth, Bel-
mont, CA, 2nd edition, 1996.

[Elidan and Friedman, 2005] G. Elidan and N. Friedman. Learning hidden variable
networks: The information bottleneck approach. J. Machine Learning Res., 6:81–
127, 2005.

[Enderton, 2001] H. B. Enderton. A Mathematical Introduction to Logic. Academic
Press, 2nd edition, 2001.

[Escobar and West, 1995] M. D. Escobar and M. West. Bayesian density estimation
and inference using mixtures. J. Amer. Stat. Assoc., 90(430):577–588, 1995.

[Fellegi and Sunter, 1969] I. Fellegi and A. Sunter. A theory for record linkage.
J. Amer. Stat. Assoc., 64:1183–1210, 1969.

348



BIBLIOGRAPHY

[Felsenstein, 2003] J. Felsenstein. Inferring Phylogenies. Sinauer, Sunderland, MA,
2003.

[Ferguson, 1983] T. S. Ferguson. Bayesian density estimation by mixtures of normal
distributions. In M. H. Rizvi, J. S. Rustagi, and D. Siegmund, editors, Recent
Advances in Statistics: Papers in Honor of Herman Chernoff on His Sixtieth
Birthday, pages 287–302. Academic Press, New York, 1983.

[Fräıssé, 2000] R. Fräıssé. Theory of Relations. Elsevier, Amsterdam, revised edition,
2000.

[Franchella, 1997] M. Franchella. On the origins of Dénes König’s infinity lemma.
Arch. Hist. Exact Sci., 51:3–27, 1997.

[Friedman et al., 1999] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning
probabilistic relational models. In Proc. 16th International Joint Conference on
Artificial Intelligence, pages 1300–1307, 1999.

[Fung and Chang, 1990] R. Fung and K.-C. Chang. Weighing and integrating ev-
idence for stochastic simulation in Bayesian networks. In M. Henrion, R. D.
Shachter, L. N. Kanal, and J. F. Lemmer, editors, Uncertainty In Artificial Intel-
ligence 5, pages 209–219. North-Holland, Amsterdam, 1990.

[Fung and Shachter, 1990] R. M. Fung and R. D. Shachter. Contingent influence
diagrams. Working Paper, Dept. of Engineering-Economic Systems, Stanford Uni-
versity, 1990.

[Gaifman, 1964] H. Gaifman. Concerning measures in first order calculi. Israel
J. Math., 2:1–18, 1964.

[Gale and Sampson, 1995] W. A. Gale and G. Sampson. Good-Turing frequency
estimation without tears. Quantitative Linguistics, 2(3):217–237, 1995.

[Geiger and Heckerman, 1996] D. Geiger and D. Heckerman. Knowledge represen-
tation and inference in similarity networks and Bayesian multinets. Artificial
Intelligence, 82(1–2):45–74, 1996.

[Gelman, 1992] A. Gelman. Iterative and non-iterative sampling algorithms. Com-
put. Sci. and Stat., 24:433–438, 1992.

[Geman and Geman, 1984] S. Geman and D. Geman. Stochastic relaxation, Gibbs
distributions and the Bayesian restoration of images. IEEE Trans. on Pattern
Analysis and Machine Intelligence, 6:721–741, 1984.

349



BIBLIOGRAPHY

[Georgii, 1988] H.-O. Georgii. Gibbs Measures and Phase Transitions. de Gruyter,
Berlin, 1988.

[Getoor et al., 2001] L. Getoor, N. Friedman, D. Koller, and B. Taskar. Learning
probabilistic models of relational structure. In Proc. 18th Int’l Conf. on Machine
Learning, pages 170–177, 2001.

[Giles et al., 1998] C. L. Giles, K. D. Bollacker, and S. Lawrence. CiteSeer: An
automatic citation indexing system. In Proc. 3rd ACM Conf. on Digital Libraries,
pages 89–98, 1998.

[Gilks et al., 1994] W. R. Gilks, A. Thomas, and D. J. Spiegelhalter. A language
and program for complex Bayesian modelling. The Statistician, 43(1):169–177,
1994.

