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in Indoor Parking Structures
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Abstract—Although location awareness and turn-by-turn instructions are prevalent outdoors due to GPS, we are back into the
darkness in uninstrumented indoor environments such as underground parking structures. We get confused, disoriented when driving
in these mazes, and frequently forget where we parked, ending up circling back and forth upon return. In this paper, we propose
VeTrack, asmartphone-only system that tracks the vehicle’s location in real time using the phone’s inertial sensors. It does not require
any environment instrumentation or cloud backend. It uses a novel “shadow” trajectory tracing method to accurately estimate phone’s
and vehicle’s orientations despite their arbitrary poses and frequent disturbances. We develop algorithms in a Sequential Monte Carlo
framework to represent vehicle states probabilistically, and harness constraints by the garage map and detected landmarks to robustly
infer the vehicle location. We also find landmark (e.g., speed bumps, turns) recognition methods reliable against noises, disturbances
from bumpy rides, and even hand-held movements. We implement a highly efficient prototype and conduct extensive experiments in
multiple parking structures of different sizes and structures, and collect data with multiple vehicles and drivers. We find that VeTrack can

estimate the vehicle’s real time location with almost negligible latency, with error of 2 ~ 4 parking spaces at the 80th percentile.

Index Terms—Vehicle real time tracking, indoor environments
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1 INTRODUCTION

HANKS to decades of efforts in GPS systems and devices,
drivers know their locations at any time outdoors. The
location awareness enables drivers to make proper decisions
and gives them a sense of “control.” However, whenever we
drive into indoor environments such as underground parking
garages, or multi-level parking structures where GPS signals
can hardly penetrate, we lose this location awareness. Not
only do we get confused, disoriented in maze-like structures,
frequently we do not even remember where we park the car,
ending up circling back and forth searching for the vehicle.
Providing real time vehicle tracking capability indoors
will satisfy the fundamental and constant cognitive needs of
drivers to orient themselves relative to a large and unfamil-
iar environment. Knowing where they are generates a sense
of control and induces calmness psychologically, both
greatly enhancing the driving experience. In smart parking
systems where free parking space information is available,
real time tracking will enable turn-by-turn instructions
guiding drivers to those spaces, or at least areas where
more spaces are likely available. The final parking location
recorded can also be used to direct the driver back upon
return, avoiding any back and forth search.
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However, real time vehicle tracking indoors is far from
straightforward. First, mainstream indoor localization tech-
nology leverages RF signals such as WiFi [1], [2] and cellu-
lar [3], which can be sparse, intermittent or simply non-
existent in many uninstrumented environments. Instru-
menting the environment [4], [5] unfortunately is not
always feasible: the acquisition, installation and mainte-
nance of sensors require significant time, financial costs and
human efforts; simply wiring legacy environments can be a
major undertaking. The lack of radio signals also means
lack of Internet connectivity: no cloud service is reachable
and all sensing/computing have to happen locally.

In this paper, we propose VeTrack, a real time vehicle
tracking system that utilizes inertial sensors in the smart-
phone to provide accurate vehicle location. It does not rely
on GPS/RF signals, or any additional sensors instrumenting
the environment. All sensing and computation occur in the
phone and no cloud backend is needed. A driver simply
starts the VeTrack application before entering a parking
structure, then VeTrack will track the vehicle movements,
estimate and display its location in a garage map in real
time, and record the final parking location, which can be
used by the driver later to find the vehicle.

Such an inertial and phone-only solution [6] entails a
series of non-trivial challenges. First, many different scenar-
ios exist for the phone pose (i.e., relative orientation between
its coordinate system to that of the vehicle), which is needed
to transform phone movements into vehicle movements.
The phone may be placed in arbitrary positions-lying flat on
a surface, slanted into a cup holder. The vehicle may drive
on a non-horizontal, sloped surface; it may not go straight
up or down the slope (e.g., slanted parking spaces). Further-
more, unpredictable human or road condition disturbances
(e.g., moved together with the driver’s pants’ pockets, or
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picked up from a cupholder; speed bumps or jerky driving
jolting the phone) may change the phone pose frequently.
Despite all these different scenarios and disturbances, the
phone’s pose must be reliably and quickly estimated.

Second, due to the lack of periodic acceleration patterns
like a person’s walking [7], [8], [9], the traveling distance of
a vehicle cannot be easily estimated. Although landmarks
(e.g., speed bumps, turns) causing unique inertial data pat-
terns can calibrate the location [10], distinguishing such pat-
terns from other movements robustly (e.g., driver picking
up and then laying down the phone), and recognizing them
reliably despite different parking structures, vehicles and
drivers, remain open questions.

Finally, we have to balance the conflict between tracking
accuracy and latency. Delaying the location determination
allows more time for computation and sensing, thus higher
tracking accuracy. However, this delay inevitably increases
tracking latency, which adversely impacts real time perfor-
mance and user experience. How to develop efficient track-
ing algorithms to achieve both reasonable accuracy and
acceptable latency, while using resources only on the phone,
is another great challenge.

VeTrack consists of several components to deal with the
above challenges to achieve accurate, real time tracking.
First, we propose a novel “shadow” trajectory tracing
method that greatly simplifies phone pose estimation and
vehicle movements computation. It can handle slopes and
slanted driving on slopes; it is highly robust to inevitable
noises, and can quickly re-estimate the pose after each dis-
turbance. We devise robust landmark detection algorithms
that can reliably distinguish landmarks from disturbances
(e.g., drivers picking up the phone) causing seemingly simi-
lar inertial patterns. Based on the vehicle movements and
detected landmarks, we develop a highly robust yet effi-
cient probabilistic framework to track a vehicle’s location.

In summary, we make the following contributions:

e We develop a novel robust and efficient “shadow”
trajectory tracing method. Unlike existing meth-
ods [11], [12], [13] that track the three-axis relative
angles between the phone and vehicle, it only tracks
a single heading direction difference. To the best of
our knowledge, it is the first that can handle slopes
and slanted driving on slopes, and re-estimates a
changed pose almost instantaneously.

e We design states and algorithms in a Sequential
Monte Carlo framework that leverages constraints
from garage maps and detected landmarks to
reliably infer a vehicle’s location. It uses probabil-
ity distributions to represent a vehicle’s states. We
further propose a one-dimensional road skeleton
model to reduce the vehicle state complexity, and a
prediction-rollback mechanism to cut down track-
ing latency, both by one order of magnitude to
enable real time tracking.

e  We propose robust landmark detection algorithms to
recognize commonly encountered landmarks. They
can reliably distinguish true landmarks from distur-
bances that exhibit similar inertial data patterns.

e We implement a prototype and conduct extensive
experiments with different parking structures,
vehicles and drivers. We find that it can track the
vehicle in real time against even disturbances such
as drivers picking up the phone. It has almost
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Fig. 1. In the data transformation stage, the shadow trajectory tracing
simplifies 3D vehicle tracing into 2D shadow tracing while road skeleton
model further reduces 2D tracing into 1D. In the tracking stage, VeTrack
represents vehicle states probabilistically and uses a Sequential Monte
Carlo framework for robust tracking. It also uses landmark detection to
calibrate vehicle states and prediction/rollback for minimum latency.

negligible tracking latency, 10 degree pose and 2 ~ 4
parking spaces’ location errors at the 80th percentile,
which are sufficient for most real time driving and
parked vehicle finding.

Next, we give a brief overview (Section 2), describe the
shadow trajectory tracing (Section 3), Sequential Monte Carlo
algorithm design and the simplified road skeleton model (Sec-
tion 4), landmark detection algorithms and prediction-roll-
back (Section 5). We report evaluation (Section 6), review
related work (Section 7), and conclude the paper (Section 8).

