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Outline
• Background and Motivation

– Why we need more expressive formal languages for probability
– Why unknown worlds matter

• Technical development
– Relational models with known skeleton
– Relational models with unknown relations
– Unknown objects and identity uncertainty

• Applications
– Citation matching
– State estimation

• Open problems, future work
– Why we need syntax and semantics
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Assumed background

• Roughly, the intersection of backgrounds of 
modern AI, machine learning, learning theory, 
statistics
– Basics of probability theory
– Graphical models and algorithms (incl. MCMC)
– Some acquaintance with basic concepts of logic 

(quantifiers, logical variables, relations, functions, 
equality)

• Intersection of motivations: { }
• Our motivation: programs that understand the 

real world
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What to take away

• Understanding of purpose and mechanics 
(syntax, semantics) of expressive formal
languages for probabilistic modelling

• Understanding of commonly identified levels of 
expressiveness beyond standard graphical 
models, including “unknown worlds”

• Ability to classify a proposed application 
according to the level of expressiveness 
required and to identify the relevant tools

• Familiarity with at least one expressive formal 
language (BLOG) that handles unknown worlds
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Expressiveness

• Expressive language => concise models => fast 
learning, sometimes fast inference
– E.g., rules of chess: 1 page in first-order logic, 100,000 

pages in propositional logic
– E.g., DBN vs HMM inference

• Language A is as expressive as language B iff for 
every sentence b in B there is an equivalent 
sentence a in A such that |a| = O(1)|b|

• Recent trend towards expressive formal 
languages in statistics and machine learning
– E.g., graphical models, plates, relational models
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A crude classification

atomic propositional first−order
static

dynamic

deterministic

stochastic

BOOLEAN LOGIC

STATE GRAPH

FIRST−ORDER LOGIC

PTL, CIRCUITS

BAYES NET, NN

FOL, STRIPS, SITCALC

HMM DBN, KALMAN FILTER DOOBN, RMM, DMLN, 
     DATA ASSN

BERNOULLI PHA, BUGS, PRISM, OOBN, 
  RPM, BLP, MLN, BLOG
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Refining the classification

FIXED SKELETON UNKNOWN SKELETON

     "HERBRAND"
(KNOWN WORLDS)

FIRST−ORDER

  FULL FIRST−ORDER
(UNKNOWN WORLDS)
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Herbrand vs full first-order

Given
Father(Bill,William) and Father(Bill,Junior)
How many children does Bill have?

Herbrand (also relational DB) semantics:
2
First-order logical semantics:

Between 1 and ∞
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Unknown worlds

• Herbrand (and DB, Prolog) semantics 
assumes unique names and domain 
closure, so all possible worlds have the 
same, known, named objects

• First-order logic allows 
– different constants to refer to the same objects

– objects that are not referred to by any constant

I.e. unknown worlds
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Example: balls and urns

Sample balls w/ replacement, measure color
How many balls are in the urn?
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Balls and urns contd.

• N balls, prior distribution P(N)

• True colours C1,…CN, identical priors P(Ci)
• k observations, observed colours O=O1,..,Ok

• Assignment ω specifies which ball was observed 
in each observation

• Sensor model P(Oj | Cω(j))

observations

balls
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Balls and urns contd.

• No identical balls 
– converge to true N as k →∞

• Identical balls possible
– all multiples of minimal N possible as k →∞

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 1  2  3  4  5  6  7  8

P
ro

ba
bi

lit
y

Number of balls in urn

2 draws
10 draws
20 draws
30 draws
40 draws

100 draws
1000 draws
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Example: Citation Matching
[Lashkari et al 94] Collaborative Interface Agents, 

Yezdi Lashkari, Max Metral, and Pattie Maes, 
Proceedings of the Twelfth National Conference on 
Articial Intelligence, MIT Press, Cambridge, MA, 
1994.

Metral M. Lashkari, Y. and P. Maes. Collaborative 
interface agents. In Conference of the American 
Association for Artificial Intelligence, Seattle, 
WA, August 1994.

Are these descriptions of the same object?

This problem is ubiquitous with real data sources,
hence the record linkage industry
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CiteSeer02: Russell w/4 Norvig



15

CiteSeer02: Russell w/4 Norvig
• Russell S, Norvig P (1995) Artificial Intelligence: A Modern 

Approach, Prentice Hall Series in Artificial Intelligence. Englewood 
Cliffs, New Jersey 

• Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern 
Approach, Prentice Hall, 1995. 

• Russell S.; Norvig, P. Articial Intelligence - A Modern Approach. 
Prentice-Hall International Editions, 1995. 

• Russell S.J., Norvig P., (1995) Artificial Intelligence, A Modern 
Approach. Prentice Hall. 

• S. Russell and P. Norvig. Articial Intelligence, a Modern Approach. 
Prentice Hall, New Jersey, NJ, 1995. 
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• Stuart Russell and Peter Norvig. Artificial intelligence: A modern approach. Prentice-
Hall Series on Artificial Intelligence. Prentice-Hall, Englewood Cliffs, New Jersey, 
1995. 

• S. Russell and P Norvig. Artifical Intelligence: a Modern Approach. Prentice Hall, 
1995.   Book Details from Amazon or Barnes \& Noble

• Stuart Russell and Peter Norvig. Articial Intelligence: A Modern Approach. Prentice 
Hall, 1995. 

• S. J. Russell and P. Norvig. Artificial Intelligence, a modern approach. Prentice Hall, 
Upper Saddle River, New Jersey 07458, 1995. 

• Stuart Russell and Peter Norvig. Artificial Intelligence. A modern approach. Prentice-
Hall, 1995. 

• S. J. Russell and P. Norvig. Articial Intelligence: A Modern Approach. Prentice Hall. 
1995. 

• S. Russell and P. Norvig, Artificial Intelligence A Modern Approach Prentice Hall 
1995. 

• S. Russell and P. Norvig. Introduction to Artificial Intelligence. Prentice Hall, 1995. 
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• Stuart Russell and Peter Norvig. Artficial Intelligence: A Modern Approach. Prentice-
Hall, Saddle River, NJ, 1995. 

• Stuart Russell and Peter Norvig. Articial Intelligence a modern approach. Prentice 
Hall series in articial intelligence. Prentice Hall, Upper Saddle River, New Jersey, 
1995. 

• Chapter 18 Artificial Intelligence: A Modern Approach by Stuart Russell and Peter 
Norvig, Prentice-Hall, 2000. 