[Gilks et al., 1996] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors.
Markov Chain Monte Carlo in Practice. Chapman and Hall, London, 1996.

[Haario et al., 2001] H. Haario, E. Saksman, and J. Tamminen. An adaptive
Metropolis algorithm. Bernoulli, 7:223–242, 2001.

[Halpern, 1990] J. Y. Halpern. An analysis of first-order logics of probability. Arti-
ficial Intelligence, 46:311–350, 1990.

[Hastings, 1970] W. K. Hastings. Monte Carlo sampling methods using Markov
chains and their applications. Biometrika, 57:97–109, 1970.

[Heckerman et al., 2004] D. Heckerman, C. Meek, and D. Koller. Probabilistic mod-
els for relational data. Technical Report MSR-TR-2004-30, Microsoft Research,
2004.

[Henrion, 1988] M. Henrion. Propagating uncertainty in Bayesian networks by prob-
abilistic logic sampling. In J. F. Lemmer and L. N. Kanal, editors, Uncertainty in
Artificial Intelligence 2, pages 149–163. North-Holland, Amsterdam, 1988.

[Horsch and Poole, 1990] M. C. Horsch and D. Poole. A dynamic approach to prob-
abilistic inference using Bayesian networks. In Proc. 6th Conf. on Uncertainty in
Artificial Intelligence, pages 155–161, 1990.

[Howard and Matheson, 1984] R. A. Howard and J. E. Matheson. Influence dia-
grams. In Readings on the Principles and Applications of Decision Analysis, vol-
ume 2. Strategic Decision Group, Menlo Park, CA, 1984. Reprinted, Decision
Analysis 2(3):127–143, 2005.

350



BIBLIOGRAPHY

[Ishwaran and James, 2001] H. Ishwaran and L. F. James. Gibbs sampling methods
for stick-breaking priors. J. Amer. Stat. Assoc., 96(453):161–173, 2001.

[Jaeger, 1997] M. Jaeger. Relational Bayesian networks. In Proc. 13th Conf. on
Uncertainty in Artificial Intelligence, pages 266–273, 1997.

[Jaeger, 1998] M. Jaeger. Reasoning about infinite random structures with rela-
tional Bayesian networks. In Proc. 6th Int’l Conf. on Principles of Knowledge
Representation and Reasoning, pages 570–581, 1998.

[Jain and Neal, 2004] S. Jain and R. M. Neal. A split-merge Markov chain Monte
Carlo procedure for the Dirichlet process mixture model. J. Computational and
Graphical Statistics, 13(1):158–182, 2004.

[Jordan et al., 1999] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul. Introduc-
tion to variational methods for graphical models. Machine Learning, 37:183–233,
1999.

[Kalmár, 1936] L. Kalmár. Zurückführung des Entscheidungsproblems auf den Fall
von Formeln mit einer einzigen, binären Funktionsvariablen. Compositio mathe-
matica, 4:137–144, 1936.

[Kersting and De Raedt, 2001a] K. Kersting and L. De Raedt. Adaptive Bayesian
logic programs. In Proc. 11th Int’l Conf. on Inductive Logic Programming, 2001.

[Kersting and De Raedt, 2001b] K. Kersting and L. De Raedt. Bayesian logic pro-
grams. Technical report, Institute for Computer Science, Univ. of Freiburg, Ger-
many, April 2001.

[Kiiveri et al., 1984] H. Kiiveri, T. P. Speed, and J. B. Carlin. Recursive causal
models. J. Austral. Math. Soc. A, 36:30–52, 1984.

[Koller and Pfeffer, 1998] D. Koller and A. Pfeffer. Probabilistic frame-based sys-
tems. In Proc. 15th AAAI National Conference on Artificial Intelligence, pages
580–587, 1998.

[König, 1926] D. König. Sur les correspondances multivoques des ensembles. Fun-
damenta Mathematicae, 8:114–134, 1926.

[König, 1927] D. König. Über eine Schlußweise aus dem Endlichen ins Unendliche.
Acta Litterarum ac Scientiarum: Sectio Scientiarum Mathematicarum (Szeged,
Hungary), 3:121–130, 1927.