2 DESIGN OVERVIEW

VeTrack utilizes smartphone inertial data and garage floor
maps (assumed already available) as inputs, and simplifies
the 3D vehicle tracing problem in the data transformation
stage (Fig. 1). It leverages the probabilistic framework with
landmark detection results and prediction/rollback mecha-
nism for robust and real time tracking.

The data transformation stage contains two components,
i.e.,, shadow trajectory tracing and road skeleton model.
Shadow trajectory tracing tracks the vehicle’s shadow’s
movements on 2D plane instead of the vehicle in 3D space;
the road skeleton model abstracts 2D strip roads into 1D
line segments to remove inconsequential details while keep-
ing the basic shape and topology. They together simplify
the 3D vehicle tracing problem into 1D.

To deal with noises and disturbances in data, VeTrack
explicitly represents the states of vehicles (e.g., locations)
with probabilities and we develop algorithms in a Sequen-
tial Monte Carlo framework for robust tracking. We also
leverage landmark detection results to help calibrate the
vehicle locations to where such landmarks exist, and the
prediction/rollback mechanism to generate instantaneous
landmark recognition results while the vehicle has only par-
tially passed landmarks.

3 TRAJECTORY TRACING

3.1 Conventional Approaches
Inferring a vehicle’s location via smartphone inertial sensors
is not trivial. Naive methods such as double integration of
3D accelerations (Z'(t) = [ @(t)dt) generate chaotic 3D tra-
jectories due to the noisy inertial sensors. Below we list two
conventional approaches.

Method 1: Motion Transformation. It is a straight forward
approach that transforms the motion information (.e.,
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Fig. 2. lllustration of vehicle tracing using different methods: (a) motion
transformation, (b) 3D trajectory tracing with gyroscope, (c) shadow tra-
jectory tracing, and (d) shadow trajectory tracing with landmarks.

acceleration and orientation) from a phone to a vehicle, and
eventually to that in the global 2D coordinate system. This
requires the vehicle’s acceleration in the global coordinate
system G be estimated. After measuring the phone’s accel-
eration from inertial sensors, existing work [11], [12], [13]
usually take a three-step approach to transform it into vehi-
cle’s acceleration.

Assume the three axes of the vehicle’s coordinate system
are XV, YV and Z". First the gravity direction is obtained
using mobile OS APIs [14] that use low-pass Butterworth
filters to remove high frequency components caused by
rotation and translation movements [15]. It is assumed to be
the direction of ZV in the phone’s coordinate system (i.e.,
vehicles moving on level ground).

Next the gravity direction component is deducted to
obtain the acceleration on the horizontal plane. The direction
of maximum acceleration (caused by vehicle accelerating or
decelerating) is estimated as YV (ie. forward direction).
Finally, X" is determined as the cross product of Y and Z"
using the right-hand rule. The X", Y" and Z" directions in
the phone’s coordinate system give a transformation matrix
that converts the phone’s acceleration into that of the vehicle.

Fig. 2a shows the result of tracing a vehicle on a straight
road via motion transformation. During investigation we
find several limitations. First, when a vehicle is on a slope
(straight up/down or slanted), the direction of gravity is no
longer the Z-axis of the vehicle. Second, accelerometers are
highly noisy and susceptible to various disturbances from
driving dynamics and road conditions. Thus the direction of
the maximum horizontal acceleration may not always be the
Y-axis. In experiments we find that it has around 40 degree
errors at the 80th percentile (Section 6.2). Finally, to reliably
detect the direction of maximum horizontal acceleration, a
changed phone pose must remain the same at least 4s [13],
which may be impossible when frequent disturbances exist.

Method 2: 3D Trajectory Tracing. Instead of direct double
integrating on the original acceleration vector (7'(t) =
[/ @(t)dt), it uses the moving direction of the vehicle (unit
length vector T'(t)) and its speed amplitude s(t):
Z(t)= [T(t) s(t)dt, where s(t) can be computed as
[ a(t)dt, integration of the acceleration amplitude along
moving direction. Although there are still two integrations,
the impact of vertical direction noises is eliminated due to
the projection, and the moving direction T'(¢) can be mea-
sured reliably by gyroscope.

Fig. 2b shows the result for 3D trajectory tracing. We
observe that it obtains better orientation accuracy than
motion transformation, i.e., 3 degree errors of the example
trace, but it assumes fixed phone pose in car. In addition,
raw gyroscope readings suffer linear drifts [15], and reach
32 degree angle errors after an 8-minute driving in our
measurements.
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(b) lllustration of the method to estimate /1 from /2, /3, and /4.

3.2 Shadow Trajectory Tracing

To overcome the above limitations, we propose a “shadow”
trajectory tracing method that traces the movement of the
vehicle’s shadow projected onto the 2D horizontal plane
(Fig. 3a). Points O and O’ represent the positions of the vehicle
and its shadow. OV and OA are the velocity and acceleration
of the vehicle in 3D space. V" and A’ are the projection of vV

and A onto the 2D ground. It can be shown easily that O'V’

and O’ A’ are the velocity and acceleration of the shadow. This
is simply because the projection eliminates the vertical direc-
tion component but preserves those on the horizontal plane,
thus the shadow and vehicle have the same horizontal accel-
eration, and thus the same 2D plane velocity and coordinates.

Shadow Tracing Algorithm. We need to estimate three vari-
ables in this method (Fig. 3b): 1) the shadow’s moving direc-
tion O'V’ (i.e., T)(t)) in the global coordinate system. 2) the
horizontal (i.e, shadow’s) acceleration O'A’. 3) angle
/V'O'A" (/1), the angle between the horizontal acceleration

vector and vehicle’s shadow’s heading (i.e., moving) direc-
tion; this is used to project the shadow’s acceleration along
—_—

the vehicle moving direction O'V’ to get tangential accelera-
—=
tion amplitude |0’ A”|(i.e., s(t)).
Next we explain how to estimate them in three steps.

1) When the vehicle is driving straight, the shadow’s
moving direction is approximated by the direction of
the road, which can be obtained from the garage
map and the current location estimation. When the
vehicle is turning around a corner, VeTrack accumu-
lates the gyroscope’s “yaw” (around gravity direc-
tion) to modify the heading direction until the
vehicle goes straight again. We develop robust algo-
rithms to distinguish straight driving from turning
and disturbances (Section 5).

2)  From existing mobile OS APIs [14], the gravity direc-
tion can be detected. We deduct the gravity direction
component from the phone’s acceleration vector to

obtain the horizontal acceleration vector O’ A’.

3) Fig. 3b illustrates how to calculate /1 (/V'O'A’):
N=/2+4/3-/4 Ge,/VVOA =/GO'P + /PO A -

e
/GO'V"). O'G,0'P',0'V" are the Y-axes of the global,
phone’s shadow’s and vehicle’s shadow’s coordinate
system. 3.1) /2 is the phone’s shadow’s heading
direction in the global coordinate system. Its relative
changes can be obtained reliably from the gyro-
scope’s “yaw”, and we use a distribution around the
compass’ reading upon entering the garage to initial-
ize it. Because the Sequential Monte Carlo frame-
work can calibrate and quickly reduce the error
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Fig. 4. lllustration of 3D trajectory tracing and shadow trajectory tracing.

Left part: 3D trajectory tracing, a} — a — a} — af’; right part: Shadow

trajectory tracing, al’ — o} — a!" — a}’ — af.
(Section 4), an accurate initial direction is not nec-
essary. 3.2) /3 is essentially the horizontal acceler-
ation direction in the phone’s shadow’s
coordinate system, which is already obtained in
step 2). 3.3) /4 is the vehicle’s shadow’s moving
direction in the global coordinate system, already
obtained in step 1).

