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Abstract

In partially observable worlds with many agents, nested beliefs are formed when
agents simultaneously reason about the unknown state of the world and the beliefs
of the other agents. The multi-agent filtering problem is to efficiently represent
and update these beliefs through time as the agents act in the world. In this pa-
per, we formally define an infinite sequence of nested beliefs about the state of
the world at the current time t, and present a filtering algorithm that maintains a
finite representation which can be used to generate these beliefs. In some cases,
this representation can be updated exactly in constant time; we also present a sim-
ple approximation scheme to compact beliefs if they become too complex. In
experiments, we demonstrate efficient filtering in a range of multi-agent domains.

1 Introduction

The existence of nested beliefs is one of the defining characteristics of a multi-agent world. As an
agent acts, it often needs to reason about what other agents believe. For instance, a teacher must
consider what a student knows to decide how to explain important concepts. A poker agent must
think about what cards other players might have — and what cards they might think it has — in
order to bet effectively. In this paper, we assume a cooperative setting where all the agents have
predetermined, commonly-known policies expressed as functions of their beliefs; we focus on the
problem of efficient belief update, or filtering.

We consider the nested filtering problem in multi-agent, partially-observable worlds [6, 1, 9]. In
this setting, agents receive separate observations and independently execute actions, which jointly
change the hidden state of the world. Since each agent does not get to see the others’ observations
and actions, there is a natural notion of nested beliefs. Given its observations and actions, an agent
can reason not only about the state of the external world, but also about the other agents’ observations
and actions. It can also condition on what others might have seen and done to compute their beliefs
at the next level of nesting. This pattern can be repeated to arbitrary depth.

The multi-agent filtering problem is to efficiently represent and update these nested beliefs through
time. In general, an agent’s beliefs depend on its entire history of actions and observations. One
approach to computing these beliefs would be to remember the entire history, and perform inference
to compute whatever probabilities are needed at each time step. But the time required for this
computation would grow with the history length. Instead, we maintain a belief state that is sufficient
for predicting future beliefs and can be approximated to achieve constant-time belief updates.

We begin by defining an infinite sequence of nested beliefs about the current state st, and showing
that it is sufficient for predicting future beliefs. We then present a multi-agent filtering algorithm that
maintains a compact representation sufficient for generating this sequence. Although in the worst
case this representation grows exponentially in the history length, we show that its size remains
constant for several interesting problems. We also describe an approximate algorithm that always
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maintains a constant representation size (and constant-time updates), possibly at the cost of accuracy.
In experiments, we demonstrate efficient and accurate filtering in a range of multi-agent domains.

2 Related Work

In existing research on partially observable stochastic games (POSGs) and Decentralized POMDPs
(DEC-POMDPs) [6, 1, 9], policies are represented as direct mappings from observation histories to
actions. That approach removes the need for the agents to perform any kind of filtering, but requires
the specification of some particular class of policies that return actions for arbitrarily long histories.
In contrast, many successful algorithms for single-agent POMDPs represent policies as functions on
belief states [7], which abstract over the specifics of particular observation histories. Gmytrasiewicz
and Doshi [5] consider filtering in interactive POMDPs. Their approach maintains finitely nested
beliefs that are derived from a world model as well as hand-specified models of how each agent
reasons about the other agents. In this paper, all of the nested reasoning is derived from a single
world model, which eliminates the need for any agent-specific models.

To the best of our knowledge, our work is the first to focus on filtering of infinitely nested beliefs.
There has been significant work on infinitely nested beliefs in game theory, where Brandenburger
and Dekel [2] introduced the notion of an infinite sequence of finitely nested beliefs. However,
they do not describe any method for computing these beliefs from a world model or updating them
over time. Another long-standing line of related work is in the epistemic logic community. Fagin
and Halpern [3] define labeled graphs called probabilistic Kripke structures, and show how a graph
with finitely many nodes can define an infinite sequence of nested beliefs. Building on this idea,
algorithms have been proposed for answering queries on probabilistic Kripke structures [10] and on
influence diagrams that define such structures [8]. However, these algorithms have not addressed
the fact that as agents interact with the world over time, the set of observation sequences they could
have received (and possibly the set of beliefs they could arrive at) grows exponentially.