351



BIBLIOGRAPHY

[Lafferty et al., 2001] J. Lafferty, A. McCallum, and F. Pereira. Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. In Proc.
18th Int’l Conf. on Machine Learning, pages 282–289, 2001.

[Lappin and Leass, 1994] S. Lappin and H. J. Leass. An algorithm for pronominal
anaphora resolution. Computational Linguistics, 20(4):535–561, 1994.

[Laskey, 2006] K. B. Laskey. First-order Bayesian logic. Technical report, Dept. of
Systems Engineering and Operations Research, George Mason Univ., Fairfax, VA,
February 2006.

[Lauritzen and Spiegelhalter, 1988] S. L. Lauritzen and D. J. Spiegelhalter. Local
computations with probabilities on graphical structures and their application to
expert systems. J. Royal Stat. Soc. B, 50:157–224, 1988.

[Lauritzen et al., 1990] S. L. Lauritzen, A. P. Dawid, B. N. Larsen, and H.-G.
Leimer. Independence properties of directed Markov fields. Networks, 20:491–
505, 1990.

[Lawrence et al., 1999a] S. Lawrence, C. L. Giles, and K. Bollacker. Digital libraries
and autonomous citation indexing. IEEE Computer, 32(6):67–71, 1999.

[Lawrence et al., 1999b] S. Lawrence, C. L. Giles, and K. D. Bollacker. Autonomous
citation matching. In Proc. 3rd Int’l Conf. on Autonomous Agents, pages 392–393,
1999.

[Li et al., 2004] X. Li, P. Morie, and D. Roth. Robust reading: Identification and
tracing of ambiguous names. In Proc. Human Language Technology Conference
and NAACL Annual Meeting, pages 17–24, 2004.

[Löwenheim, 1915] L. Löwenheim. Über möglichkeiten im relativkalkül. Mathema-
tische Annalen, 76, 1915. Trans. in [van Heijenoort, 1967].

[Lukasiewicz and Kern-Isberner, 1999] T. Lukasiewicz and G. Kern-Isberner. Prob-
abilistic logic programming under maximum entropy. In Proc. 5th European Con-
ference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty,
pages 279–292. Springer, 1999.

[Mathon, 1979] R. Mathon. A note on the graph isomorphism counting problem.
Inform. Process. Lett., 8(3):131–132, 1979.

[McCallum and Wellner, 2005] A. McCallum and B. Wellner. Conditional models of
identity uncertainty with application to noun coreference. In Advances in Neural
Information Processing Systems 17. MIT Press, Cambridge, MA, 2005.

352



BIBLIOGRAPHY

[McCallum et al., 2000] A. McCallum, K. Nigam, and L. H. Ungar. Efficient clus-
tering of high-dimensional data sets with application to reference matching. In
Proc. 6th ACM SIGKDD Int’l Conf. on Knowledge Discovery in Databases, 2000.

[Metropolis et al., 1953] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H.
Teller, and E. Teller. Equations of state calculations by fast computing machines.
J. Chemical Physics, 21:1087–1092, 1953.

[Milch and Russell, 2006] B. Milch and S. Russell. General-purpose MCMC infer-
ence over relational structures. In Proc. 22nd Conf. on Uncertainty in Artificial
Intelligence, pages 349–358, 2006.

[Milch et al., 2004] B. Milch, B. Marthi, and S. Russell. BLOG: Relational modeling
with unknown objects. In ICML Workshop on Statistical Relational Learning and
Its Connections to Other Fields, Banff, Alberta, Canada, 2004.

[Milch et al., 2005a] B. Milch, B. Marthi, S. Russell, D. Sontag, D. L. Ong, and
A. Kolobov. BLOG: Probabilistic models with unknown objects. In Proc. 19th
International Joint Conference on Artificial Intelligence, pages 1352–1359, 2005.

[Milch et al., 2005b] B. Milch, B. Marthi, D. Sontag, S. Russell, D. L. Ong, and
A. Kolobov. Approximate inference for infinite contingent Bayesian networks. In
Proc. 10th Int’l Workshop on Artificial Intelligence and Statistics, 2005.

