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Abstract

Identity uncertainty is a pervasive problem in real-world data analysis. It
arises whenever objects are not labeled with unique identifiers or when
those identifiers may not be perceived perfectly. In such cases, two ob-
servations may or may not correspond to the same object. In this paper,
we consider the problem in the context of citation matching—the prob-
lem of deciding which citations correspond to the same publication. Our
approach is based on the use of a relational probability model to define
a generative model for the domain, including models of author and title
corruption and a probabilistic citation grammar. Identity uncertainty is
handled by extending standard models to incorporate probabilities over
the possible mappings between terms in the language and objects in the
domain. Inference is based on Markov chain Monte Carlo, augmented
with specific methods for generating efficient proposals when the domain
contains many objects. Results on several citation data sets show that
the method outperforms current algorithms for citation matching. The
declarative, relational nature of the model also means that our algorithm
can determine object characteristics such as author names by combining
multiple citations of multiple papers.

1 INTRODUCTION

Citation matching is the problem currently handled by systems such as Citeseer [1].1 Such
systems process a large number of scientific publications to extract their citation lists. By
grouping together all co-referring citations (and, if possible, linking to the actual cited
paper), the system constructs a database of “paper” entities linked by the “cites(p1, p2)”
relation. This is an example of the general problem of determining the existence of a set
of objects, and their properties and relations, given a collection of “raw” perceptual data;
this problem is faced by intelligence analysts and intelligent agents as well as by citation
systems.

A key aspect of this problem is determining when two observations describe the same
object; only then can evidence be combined to develop a more complete description of the
object. Objects seldom carry unique identifiers around with them, so identity uncertainty
is ubiquitous. For example, Figure 1 shows two citations that probably refer to the same
paper, despite many superficial differences. Citations appear in many formats and are rife
with errors of all kinds. As a result, Citeseer—which is specifically designed to overcome
such problems—currently lists more than 100 distinct AI textbooks published by Russell

1See citeseer.nj.nec.com. Citeseer is now known as ResearchIndex.
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Figure 1: Two citations that probably refer to the same paper.

and Norvig on or around 1995, from roughly 1000 citations. Identity uncertainty has been
studied independently in several fields. Record linkage [2] is a method for matching up
the records in two files, as might be required when merging two databases. For each pair
of records, a comparison vector is computed that encodes the ways in which the records
do and do not match up. EM is used to learn a naive-Bayes distribution over this vector
for both matched and unmatched record pairs, so that the pairwise match probability can
then be calculated using Bayes’ rule. Linkage decisions are typically made in a greedy
fashion based on closest match and/or a probability threshold, so the overall process is
order-dependent and may be inconsistent. The model does not provide for a principled
way to combine matched records. A richer probability model is developed by Cohen et
al [3], who model the database as a combination of some “original” records that are correct
and some number of erroneous versions. They give an efficient greedy algorithm for finding
a single locally optimal assignment of records into groups.

Data association [4] is the problem of assigning new observations to existing trajectories
when multiple objects are being tracked; it also arises in robot mapping when deciding if
an observed landmark is the same as one previously mapped. While early data associa-
tion systems used greedy methods similar to record linkage, recent systems have tried to
find high-probability global solutions [5] or to approximate the true posterior over assign-
ments [6]. The latter method has also been applied to the problem of stereo correspondence,
in which a computer vision system must determine how to match up features observed in
two or more cameras [7]. Data association systems usually have simple observation mod-
els (e.g., Gaussian noise) and assume that observations at each time step are all distinct.
More general patterns of identity occur in natural language text, where the problem of
anaphora resolution involves determining whether phrases (especially pronouns) co-refer;
some recent work [8] has used an early form of relational probability model, although with
a somewhat counterintuitive semantics.

Citeseer is the best-known example of work on citation matching [1]. The system groups
citations using a form of greedy agglomerative clustering based on a text similarity metric
(see Section 6). McCallum et al [9] use a similar technique, but also develop clustering
algorithms designed to work well with large numbers of small clusters (see Section 5).