3 Nested Filtering

In this section, we describe the world model and define the multi-agent filtering problem. We then
present a detailed example where a simple problem leads to a complex pattern of nested reasoning.

3.1 Partially observable worlds with many agents

We will perform filtering given a multi-agent, decision-theoretic model for acting in a partially
observable world.1 Agents receive separate observations and independently execute actions, which
jointly change the state of the world. There is a finite set of states S, but the current state s ∈ S
cannot be observed directly by any of the agents. Each agent j has a finite set of observations Oj

that it can receive and a finite set of actions Aj that it can execute. Throughout this paper, we will
use superscripts and vector notation to name agents and subscripts to indicate time. For example,
aj

t ∈ Aj is the action for agent j at time t; ~at = 〈ai
t, . . . , a

j
t 〉 is a vector with actions for each of the

agents; and aj
0:t = (aj

0, . . . , a
j
t ) is a sequence of actions for agent j at time steps 0 . . . t.

The state dynamics is defined by a distribution p0(s) over initial states and a transition distribution
p(st|st−1,~at−1) that is conditioned on the previous state st−1 and the action vector ~at−1. For each
agent j, observations are generated from a distribution p(oj

t |st,~at−1) conditioned on the current
state and the previous joint action. Each agent j sees only its own actions and observations. To
record this information, it is useful to define a history hj

0:t = (aj
0:t−1, o

j
1:t) for agent j at time t. A

policy is a distribution πj(aj
t |h

j
0:t) over the actions agent j will take given this history. Together,

these distributions define the joint world model:

p(s0:t,~h0:t) = p0(s0)
t−1∏
i=0

~π(~ai|~h0:i)p(si+1|si,~ai)p(~oi+1|si+1,~ai) (1)

where ~π(~at|~h0:t) =
∏

j πj(aj
t |h

j
0:t) and p(~ot+1|st+1,~at) =

∏
j p(oj

t+1|st+1,~at).

1This is the same type of world model that is used to define POSGs and DEC-POMDPs. Since we focus on
filtering instead of planning, we do not need to define reward functions for the agents.
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3.2 The nested filtering problem

In this section, we describe how to compute infinitely nested beliefs about the state at time t. We then
define a class of policies that are functions of these beliefs. Finally, we show that the current nested
belief for an agent i contains all of the information required to compute future beliefs. Throughout
the rest of this paper, we use a minus notation to define tuples indexed by all but one agent. For
example, h−i

0:t and π−i are tuples of histories and policies for all agents k 6= i.

We define infinitely nested beliefs by presenting an infinite sequence of finitely nested beliefs. For
each agent i and nesting level n, the belief function Bi,n : hi

0:t → bi,n
t maps the agent’s history to its

nth-level beliefs at time t. The agent’s zeroth-level belief function Bi,0(hi
0:t) returns the posterior

distribution bi,0
t = p(st|hi

0:t) over states given the input history, which can be computed from Eq. 1:

Bi,0(hi
0:t) = p(st|hi

0:t) ∝
P

s0:t−1,h−i
0:t

p(s0:t,~h0:t).

Agent i’s first-level belief function Bi,1(hi
0:t) returns a joint distribution on st and the zeroth-level

beliefs of all the other agents (what the other agents believe about the state of the world). We can
compute the tuple of zeroth-level beliefs b−i,0

t for all agents k 6= i by summing the probabilities of
all histories h−i

0:t that lead to these beliefs (that is, such that b−i,0
t = B−i,0(h−i

0:t)):

Bi,1(hi
0:t) = p(st, b

−i,0
t |hi

0:t) ∝
P

s0:t−1,h−i
0:t

p(s0:t,~h0:t)δ(b
−i,0
t , B−i,0(h−i

0:t)).

The delta function δ(·, ·) returns one when its arguments are equal and zero otherwise.

For level n, Bi,n(hi
0:t) returns a distribution over states and level n− 1 beliefs for the other agents.

For example, at level 2, the function returns a joint distribution over: the state, what the other agents
believe about the state, and what they believe others believe. Again, these beliefs are computed by
summing over histories for the other agents that lead to the appropriate level n− 1 beliefs:

Bi,n(hi
0:t) = p(st, b

−i,n−1
t |hi

0:t) ∝
P

s0:t−1,h−i
0:t

p(s0:t,~h0:t)δ(b
−i,n−1
t , B−i,n−1(h−i

0:t)).