[Mjolsness, 2006] E. Mjolsness. Stochastic process semantics for dynamical grammar
syntax: An overview. In Proc. 9th Int’l Symposium on Artificial Intelligence and
Mathematics, 2006.

[MUC–6, 1995] MUC–6. Coreference resolution task definition (v2.3, 8 Sep 95). In
Proc. 6th Message Understanding Conference, pages 335–344, 1995.

[Muggleton and Buntine, 1988] S. Muggleton and W. Buntine. Machine invention of
first-order predicates by inverting resolution. In Proc. 5th Int’l Conf. on Machine
Learning, pages 339–352, 1988.

[Muggleton, 1996] S. H. Muggleton. Stochastic logic programs. In L. De Raedt,
editor, Advances in Inductive Logic Programming, pages 254–264. IOS Press, 1996.

[Murphy et al., 1999] K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief prop-
agation for approximate inference: An empirical study. In Proc. 15th Conf. on
Uncertainty in Artificial Intelligence, pages 467–475, 1999.

[Nash-Williams, 1967] C. St. J. A. Nash-Williams. Infinite graphs — a survey.
J. Combin. Theory, 3:286–301, 1967.

353



BIBLIOGRAPHY

[Neal, 1991] R. M. Neal. Bayesian mixture modeling by Monte Carlo simulation.
Technical Report CRG-TR-91-2, Dept. of Computer Science, Univ. of Toronto,
1991.

[Newcombe et al., 1959] H. B. Newcombe, J. M. Kennedy, S. J. Axford, and A. P.
James. Automatic linkage of vital records. Science, 130:954–959, 1959.

[Ng and Subrahmanian, 1992] R. T. Ng and V. S. Subrahmanian. Probabilistic logic
programming. Information and Computation, 101(2):150–201, 1992.

[Ngo and Haddawy, 1997] L. Ngo and P. Haddawy. Answering queries from context-
sensitive probabilistic knowledge bases. Theoretical Comp. Sci., 171(1–2):147–177,
1997.

[Oh et al., 2004] S. Oh, S. Russell, and S. Sastry. Markov chain Monte Carlo data
association for general multiple-target tracking problems. In Proc. 43rd IEEE
Conf. on Decision and Control, pages 735–742, 2004.

[Otero and Muggleton, 2006] R. Otero and S. Muggleton. On McCarthy’s appear-
ance and reality problem. In Short Papers from the 16th International Conference
on Inductive Logic Programming, 2006.

[Pasula et al., 2003] H. Pasula, B. Marthi, B. Milch, S. Russell, and I. Shpitser.
Identity uncertainty and citation matching. In Advances in Neural Information
Processing Systems 15. MIT Press, Cambridge, MA, 2003.

[Pasula, 2003] H. Pasula. Identity Uncertainty. PhD thesis, Univ. of California at
Berkeley, 2003.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kauf-
mann, San Francisco, revised edition, 1988.

[Pfeffer and Koller, 2000] A. Pfeffer and D. Koller. Semantics and inference for re-
cursive probability models. In Proc. 17th AAAI National Conference on Artificial
Intelligence, pages 538–544, 2000.

[Pfeffer et al., 1999] A. Pfeffer, D. Koller, B. Milch, and K. Takusagawa. SPOOK:
A system for probabilistic object-oriented knowledge. In Proc. 15th Conf. on
Uncertainty in Artificial Intelligence, pages 541–550, 1999.

[Pfeffer, 2000] A. Pfeffer. Probabilistic Reasoning for Complex Systems. PhD thesis,
Stanford Univ., 2000.

354



BIBLIOGRAPHY

[Pfeffer, 2001] A. Pfeffer. IBAL: A probabilistic rational programming language. In
Proc. 17th International Joint Conference on Artificial Intelligence, 2001.

[Poole and Zhang, 2003] D. Poole and N. L. Zhang. Exploiting contextual indepen-
dence in probabilistic inference. J. Artificial Intelligence Res., 18:263–313, 2003.