Observation. Fig. 2c shows the result for shadow trajec-
tory tracing. We observe that the vehicle’s moving direction
is measured reliably by the map (i.e., forward/backward
along pathways only) while phone’s short-time movement
in car is monitored by gyroscope, thus our method achieves
better angle accuracy and robustness than the conventional
approaches. However, vehicle’s distance error is still larger
than 14 m due to noisy accelerometer on smartphone, thus
we identify landmarks (three bumps in Fig. 2d) to calibrate
the vehicle’s position. From the combination of shadow
tracing and landmark calibration, the vehicle’s position
error is 3 m with no angle error.

3.3 Equivalence Proof
Here we regard the 3D trajectory tracing method as the
baseline, and prove that our shadow trajectory tracing
method is equivalent to it in most cases and with only a
small bounded difference in other cases. Note that the theo-
retical model and proof provide more confidence about the
applicability of our approach, and a way to validate if it can
be applied in certain environments.

Modeling. We denote the notations as follows. Assume P,
V are the phone’s, vehicle’s local coordinate systems, G the
global one. When used as superscripts, they denote in
which coordinate system a variable is defined. V' is the
vehicle’s local coordinate system V rotated such that the
XY-plane become horizontal,! and the 3 x 3 transformation

matrix from coordinate system C; to Cs as Rgf Also, two

projection matrices will be used, E; = diag([0,1,1]) and
E; = diag([1,1,0]) where diag(-) represents a diagonal
square matrix with the specified elements on the diagonal.
1) Baseline: 3D trajectory tracing. First we convert the
phone’s acceleration in its coordinate system P into that in
the vehicle’s coordinate system V, ie., a) — af (shown on
the left part in Fig. 4), then extract the tangential accelera-
tion (i.e., acceleration along the vehicle’s instantaneous
moving direction) which will be transformed into the global
coordinate system and integrated over time for speed and

1. This is done by pitching X-axis horizontal then Y-axis horizontal.
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thus 3D trajectory. The pipeline of 3D trajectory tracing
method has four stages:

1) al, phone’s acceleration in P.

2) a) = R}al, vehicle’s acceleration in V.

3) a} = Eja, vehicle’s tangential acceleration after

eliminating radial acceleration.

4) af = Ral, vehicle’s tangential acceleration in G.

Let I'(t) denotes the projection of vehicle’s tangential
acceleration on horizontal plane at time ¢, which can be rep-
resented as

['(t) = E3RS(t)E RV (t)al (1), 1)

where Ej is the projection.

2) Our shadow trajectory tracing method simply tracks
the vehicle’s shadow on horizontal plane, and its process
has five steps (shown on the right part in Fig. 4):

1) al, phone’s acceleration in P.
U d . . .
2) a) = R} al, vehicle shadow’s acceleration in V".
! U . .
3) a} = Esa, vehicle shadow’s horizontal accelera-

tionin V'.
/ 1 . , .
4) aY = Eja}, vehicle shadow’s tangential accelera-
tionin V.
y ! . .
5) af = RS,a), vehicle shadow’s tangential accelera-
tion in G.

Similarly, we denote A(t) as the shadow’s tangential
acceleration on horizontal plane, which is computed as

A(t) = RS, (t)E,EsRY, (t)al (t). @

Theorem. The baseline 3D trajectory tracing method and our
shadow trajectory tracing method are equivalent when the
X-axis or Y-axis of the vehicle (X" or YY) is horizontal. Oth-
erwise their tangential accelerations’ difference is bounded by

vehicle’s radial acceleration times 1‘i’gof¢, ie.,
T - AW < =0 jar—ay
- ——|af —a
“1l4cosp 0 LV

where ¢ is the inclination angle of the slope.

We prove some Lemmas before proving the Theorem.
Lemma 1. E, and E5 are commutable.
Proof. Diagonal matrices are commutable. 0
Lemma 2. E; is commutable with RS, (t).

Proof. RY,(t) is degenerated rotation along the Z-axis (Z¢
and Z""). Thus it is commutable with E5 which eliminates
the Z-axis component. 0

Lemma 3. E; and Ry,(t) are commutable when the X-axis or
Y-axis of the vehicle is horizontal, otherwise |I'(t) — A(t)]
< lﬁ’(foij-an, where ¢ is the inclination angle of the slope
and a,, 1s the vehicle’s radial acceleration.

Proof. As shown in Fig. 5a, we assume the vehicle O is mov-
ing on a slope (tangent plane) with inclination angle of ¢,

and its heading direction at angle 6 to the direction of
—_— —

slope. a = (at, a,) = (|OT'|,|ON]) are the vehicle’s tangen-

tial and radial accelerations.
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Fig. 5. (a) Driving a vehicle O on the slope with acceleration a. (b) 3D
view, the inclination angle of slope is ¢, and vehicle’s heading direction
OT is at angle 6 to the direction of slope. (c) Horizontal plane view.

Next, we build the spatial and plane geometry models
for the two tracing methods (shown in Figs. 5b and 5¢).
In 3D trajectory tracing, the vehicle’s tangential accelera-

—

tion on horizontal plane is calculated as OT" ; whlle in
shadow trajectory tracing, it is computed as OT' "+ ON ON'
where N” denotes the projection of N’ onto line or' (the
direction of vehicle’s shadow). The cause of their differ-
ence ON”, is that the projection of a right angle (/TON)
onto horizontal ground is no longer a right angle
(/T'ON’' = §), thus vehicle’s radial acceleration ON also
produces horizontal acceleration component. .

Then we compute their difference value ON”. From
Fig. 5b, we count that |OL| = a,cos0, |OR| = a_ts’}n 0,
|LN'| = a, sinfcos¢, |RT'| = a;cosOcos¢. Thus ON” in
Fig. 5c can be computed via the cosine theorem

—17 _ in @ si 2
ON" = |ON'| cos § = —fusinfsin’é 3)
V/cos 2+ tan26

From Equation (3), we observe that the difference
between two tracing methods does not rely on the vehicle’s
tangential acceleration, and they have no differences when
the vehicle drives on horizontal plane (¢ = 0°), or either of
X, Y-axis of the vehicle is horizontal (6 = 0° or 90°).

Furthermore, we leverage algebraic formulas to com-
pute the maximum value of |W|, i.e., the bound of dif-
ference between two tracing methods. Given a fixed

slope with inclination angle of ¢, the maximum value of

——
|ON"| is computed as

— a, sin2¢ sin 2¢
‘ON | = - > O, 4)
cos2¢ N 14 cos¢
sin 20 00529
and its maximum value is obtained when
— ared cos @
0 = arcsin 4 /1 oS

Thus when the X-axis or Y-axis of the vehicle is horizon-
tal, two tracing methods are equivalent and R}, (7) is degen-
erated rotation along X-axis or Y-axis thus commutable
with matrice E;, which is similar to the case in Lemma 2.

Otherwise, those two matrices are not commutable
since projections of two perpendicular lines to horizon-
tal plane is no longer perpendicular. However, the dif-
ference is bounded based on the inclination angle of
the slope. Most garage paths have small degrees of
slope, if any. For example, for 10 and 20 degree slopes,
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the difference between two tracing methods is less
than 2 and 7 percent of vehicle’s radial acceleration,
respectively. 0

Now we prove the Theorem, ie. the equivalence
between I'(¢) in 3D trajectory tracing and A(¢) in shadow
trajectory tracing when X-axis or Y-axis of the vehicle is
horizontal.

Proof. When X-axis or Y-axis of the vehicle is horizontal,

A(t) = RS, (t)E\EsRY, (t)al (t)(Equation(2))
— RS, (t)EsE\RY (t)al (t)(Lemmal)

= B3Ry (t t)E\RY (t (t)ag (t)(Lemma2)

= B3R{(t)RY,(t) BARY, (t)af (1)

= E3RS(H)ERY, () RY (t)al (t)(

= E3RS(t)E\ R} (t)al (t) = I'(t)(Equation(1)).