• Dynamics of computational ecosystems. Physical Review A 40:404--421. Russell, S., 
and Norvig, P. 1995. Artificial Intelligence: A Modern Approach. Prentice Hall. 

• S. Russell, P. Norvig: Artificial Intelligence -- A Modern Approach, Prentice Hall, 
1995. 

• Russell, S. \& Norvig, P. (1995) Artificial Intelligence: A Modern Appraoch
(Englewood Cliffs, NJ: Prentice-Hall).   Book Details from Amazon or Barnes \& Noble

• Stuart Russell and Peter Norvig. AI: A Modern Approach. Prentice Hall, NJ, 1995. 

• S. Russell, P. Norvig. Artificial Intelligence: A Modem Approach. Prentice- Hall, Inc., 
1995. 
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• 391-414. Russell SJ, Norvig P ( 

• Russell and Peter Norvig, "Artificial Intelligence - A Modern Approach 
(AIMA)", pp. 33 

• Stuart Russell and Peter Norvig: Artificial Intelligence: A Modern Approach, 
Prentice-Hall, 1994. 

• Russell, S. \& Norvig, P., An Introduction to Artificial Intelligence: A Modern 
Approach, Prentice Hall International, 1996. 

• S. Russell, P. Norvig. Artician Intelligence. A modern approach. Prentice 
Hall, 1995. 

• Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. 
Prentice Hall, 1995. Contributing writers: John F. Canny, Jitendra M. Malik, 
Douglas D. Edwards. ISBN 0-13-103805-2. 

• Stuart Russell and Peter Norvig. Artificial Intelligence: A Mordern Approach. 
Prentice Hall, Englewood Cliffs, New Jersey 07632, 1995. 
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• In Proceedings of the Third Annual Conference on Evolutionary Programming 
(pp. 131--139). River Edge, NJ: World Scientific. Russell, S.J., \& Norvig, P. 
1995. Artificial Intelligence, A Modern Approach. Englewood Cliffs, NJ: 
Prentice Hall. 

• John Wiley. Russell, S., \& Norvig, P. (1995). Artificial Intelligence: A Modern 
Approach. Prentice-Hall, Inc. 

• Stuart Russell and Peter Norvig: Artifcial Intelligence A Modern Approach, 
Englewood Clioes, NJ: Prentice Hall, 1995. 

• In Scherer, K.R. \& Ekman, P. Approaches to Emotion, 13--38. Hillsdale, NJ: 
Lawrence Erlbaum. Russell, S.J. and Norvig, P. 1995. Artificial Intelligent: A 
Modern Approach. Englewood Cliffs, NJ: Prentice Hall. 

• Rosales E, Forthcoming Masters dissertation, Department of Computer 
Science, University of Essex, Colchester UK Russell S and Norvig P (1995) 
Artificial Intelligence: A Modern Approach. Prentice Hall: Englewood Cliffs, 
New Jersey. 

• S. Russell and P. Norvig (1995) Artificial Intelligence; A Modern Approach, 
Prentice Hall, New Jersey. 

• S. Russell and P. Norvig. Articial Intelligence. A Modern Approach. Prentice-
Hall, 1995. ISBN 0-13-360124-2. 
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• Stuart J. Russell and Peter Norvig. Articial Intelligence: A Modern Approach, chapter 
17. Number 0-13-103805-2 in Series in Articial Intelligence. Prentice Hall, 1995. 

• Stuart J. Russell and Peter Norvig. Articial Intelligence  A Modern Approach. Prentice 
Hall, Englewood Cli s, New Jersey, USA, 1995. 32 

• Morgan Kaufmann Publishers. Russell, S., and Norvig, P. 1995. Artificial Intelligence: 
A Modern Approach. Prentice Hall. 

• Stuart J. Russell and Peter Norvig. Articial Intelligence: AModern Approach,chapter 
17. Number 0-13-103805-2 in Series in Articial Intelligence. Prentice Hall, 1995. 

• W. Shavlik and T. G. Dietterich, eds., Morgan Kaufmann, San Mateo, CA. Russell, S. 
and Norvig, P. (1995). Artificial Intelligence - A Morden Approach. Englewood Cliffs, 
NJ: Prentice-Hall. 

• KeyGraph: Automatic indexing by co-occurrence graph based on building 
construction metaphor. In Advanced Digital Library Conference. to appear. Russell, 
S., and Norvig, P. 1995. Artificial Intelligence --A Modern Approach--.

• Prentice-Hall. 

• Formal derivation of rule-based programs. IEEE Transactions on Software 
Engineering 19(3):277--296. Russell, S., and Norvig, P. 1995. Artificial Intelligence: A 
Modern Approach. Prentice Hall. 
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• Russell, Stuart and Peter Norvig, Artificial Intelligence, A Modern Approach, New 
Jersey, Prentice Hall, 1995. 

• S. Russell, P. Norvig: Articial Intelligence: A modern approach; Prentice Hall (1995). 

• Rechenberg, I. (89). Artificial evolution and artificial intelligence. In Forsyth, R. (Ed.), 
Machine Learning, pp. 83--103 London. Chapman. Russell, S., \& Norvig, P. (1995). 
Artificial Intelligence: A Modern Approach. Prentice Hall. 

• Russell, S and Norvig, P. 1995. Articial Intelligence: A Modern Approach Prentice-
Hall, Englewood Cli s, New Jersey, 1995. 

• Russell, S., \& Norvig, P. (1995) . Artificial intelligence: A modern monitoring methods 
for information retrieval systems: From search approach. Prentice-Hall series on 
artificial intelligence. Upper Saddle product to search process. Journal

• of the American Society for Information Science, 47, 568 -- 583. River, NJ: Prentice-
Hall. 

• Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach, chapter 
17. Number 0-13-103805-2 in Series in Artificial Intelligence. Prentice Hall, 1995. 

• S. Russell and P. Norvig. Articial Intelligence  A Modern Approach. Prentice Hall, 
Englewood Cli s, 1995. 
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• Russell, Stuart and Norvig, Peter: Artificial Intelligence: A Modern Approach, Prentice 
Hall, Englewood Cliffs NJ, 1995 

• S. Russell and P. Norvig. ????????? ????????????? ? ?????? ????????. Prentice 
Hall, Englewood Cli s, NJ, 1995. 

• S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach - The Intelligent 
Agent Book, Prentice Hall, NY, 1995. 

• S. Russell and P. Norvig. Artificial Intelligence-aModern Approach. Prentice Hall 
International, Englewood Cliffs, NJ,USA,1995. 