Note that for all nesting levels n, Bi,n(hi
0:t) is a discrete distribution. There are only finitely many

beliefs each agent k could hold at time t — each arising from one of the possible histories hk
0:t.

Define bi,∗
t = Bi,∗(hi

0:t) to be the infinite sequence of nested beliefs generated by computing
Bi,n(hi

0:t) for n = 0, 1, . . .. We can think of bi,∗
t as a belief state for agent i, although not one

that can be used directly by a filtering algorithm. We will assume that the policies πi are represented
as functions of these belief states: that is, πi(ai

t|b
i,∗
t ) can be thought of as a procedure that looks

at arbitrary parts of the infinite sequence bi,∗
t and returns a distribution over actions. We will see

examples of this type of policy in the next section. Under this assumption, bi,∗
t is a sufficient statistic

for predicting future beliefs in the following sense:

Proposition 1 In a model with policies πj(aj
t |b

j,∗
t ) for each agent j, there exists a belief estimation

function BE s.t. ∀ai
0:t−1, oi

1:t, a
i
t, o

i
t+1 . Bi,∗(ai

0:t, o
i
1:t+1) = BE(Bi,∗(ai

0:t−1, o
i
1:t), a

i
t, o

i
t+1).

To prove this result, we need to demonstrate a procedure that correctly computes the new belief
given only the old belief and the new action and observation. The filtering algorithm we will present
in Sec. 4 achieves this goal by representing the nested belief with a finite structure that can be used
to generate the infinite sequence, and showing how these structures are updated over time.

3.3 Extended Example: The Tiger Communication World

We now describe a simple two-agent “tiger world” where the optimal policies require the agents to
coordinate their actions. In this world there are two doors: behind one randomly chosen door is a
hungry tiger, and behind the other is a pile of gold. Each agent has unique abilities. Agent l (the
tiger listener) can hear the tiger roar, which is a noisy indication of its current location, but cannot
open the doors. Agent d (the door opener) can open doors but cannot hear the roars. To facilitate
communication, agent l has two actions, signal left and signal right, which each produce a unique
observation for agent d. When a door is opened, the world resets and the tiger is placed behind a
randomly chosen door. To act optimally, agent l must listen to the tiger’s roars until it is confident
about the tiger’s location and then send the appropriate signal to agent d. Agent d must wait for this
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bl,∗ al πl(al|bl,∗)

bl,0(TL) > 0.8 SL 1.0
bl,0(TL) > 0.8 SR 1.0

otherwise L 1.0

bd,∗ ad πd(ad|bd,∗)

bd,0(TL) > 0.8 OR 1.0
bd,0(TR) > 0.8 OL 1.0

otherwise L 1.0

Figure 1: Deterministic policies for the tiger world that depend on each agent’s beliefs about the physical state,
where the tiger can be on the left (TL) or the right (TR). The tiger listener, agent l, will signal left (SL) or
right (SR) if it confident of the tiger’s location. The door opener, agent d, will open the appropriate door when
it is confident about the tiger’s location. Otherwise both agents listen (to the tiger or for a signal).

signal and then open the appropriate door. Fig. 1 shows a pair of policies that achieve this desired
interaction and depend only on each agent’s level-zero beliefs about the state of the world. However,
as we will see, the agents cannot maintain their level-zero beliefs in isolation. To correctly update
these beliefs, each agent must reason about the unseen actions and observations of the other agent.

Consider the beliefs that each agent must maintain to execute its policies during a typical scenario.
Assume the tiger starts behind the left door. Initially, both agents have uniform beliefs about the
location of the tiger. As agent d waits for a signal, it does not gain any information about the tiger’s
location. However, it maintains a representation of the possible beliefs for agent l and knows that l is
receiving observations that correlate with the state of the tiger. In this case, the most likely outcome
is that agent l will hear enough roars on the left to do a “signal left” action. This action produces an
observation for agent d which allows it to gain information about l’s beliefs. Because agent d has
maintained the correspondence between the true state and agent l’s beliefs, it can now infer that the
tiger is more likely to be on the left (it is unlikely that l could have come to believe the tiger was
on the left if that were not true). This inference makes agent d confident enough about the tiger’s
location to open the right door and reset the world. Agent l must also represent agent d’s beliefs,
because it never receives any observations that indicate what actions agent d is taking. It must track
agent d’s belief updates to know that d will wait for a signal and then immediately open a door.
Without this information, l cannot predict when the world will be reset, and thus when it should
disregard past observations about the location of the tiger.