Thus I'(¢) in 3D trajectory tracing and A(t) in shadow tra-
jectory tracing are equivalent in this case. O

(5)

)(Lemma3)

Comparison. Despite their equivalence in most cases,
shadow tracing needs much less variables and is subject to
less noises, thus more robust than 3D tracing. 1) Shadow
tracing does not need to track variables in the vertical
dimension (e.g., altitude, angle, speed and acceleration). All
of them are subject to noises and require more complexity
to estimate. 2) On the horizontal plane, the moving direction
can be estimated accurately based on the prior knowledge
of road directions (Section 4.4). The distance is computed
using the acceleration amplitude along the moving direc-
tion. Thus inertial noises perpendicular to the moving direc-
tion do not impact the distance estimation. 3) Shadow
tracing uses gyroscopes to estimate pose, while conven-
tional approaches use accelerometers that are more suscep-
tible to external disturbances. Therefore, shadow tracing is
much less complex, subject to less noises, and thus achieves
better accuracy and higher robustness.

During experiments, we find that: our shadow tracing
method can handle arbitrary phone and vehicle poses and
the vehicle can go straight up/down or slanted on a slope.
It has much smaller errors (5 ~ 10 degree at the 80th percen-
tile) and better robustness. It also re-estimates a changed
phone pose almost instantaneously because gyroscopes
have little latency; thus it can handle frequent disturbances.

4 REeAL TIME TRACKING

4.1 Intuition

The basic idea to locate the vehicle is to leverage two types
of constraints imposed by the map, namely paths and land-
marks. Given a trajectory estimated from inertial data
(Fig. 6), there are only a few paths on the map that can
accommodate the trajectory. Each detected landmark (e.g., a
speed bump or turn) can pinpoint the vehicle to a few possi-
ble locations. Jointly considering the two constraints can
further reduce the uncertainty and limit the possible place-
ment of the trajectory, thus revealing the vehicle location.
We will first describe the tracking design here, then land-
mark detection in Section 5.

To achieve robust and real time tracking, we need to
address a dual challenge. First, the inertial data have signifi-
cant noises and disturbances. Smartphones do not possess a



2028

LIt

+

Detected

Fig. 6. Using both map constraints and detected landmarks can narrow
down the possible placement of the trajectory more quickly.

speedometer or odometer to directly measure the velocity or
distance; they are obtained from acceleration integration,
which is known to generate cubic error accumulation [10].
External disturbances (e.g., hand-held movements or road
conditions) cause sudden and drastic changes to vehicle
movements. Together they make it impossible to obtain accu-
rate trajectories from inertial data only. Second, the require-
ment of low latency tracking demands efficient algorithms
that can run on resource-limited phones. We have to minimize
computational complexity so no cloud backend is needed.

To achieve robustness, we use probability distributions
to explicitly represent vehicle states (e.g., location and
speed) and the Sequential Monte Carlo (SMC) method to
maintain the states. This is inspired by probabilistic robot-
ics [16]: instead of a single “best guess”, the probability dis-
tributions cover the whole space of possible hypotheses
about vehicle locations, and use evidences from sensing
data to validate the likelihoods of these hypotheses. This
results in much better robustness to noises in data. To
achieve efficiency, we use a 1D “road skeleton” model that
abstracts paths into one dimensional line segments. We find
this dramatically reduces the size of vehicle states. Thus the
number of hypotheses is cut by almost one order of magni-
tude, which is critical to achieve real time tracking on
resource limited phones. Next we will describe the road
skeleton model and the detailed SMC design.

4.2 Road Skeleton Model

The road skeleton model greatly simplifies the representa-
tion of garage maps. It abstracts away inconsequential
details and keeps only the essential aspects important to
tracking. Thus it helps reduce computational overheads in
the probabilistic framework. We assume that garage maps
are available (e.g., from operators), while how to construct
them is beyond the scope of this paper.

Given a map of the 3D multi-level parking structure, we
represent each level by projecting its map onto a 2D horizontal
plane perpendicular to the gravity direction. Thus the vehicle
location can be represented by a number indicating the cur-
rent level, and a 2D coordinate for its location on this level. To
accommodate changes when a vehicle moves across adjacent
levels, we introduce “virtual boundaries” in the middle of the
ramp connecting two levels. As shown in Fig. 7b, a vehicle

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.16, NO.7, JULY 2017

crossing the dash line of the virtual boundary between levels
will be assigned a different level number. This kind of 2D
representation suits the needs for shadow tracing while
retaining the essential topology and shape for tracking.

Note that we call it 2D representation because the floor
level remains unchanged and does not need detection most
of the time. It is updated only when the vehicle crosses vir-
tual boundaries between levels. Its estimation is also much
simpler and easier than accurate 2D tracking, where most
challenges exist.

The key insight for the skeleton model is that the road
width is not necessary for tracking vehicle locations. Since
the paths are usually narrow enough for only one vehicle in
each direction, the vehicle location has little freedom in the
width direction. Thus we simplify the road representation
with their medial axis, and roads become 1D line segments
without any width.

We have tried several geometrical algorithms to extract
the road skeleton from garage floor map. A naive method is
to extract the road boundary, then leverage Voronoi dia-
gram [17] to generate the middle line inside the road bound-
ary (shown in Fig. 7c). However, we observe that there are
superfluous and deformed, non-straight 1D line segments
on the skeleton. Those mistakes are difficult to remove by
simple geometrical algorithms.

Thus we leverage a robust thinning method [18] to
extract the road skeleton (Fig. 7d) and eliminate such prob-
lems. Then we project the bumps from garage floor map
onto the road skeleton, and use a 3 x 3 pixel template to
find road turns on the skeleton map. The final road skeleton
model with landmarks are shown in Fig. 7e.

Compared to a straightforward 2D strip representation of
roads, the skeleton model reduces the freedom of vehicle
location by one dimension, thus greatly cutting down the
state space size in the probabilistic framework and resulting
in one order of magnitude less complexity.

4.3 Probabilistic Tracking Framework
The tracking problem is formulated as a Sequential Monte
Carlo problem, specifically, the particle filtering frame-
work [16]. The vehicle states (e.g., location, speed) at time ¢
are represented by a multi-dimensional random variable
s(t). Each hypothesis (with concrete values for each dimen-
sion of s(t)) is called a “particle” and a collection of .J par-
ticles {sij)}f:1 are used to represent the distribution of
possible vehicle states at time ¢.

The framework operates on discrete time {1,...,t—1,
t,...} and repeats three steps for each time slot. Without

loss of generality, we assume J particles {si‘i)l}}-]:l already
exist at ¢ — 1 and describe the progress from ¢ — 1 to ¢.

State Update. Predicts the set of states {,§§j)}'j]:1 at time ¢
based on two known inputs, the previous state {51&];)1}}]:1

|
\
- Virtual Boundary

Non-str_qight road
: L—@—l
jﬂSuperﬂuous road

mBump  Turn

Fig. 7. (a) shows the 3D floor plans of a multi-level parking structure. A vehicle enters the entrance on the floor B1, goes down to other two levels
crossing the virtual boundaries. (b) shows the 2D projection of Floor B2 in (a). (c) shows the road skeleton via Voronoi diagram, and there are super-
fluous and non-straight 1D lines. (d) shows the road skeleton via a robust thinning method. (e) shows the final 1D road skeleton model, with points

representing landmarks (corresponding to bumps and turns).
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and most recent movement m; such as the speed, acceleration
that govern the movement of the vehicle. For example, given
the previous location and most recent speed, one can predict
a vehicle’s next location. To capture uncertainties in move-
ment and previous states, a random n01se is added to the esti-
mated location. Thus J predictions {5,7 } _, are generated.
Weight Update. Uses measurements z; made at time ¢ to

examine how much evidence exists for each prediction, so
. The likelihood
p(z¢]s¢), how likely the measurement z; would happen given

as to adjust the weights of particles {§§J ) };-]:1

state sy, is the evidence. A prediction §§j ) with a higher likeli-
hood p(z|s; = §£J)

) will receive a proportionally higher

weight wij) (zi]s1 = st )). Then all weights are nor-
malized to ensure that {wt }J ,sumto 1.