• S.J.Russell, P.Norvig: Arti cial intelligence. A modern approach", Prentice-Hall 
International, 1995. 

• In Proceedings of the Third Annual Conference on Evolutionary Programming (pp. 
131--139). River Edge, NJ: World Scientific. Russell, S.J., \& Norvig, P. 1995. 
Artificial Intelligence, A Modern Approach. Englewood Cliffs, NJ: Prentice

• Hall. 

• In Working Notes of the IJCAI-95 Workshop on Entertainment and AI/ALife, 19--24. 
Russell, S., and Norvig, P. 1995. Artificial Intelligence: A Modern Approach. Prentice 
Hall. 
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• Stuart J. Russell and Peter Norvig. Artiilcial Intelligence: A Modern 
Approach. Prentice Hall, Englewood Cliffs, N J, 1995. 

• Academic Press. 359--380. Russell, S., and Norvig, P. 1994. Artificial 
Intelligence: A Modern Approach. Prentice Hall. 

• Stuart J. Russell, Peter Norvig, Artifical Intelligence: A Modern Appraoch, 
Prentice-Hall, Englewood Cliffs, New Jersey. 1994. 

• Cambridge, MA: MIT Press. Russell, S. J., and Norvig, P. (1994). Artificial 
Intelligence: A Modern Approach. Englewood Cliffs, NJ: Prentice-Hall. 

• Morgan Kauffman. Russell, S., and Norvig, P. 1994. Artificial Intelligence: A 
Modern Approach. Prentice Hall. 

• Fast Plan Generation Through Heuristic Search Russell, S., \& Norvig, P. 
(1995). Artificial Intelligence: A Modern Approach. Prentice-Hall, Englewood 
Cliffs, NJ. 

• Hoffmann \& Nebel Russell, S., \& Norvig, P. (1995). Artificial Intelligence: A 
Modern Approach. Prentice-Hall, Englewood Cliffs, NJ. 
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• Stuart Russel and Peter Norvig. Artificial Intelligence: A Modern Approach, 
chapter 12.1 - 12.3, pages 367--380. Prentice Hall, 1995. 

• Stuart Russel and Peter Norvig. Artificial Intelligence, A Modern Approach. 
PrenticeHall, 1996. 2 

• Stuart Russel, Peter Norvig, Articial Intelligence: A Modern Approach, 
Prentice Hall, New Jersey, US, 1995 

• Russel, S., and Norvig, P. Articial Intelligence. A Modern Approach. 
Prentice Hall Series in Artificial Intelligence. 1995. 

• S. Russel and P. Norvig. Artificial Intelligence, A Modern Approach, Prentice 
Hall: 1995.   Book Details from Amazon or Barnes \& Noble

• S. J. Russel and P. Norvig. Articial Intelligence A Modern Approach, chapter 
14, pages 426-435. Prentice Hall Series in Articial Intelligence. Prentice Hall 
International, Inc., London, UK, rst edition, 1995. Exercise 14.3. 

• Russel, S. and P. Norvig. Articial intelligence: A modern approach, Prentice 
Hall, 1995.   Book Details from Amazon or Barnes \& Noble
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• S. Russel and P. Norvig Artificial Intelligence: A Modern Approach, MIT Press 1995. 

• Russel, S. and Norvig, P., "Artificial Intelligence: A Modern Approch," p. 111-114, 
Prentice-Hall. 

• J. Russel and P. Norvig. Artificial Intelligence, A Modern Approach. Prentice Hall, 
Upper Saddle River, NJ, 1995. 71 

• Stuart Russel and Peter Norvig. A Modern, Agent-Oriented Approach to Introductory 
Artificial Intelligence. 1995. 

• Stuart J. Russel and Peter Norvig. Artificial Intelligence---A Modern Approach, 
chapter 14, pages 426--435. Prentice Hall Series in Artificial Intelligence. Prentice 
Hall Internationall, Inc., London, UK, first edition, 1995. Excersice 14.3. 

• Russel S. and Norvig P. (1995). Articial Intelligence. A Modern Approach. Prentice 
Hall Series in Artificial Intelligence. 

• S. Russel, P. Norvig Articial Intelligence - A Modern Approach Prentice Hall, 1995 

• Russel, S., P. Norvig. Artificial Intelligence: A Modern Approach Prentice Hall 1995.
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• Artificial Intelligence, S Russel \& P Norvig, Prentice Hall, 1995 21 

• Russel, S.J, Norvig P: Artificial Intelligence. A Modern Approach, Prentice 
Hall Inc. 1995 

• Russel, S., Norvig, P. (1995) Artificial Intellience - A modern approach. 
(Englewood Cliffs: Prentice Hall International). 
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Example: classical data association
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Example: classical data association
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Example: classical data association
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Example: classical data association
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Example: classical data association
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Example: classical data association

termination

initiation

detection
  failure

false
alarm
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Example: modern data association
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Modern data association

Same car?

Need to take into account 
competing matches!
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Example: natural language

• What objects are referred to in the 
following natural language utterance?
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Example: vision

• What objects appear in this image 
sequence?
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Outline
• Background and Motivation

– Why we need more expressive formal languages for probability
– Why unknown worlds matter

• Technical development
– Relational models with known skeleton
– Relational models with unknown relations
– Unknown objects and identity uncertainty

• Applications
– Citation matching
– State estimation

• Open problems, future work
– Why we need syntax and semantics
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Objects, Attributes, Relations

AuthorOf

AuthorOf

AuthorOf
AuthorOf

AuthorOf

Reviews

Reviews

Specialty: Theory
Specialty: Theory

Specialty: RL Specialty: BNs

Topic: RL

Topic: Theory

Topic: Theory

Topic: RL

Topic: BNs

AuthorOf
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Into the Unknown

Attribute Uncertainty

Relational Uncertainty

Unknown Objects

Nonrandom, 
Fixed Random

Attributes

Objects

Random

(may be observed)

Relations

Objects

Attributes

Relations
Attributes

Relations

Objects
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Attribute Uncertainty: Example

• Given paper text, relational structure, some topic labels
• Task: Classify remaining papers by topic

– Collectively rather than in isolation

Specialty: ? Specialty: ?