Even in this simple tiger world, we see a complicated reasoning pattern: the agents must track each
others’ beliefs. To update its belief about the external world, each agent must infer what actions the
other agent has taken, which requires maintaining that agent’s beliefs about the world. Moreover,
updating the other agent’s beliefs requires maintaining what it believes you believe. Continuing
this reasoning to deeper levels leads to the infinitely nested beliefs defined in Sec. 3.2. However,
we will never explicitly construct these infinite beliefs. Instead, we maintain a finite structure that
is sufficient to recreate them to arbitrary depth, and only expand as necessary to compute action
probabilities.

4 Efficient Filtering
In this section, we present an algorithm for performing belief updates bi,∗

t = BE(bi,∗
t−1, a

i
t−1, o

i
t)

on nested beliefs. This algorithm is applicable in the cooperative setting where there are commonly
known policies πj(aj

t |b
j,∗
t ) for each agent j. The approach, which we call the SDS filter, maintains

a set of Sparse Distributions over Sequences of past states, actions, and observations.

Sequence distributions. The SDS filter deals with two kinds of sequences: histories hj
0:t =

(aj
0:t−1, o

j
1:t) and trajectories x0:t = (s0:t,~a0:t−1). A history represents what agent j knows be-

fore acting at time t; a trajectory is a trace of the states and joint actions through time t. The
filter for agent i maintains the following sequence sets: a set X of trajectories that might have
occurred so far, and for each agent j (including i itself), a set Hj of possible histories. One of
the elements of Hi is marked as being the history that i has actually experienced. The SDS filter
maintains belief information in the form of sequence distributions αj(x0:t|hj

0:t) = p(x0:t|hj
0:t) and

βj(hj
0:t|x0:t) = p(hj

0:t|x0:t) for all agents j, histories hj
0:t ∈ Hj , and trajectories x0:t ∈ X .2 The

αj distributions represent what agent j would believe about the possible sequences of states and
other agents’ actions given hj

0:t. The βj distributions represent the probability of j receiving the
observations in hj

0:t if the trajectory x0:t had actually happened.

2Actions are included in both histories and trajectories; when x0:t and hj
0:t specify different actions, both

αj(x0:t|hj
0:t) and βj(hj

0:t|x0:t) are zero.
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The insight behind the SDS filter is that these sequence distributions can be used to compute the
nested belief functions Bi,n(hi

0:t) from Sec. 3.2 to arbitrary depth. The main challenge is that sets
of possible histories and trajectories grow exponentially with the time t. To avoid this blow-up,
the SDS filter does not maintain the complete set of possible sequences. We will see that some
sequences can be discarded without affecting the results of the belief computations. If this pruning
is insufficient, the SDS filter can drop low-probability sequences and perform approximate filtering.

A second challenge is that if we represent each sequence explicitly, the space required grows linearly
with t. However, the belief computations do not require the details of each trajectory and history. To
compute beliefs about current and future states, it suffices to maintain the sequence distributions αj

and βj defined above, along with the final state st in each trajectory. The SDS filter maintains only
this information.3 For clarity, we will continue to use full sequence notation in the paper.

In the rest of this section, we first show how the sequence distributions can be used to compute nested
beliefs of arbitrary depth. Then, we show how to maintain the sequence distributions. Finally, we
present an algorithm that computes these distributions while maintaining small sequence sets.

The nested beliefs from Sec. 2.2 can be written in terms of the sequence distributions as follows:

Bj,0(hj
0:t)(s) =

X
x0:t∈X : xt=s

αj(x0:t|hj
0:t) (2)

Bj,n(hj
0:t)(s, b

−j,n−1) =
X

x0:t∈X : xt=s

αj(x0:t|hj
0:t)

Y
k 6=j

X
hk
0:t∈Hk

βk(hk
0:t|x0:t)δ(b

k,n−1, Bk,n−1(hk
0:t)) (3)

At level zero, we sum over the probabilities according to agent j of all trajectories with the correct
final state. At level n, we perform the same outer sum, but for each trajectory we sum the proba-
bilities of the histories for agents k 6= j that would lead to the beliefs we are interested in. Thus,
the sequence distributions at time t are sufficient for computing any desired element of the infinite
belief sequence Bj,∗(hj

0:t) for any agent j and history hj
0:t.