Resampling. Draws J partlcles from the current state pre-
diction set {st 3 ;-1 with probabilities proport10nal to their

weights {w? } i—1, thus creating the new state set {s1_ to

j=1
replace the old set {sF1 ) i—1- Then the next iteration starts.

Note that the above is only a framework. The critical task
is the detailed design of particle states, update, resampling
procedures. Thus we cannot simply copy what has been
done in related work, and have to carefully design algo-
rithms tailored to our specific problem.

4.4 Tracking Algorithms
4.4.1 State and Initialization

Our particle state is a collection of factors that can impact
the vehicle tracking. Since the number of particles grows
exponentially with the dimensionality of the state, we select
most related factors to reduce the complexity while still pre-
serving tracking accuracy. Our particle states include:

level number k,
position on 2D floor plane X =
speed of the vehicle v,
o/ B, phone/vehicle shadows’ 2D heading directions.
The first dimension £ is introduced for multi-level struc-
tures. Position of the vehicle is represented as a 2D coordinate
X = (z,y) for convenience. In reality, due to the 1D skeleton
road model, the position actually has only one degree of free-
dom. This greatly reduces the number of particles needed.
Initialization of Particles. We use certain prior knowledge
to initialize the particles” state. The last GPS location before
entering the parking structure is used to infer the entrance,
thus the level number k and 2D entrance location (z,y). The
vehicle speed v is assumed to start from zero. The vehicle
heading direction g is approximated by the direction of the
entrance path segment, and the phone heading direction «
is drawn from a distribution based on the compass reading
before entering the garage. As shown later (Section 6), the
phone’s heading direction can be calibrated to within
15 degree, showing strong robustness against compass
errors known to be non-trivial [19].

(z,y),

4.4.2 State Update

For a particle with state (i1, %1, Y1, V1,1, By_1), We
create a prediction (k;, @, s, 0r, , B;) given movement
my = (ag, ay, w.) where a,, a, and o, are X, Y-axis accelera-
tions and Z-axis angular speed in the coordinate system of
the phone’s shadow.
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First, (21, g:) is updated as follow:
J?f, = Tt =+ Uf,,lAt + COS ,8t71 =+ €r, (6)
?Jt = Yr-1 =+ ’Ut,lAt . SiIl /3[71 =+ Ey, (7)

where €, ¢, are Gaussian noises. If (£, §;) is no longer on
the skeleton, we project it back to the skeleton. Level number
k; is updated when a particle passes through a virtual bound-
ary around the floor-connecting-ramp, otherwise k; = k;_;.
Next, velocity v; is updated as follow:

dr = ay - COSY, — ay - siny, + €, 8)

Uy = v +ag - At + €, 9)

where y, is the angle between the Y axes of the two shad-
ows’ coordinate systems and ¢,, ¢, are Gaussian noises.
Finally, o; and B, are updated as follows:

dr = a1 + WAt + €, (10)
B = Bi_1 + w. At + €g, if turn = True; 1)
© 7| road direction at(k;, zy, ), otherwise.

where ¢,,¢p are random Gaussian noises. The above
allows the phone to change its angle « to accommodate
occasional hand-held or jolting movements, while such
movements will not alter the vehicle’s angle g if the vehicle
is known to travel straight.

4.4.3 Weight Update

Weight update uses detected landmarks and floor plan con-
straints to recalculate the “importance” of the current parti-
cle states. The basic idea is to penalize particles that behave
inconsistently given the floor plan constraints. For example,
since a vehicle cannot travel perpendicularly to path direc-
tion, a particle with velocity orthogonal to the road direction
will be penalized. It will have much smaller weights and
less likely to be drawn during resampling.
We compute the weight w; as

2
Wt = W1 H Wi,
i=0

Each wy; is described as follows.

(12)

o Constraints imposed by the map.We define wy =
cos?(B, — B;_1). It is designed to penalize particles
that have a drastic change in the vehicle heading
direction, since during most of the time a vehicle
does not make dramatic turns.

e Detected landmarks. When an ith type landmark® is
detected, wy; of the current state is updated as N (D;
(z1,41);0,0?) where D;(z,y;) is the distance to the
closest landmark of the same type and o7 is a parame-
ter controlling the scale of the distance. If no landmark
is detected, wy = 1. This method penalizes the pre-
dicted states far away from detected landmarks.

Finally all weights are normalized so they sum up to 1.

4.4.4 Resampling

A replacement particle is selected from the predicted partl-
cle set {9,”} -, where each particle 55 has probability w,’

2. We use only bump and corner here because their locations are
precise; turns are used in vehicle angle g update in Equation (11).
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Fig. 8. Acceleration along the Z-axis. There are starting acceleration (J),
four bumps (B1-B4), and one hand movement (M) along the trajectory.

being selected. This is repeated for J times and .J particles
are selected to form the new state set {sij ) }‘].]:1. Then the next
iteration starts.

5 LANDMARK DETECTION

A parking structure usually has a limited number of land-
marks (e.g., speed bumps and turns), and their locations
can be marked on the garage map. When a vehicle passes
over a landmark, it causes distinctive inertial data patterns,
which can be recognized to calibrate the vehicle’s location.

However, realizing accurate and realtime landmark
detection is not trivial because: 1) road conditions and hand
movements impose disturbances on inertial sensor read-
ings; and 2) to minimize delay, landmark recognition results
are needed based on partial data before the vehicle
completely passes a landmark. We present landmark detec-
tion algorithms robust to noises and hand movements, and
a prediction and rollback mechanism for instantaneous
landmark detection.

5.1 Types of Landmarks

Speed Bumps. Generate jolts, hence acceleration fluctuations
in the Z-axis when a vehicle passes over. Note that drainage
trench covers, fire shutter bottom supports may also cause
similar jolting patterns. We include them as “bumps” as
well in the garage map.

Many factors can cause ambiguities in bump detection. For
example, Fig. 8 shows the acceleration signal along the Z-axis
as a vehicle starts and passes over four bumps along a straight
road. The first tremor in the left green box (around 10 ~ 17 s
marked with “.J”) is caused by the vehicle’s starting accelera-
tion. It lasts longer but with smaller magnitude compared to
those caused by the bumps (in red boxes marked “B1”-”B4").
The tremor in the right green box (around 60 s marked “M")
is due to the user’s action-holding the phone in hand, then
uplifting the phone to check the location. They generate verti-
cal acceleration that may be confused with those by bumps.

Turns. Are defined as durations in which a vehicle con-
tinuously changes its driving direction, usually around
road corners. They can be detected from the gyroscope
readings of angular velocities around the gravity direction
(i.e., “yaw”). During turns a vehicle’s direction differs from
the road direction. Its direction changes in such periods are
accumulated to track the vehicle’s heading direction.

There exists work [13] using simple thresholding on
turning angles to detect turns. However, we find they can-
not reliably distinguish vehicle turns from hand movements
(e.g., putting the phone on adjacent seat and picking it up to
check the location).

Corners. A turn may span over an extended period, from
its start to the end. The corner where two road segments
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Detected turns

Detected corners
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Turn detection result
Corner detection result
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(a) Turn detection (b) Corner detection

Fig. 9. Turn and corner detection. (a) Three turn periods are correctly
detected, even there are several different hand movements. (b) Four cor-
ners are correctly separated, even when only three turned are detected.

join can be used to precisely calibrate the vehicle’s location.
The main challenge is consecutive turns: they might be
detected as a single one, hence missing some corners. For
example, in Fig. 9a, the first two turns may be detected as
only one turn period.