Topic: ?
HasWord1: T
HasWord2: F

Topic: ?
HasWord1: F
HasWord2: T

Topic: ?
HasWord1: T
HasWord2: T

Topic: RL
HasWord1: F
HasWord2: F

Topic: Theory
HasWord1: F
HasWord2: F

FirstAuthor
FirstAuthor

FirstAuthor
FirstAuthor

FirstAuthor
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Possible Worlds

RL RL

RL
T
T

RL
T
T

RL
T
T

RL
T
T

RL
T
T

RL RL

RL
T
T

RL
T
T

RL
T
T

RL
T
T

RL
T
F

RL RL

RL
T
T

RL
T
T

RL
T
T

RL
T
T

RL
F
F

RL
T
F

Theory

F
T

Theory

F
F

RL
T
T

RL
T
F

RL
T
F

Theory

F
T

Theory

F
F

RL
T
T

BNs
T
F

RL
T
F

Theory

T
F

RL
F
F

RL
F
T

BNs
T
F

Theory RL Theory BNs RL BNs
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Bayesian Network

• Lots of repeated structure, tied parameters
• Different BN for each paper collection
• More compact representation?

P1Topic P2Topic P3Topic P4Topic P5Topic

Researcher1Specialty Researcher2Specialty

P1HasW1

P1HasW2

P2HasW1

P2HasW2

P3HasW1

P3HasW2

P4HasW1

P4HasW2

P5HasW1

P5HasW2
… … … … …
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Division of Labor

• Assumptions: Same dependency statements 
and parameters apply
– to all objects of open types
– in all skeletons

Lifted
Probability

Model

Relational
Skeleton

Distribution 
over 

Outcomes
+ →

Dependency statements:
“Topic(p) ~ …”

Parameters

Objects of closed types
(Topic, Word)

Objects of open types
(Researcher, Paper)

Nonrandom relations
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First-Order Syntax

• Types
Researcher, Paper, Word, 
Topic, Boolean

• Functions, predicates
FirstAuthor(p) → Researcher
Speciality(r) → Topic
Topic(p) → Topic
HasWord(p, w) → Boolean

• Index sets, value sets
Researcher, Paper, Word
Topic, {0, 1}

• Families of 
variables/parameters
{Aj}j∈Paper

{Sr}r∈Researcher

{Ti}i∈Paper

{Wik}i∈Paper, k∈Word

Typed Logic Statistics

Surprisingly consistent!  
We’ll use Bayesian Logic (BLOG) notation [Milch et al., IJCAI 2005]

[e.g., BUGS by 
Gilks et al.]
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Dependency Statements

Specialty(r) ~

Topic(p) ~

HasWord(p, w) ~

SpecialtyPrior();

TopicCPD(Specialty(FirstAuthor(p)));

WordCPD(Topic(p), w);

Logical term (nested function 
application) identifying parent node

— specifies how relations 
determine BN edges
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Conditional Dependencies

• Predicting the length of a paper
– Conference paper: generally equals 

conference page limit
– Otherwise: depends on verbosity of author

• Model this with conditional dependency 
statement

Length(p)

if ConfPaper(p) then ~ PageLimitPrior()

else ~ LengthCPD(Verbosity(FirstAuthor(p)));

First-order formula as condition
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Variable Numbers of Parents

• What if we allow multiple authors?
– Let skeleton specify predicate AuthorOf(r, p)

• Topic(p) now depends on specialties of 
multiple authors
– Number of parents depends on skeleton
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Aggregation

• Can pass multiset into CPD

• Alternatively, apply aggregation function

Topic(p) ~ TopicAggCPD({Specialty(r) for Researcher r : 
AuthorOf(r, p)});

multiset defined by formula

mixture of distributions conditioned on individual 
elements of multiset [Taskar et al., IJCAI 2001]

Topic(p) ~ TopicCPD(Mode({Specialty(r) for Researcher r : 
AuthorOf(r, p)}));

aggregation function

This is most of the syntax we need.  On to semantics!
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Semantics: Ground Bayes Net

• BLOG model defines ground Bayes net

• Nodes: one for each random function f and tuple 
of possible arguments (o1,…,ok)
– called basic random variables (RVs)
– o1,…,ok are objects of closed types, or objects of 

open types listed in skeleton

• Edges and CPDs derived from dependency 
statements and skeleton

Topic(p) ~ TopicCPD(Specialty(FirstAuthor(p)));

specified by skeleton

specifies edge
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Ground BN

FirstAuthor
FirstAuthor

R1 R2

P1 P2
P3

………

Spec(R1) Spec(R2)

Topic(P3)
Topic(P2)

W(P3, 1) W(P3, 2)W(P2, 1) W(P2, 2)W(P1, 1) W(P1, 2)

Skeleton

Topic(P1)

Ground BN

FirstAuthor
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When Is Ground BN Acyclic?

• Look at symbol graph
– Node for each random function

– Read off edges from 
dependency statements

• Theorem: If symbol graph 
is acyclic, then ground BN 
is acyclic for every skeleton

Specialty

Topic

HasWord

[Koller & Pfeffer, AAAI 1998]
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Acyclic Relations

• Suppose researcher’s specialty depends on his/her 
advisor’s specialty

• Symbol graph has self-loop!
• Require certain nonrandom 

functions to be acyclic: 
F(x) < x under some partial order

• Label edge B ← A with:
– “=”, if B(x) depends on A(x)
– “<”, if B(x) depends on A(F(x)) for an acyclic F

[Friedman et al., ICML 1999]

<

Specialty(r)
if Advisor(r) != null then 

~ SpecCPD(Specialty(Advisor(r)))
else ~ SpecialtyPrior();

Specialty

Topic

HasWord
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Acyclic Relations, cont’d

• Symbol graph is stratified if in every cycle, 
at least one edge is “<” and rest are “=”

• Theorem: If symbol graph is stratified, then 
ground BN is acyclic for every skeleton 
that respects acyclicity constraints

[Friedman et al., ICML 1999]
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Inference: Knowledge-Based 
Model Construction (KBMC)

• Construct relevant portion of the ground 
BN, apply standard inference algorithm

• A node is relevant if it:
– is reachable from a query 

node along a path that is 
active given the evidence 
[Breese, Comp. Intel. 1992]

– and is an ancestor of a 
query or evidence node

Do we have to construct ground BN at all?