Updating the distributions. The sequence distributions are updated at each time step t as follows.
For each agent j, trajectory x0:t = (s0:t,~a0:t−1) and history hj

0:t = (aj
0:t−1, o

j
1:t):

βj(hj
0:t|x0:t) = βj(hj

0:t−1|x0:t−1)p(oj
t |st,~at−1) (4)

αj(x0:t|hj
0:t) = αj(x0:t−1|hj

0:t−1)p(~at−1|x0:t−1)p(st|st−1, o
j
t ,~at−1) (5)

The values of βj on length-t histories are computed from existing βj values by multiplying in the
probability of the most recent observation. To extend αj to length-t trajectories, we multiply in the
probability of the state transition and the probability of the agents’ actions given the past trajectory:

p(~at−1|x0:t−1) =
Y
k

X
hk
0:t−1

βk(hk
0:t−1|x0:t−1)π

k(ak
t−1|Bk,∗(hk

0:t−1)) (6)

Here, to predict the actions for agent k, we take an expectation over its possible histories hk
0:t−1

(according to the βk distribution from the previous time step) of the probability of each action
ak

t−1 given the beliefs Bk,∗(hk
0:t−1) induced by the history. In practice, only some of the entries in

Bk,∗(hk
0:t−1) will be needed to compute k’s action; for example, in the tiger world, the policies are

functions of the zero-level beliefs. The necessary entries are computed from the the previous α and
β distributions as described in Eqs. 2 and 3. This computation is not prohibitive because, as we will
see later, we only consider a small subset of the possible histories.

Returning to the example tiger world, we can see that maintaining these sequence distributions will
allow us to achieve the desired interactions described in Sec. 3.3. For example, when the door opener
receives a “signal left” observation, it will infer that the tiger is on the left because it has done the
reasoning in Eq. 6 and determined that, with high probability, the trajectories that would have led
the tiger listener to take this action are the ones where the tiger is actually on the left.

3This data structure is closely related to probabilistic Kripke structures [3] which are known to be sufficient
for recreating nested beliefs. We are not aware of previous work that guarantees compactness through time.
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Initialization. Input: Distribution p(s) over states.
1. Initialize trajectories and histories: X = {((s), ())|s ∈ S}, Hj = {((), ())}
2. Initialize distributions: ∀x = ((s), ()) ∈ X, j, hj ∈ Hj : αj(x|hj) = p(s) and βj(hj |x) = 1.

Filtering. Input: Action ai
t−1 and observation oi

t.

1. Compute new sequence sets X and Hj , for all agents j, by adding all possible states, actions, and
observations to sequences in the previous sets. Compute new sequence distributions αj and βj , for
all agents j, as described in Eqs. 5, 4, and 6. Mark the observed history hi

0:t ∈ Hi.

2. Merge and drop sequences:

(a) Drop trajectories and histories that are commonly known to be impossible:
• ∀x0:t ∈ X s.t. ∀j, hj

0:t ∈ Hj . αj(x0:t|hj
0:t) = 0: Set X = X \ {x0:t}.

• ∀j, hj
0:t ∈ Hj s.t. ∀x0:t ∈ X . βj(hj

0:t|x0:t) = 0: Set Hj = Hj \ {hj
0:t}.

(b) Merge histories that lead to the same beliefs:
• ∀j, hj

0:t ∈ Hj , h′j0:t ∈ Hj s.t. ∀x0:t ∈ X . αj(x0:t|hj
0:t) = αj(x0:t|h′j0:t):

Set Hj = Hj \ {h′j0:t} and βj(hj
0:t|x0:t) = βj(hj

0:t|x0:t) + βj(h′j0:t|x0:t) for all x0:t.
(c) Reset when marginal of st is common knowledge:

• If ∀j, k, hj
0:t ∈ Hj , hk

0:t,∈ Hk, st . αj(st|hj
0:t) = αk(st|hk

0:t):
Reinitialize the filter using the distribution αj(st|hj

0:t) instead of the prior p0(s).