We observe that when a vehicle passes at a corner, its
angular velocity usually is at a local maxima, corresponding
to the maximum turn of the steering wheel. To identify cor-
ners precisely, we use a sliding window to find local max-
ima of angular velocities within each turning period. Each
local maxima is marked as a corner. Fig. 9b shows that the
left most two consecutive corners within the same turn
period are properly separated.

5.2 Feature and Classification Algorithm

We use machine learning techniques to recognize bumps and
turns. Corners are detected within turns using the above local
maxima searching. The critical issue is what features should
be used. Although one may feed the raw signal directly to
these algorithms, it is usually much more efficient to design
succinct, distinctive features from raw signals.

For bumps, we divide acceleration along the Z-axis into
2-second windows sliding at 0.2 s intervals. This window
size is chosen empirically such that both front and rear
wheels can cross the bump for complete bump-passing. For
turns, we use gyroscope angular velocities around the verti-
cal direction, and divide the signal the same way. We
observe that smaller windows lead to drastic accuracy drop,
while larger ones incurs more delay.

We observe that there are two kinds of common hand
movements that may be confused with bumps or turns: 1)
hold the phone in hand, and occasionally uplift it to check
the location; 2) put the phone in pockets/nearby seat, pick
up the phone to check the location and then lay it down.
The first causes a jitter in Z-axis acceleration, and might be
confused with bumps; the second also has Z-axis gyroscope
changes, and might be confused with turns.

We have tried a number of different feature designs, both
time-domain and frequency-domain, to help distinguish
such ambiguities. We list five feature sets which are found
to have considerable accuracy and low computation com-
plexity (detailed performance in Section 6).

(1) STAT35 (35 dimensions): we equally divide one win-
dow into five segments, and compute a 7-dimensional

feature [20] from each segment, including the mean,
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maximum, second maximum, minimum, and second
minimum absolute values, the standard deviation and
the root-mean-square.

(2) DSTAT35 (70 dimensions): In addition to STAT35,
we also generate a “differential signal” (i.e., the dif-
ference between two consecutive readings) from the
raw signal, and extract a similar 7-dimensional fea-
ture from each of its five segments.

(3) FFT5 (5 dimensions): we do FFT on the raw signal in
the whole window, and use the coefficients of the
first five harmonics as a 5-dimensional feature.

(4) S7FFT5 (35 dimensions): in addition to FFT5, we also
extract the same five coefficients from each of two
half-size windows, and four quarter-size windows.
Thus we obtain 35 dimensions from seven windows.

(5) DFFT5 (10 dimensions): the first five FFT coefficients
of both raw and differential signals.

We explore a few most common machine learning algo-
rithms, Logistic Regression (LR) [21] and Support Vector
Machine (SVM) [21]. After feature extraction, we manually
label the data for training. We find that SVM has higher
accuracy with slight more complexity than LR, while both
can run fast enough on the phone. So we finally decide to
use SVM in experiments. We find it has bump and turn
detection accuracies (percentage of correctly labeled sam-
ples) around 93 percent (details in Section 6.2).

We have also tried some threshold-based methods on
temporal [22] and frequency domain [23] features, but find
it is impossible to set universally effective thresholds, and
the frequency power densities by hand movements can be
very similar to those of landmarks. Thus they are not suffi-
ciently robust.

5.3 Prediction and Rollback
The reliability of landmark detection depends on the
“completeness” of the signal. If the window covers the full
duration of passing a landmark, more numbers of distinc-
tive features can be extracted, and the detection would be
more reliable. In reality, this may not always be possible.
The landmark detection is repeated at certain intervals, but
many intervals may not be precisely aligned with complete
landmark-passing durations. One naive solution is to wait
until the passing has completed. Thus more features can be
extracted for reliable detection. However, this inevitably
increases tracking latency and causes jitters in location esti-
mation and display, adversely impacting user experience.

We use a simple prediction technique to make decisions
based on data from such partial durations. To identify
whether a car is passing a landmark at time ¢, assume that
the signal spanning from ¢ — 7 to ¢ + t covering the full 27
landmark-passing duration is needed for best results. At
any time ¢, we use data in window [t — 27, ¢] to do the detec-
tion. The results are used by the real time tracking compo-
nent to estimate the vehicle location. At time ¢ + 7, the data
of full landmark-passing duration become available. We
classify data in [t —7,t+4 7] and verify if the prediction
made at ¢ is correct. Nothing needs to be done if it is. If it
was wrong, we rollback all the states in the tracking compo-
nent to ¢, and repeat the computation with the correct detec-
tion to re-estimate the location.

This simple technique is based on the observation that
most of the time the vehicle is driving straight and
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Fig. 10. Floor maps of three underground parking lots: (a) university
campus: 180 m x 50 m with 79 parking spots, 12 bumps, and 11 turns.
(b) Office building: 250 m x 90 m with 298 parking spots, 19 bumps, and
10 turns. (c) Shopping mall: Three-level 120 m x 80 m with 423 parking
spots, 10 bumps, and 27 turns. The chosen parking spots and entrance
are marked for each lot.

landmarks are rare events. Thus the prediction remains cor-
rect most of the time (i.e., during straight driving), and mis-
takes/rollbacks happen only occasionally (i.e., when a
landmark is encountered). From our experiments, rollbacks
happen in a small fraction (~ 10 percent) of the time. Thus
we ensure low latency most of the time because there is no
waiting, while preserving detection accuracy through occa-
sional rollback, which incurs more computation but is
found to have acceptable latency (0.05 ~ 0.2 s) (Section 6).

6 PERFORMANCE EVALUATION

6.1 Methodology

We implement VeTrack on iOS 6/7/8 so it can run on
iPhone 4/4s/5/5s/6. Our code contains a combination of C,
C++ for algorithms and Objective C for sensor and GUI
operations. A sensor data collector sends continuous data to
landmark detectors to produce detection results. Then the
real time tracking component uses such output to estimate
the vehicle’s location, which is displayed on the screen.
The initialization (e.g, loading map data) takes less than
0.5 second. Sensors are sampled at 50 Hz and the particle
states are evolved at the same intervals (20 ms). Since each
landmark lasts for many 20 ms-intervals, the detectors clas-
sify the landmark state once every 10 samples (i.e., every
0.2 second), which reduces computing burden.

We conduct experiments in three underground parking
lots: a 250 m x90m one in an office building, a
180 m x 50 m one in a university campus and a three-level
120 m x 80 m one in a shopping mall. Before the experi-
ments, we have measured and drawn their floor plans
(shown in Fig. 10). There are 298, 79, 423 parking spots, 19,
12,10 bumps, 10, 11, 27 turns and 4, 2, 6 slopes, respectively.

For each parking lot, we collect 20 separate trajectories
each starting from the entrance to one of the parking spots
(shown in Fig. 10) for inertial sensor data at different poses.
The average driving time for trajectories is 2~3 minutes,
and the longest one 4.5 minutes. Exemplar trajectories to
five test spots are illustrated in Fig. 11.

For all three lots, we use a mould to hold four iPhones with
four different poses: horizontal, lean, vertical and box
(Fig. 12a). To further test the performance and robustness of
our system, we use four more iPhones for the challenging
three-level parking lot with one in driver’s right pants’ pocket,
one in a bag on a seat and two held in hand. The one in pocket
is subject to continuous gas/brake pedal actions by the driver,
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Fig. 11. Each trajectory begins at the entrance O and ends at one of the
test spots (A to E).

(a) Mould

(b) VeTrack UI

Fig. 12. Mould and VeTrack Ul.

while the one in bag to vehicle movements. Once in a while,
one hand-held phone is picked up and put down on the user’s
thigh, causing Z-axis accelerations similar to those by bumps;
the other is picked up from and laid down to adjacent seat,
causing Z-axis angular changes similar as those by turns.
These eight poses hopefully cover all common driving scenar-
ios. The Ul of VeTrack is shown in Fig. 12b.