Q
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First-Order Variable Elimination

• Suppose:
• With n researchers, part of ground BN is:

• Could sum out ThesisTopic(R) nodes one by one, 
taking O(nT2) time for T topics

• But parameter sharing implies:
– Summing same potential every time
– Obtain same potential over Specialty(R) for each R

• Can just do summation once, eliminate whole family of 
RVs, store “lifted” potential on Specialty(r): time O(T2)

[Pfeffer et al., UAI 1999; Poole, IJCAI 2003; Braz et al., IJCAI 2005]

…

Specialty(R1) Specialty(Rn)…

ThesisTopic(R1) ThesisTopic(Rn)

Specialty(r) ~ SpecCPD(ThesisTopic(r));
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First-Order VE and Aggregation

• Ground BN:

• Spec(r) variables are IID
• Topic(P) depends on them through an 

aggregation function
• In many cases, we know distribution for 

aggregate of IID variables [Pfeffer et al., IJCAI 1999]
– mean, number having particular value, random 

sample, …

• Derive potential over Topic(P) analytically

…
Specialty(R1) Specialty(Rn)

Topic(P)
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Limitations of First-Order VE

• Mass elimination of RVs only possible if 
they’re generic: all have same potentials

• Elimination not efficient if RVs have many 
neighbors
– Eliminating Specialty(R) for a researcher R 

who wrote many papers creates a potential 
over all those papers’ Topic RVs
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Into the Unknown

Attribute Uncertainty

Relational Uncertainty

Unknown Objects

Nonrandom, 
Fixed Random

Attributes

Objects
Relations

Objects

Attributes

Relations
Attributes

Relations

Objects
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Relational Uncertainty: Example

• Questions: Who will review my paper, and what 
will its average review score be?

• Given: Authorship relation, paper topics, 
researcher specialties and generosity levels

Reviews

AuthorOf AuthorOf Reviews
Reviews

Specialty: RL
Generosity: 2.9

Specialty: Prob. Models
Generosity: 2.2

Topic: RL
AvgScore: ?

Topic: RL
AvgScore: ?

Topic: Prob Models
AvgScore: ?

Reviews
Specialty: Theory
Generosity: 1.8
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Possible Worlds

RL
1.0

RL
1.0

RL
1.0

RL
1.0 RL

1.0

RL
1.0

RL
1.0

RL
1.0

RL
1.0 RL

1.0

RL
1.0

RL
1.0

RL
1.0

RL
1.0 RL

1.0RL
1.0

RL
1.0

RL
2.3

Theory
1.9

RL
3.1

Theory
2.7

RL
1.8

RL
2.3

Theory
1.9

RL
3.1

BNs
2.7 RL

1.8RL
2.1

RL
2.3

Theory
1.9

RL
3.1

Theory
2.7

RL
1.8RL

2.1

RL
1.0

RL
2.1
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Simplest Approach to 
Relational Uncertainty

• Add predicate Reviews(r, p)
• Can model this with existing syntax:

• Potential drawback:
– Reviews(r, p) nodes are independent given 

specialties and topics
– Expected number of reviews per paper grows 

with number of researchers in skeleton

[Getoor et al., ICML 2001]

Reviews(r, p) ~ ReviewCPD(Specialty(r), Topic(p));
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Another Approach: 
Reference Uncertainty

• Say each paper gets k reviews
– Can add Review objects to skeleton

– For each paper p, include k review objects 
rev with PaperReviewed(rev) = p

• Uncertain about values of function 
Reviewer(rev)

[Getoor et al., ICML 2001]

PaperReviewed

?
?

?

Reviewer
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Models for Reviewer(rev)

• Explicit distribution over researchers?
– No: won’t generalize across skeletons

• Selection models:
– Uniform sampling from researchers with 

certain attribute values [Getoor et al., ICML 2001]

– Weighted sampling, with weights determined 
by attributes [Pasula et al., IJCAI 2001]
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BLOG Syntax for Reference 
Uncertainty

• Choosing based on Specialty attribute

• Choosing by weighted sampling:

ReviewerSpecialty(rev) ~ SpecSelectionCPD
(Topic(PaperReviewed(rev)));

Reviewer(rev) ~ Uniform({Researcher r : 
Specialty(r) = ReviewerSpecialty(rev)});

Weight(rev, r) = CompatibilityWeight
(Topic(PaperReviewed(rev)), Specialty(r));

Reviewer(rev) ~ WeightedSample({(r, Weight(rev, r)) 
for Researcher r});

set of pairs as CPD argument
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Context-Specific Dependencies

RevScore(rev) ~ ScoreCPD(Generosity(Reviewer(rev)));

AvgScore(p) = Mean({RevScore(rev) for Review rev : 
PaperReviewed(Rev) = p});

random object

• Consequence of relational uncertainty: 
dependencies become context-specific
– RevScore(Rev1) depends on Generosity(R1) 

only when Reviewer(Rev1) = R1



66

Semantics: Ground BN

• Can still define ground BN

• Parents of node X are all basic RVs whose 
values are potentially relevant in evaluating the 
right hand side of X’s dependency statement

• Example: for RevScore(Rev1)…

– Reviewer(Rev1) is always relevant
– Generosity(R) might be relevant for any researcher R

RevScore(rev) ~ ScoreCPD(Generosity(Reviewer(rev)));
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Ground BN
Topic(P1)

Specialty(R1)

Specialty(R2)

Specialty(R3)

Generosity(R1)

Generosity(R2)

Generosity(R3)

RevScore(Rev2)RevScore(Rev1)

Reviewer(Rev2)Reviewer(Rev1)

RevSpecialty(Rev2)RevSpecialty(Rev1)
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Random but Known Relations

• What a paper cites is an indicator of its topic

• Even if Cites relation is known, might want to 
model it as random [Getoor et al., ICML 2001]

• Creates v-structures in 
ground BN, correlating 
topics of citing and cited papers

Cites(p1, p2) ~ CitationCPD(Topic(p1), Topic(p2));

Cites(P1, P2)

Topic(P1) Topic(P2)
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Inference

• Can still use ground BN, but it’s often very 
highly connected

• Alternative: Markov chain over possible 
worlds [Pasula & Russell, IJCAI 2001]

– In each world, only certain dependencies are 
active
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MCMC over Possible Worlds

• Metropolis-Hastings process: in world ω,
– sample new world ω′ from proposal 

distribution q(ω′|ω)
– accept proposal with probability

otherwise remain in ω
• Stationary distribution is p(ω)





′

′′
)|()(

)|()(
,1max

ωωω
ωωω

qp

qp
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Active Dependencies

• World probability p(ω) is product over basic RVs
• For basic RV X, active parents Paω(X) are RVs 

one must look at to evaluate right hand side of 
X’s dependency statement in ω

• Example: 

if Reviewer(Rev1) = Smith then 
Paω(RevScore(Rev1)) = {Reviewer(Rev1), Generosity(Smith)}