3. Prune: For all αj or βj with m ≥ N non-zero entries:
Remove the m−N lowest-probability sequences and renormalize.

Figure 2: The SDS filter for agent i. At all times t, the filter maintains sequence sets X and Hj , for all agents
j, along with the sequence distributions αj and βj for all agents j. Agent i’s actual observed history is marked
as a distinguished element hi

0:t ∈ Hi and used to compute its beliefs Bi,∗(hi
0:t).

Filtering algorithm. We now consider the challenge of maintaining small sequence sets. Fig. 2
provides a detailed description of the SDS filtering algorithm for agent i. The filter is initialized with
empty histories for each agent and trajectories with single states that are distributed according to the
prior. At each time t, Step 1 extends the sequence sets, computes the sequence distributions, and
records agent i’s history. Running a filter with only this step would generate all possible sequences.

Step 2 introduces three operations that reduce the size of the sequence sets while guaranteeing that
Eqs. 2 and 3 still produce the correct nested beliefs at time t. Step 2(a) removes trajectories and
histories when all the agents agree that they are impossible; there is no reason to track them. For
example, in the tiger communication world, the policies are such that for the first few time steps each
agent will always listen (to the tiger or for signals). During this period all the trajectories where other
actions are taken are known to be impossible and can be ignored. Step 2(b) merges histories for an
agent j that lead to the same beliefs. This is achieved by arbitrarily selecting one history to be
deleted and adding its βj probability to the other’s βj . For example, as the tiger listener hears roars,
any two observation sequences with the same numbers of roars on the left and right provide the same
information about the tiger and can be merged. Step 2(c) resets the filter if the marginal over states
at time t has become commonly known to all the agents. For example, when both agents know that a
door has been opened, this implies that the world has reset and all previous trajectories and histories
can be discarded. This type of agreement is not limited to cases where the state of the world is reset.
It occurs with any distribution over states that the agents agree on, for example when they localize
and both know the true state, even if they disagree about the trajectory of past states.

Together, these three operators can significantly reduce the size of the sequence sets. We will see
in the experiments (Sec. 5) that they enable the SDS filter to exactly track the tiger communication
world extremely efficiently. However, in general, there is no guarantee that these operators will be
enough to maintain small sets of trajectories and histories. Step 3 introduces an approximation by
removing low-probability sequences and normalizing the belief distributions. This does guarantee
that we will maintain small sequence sets, possibly at the cost of accuracy. In many domains we can
ignore unlikely histories and trajectories without significantly changing the current beliefs.

5 Evaluation

In this section, we describe the performance of the SDS algorithm on three nested filtering problems.
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Figure 3: Time per filtering step, and error, for the SDS algorithm on two domains.

Tiger Communication World. The tiger communication world was described in detail in Sec. 3.3.
Fig. 3(a) shows the average computation time used for filtering at each time step. The full algorithm
(SDS) maintains a compact, exact representation without any pruning and takes only a fraction of a
second to do each update. The graph also shows the results of disabling different parts of Step 2(a-c)
of the algorithm (for example, SDS -a,-b,-c does not do any simplifications from Step 2). Without
these steps, the algorithm runs in exponential time. Each simplification allows the algorithm to
perform better, but all are required for constant-time performance. Since the SDS filter runs without
the pruning in Step 3, we know that it computes the correct beliefs; there is no approximation error.4

Box Pushing. The DEC-POMDP literature includes several multi-agent domains; we evaluate
SDS on the largest of them, known as the box-pushing domain [9]. In this scenario, two agents
interact in a 3x4 grid world where they must coordinate their actions to move a large box and then
independently push two small boxes. The state encodes the positions and orientations of the robots,
as well as the locations of the three boxes. The agents can move forward, rotate left and right, or
stay still. These actions fail with probability 0.1, leaving the state unchanged. Each agent receives
deterministic observations about what is in the location in front of it (empty space, a robot, etc.).
We implemented policies for each agent that consist of a set of 20 rules specifying actions given its
zeroth-level beliefs about the world state. While executing their policies, the agents first coordinate
to move the large box and then independently move the two small boxes. The policies are such that,
with high probability, the agents will always move the boxes. There is uncertainty about when this
will happen, since actions can fail. We observed, in practice, that it rarely took more than 20 steps.