[Poole, 1993] D. Poole. Probabilistic Horn abduction and Bayesian networks. Arti-
ficial Intelligence, 64(1):81–129, 1993.

[Poole, 1997] D. Poole. The Independent Choice Logic for modelling multiple agents
under uncertainty. Artificial Intelligence, 94(1–2):5–56, 1997.

[Poole, 2003] D. Poole. First-order probabilistic inference. In Proc. 18th Interna-
tional Joint Conference on Artificial Intelligence, pages 985–991, 2003.

[Puech and Muggleton, 2003] A. Puech and S. Muggleton. A comparison of stochas-
tic logic programs and Bayesian logic programs. In IJCAI Workshop on Learning
Statistical Models from Relational Data, 2003.

[Rabiner, 1989] L. R. Rabiner. A tutorial on hidden Markov models and selected
applications in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

[Reiter, 1980] R. Reiter. Equality and domain closure in first-order databases. Jour-
nal of the ACM, 27:235–249, 1980.

[Revoredo et al., 2006] K. Revoredo, A. Paes, G. Zaverucha, and V. Santos Costa.
Combining predicate invention and revision of probabilistic FOL theories. In Short
Papers from the 16th International Conference on Inductive Logic Programming,
2006.

[Richardson and Domingos, 2006] M. Richardson and P. Domingos. Markov logic
networks. Machine Learning, 62:107–136, 2006.

[Richardson and Green, 1997] S. Richardson and P. J. Green. On Bayesian analysis
of mixtures with an unknown number of components. J. Royal Stat. Soc. B,
59:731–792, 1997.

[Rubinstein, 1981] R. Y. Rubinstein. Simulation and the Monte Carlo Method. Wi-
ley, New York, 1981.

[Russell and Norvig, 2003] S. Russell and P. Norvig. Artificial Intelligence: A Mod-
ern Approach. Morgan Kaufmann, Upper Saddle River, NJ, 2nd edition, 2003.

[Russell, 2001] S. Russell. Identity uncertainty. In Proc. 9th Int’l Fuzzy Systems
Assoc. World Congress, 2001.

355



BIBLIOGRAPHY

[Sang et al., 2005] T. Sang, P. Beame, and H. Kautz. Performing Bayesian inference
by weighted model counting. In Proc. 20th AAAI National Conf. on Artificial
Intelligence, pages 475–482, 2005.

[Sato and Kameya, 1997] T. Sato and Y. Kameya. PRISM: A symbolic–statistical
modeling language. In Proc. 15th International Joint Conference on Artificial
Intelligence, pages 1330–1335, 1997.

[Sato and Kameya, 2001] T. Sato and Y. Kameya. Parameter learning of logic pro-
grams for symbolic–statistical modeling. J. Artificial Intelligence Res., 15:391–454,
2001.

[Shachter and Peot, 1990] R. D. Shachter and M. A. Peot. Simulation approaches to
general probabilistic inference on belief networks. In M. Henrion, R. D. Shachter,
L. N. Kanal, and J. F. Lemmer, editors, Uncertainty in Artificial Intelligence 5,
pages 221–231. North-Holland, Amsterdam, 1990.

[Shachter et al., 1990] R. D. Shachter, B. D’Ambrosio, and B. A. Del Favero. Sym-
bolic probabilistic inference in belief networks. In Proc. 8th AAAI National Con-
ference on Artificial Intelligence, pages 126–131, 1990.

[Shachter, 1986] R. D. Shachter. Evaluating influence diagrams. Operations Re-
search, 34(6):871–882, 1986.

[Singla and Domingos, 2005] P. Singla and P. Domingos. Object identification with
attribute-mediated dependences. In Proc. 9th European Conf. on Principles and
Practice of Knowledge Discovery in Databases, pages 297–308, 2005.

[Singla and Domingos, 2006] P. Singla and P. Domingos. Entity resolution with
Markov logic. In Proc. IEEE Int’l Conf. on Data Mining, 2006.

[Sittler, 1964] R. W. Sittler. An optimal data association problem in surveillance
theory. IEEE Trans. Military Electronics, MIL-8:125–139, 1964.