– other Generosity RVs are inactive parents

RevScore(rev) ~ ScoreCPD(Generosity(Reviewer(rev)));
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Computing Acceptance Ratio 
Efficiently

• World probability is

where paω(X) is instantiation of Paω(X) in ω
• If proposal changes only RV X, all factors not containing 

X cancel in p(ω) and p(ω′)
• And if paω(X) doesn’t change, only need to compute 

P(X=xω | paω(X)) up to normalization constant
– If X gets value by weighted sampling, don’t need to compute 

sum of weights [Pasula & Russell, IJCAI 2001]

• Result: Time to compute acceptance ratio often doesn’t 
depend on number of objects 

∏ ==
X

XxXPp ))(pa|()( ωωω
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Into the Unknown

Attribute Uncertainty

Relational Uncertainty

Unknown Objects

Nonrandom, 
Fixed Random

Attributes

Objects
Relations

Objects

Attributes

Relations
Attributes

Relations

Objects
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S. Russel and P. Norvig (1995). Artificial Intelligence: A Modern 
Approach. Upper Saddle River, NJ: Prentice Hall.

Unknown Objects: Example

Russell, Stuart and Norvig, Peter. Articial Intelligence. Prentice-Hall, 1995.

Title: …

Name: …

PubCited

AuthorOf

PubCited(Cit1) = PubCited(Cit7)
?
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Possible Worlds

How can we define a distribution over such outcomes?

(not showing attribute values)
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Generative Process

• Imagine process that constructs worlds 
using two kinds of steps
– Add some objects to the world

– Set the value of a function on a tuple of 
arguments

• Includes setting the referent of a constant 
symbol (0-ary function)

[Milch et al., IJCAI 2005]
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Simplest Generative Process for 
Citations

#Paper ~ NumPapersPrior();

Title(p) ~ TitlePrior();

guaranteed Citation Cit1, Cit2, Cit3, Cit4, Cit5, Cit6, Cit7;

PubCited(c) ~ Uniform({Paper p});

Text(c) ~ NoisyCitationGrammar(Title(PubCited(c)));

number statement

familiar syntax for 
reference uncertainty

part of skeleton:
exhaustive list of distinct citations
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Adding Authors

#Researcher ~ NumResearchersPrior();

Name(r) ~ NamePrior();

#Paper ~ NumPapersPrior();

FirstAuthor(p) ~ Uniform({Researcher r});

Title(p) ~ TitlePrior();

PubCited(c) ~ Uniform({Paper p});

Text(c) ~ NoisyCitationGrammar
(Name(FirstAuthor(PubCited(c))), Title(PubCited(c)));
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Objects Generating Objects

• What if we want explicit distribution for 
|{Paper p: FirstAuthor(p) = r}|?

• Danger: Could contradict implicit distribution 
defined by:

• Solution: 
– Allow objects to generate objects
– Designate FirstAuthor(p) as an origin function*

• set when paper p is generated, 
• ties p back to the Researcher object that generated it

– FirstAuthor(p) no longer has its own dependency 
statement

#Paper ~ NumPapersPrior();

FirstAuthor(p) ~ Uniform({Researcher r});

* Called “generating function” in [Milch et al., IJCAI 2005]
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Number Statement Syntax

• Include FirstAuthor in number statement:

• Objects that satisfy this number statement 
applied to r are papers p such that 
FirstAuthor(p) = r

• Right hand side gives distribution for number of 
objects satisfying this statement for any r

#Paper(FirstAuthor = r) ~ NumPapersPrior(Position(r));

CPD arguments can refer 
to generating objects
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Semantics: First Try

• Have some set of potential objects that can exist in 
outcomes, e.g.

• Basic RVs:
– Value of each random (non-origin) function on each tuple of 

potential objects
– Number of objects that satisfy each number statement applied to 

each tuple of generating objects, e.g.,
#Paper(FirstAuthor = R1), #Paper(FirstAuthor = R2), …

• Problem: Full instantiation of these RVs doesn’t 
determine a world
– Why not? Isomorphisms…

R1, R2, R3, …
P1, P2, P3, …
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Isomorphic Worlds

• Worlds all correspond to same instantiation of basic RVs:

• But differ in mapping from paper objects to researcher objects
• Proposal: Assign probabilities to basic RV instantiations, then divide 

uniformly over isomorphic worlds
– Flaw: If infinitely many objects, then infinitely many isomorphic worlds

R1 R2

P1 P2 P3
“foo” “foo” “foo”

“Smith” “Lee”
R1 R2

P3 P2 P1
“foo” “foo” “foo”

“Smith” “Lee”
R1 R2

P2 P3 P1
“foo” “foo” “foo”

“Smith” “Lee”

#Paper(FirstAuthor = R1) = 1,  #Paper(FirstAuthor = R2) = 2,  Title(P1) = “foo”, …
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Solution: Structured Objects

• Define potential objects to be nested tuples that 
encode generation histories

• Restrict possible worlds so that, e.g.,

• Now we have lemma: Full instantiation of basic 
RVs corresponds to at most one possible world

(Researcher, 1)
(Researcher, 2)

(Paper, (FirstAuthor, (Researcher, 1)), 1)
(Paper, (FirstAuthor, (Researcher, 1)), 2)

(Paper, (FirstAuthor, (Researcher, 2)), 1)

…

[Milch et al., IJCAI 2005]

FirstAuthor((Paper, (FirstAuthor, (Researcher, 1)), 1)) = (Researcher, 1)
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Semantics: Infinite Ground “BN”

• Infinitely many Title nodes, because infinitely many 
potential Paper objects

• Number RVs are parents of:
– RVs indexed by objects that they generate
– RVs that depend on set of generated objects

…
#Paper

Title((Paper, 1))

Title((Paper, 3))

Text(Cit1) Text(Cit2)

PubCited(Cit1) PubCited(Cit2)

Title((Paper, 2))
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Semantics of Infinite BNs

• In finite case, BN asserts that probability of any 
full instantiation σ is product of CPDs:

• But with infinitely many variables, this infinite 
product is typically zero

• Fortunately, specifying probabilities for all finite
instantiations determines joint distribution 
[Kolmogorov]

• But product expression only holds for certain 
finite instantiations

∏=
X

XXXpP )|()( )(Paσσσ
assumes vars(σ) includes Pa(X)
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Self-Supporting Instantiations

• Instantiation σ is self-supporting if vars(σ) 
can be numbered                  such that for 
each  ,                    includes all parents of

that are active given 
– Example:

( )11 ,..., −iXXσ

NXX ,...,1{ }11,..., −iXX
iX

i

#Paper = 12
Title((Paper, 7)) = “Foo”
PubCited(Cit1) = (Paper, 7)
Text(Cit1) = “foo”

#Paper

Title((Paper, 7))

Text(Cit1)

PubCited(Cit1)
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Semantics of BLOG Models with 
Infinitely Many Basic RVs

• BLOG model asserts that for each finite, 
self-supporting instantiation σ,

• Theorem 1: If for each basic RV X and 
each possible world ω, there is a finite, 
self-supporting instantiation that agrees 
with ω and includes X, then the BLOG 
model has a unique satisfying distribution 

Can we tell when these conditions hold?