We use video to obtain the ground truth of vehicle loca-
tion over time. During the course of driving, one person
holds an iPad parallel to the vehicle’s heading direction to
record videos from the passenger window. After driving,
we manually examine the video frame by frame to find
when the vehicle passed distinctive objects (e.g., pillars)
with known locations on the map. Such frames have those
objects in the middle of the image, thus the error is bounded
by 0.5 vehicle length and usually much better.

To align inertial data and video collected from different
devices temporally, we first synchronize the time on all the
iPhones and iPad. Then different people holding different
devices will start the data collecting/recording applications
at the same time. These operations establish the correspon-
dence of data in the time series of different devices.

6.2 Evaluation of Individual Components

Landmark Classification Accuracy. To train landmark detec-
tors and test their performance, we use recorded videos to
find encountered landmarks and label their locations on the
whole trajectory. Then we use sliding windows to generate
labeled segments of sensor readings. Note that disturbances
caused by hand movements are labeled as non-bump and
non-turn because they should not be confused with bumps
or turns. In total we generate 14,739 segments for bump
detector and 57,962 segments for turn detector.

We evaluate classification accuracy (percentage of test
samples correctly classified) of six different sets of features
(described in Section 5). We randomly choose 50 percent of
the whole dataset to train the SVM classifier and others to
test the performance. We repeat it 20 times and report the
average performance in Table 1. It shows that they all have
high accuracy around 90 percent. We decide to use DFFT5
with relatively high accuracies (93.0 and 92.5 percent for
bump and turn) and low complexity in further evaluation.
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TABLE 1
Accuracies of Different Feature Sets
dimension bump turn
STAT35 35 92.7% 92.8%
DSTAT35 70 92.6% 93.4%
FFT5 5 91.8% 92.2%
S7FFT5 35 92.5% 92.6%
DEFFT5 (chosen) 10 93.0% 92.5%
TABLE 2
Cross-Test of Bump/Turn Detection (%)
train/test office campus mall
office 95.5/93.6 91.9/95.6 90.1/90.3
campus 93.7/94.1 93.9/96.3 88.5/90.8
mall 94.1/92.3 90.6/94.6 91.5/91.0

Bump Detection Turn Detection

0.95| 0.95|

0.9 0.9

0.85 0.85

Office Office

Campus

(b)

Campus

(@)

Fig. 13. Precision and recall of bump and turn detection in three different
garages.

We repeat the test across different garages: using the data
from one as training and another as testing. In reality, we
can only obtain data from a limited number of garages for
training, at least initially. Thus this test critically examines
whether high accuracies are possible for vast numbers of
unknown garages. Table 2 shows the cross-test accuracies of
bump and turn detection, respectively. Each row represents
training data and column test data. We observe that the
accuracies are around, and some well above 90 percent.
This encouraging evidence shows that it is very possible to
retain the accuracy when training data are available from
only limited numbers of garages.

Precision and Recall of Landmark Detection. After training
landmark detectors, we further test their precision (ratio
of true detections among all detected landmarks) and
recall (ratio of true detections to groundtruth number of
such landmarks) over whole traces. They tell how likely
the detector makes mistakes (high precision means less
chances for mistakes), and how close all groundtruth ones
are detected (high recall means more real ones are
detected). An ideal detector would have 100 percent preci-
sion and recall.

The precision and recall of bump and turn detection are
shown in Fig. 13. Both prediction and recall of bump detec-
tion are over 91 percent and those of turn are over
96 percent. Turn detection has better performance because
it uses features from more reliable gyroscope data. We also
find that poses in the mould has the best performance
because they have the least disturbances; those in pocket
and bag are better than in those in hand because they do not
experience disturbances from hand movements.
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Fig. 14. CDFs of pose estimation error: (a) 3D method. (b) Our 2D
method.

TABLE 3
Realtime Tracking Latency
bump turn corner
landmark detection 0.21 ms 0.22 ms 0.22 ms
90% realtime tracking 1.7 ms
10% rollback 47 ms 64 ms 193 ms

Accuracy of Shadow Tracing. The performance of trajectory
tracing highly depends on the accuracy of phone pose esti-
mation (relative orientation between the phone and vehi-
cle’s coordinate systems). We compare its accuracy in 3D
and 2D tracing methods. Similar to other work [11], [12], we
use principle component analysis (PCA) in 3D method to
find the maximum acceleration direction as Y-axis. To
obtain the ground truth, we fix a phone to the vehicle and
align its axes to those of the vehicle. The error is defined as
the angle between the estimated and ground truth Y-axis of
the phone. For fair comparison, we project the 3D pose to
horizontal plane before calculating its error.

The CDFs of errors (Fig. 14) show that: 1) Our 2D method
is more accurate, with the 90th percentile error at 10 ~ 15
degree while that of the 3D method is around 50 ~ 70
degree, which in reality would make accurate tracking
impossible. 2) The 2D method is more robust to disturban-
ces in unstable poses such as pocket/bag and hand-held,
whereas the 3D method has much larger errors for the latter
two. This shows that our shadow tracing is indeed much
more practical for real driving conditions. In addition, we
find that the PCA needs a window of 4s for unchanged
pose, while the 2D method is almost instantaneous.

6.3 Realtime Tracking Latency
Realtime Tracking Latency. Is the time the tracking compo-
nent needs to finish computing the location after obtaining
sensor data at £. When there are prediction mistakes, it also
includes latencies for detecting mistakes, rollback and re-
computing of the current location. This is measured on
iPhone 4s, a relatively slower model. As shown in Table 3,
landmark detection for bump, turn and corner each cost
~ 0.2 ms. In almost ~ 90 percent of time where predictions
are correct, one round of tracking is computed within
1.7 ms. The 2.3 ms computing finishes within the 20 ms par-
ticle state update interval, causing no real time delay. For
about ~ 10 percent of time, recovering for bump, turn and
corner errors (each ~3 percent) take 64, 47 and 193 ms. The
worst case is less than 0.2 s, hardly noticeable to human users.
Fig. 15 shows the latency as a function of number of par-
ticles, each curve for one different type of wrong predictions
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resulting in rollback. All curves grows linearly, simply
because of the linear overhead to update more particles.
Note that the difference between latencies of different
curves is caused by different sizes of rollback windows (1, 1
and 3 s for bump, turn and corner detection errors, respec-
tively). Although bump and turn detection have the same
rollback window sizes, recovering turn errors has slightly
higher computation overhead. In experiments we find that
100 ~ 200 particles can already achieve high accuracy,
which incurs only 0.05 ~ 0.2 s) latency. Such disruptions
are minimal and not always perceptible by users.

6.4 Tracking Location Errors

Parking Location Errors. The final parking location is impor-
tant because drivers use it to find the vehicle upon return.
We use the number of parking spaces between the real and
estimated locations as the metric, since the search effort
depends more on how many vehicles to examine, not the
absolute distance.

In order to compare all eight poses, we show the results
in the mall garage. Fig. 17a shows the four phones in the
mould. They have relatively small errors: all four poses
have similar performance, with the 90th percentile error
less than 2 parking spaces. The maximum error is less than
3 parking spaces, which is sufficient for remote keys to trig-
ger a honk to locate the car.