With the exception of [8], all of the preceding systems have used domain-specific algo-
rithms and data structures; the probabilistic approaches are based on a fixed probability
model. In previous work [10], we have suggested a declarative approach to identity uncer-
tainty using a formal language—an extension of relational probability models [11]. Here,
we describe the first substantial application of the approach. Section 2 explains how to
specify a generative probability model of the domain. The key technical point (Section 3)
is that the possible worlds include not only objects and relations but also mappings from
terms in the language to objects in the domain, and the probability model must include a
prior over such mappings. Once the extended model has been defined, Section 4 details the
probability distributions used. A general-purpose inference method is applied to the model.
We have found Markov chain Monte Carlo (MCMC) to be effective for this and other appli-
cations (see Section 5); here, we include a method for generating effective proposals based
on ideas from [9]. The system also incorporates an EM algorithm for learning the local
probability models, such as the model of how author names are abbreviated, reordered, and
misspelt in citations. Section 6 evaluates the performance of four datasets originally used
to test the Citeseer algorithms [1]. As well as providing significantly better performance,



our system is able to reason simultaneously about papers, authors, titles, and publication
types, and does a good job of extracting this information from the grouped citations. For
example, an author’s name can be identified more accurately by combining information
from multiple citations of several different papers. The errors made by our system point to
some interesting unmodeled aspects of the citation process.

2 RPMs

Reasoning about identity requires reasoning about objects, which requires at least some of
the expressive power of a first-order logical language. Our approach builds on relational
probability models (RPMs) [11], which let us specify probability models over possible
worlds defined by objects, properties, classes, and relations.

2.1 Basic RPMs

At its most basic, an RPM, as defined by Koller et al [12], consists of

• A set C of classes denoting sets of objects, related by subclass/superclass relations.

• A set I of named instances denoting objects, each an instance of one class.

• A set A of complex attributes denoting functional relations. Each complex at-
tribute A has a domain type Dom[A] ∈ C and a range type Range[A] ∈ C.

• A set B of simple attributes denoting functions. Each simple attribute B has a
domain type Dom[B] ∈ C and a range V al[B].

• A set of conditional probability models P (B|Pa[B]) for the simple attributes.
Pa[B] is the set of B’s parents, each of which is a nonempty chain of (appropri-
ately typed) attributes σ = A1. · · · .An.B′, where B′ is a simple attribute. Prob-
ability models may be attached to instances or inherited from classes. The parent
links should be such that no cyclic dependencies are formed.

• A set of instance statements, which set the value of a complex attribute to an
instance of the appropriate class.

We also use a slight variant of an additional concept from [11]: number uncertainty, which
allows for multi-valued complex attributes of uncertain cardinality. We define each such
attribute A as a relation rather than a function, and we associate with it a simple at-
tribute #[A] (i.e., the number of values of A) with a domain type Dom[A] and a range
{0, 1, . . . , max#[A]}.

2.2 RPMs for citations

Figure 2 outlines an RPM for the example citations of Figure 1. There are four classes,
the self-explanatory Author, Paper, and Citation, as well as AuthorAsCited, which repre-
sents not actual authors, but author names as they appear when cited. Each citation we
wish to match leads to the creation of a Citation instance; instances of the remaining three
classes are then added as needed to fill all the complex attributes. E.g., for the first citation
of Figure 1, we would create a Citation instance C1, set its text attribute to the string “Me-
tral M. ...August 1994.”, and set its paper attribute to a newly created Paper
instance, which we will call P1. We would then introduce max(#[author]) (here only 3,
for simplicity) AuthorAsCited instances (D11, D12, and D13) to fill the P1.obsAuthors (i.e.,
observed authors) attribute, and an equal number of Author instances (A11, A12, and A13)
to fill both the P1.authors[i] and the D1i.author attributes. (The complex attributes would
be set using instance statements, which would then also constrain the cited authors to be
equal to the authors of the actual paper. 2) Assuming (for now) that the value of C1.parse

2Thus, uncertainty over whether the authors are ordered correctly can be modeled using proba-
bilistic instance statements.
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Figure 2: An RPM for our Citeseer example. The large rectangles represent classes: the
dark arrows indicate the ranges of their complex attributes, and the light arrows lay out
all the probabilistic dependencies of their basic attributes. The small rectangles represent
instances, linked to their classes with thick grey arrows. We omit the instance statements
which set many of the complex attributes.

is observed, we can set the values of all the basic attributes of the Citation and Autho-
rAsCited instances. (E.g., given the correct parse, D11.surname would be set to Lashkari,
and D12.fnames would be set to (Max)). The remaining basic attributes — those of the
Paper and Author instances — represent the “true” attributes of those objects, and their
values are unobserved.