( )∏
∈

−
=

)(vars
},...,{ 11

|)(
σ

σσσ
X

XXXX iii
pP
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Symbol Graphs and 
Unknown Objects

• Symbol graph now contains not only random 
functions, but random types

• Parents of a function or type node are:
– Functions and types that 

appear on the right hand 
side of dependency or 
number statements for 
this function/type

– The types of this 
function/type’s arguments 
or generating objects

Paper

Researcher

Title

Text

Name

PubCited
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Sufficient Condition for 
Well-Definedness

• Definition: A BLOG model is well-formed if:
– the symbol graph is stratified; and

– all quantified formulas and set expressions 
can be evaluated by looking at a finite number 
of RVs in each possible world  

• Theorem 2: Every well-formed BLOG 
model has a unique satisfying distribution

[Milch et al., IJCAI 2005]
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Inference for BLOG

• Does infinite set of basic RVs prevent inference?

• No: Sampling algorithm only needs to instantiate 
finite set of relevant variables

• Algorithms:
– Rejection sampling [Milch et al., IJCAI 2005]

– Guided likelihood weighting [Milch et al., AI/Stats 2005]

• Theorem 3: For any well-formed BLOG model, 
these sampling algorithms converge to correct 
probability for any query, using finite time per 
sampling step
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Approximate Inference by 
Likelihood Weighting

• Sample non-evidence 
nodes top-down

• Weight each sample by 
product of probabilities 
of evidence nodes 
given their parents

• Provably converges to 
correct posterior

Q
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Application to BLOG

• Only need to sample ancestors of query and evidence nodes
• But until we condition on PubCited(Cit1), Text(Cit1) has 

infinitely many parents
• Solution: interleave sampling and relevance determination

…
#Paper

Title((Paper, 1))

Title((Paper, 3))

Text(Cit1) Text(Cit2)

PubCited(Cit1) PubCited(Cit2)

Title((Paper, 2))
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Likelihood Weighting for 
(Simplified) Citation Matching

#Paper ~ NumPapersPrior();
Title(p) ~ TitlePrior();
PubCited(c) ~ Uniform({Paper p});
Text(c) ~ NoisyCitationGrammar(Title(PubCited(c)); 

StackInstantiation
Evidence:
Text(Cit1) = “foo”;
Text(Cit2) = “foob”;

Query:
#Paper

Weight: 1 #Paper

#Paper = 7

Text(Cit1)

PubCited(Cit1)

PubCited(Cit1) = (Paper, 3)

Title((Paper, 3))

Title((Paper, 3)) = “Foo”

x 0.8 Text(Cit2)

PubCited(Cit2)

PubCited(Cit2) = (Paper, 3)

x 0.2

Text(Cit1) = “foo”

Text(Cit2) = “foob”

More realistically: use MCMC
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Learning First-Order Models

• Parameters
– Standard BN/MN learning with shared parameters
– Can use EM if data is incomplete; leads back to the 

challenge of inference

• Structure
– Maximize likelihood of data subject to model 

complexity penalty
– Use some form of greedy local search [Friedman et al., 

IJCAI 1999; Getoor et al., ICML 2001; Kok and Domingos, ICML 2005]
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BLOG and Mixture Models

• Simple BLOG model for citations is Bayesian 
mixture model with unknown number of clusters 
– Can also have relations among “clusters” (papers)

• BLOG and Dirichlet process mixtures
– Can code up Dirichlet processes in BLOG

• Special syntax introduced by [Carbonetto et al., UAI 2005]

• Or represent stick-breaking process explicitly

– Having infinitely many latent objects…
• Sometimes makes sense, e.g., how many papers exist?
• Sometimes doesn’t, e.g., how many aircraft are in the sky 

within ten miles of me?
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Outline
• Background and Motivation

– Why we need more expressive formal languages for probability
– Why unknown worlds matter

• Technical development
– Relational models with known skeleton
– Relational models with unknown relations
– Unknown objects and identity uncertainty

• Applications
– Citation matching
– State estimation

• Open problems, future work
– Why we need syntax and semantics
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Citation Matching

• Elaboration of generative model shown earlier 

• Parameter estimation
– Priors for names, titles, citation formats learned offline 

from labeled data
– String corruption parameters learned with Monte 

Carlo EM

• Inference
– MCMC with cluster recombination proposals
– Guided by “canopies” of similar citations
– Accuracy stabilizes after ~20 minutes

[Pasula et al., NIPS 2002]
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Citation Matching Results

Four data sets of ~300-500 citations, referring to ~150-300 papers
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Cross-Citation Disambiguation

Wauchope, K. Eucalyptus: Integrating Natural Language 
Input with a Graphical User Interface.  NRL Report 
NRL/FR/5510-94-9711 (1994).

Is "Eucalyptus" part of the title, or is the author 
named K. Eucalyptus Wauchope?

Kenneth Wauchope (1994). Eucalyptus: Integrating 
natural language input with a graphical user 
interface.  NRL Report NRL/FR/5510-94-9711, Naval 
Research Laboratory, Washington, DC, 39pp.