Fig. 17b shows results for different pose categories. Poses
in the mould category achieve the best performance, i.e.,
~ 2 parking spaces at the 90th percentile, with maximum
error of three parking spaces. Those in the pocket or bag
endure small disturbances thus achieve performance that is
a little worse than mould category, i.e., ~ 2 parking spaces
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Fig. 17. Final parking location errors (1st row) and realtime tracking location errors (2nd row). (a) and (e) Four phones in the mould. (b) and (f) In
mould, pocket&bag, and hands. (c) and (g) Different drivers. (d) and (h) Different garages.

at the 90th percentile, with maximum error of four parking
spaces. Those in hand have largest errors, i.e., ~ 4 parking
spaces at the 90th percentile, with maximum error of five
parking spaces. These larger errors are due to hand distur-
bances causing more incorrect landmark detections.

We also evaluate the impact of different drivers. Fig. 17c
shows those of two taxi drivers (1 and 3) driving cabs and
two volunteer drivers (2 and 4) driving their own cars. The
results do not differ too much among different drivers; all
have 1.5 ~ 3 parking space errors at the 80th percentile,
while the maximum error of five parking spaces is from a
taxi driver who drives very aggressively, which causes
more incorrect detections.

Finally we evaluate impact of the type of parking garage.
The 90th percentile errors are around 2,3 and 5 parking
spaces, respectively, and maximum errors are 3, 5 and 6
parking spaces, respectively. The difference is caused by
different structures. The office garage has best results
because it has regular shapes (Fig. 10b) and smooth paved
surfaces which minimize road disturbances. The campus
garage is the worst because of its irregular shape (Fig. 10a),
especially the “Z”-junction of two consecutive turns where
many drives take a shortcut instead of two 90-degree turns.

Real Time Location Error. We present the CDFs of real time
tracking error in the second row of Fig. 17, arranged the
same as the first row. The trends are similar in general, but
real time errors are generally 50 ~ 100 percent larger than
corresponding parking errors. For example, Fig. 17e shows
all four poses in the mould have the 90th percentile error
around 4 parking spaces. The maximum error is ~ 5 parking
spaces. While those in Fig. 17a are 2 and 3 parking spaces.
Fig. 17f shows that poses in the mould have the least errors,
while those in hand have largest errors, the same trend as
Fig. 17b while all errors are about 60 percent larger than
those in Fig. 17b. Figs. 17g and 17h are similar as well.

This is because: 1) For final parking location we penalize
particles still having non-negligible speeds after the vehicle
has stopped. Thus remaining particles are those that have
correctly “guessed” the vehicle states. 2) Real time errors
include many locations in the middle of long straight

driving, where no landmarks are available for calibration.
Such locations tend to have larger errors. 3) The vehicle
location has much larger uncertainty at the beginning. Thus
relatively greater errors are included in real time results.
But final location is usually after multiple calibrations, thus
better accuracy.

Spatial Distribution of Real Time Tracking Errors. On a
garage map with three bumps and eight turns is shown in
Fig. 18. Each circle has a number, the error averaged over
different traces and poses for that location. We observe that
in general the error grows on straight paths, and is reduced
after encountering landmarks (e.g., from 4.9 m after a corner
A, growing to 7.9 m then reduced to 4.6 m after a bump B;
9.7 m at C before a corner to 3.9 m at D).

The Number of Particles. Also impact tracking accuracy. We
compare VeTrack with a straightforward baseline that uses
3D tracing and 2D road strips, without two critical com-
ponents of 2D tracing and 1D roads, Fig. 16 shows results
for the mall. VeTrack’s average localization error quickly
converges to ~ 2.5 parking spaces when there are 200 par-
ticles (the office and campus garages need only 100 ~ 150
particles). More particles do not further decrease the error
because they are still subject to landmark detection mis-
takes. The baseline needs about 1,000 particles to stabilize,
and it is around five parking spaces. This shows that
VeTrack needs about one order of magnitude less par-
ticles, thus ensuring efficient computing for real time
tracking on the phone; it also has better accuracy because
of the two critical components.

Average realtime localization errors
(unit in meters) are shown in circles.

Arrows represent road directions.

Fig. 18. Average realtime tracking errors on different garage locations.
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7 RELATED WORK

Phone Pose Estimation. Existing work [11], [12], [24] estimates
the 3D pose of the phone. The latest one, A® [15], detects
high confidence compass and accelerometer measurements
to calibrate accumulative gyroscope errors. The typical
approach [11] in vehicular applications is to use the gravity
direction as the Z-axis of the vehicle, assuming it is on level
ground; gyroscope is used to determine whether the vehicle
is driving straight; and the direction of maximum accelera-
tion is assumed to be the Y-axis of the vehicle. As explained
in Section 3, it cannot handle vehicles on a slope, and the
direction of maximum acceleration may not be vehicle for-
warding direction. The estimation also requires long time of
unchanged pose, unsuitable under frequent disturbances.

Landmark Detection. Distinctive data patterns in different
sensing modalities of smartphones have been exploited for
purposes including indoor localization [10], [25] and map-
ping [26], [27]. Similarly, VeTrack detects distinctive inertial
sensor patterns by road conditions (e.g., bumps and turns)
to calibrate the location estimation. Its algorithms are
designed specifically for robustness against noises and dis-
turbances on inertial data from indoor driving.

Dead-Reckoning. Dead reckoning is a well explored
approach that estimates the future location of a moving
object (e.g., ground vehicle [28]) based on its past position
and speed. Compared with them, VeTrack does not have
special, high precision sensors (e.g., odometer in robotics or
radar [28] for ground vehicles), while the required accuracy
is much higher than that of aviation.

Dead reckoning has been used for indoor localization
using smartphones equipped with multiple inertial sen-
sors [29], [30]. Its main problem is fast error accumulation
due to inertial data noises and a lot of work has attempted to
mitigate the accumulation. Foot-mounted sensors have been
shown effective in reducing the error [31]. Smartphones are
more difficult because their poses are unknown and can
change. UnLoc [10] replaces GPS with virtual indoor land-
marks with unique sensor data patterns for calibration.

To prevent the error accumulation, VeTrack simulta-
neously harnesses constraints imposed by the map and
environment landmarks. Landmark locations most likely
remain unchanged for months or even years. The 2D pose
estimation handles unknown and possibly changing phone
poses. Their output provide calibration opportunities in the
SMC framework to minimize error accumulation.

Estimation of Vehicle States. There have been many research
efforts using smartphones’ embedded sensors to monitor
the states of vehicles (e.g., dangerous driving alert [8] and
CarSafe [32]); sense driver phone use (e.g., car speaker [33]);
inspect the road anomaly or conditions (e.g., Pothole
Patrol [22]); and detect traffic accidents (Nericell [24] and
WreckWatch [34]). The vehicle speed is a critical input in
many such applications. While it is easy to calculate the speed
using GPS outdoors [35], the signal can be weak or even
unavailable for indoor parking lots. Some alternative solu-
tions leverage the phone’s signal strength to estimate the vehi-
cle speed [36]. VeTrack uses inertial data only, thus it works
without any RF signal or extra sensor instrumentation.

8 CONCLUSIONS

In this paper, we describe VeTrack which tracks a vehicle’s
location in real time and records its final parking location. It
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does not depend on GPS or WiFi signals which may be
unavailable, or additional sensors to instrument the indoor
environment. VeTrack uses only inertial data, and all
sensing/computing happen locally on the phone. It uses a
novel shadow trajectory tracing method to convert smart-
phone movements to vehicle ones. It also detects landmarks
such as speed bumps and turns robustly. A probabilistic
framework estimates its location under constraints from
detected landmarks and garage maps. It also utilizes a 1D
skeleton road model to greatly reduce the computing
complexity.

Prototype experiments in three parking structures and
with several drivers, vehicle make/models have shown that
VeTrack can track the vehicle location around a few parking
spaces, with negligible latency most of the time. Thus it pro-
vides critical indoor location for universal location aware-
ness of drivers. Currently VeTrack still has quite some
limitations, such as manual feature design, simultaneous
disturbances as discussed previously. We plan to further
investigate along these directions to make it mature and
practical in the real world.
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