Fig. 3(b) shows the running time of the SDS filter on this domain, with various pruning parameters
(N = 10, 50, 100,∞ in Step 3). Without pruning (N = ∞), the costs are too high for the filter
to move beyond time step five. With pruning, however, the cost remains reasonable. Fig. 3(c)
shows the error incurred with various degrees of pruning, in terms of the difference between the
estimated zeroth-level beliefs for the agents and the true posterior over physical states given their
observations.5 Note that in order to accurately maintain each agent’s beliefs about the physical
state—which includes the position of the other robot—the filter must assign accurate probabilities
to unobserved actions by the other agent , which depend on its beliefs. This is the same reasoning
pattern we saw in the tiger world where we are required to maintain infinitely nested beliefs. As
expected, we see that more pruning leads to faster running time but decreased accuracy. We also
find that the problem is most challenging around time step ten and becomes easier in the limit, as the
world moves towards the absorbing state where both agents have finished their tasks. With N = 100,
we get high-quality estimates in an acceptable amount of time.

Noisy Muddy Children. The muddy children problem is a classic puzzle often discussed by re-
searchers in epistemic logic [4]. There are n agents and 2n possible states. Each agent’s forehead
can be either muddy or clean, but it does not get any direct observations about this fact. Initially, it is
commonly known that at least one agent has a muddy forehead. As time progresses, the agents fol-
low a policy of raising their hand if they know that their forehead is muddy; they must come to this
conclusion given only observations about the cleanliness of the other agents’ foreheads and who has

4The exact version of SDS also runs in constant time on the broadcast channel domain of Hansen et al. [6].
5Because the box-pushing problem is too large for beliefs to be computed exactly, we compare the filter’s

performance to empirical distributions obtained by generating 10,000 sequences of trajectories and histories.
We group the runs by the history hi

0:t; for all histories that appear at least ten times, we compare the empirical
distribution b̂t of states occurring after that history to the filter’s computed beliefs b̃i,0

t , using the variational
distance V D(b̂t, b̃

i,0
t ) =

P
s |b̂t(s)− b̃i,0

t (s)|.
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raised their hands (this yields 22n possible observations for each agent). This puzzle is represented
in our framework as follows. The initial knowledge is encoded with a prior that is uniform over all
states with in which at least one agent is muddy. The state of the world never changes. Observations
about the muddiness of the other agents are only correct with probability ν, and each agent raises its
hand if it assigns probability at least 0.8 to being muddy.

When there is no noise, ν = 1.0, the agents behave as follows. With m ≤ n muddy agents, everyone
waits m time steps and then all of the muddy agents simultaneously raise their hands.6 The SDS
filter exhibits exactly this behavior and runs in reasonable time, using only a few seconds per filtering
step, for problem instances with up to 10 agents without pruning. We also ran the filter on instances
with noise (ν = 0.9) and up to 5 agents. This required pruning histories to cope with the extremely
large number of possible but unlikely observation sequences. The observed behavior is similar to
the deterministic case: eventually, all of the m muddy agents raise their hands. In expectation, this
happens at a time step greater than m, since the agents must receive multiple observations before
they are confident about each other’s cleanliness. If one agent raises its hand before the others, this
provides more information to the uncertain agents, who usually raise their hands soon after.

6 Conclusions
We have considered the problem of efficient belief update in multi-agent scenarios. We introduced
the SDS algorithm, which maintains a finite belief representation that can be used to compute an
infinite sequence of nested beliefs about the physical world and the beliefs of other agents. We
demonstrated that on some problems, SDS can maintain this representation exactly in constant time
per filtering step. On more difficult examples, SDS maintains constant-time filtering by pruning
low-probability trajectories, yielding acceptable levels of approximation error.

These results show that efficient filtering is possible in multi-agent scenarios where the agents’
policies are expressed as functions of their beliefs, rather than their entire observation histories.
These belief-based policies are independent of the current time step, and have the potential to be
more compact than history-based policies. In the single-agent setting, many successful POMDP
planning algorithms construct belief-based policies; we plan to investigate how to do similar belief-
based planning in the multi-agent case.
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