Second citation makes it clear how to parse the first one
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Preliminary Experiments:
Information Extraction

• P(citation text | title, author names) 
modeled with simple HMM

• For each paper: recover title, author 
surnames and given names

• Fraction whose attributes are recovered 
perfectly in last MCMC state:
– among papers with one citation: 36.1%
– among papers with multiple citations: 62.6%

Can use inferred knowledge for disambiguation



101

Undirected Representation: 
Coref Variables

• Don’t represent unknown objects

• Instead, have predicate Coref(Cit1, Cit2)
• Advantage: set of RVs is fixed, finite

• Drawbacks: 
– parameters may be corpus-specific
– true attributes of papers not represented anywhere

• Alternative: identify papers with subsets of 
citations [Culotta & McCallum, Tech Report 2005]

[McCallum & Wellner, NIPS 2004; 
Richardson & Domingos, SRL 2004]
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Where Pairwise Scores Fall Short

"Martin"

"Smith""Jake"

• Each pair of names is compatible
– “Martin” serves as surname with “Jake”, and 

as given name with “Smith”

• But it’s unlikely that someone would be 
called by all three of these names

Jake Smith

Jake Martin Martin Smith
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Pre-application: traffic monitoring

Goal: estimate current link travel time, 
long-term origin-destination counts
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Data association calculation

• Assignment ω specifies which 
observations belong to which vehicle

• E(f|data) = Σω f(ω,data) P(data|ω) P(ω)
= Σω f(ω,data) P(ω) Πi P(datai)

i.e., likelihood factors over vehicles given a 
specific assignment
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Observations and models

• Lane position (x)
– Discrete model P(xd|xu)

• Arrival time t, speed s
– P(td|tu) Gaussian with mean, variance dependent on 

xu, xd, sd, su

• Colour -- h,s,v + colour histogram C
– Camera-specific Gaussian noise

• Width, length+height
– Camera-specific Gaussian noise

All parameters time-varying, learned online
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Lane correlation data
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Hue correlation data
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Width correlation data
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Inference
Rao-Blackwellized Decayed MCMC Filter

• Given assignment ω, likelihood factors into 
vehicle trajectories; Kalman filter on each

• MCMC proposes pairwise trajectory exchanges 
[polytime convergence for two cameras]
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Results
Human-level performance on small real sample; beat 

previous best methods on 1200-vehicle simulation
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State Estimation for “Aircraft”

• Dependency statements for simple model:
#Aircraft ~ NumAircraftPrior();

State(a, t) 
if t = 0 then ~ InitState() 
else ~ StateTransition(State(a, Pred(t)));

#Blip(Source = a, Time = t) 
~ NumDetectionsCPD(State(a, t));

#Blip(Time = t) 
~ NumFalseAlarmsPrior();

ApparentPos(r)
if (Source(r) = null) then ~ FalseAlarmDistrib()
else ~ ObsCPD(State(Source(r), Time(r)));
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Aircraft Entering and Exiting

#Aircraft(EntryTime = t) ~ NumAircraftPrior();

Exits(a, t) 
if InFlight(a, t) then ~ Bernoulli(0.1);

InFlight(a, t)
if t < EntryTime(a) then = false
elseif t = EntryTime(a) then = true
else = (InFlight(a, Pred(t)) & !Exits(a, Pred(t)));

State(a, t)
if t = EntryTime(a) then ~ InitState()  
elseif InFlight(a, t) then 

~ StateTransition(State(a, Pred(t)));

#Blip(Source = a, Time = t) 
if InFlight(a, t) then

~ NumDetectionsCPD(State(a, t));

…plus last two statements from previous slide
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MCMC for Aircraft Tracking

• Uses generative model from previous slide 
(although not with BLOG syntax)

• Examples of Metropolis-Hastings proposals:

[Oh et al., CDC 2004]

[Figures by Songhwai Oh]
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Aircraft Tracking Results
[Oh et al., CDC 2004]

(simulated data)

[Figures by Songhwai Oh]

MCMC has smallest error, 
hardly degrades at all as 
tracks get dense

MCMC is nearly as fast as 
greedy algorithm; 
much faster than MHT
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Extending the Model: Air Bases

• Suppose aircraft don’t just enter and exit, 
but actually take off and land at bases
– Want to track how many aircraft there are at 

each base

• Aircraft have destinations (particular 
bases) that they generally fly towards

• Assume set of bases is known
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Extending the Model: Air Bases
#Aircraft(InitialBase = b) ~ InitialAircraftPerBasePrior();

CurBase(a, t)
if t = 0 then = InitialBase(b)
elseif TakesOff(a, Pred(t)) then = null
elseif Lands(a, Pred(t)) then = Dest(a, Pred(t))
else = CurBase(a, Pred(t));

InFlight(a, t) = (CurBase(a, t) = null);

TakesOff(a, t) 
if !InFlight(a, t) then ~ Bernoulli(0.1);

Lands(a, t)
if InFlight(a, t) then 

~ LandingCPD(State(a, t), Location(Dest(a, t)));

Dest(a, t) 
if TakesOff(a, t) then ~ Uniform({Base b})
elseif InFlight(a, t) then = Dest(a, Pred(t))

State(a, t)
if TakesOff(a, Pred(t)) then 

~ InitState(Location(CurBase(a, Pred(t))))  
elseif InFlight(a, t) then 

~ StateTrans(State(a, Pred(t)), Location(Dest(a, t)));
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Unknown Air Bases

• Just add two more lines:
#AirBase ~ NumBasesPrior();

Location(b) ~ BaseLocPrior(); 
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BLOG Software

• Bayesian Logic inference engine available: 
http://www.cs.berkeley.edu/~milch/blog
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Summary: Open Problems

• Inference
– More widely applicable “lifted” inference
– Approximation algorithms for problems with huge 

numbers of objects
– Effective filtering algorithm for DBLOG

• Structure learning
– Learning more complex dependency statements
– Hypothesizing new random functions, new types
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Syntax and semantics considered 
unnecessary

Caricature of a modern AI paper:
– define a probability model in English + LaTeX

– do some maths, get an efficient algorithm
– write 10,000 lines of code, get PhD

No need for any formal syntax or semantics, 
provided reader understands that the 
algorithm respects the intended meaning 
of the English + LaTeX
– write 5,000 lines + use BNT, get PhD faster
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Syntax considered necessary

• Expressive notation increases scope of KR
– (imagine English+LaTeX without Σ notation)

• Learning algorithms (esp. model selection) 
output syntactic representation of hypotheses

• Neural configurations and processing 
presumably implement a general domain-
independent syntax and semantics (brains 
don’t do PhDs)
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Expressiveness and complexity in logic

First-order logic

Clausal logic

Horn clauses

Definite clauses

Datalog3-CNF

2-CNF Propositional definite

Propositional database

Propositional clauses

Propositional logic

Function-free
First-order logic

[Poole, Mackworth & Goebel, 1998]

polytime

NP-hard

decidable

undecidable
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What is the right syntax/semantics?

• No formal definitions for “good” syntax and 
semantics (but examples of “bad” can be 
convincing)

• Want concise, intuitive expressions for 
naturally occurring models
=> Need many experimental investigations

• Experience in programming languages 
suggests that decidability is not required