The standard semantics of RPMs includes the unique names assumption, which precludes
identity uncertainty. Under this assumption, any two papers are assumed to be different
unless we know for a fact that they are the same. In other words, although there are many
ways in which the terms of the language can map to the objects in a possible world, only
one of these identity mappings is legal: the one with the fewest co-referring terms. It is then
possible to express the RPM as an equivalent Bayesian network: each of the basic attributes
of each of the objects becomes a node, with the appropriate parents and probability model.
RPM inference usually involves the construction of such a network. The Bayesian network
equivalent to our RPM is shown in Figure 3.

3 IDENTITY UNCERTAINTY

In our application, any two citations may or may not refer to the same paper. Thus, for
citations C1 and C2, there is uncertainty as to whether the corresponding papers P1 and P2

are in fact the same object. If they are the same, they will share one set of basic attributes;
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Figure 3: The Bayesian network equivalent to our RPM, assuming C1 6= C2.



if they are distinct, there will be two sets. Thus, the possible worlds of our probability
model may differ in the number of random variables, and there will be no single equiva-
lent Bayesian network. The approach we have taken to this problem [10] is to extend the
representation of a possible world so that it includes not only the basic attributes of a set
of objects, but also the number of objects n and an identity clustering ι, that is, a mapping
from terms in the language (such as P1) to objects in the world. We are interested only
in whether terms co-refer or not, so ι can be represented by a set of equivalence classes of
terms. For example, if P1 and P2 are the only terms, and they co-refer, then ι is {{P1, P2}};
if they do not co-refer, then ι is {{P1}, {P2}}.

We define a probability model for the space of extended possible worlds by specifying the
prior P (n) and the conditional distribution P (ι|n). As in standard RPMs, we assume that
the class of every instance is known. Hence, we can simplify these distributions further
by factoring them by class, so that, e.g., P (ι) =

∏

C∈C
P (ιC). We then distinguish two

cases:

• For some classes (such as the citations themselves), the unique names assumptions
remains appropriate. Thus, we define P (ιCitation) to assign a probability of 1.0
to the one assignment where each citation object is unique.

• For classes such as Paper and Author, whose elements are subject to identity un-
certainty, we specify P (n) using a high-variance log-normal distribution.3 Then
we make appropriate uniformity assumptions to construct P (ιC). Specifically, we
assume that each paper is a priori equally likely to be cited, and that each author is
a priori equally likely to write a paper. Here, “a priori” means prior to obtaining
any information about the object in question, so the uniformity assumption is en-
tirely reasonable. With these assumptions, the probability of an assignment ιC,k,m

that maps k named instances to m distinct objects, when C contains n objects, is
given by

P (ιC,k,m) =
n!

(n − m)!

1

nk

When n > m, the world contains objects unreferenced by any of the terms. How-
ever, these filler objects are obviously irrelevant (if they affected the attributes of
some named term, they would have been named as functions of that term.) There-
fore, we never have to create them, or worry about their attribute values.

Our model assumes that the cardinalities and identity clusterings of the classes are indepen-
dent of each other, as well as of the attribute values. We could remove these assumptions.
For one, it would be straightforward to specify a class-wise dependency model for n or ι
using standard Bayesian network semantics, where the network nodes correspond to the
cardinality attributes of the classes. E.g., it would be reasonable to let the total number of
papers depend on the total number of authors. Similarly, we could allow ι to depend on the
attribute values—e.g., the frequency of citations to a given paper might depend on the fame
of the authors—provided we did not introduce cyclic dependencies.