[Skolem, 1920] Th. Skolem. Logisch-kombinatorische Untersuchungen über die
Erfüllbarkeit und Beweisbarkeit mathematischen Sätze nebst einem Theo-
reme über dichte Mengen. Videnskapsselskapets skrifter, 1: Mathematik-
naturvidenskabelig klasse (Kristiana, Norway), 4, 1920. Relevant portion trans. in
[van Heijenoort, 1967].

[Soon et al., 2001] W. M. Soon, H. T. Ng, and D. C. Y. Lim. A machine learning
approach to coreference resolution of noun phrases. Computational Linguistics,
27(4):521–544, 2001.

356



BIBLIOGRAPHY

[Taskar et al., 2002] B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilis-
tic models for relational data. In Proc. 18th Conf. on Uncertainty in Artificial
Intelligence, pages 485–492, 2002.

[Thomas et al., 1992] A. Thomas, D. Spiegelhalter, and W. Gilks. BUGS: A program
to perform Bayesian inference using Gibbs sampling. In J. Bernardo, J. Berger,
A. Dawid, and A. Smith, editors, Bayesian Statistics 4. Oxford Univ. Press, 1992.

[Tierney, 1996] L. Tierney. Introduction to general state-space Markov chain theory.
In Gilks et al. [1996], pages 59–74.

[Tu and Zhu, 2002] Z. W. Tu and S. C. Zhu. Image segmentation by data-driven
Markov chain Monte Carlo. IEEE Trans. on Pattern Analysis and Machine In-
telligence, 24(5):657–673, 2002.

[van Heijenoort, 1967] J. van Heijenoort, editor. From Frege to Gödel: A Source
Book in Mathematical Logic 1879–1931. Harvard Univ. Press, Cambridge, MA,
1967.

[Vennekens et al., 2004] J. Vennekens, S. Verbaeten, and M. Bruynooghe. Logic
programs with annotated disjunctions. In Proc. Int’l Conf. on Logic Programming,
pages 431–445, 2004.

[Wei and Tanner, 1990] G. C. G. Wei and M. A. Tanner. A Monte Carlo implemen-
tation of the EM algorithm and the poor man’s data augmentation algorithms.
J. Amer. Stat. Assoc., 85:699–704, 1990.

[Wellner et al., 2004] B. Wellner, A. McCallum, F. Peng, and M. Hay. An integrated,
conditional model of information extraction and coreference with application to
citation matching. In Proc. 20th Conf. on Uncertainty in Artificial Intelligence,
2004.

[Winkler, 2006] W. E. Winkler. Overview of record linkage and current research di-
rections. Research Report 2006–02, Statistical Research Div., U.S. Census Bureau,
Washington, DC, 2006.

[Xing et al., 2003] E. P. Xing, M. I. Jordan, and S. Russell. A generalized mean field
algorithm for variational inference in exponential families. In Proc. 19th Conf. on
Uncertainty in Artificial Intelligence, pages 583–591, 2003.

[Zhang and Poole, 1994] N. L. Zhang and D. Poole. A simple approach to Bayesian
network computations. In Proc. 10th Canadian Conference on Artificial Intelli-
gence, pages 171–178, 1994.

357


	Introduction
	Declarative probabilistic models
	Models with unknown objects
	Overview of the thesis

	Background
	Logic
	Probability
	Graphs and numberings
	Bayesian networks
	Sampling methods for probabilistic inference

	Contingent Probabilistic Models
	Motivation
	Non-product outcome spaces
	Split trees
	Partition-based models
	Contingent Bayesian networks
	Appendix Another factorization property
	Appendix Supportive split trees revisited

	Bayesian Logic (BLOG)
	Examples
	Syntax
	Declarative semantics
	Evaluating expressions
	Structurally well-defined BLOG models
	Appendix Measurability of BLOG expressions

	Inference for BLOG Models
	Evidence and queries
	Rejection sampling
	Likelihood weighting
	Markov chain Monte Carlo
	Application to citation matching

	Related Work
	Contingent dependencies
	Infinite models
	First-order probabilistic languages

	Conclusion
	Contributions of this thesis
	Directions for future research

	Bibliography