4 The Probability Model

We will now fill in the details of the conditional probability models. Our priors over the
“true” attributes are constructed off-line, using the following resources: the 1990 Cen-
sus data on US names, a large A.I. BibTeX bibliography, and a hand-parsed collection of
500 citations. We learn several bigram models (actually, linear combinations of a bigram
model and a unigram model): letter-based models of first names, surnames, and title words,
as well as higher-level models of various parts of the citation string. More specifically, the
values of Author.fnames and Author.surname are modeled as having a a 0.9 chance of being

3Other models are possible; for example, in situations where objects appear and disappear, P (ι)
can be modeled implicitly by specifying the arrival, transition, and departure rates [6].



drawn from the relevant US census file, and a 0.1 chance of being generated using a bigram
model learned from that file. The prior over Paper.titles is defined using a two-tier bigram
model constructed using the bibliography, while the distributions over Author.#(fnames),
Paper.#(authors), and Paper.pubType 4 are derived from our hand-parsed file. The con-
ditional distributions of the “observed” variables given their true values (i.e., the corrup-
tion models of Citation.obsTitle, AuthorAsCited.surname, and AuthorAsCited.fnames) are
modeled as noisy channels where each letter, or word, has a small probability of being
deleted, or, alternatively, changed, and there is also a small probability of insertion. Autho-
rAsCited.fnames may also be abbreviated as an initial. The parameters of the corruption
models are learnt online, using stochastic EM.

Let us now return to Citation.parse, which cannot be an observed variable, since citation
parsing, or even citation subfield extraction, is an unsolved problem. It is therefore fortu-
nate that our approach lets us handle uncertainty over parses so naturally. The state space
of Citation.parse has two different components. First of all, it keeps track of the citation
style, defined as the ordering of the author and title subfields, as well as the format in which
the author names are written. The prior over styles is learned using our hand-segmented
file. Secondly, it keeps track of the segmentation of Citation.text, which is divided into
an author segment, a title segment, and three filler segments (one before, one after, and
one in between.) We assume a uniform distribution over segmentations. Citation.parse
greatly constrains Citation.text: the title segment of Citation.text must match the value of
Citation.obsTitle, while its author segment must match the combined values of the simple
attributes of Citation.obsAuthors. The distributions over the remaining three segments of
Citation.text are defined using bigram models, with the model used for the final segment
chosen depending on the publication type. These models were, once more, learned using
our pre-segmented file.

5 INFERENCE

With the introduction of identity uncertainty, our model grows from a single Bayesian
network to a collection of networks, one for each possible value of ι. This collection can be
rather large, since the number of ways in which a set can be partitioned grows very quickly
with the size of the set. 5 Exact inference is, therefore, impractical. We use an approximate
method based on Markov chain Monte Carlo.

5.1 MARKOV CHAIN MONTE CARLO

MCMC [13] is a well-known method for approximating an expectation over some distribu-
tion π(x), commonly used when the state space of x is too large to sum over. The weighted
sum over the values of x is replaced by a sum over samples from π(x), which are generated
using a Markov chain constructed to have π(x) as a stationary distribution.

There are several ways of building up an appropriate Markov chain. In the Metropolis–
Hastings method (M-H), transitions in the chain are constructed in two steps. First, a
candidate next state x′ is generated from the current state x, using the (more or less arbi-
trary) proposal distribution q(x′|x). The probability that the move to x′ is actually made is

the acceptance probability, defined as α(x′|x) = min
(

1, π(x′)q(x|x′)
π(x)q(x′|x)

)

.

Such a Markov chain will have the right stationary distribution π(x) as long as q is defined
in such a way that the chain is ergodic. It is even possible to factor q into separate proposals
for various subsets of variables. In those situations, the variables that are not changed by the
transition cancel in the ratio π(x′)/π(x), so the required calculation can be quite simple.

4Publication types range over {article, conference paper, book, thesis, and tech report}
5This sequence is described by the Bell numbers, whose asymptotic behaviour is more than ex-

ponential.



5.2 THE CITATION-MATCHING ALGORITHM

The state space of our MCMC algorithm is the space of all the possible worlds, where
each possible world contains an identity clustering ι, a set of class cardinalities n, and the
values of all the basic attributes of all the objects. Since the ι is given in each world, the
distribution over the attributes can be represented using a Bayesian network as described
in Section 3. Therefore, the probability of a state is simply the product pf P (n), P (ι), and
the probability of the hidden attributes of the network.

Our algorithm uses a factored q function. One of our proposals attempts to change n using
a simple random walk. The other suggests, first, a change to ι, and then, values for all the
hidden attributes of all the objects (or clusters in ι) affected by that change. The algorithm
for proposing a change in ιC works as follows:

Select two clusters a1, a2 ∈ ιC
6

Create two empty clusters b1 and b2

place each instance i ∈ a1 ∪ a2 u.a.r. into b1 or b2

Propose ι′C = ιC − {a1, a2} ∪ {b1, b2}

Given a proposed ι′C , suggesting values for the hidden attributes boils down to recovering
their true values from (possibly) corrupt observations, e.g., guessing the true surname of
the author currently known both as “Simth” and “Smith”. Since our title and name noise
models are symmetric, our basic strategy is to apply these noise models to one of the
observed values. In the case of surnames, we have the additional resource of a dictionary
of common names, so, some of the time, we instead pick one of the set of dictionary entries
that are within a few corruptions of our observed names. (One must, of course, careful
to account for this hybrid approach in our acceptance probability calculations.) Parses are
handled differently: we preprocess each citation, organizing its plausible segmentations
into a list ordered in terms of descending probability. At runtime, we simply sample from
these discrete distributions. Since we assume that boundaries occur only at punctuation
marks, and discard segmentations of probability < 10−6, the lists are usually quite short. 7

The publication type variables, meanwhile, are not sampled at all. Since their range is so
small, we sum them out.

5.3 SCALING UP

One of the acknowledged flaws of the MCMC algorithm is that it often fails to scale. In
this application, as the number of papers increases, the simplest approach — one where
the two clusters a1 and a2 are picked u.a.r — is likely to lead to many rejected proposals,
as most pairs of clusters will have little in common. The resulting Markov chain will mix
slowly. Clearly, we would prefer to focus our proposals on those pairs of clusters which are
actually likely to exchange their instances. We have implemented an approach based on the
efficient clustering algorithm of McCallum et al [9], where a cheap distance metric is used
to preprocess a large dataset and fragment it into many canopies, or smaller, overlapping
sets of elements that have a non-zero probability of matching. We do the same, using
word-matching as our metric, and setting the thresholds to 0.5 and 0.2. Then, at runtime,
our q(x′|x) function proposes first a canopy c, and then a pair of clusters u.a.r. from c.
(q(x|x′) is calculated by summing over all the canopies which contain any of the elements
of the two clusters.)

6 EXPERIMENTAL RESULTS

We have applied the MCMC-based algorithm to the hand-matched datasets used in [1].
(Each of these datasets contains several hundred citations of machine learning papers, about
half of them in clusters ranging in size from two to twenty-one citations.) We have also

6Note that if the same cluster is picked twice, it will probably be split.
7It would also be possible to sample directly from a model such as a hierarchical HMM
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Table 1: Results on four Citeseer data sets, for the text matching and MCMC algorithms.
The metric used is the percentage of actual citation clusters recovered perfectly; for the
MCMC-based algorithm, this is an average over all the MCMC-generated samples.

implemented their phrase matching algorithm, a greedy agglomerative clustering method
based on a metric that measures the degrees to which the words and phrases of any two
citations overlap. (They obtain their “phrases” by segmenting each citation at all punctu-
ation marks, and then taking all the bigrams of all the segments longer than two words.)
The results of our comparison are displayed in Figure 1, in terms of the Citeseer error met-
ric. Clearly, the algorithm we have developed easily beats our implementation of phrase
matching.

We have also applied our algorithm to a large set of citations referring to the textbook Ar-
tificial Intelligence: A Modern Approach. It clusters most of them correctly, but there are a
couple of notable exceptions. Whenever several citations share the same set of unlikely er-
rors, they are placed together in a separate cluster. This occurs because we do not currently
model the fact that erroneous citations are often copied from reference list to reference
list, which could be handled by extending the model to include a copiedFrom attribute.
Another possible extension would be the addition of a topic attribute to both papers and au-
thors: tracking the authors’ research topics might enable the system to distinguish between
similarly-named authors working in different fields. Generally speaking, we expect that
relational probabilistic languages with identity uncertainty will be a useful tool for creating
knowledge from raw data.
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