
Notes for 18.312, Algebraic Combinatorics

Corina Tarniţǎ, Mihai Pǎtraşcu

1 Walks on Graphs

Theorem 1. The number of closed walks of length l on a graph G is
∑n

i=1 λl
i, where λ1, . . . , λn are the

eigenvalues of Adj(G).

Theorem 2. If the number of closed walks of length l is λl
1 + · · ·+ λl

n for any l, and G has n vertices, the
eigenvalues of G must be λ1, . . . , λn.

Theorem 3. The eigenvalues of the cube in n dimensions are n − 2i with multiplicity
(
n
i

)
for every i =

0, . . . , n.

2 Sets and Intersections

2.1 The Sunflower Lemma

Definition 4. A family of sets A1, . . . , Am is called a sunflower if (∀)i, j : Ai ∩Aj =
⋂m

k=1 Ak.

Theorem 5 (sunflower lemma, Erdős-Rado). Let F be a family of distinct sets, all of cardinality k. If
|F | > k!(s− 1)k, then F contains a sunflower with s petals.

Proof: By induction on k. For k = 1, the sunflower has |F | petals and has empty center. For general k,
consider a maximal family H of disjoint sets from F . If |H| ≥ s, then H is the sunflower. Otherwise, these
sets contain at most (s− 1)k elements. Any set of F must contain at least one of them (H is maximal), so
one element x is contained in ≥ |F |/(s−1)k > (k−1)!(s−1)k−1 sets. Remove x from these sets, inductively
find a sunflower in these sets of cardinality k − 1, and add x back to the center.

Theorem 6. Let F be a family of (not necessarily distinct) sets of cardinalities ≤ k. If |F | > k!(s− 1)k+1,
then F contains a sunflower with s petals.

Proof: Only the base case changes from the previous version. For k = 1, we have |F | > (s− 1)2, and sets
have zero or one elements (so they are either identical or disjoint). Then either some set appears s times, or
there are at least s distinct sets.

2.2 Pairwise Intersecting Families

Theorem 7 (Erdős-Ko-Rado). Let A1, . . . , Am ⊂ [n], with |Ai| = k ≤ n/2 and Ai ∩ Aj 6= ∅. Then
m ≤

(
n−1
k−1

)
.

Proof: Consider all (n − 1)! circular arrangements for [n]. For each Ai, the number of arrangements in
which its elements appear as a contiguous circular segment is k!(n−k)!. On the other hand, in each circular
arrangement at most k sets can appears as segments (consider that all the segments must overlap and that
k ≤ n/2). So mk!(n− k)! ≤ k(n− 1)!.

Theorem 8. Let A1, . . . , Am ⊂ [n], with |Ai| ≤ k ≤ n/2, Ai ∩Aj 6= ∅, Ai * Aj. Then m ≤
(
n−1
k−1

)
.
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Proof: By reduction to the previous theorem. Pick all sets of the smallest cardinality s, and add one
element to each of them. There are n − s choices to extend any set of cardinality s, so we have a regular
bipartite graph and we can find a perfect matching

(
[n]
s

)
→
(

[n]
s+1

)
– so we map our sets to distinct bigger

sets. Repeat this step until all sets have cardinality k. Note that the sets remain pairwise intersecting (we
only add elements), and since no original Ai ⊂ Aj , we cannot create identical sets.

Theorem 9. Let A1, . . . , Am ⊂ [n], |Ai| = r and B1, . . . , Bm ⊂ [n], |Bi| = s. If Ai ∩ Bi = ∅ and Ai ∩ Bj 6=
∅, (∀)i < j, then m ≤

(
r+s

r

)
.

Proof: For every x ∈ [n], choose vx ∈ Rr+1 in general position (every r+1 vectors are linearly independent).
One way to achieve this is to take vectors (1, t, t2, . . . ) for any t (the matrix formed by any r + 1 of them is
van der Monde, and has nonzero determinant). The elements of every set Ai span a hyperplane of dimension
r. We associate Ai with the vector ai normal to this hyperplane. Now for all Bj define:

fj : Rr+1 → R, fj(x) =
∏

y∈Bj

vy · x

Note that Ai ∩ Bj 6= ∅ ⇒ (∃)x ∈ Bj , x ∈ Ai ⇒ (∃)x ∈ Bj , ai ⊥ vx ⇒ fj(ai) = 0. One the other hand,
Ai ∩ Bi = ∅ ⇒ (∀)x ∈ Bi, x /∈ Ai. But then vx is not in the hyperplane of Ai (since any r + 1 vectors
are linearly independent), so vx · ai 6= 0 ⇒ fi(ai) 6= 0. These conditions imply that the fi’s are linearly
independent.

Note that any fi contains only monomials of degree s in r+1 variables. There are
(
r+s

r

)
distinct monomials

(r + 1 multichoose s), so the dimension of the space is
(
r+s

r

)
.

Note: One can also give a proof based on exterior algebras, which is omitted here.

2.3 L-Intersecting Families

We begin with a special case of the main theorem:

Theorem 10. Let A1, . . . , Am ⊂ [n], with |Ai ∩Aj | = 1, (∀)i 6= j and |Ai| ≥ 2. Then m ≤ n.

Proof: Consider a matrix M with Mij = [j ∈ Ai]. Then (M ·M t)ij = |Ai ∩ Aj |. This matrix has 1
everywhere except the diagonal, and every diagonal element is ≥ 2. It follows that rank(M ·M t) = m. But
rank(M ·M t) ≤ rank(M) = rank(Mt) ≤ n.

Corollary 11. Consider n points, not all on a line. Then these points determine at least n distinct lines.

Proof: Every point is the intersection of at least two lines determined by the points. For each point, consider
the set of lines going through the point. Then the previous theorem applies (in particular |Ai ∩ Aj | = 1
because any two points determine a unique line).

Theorem 12 (L-intersecting families). Let L be a set of s integers. Also let A1, . . . , Am ⊂ [n] with
|Ai ∩Aj | ∈ L, (∀)i 6= j. Then m ≤

(
n
s

)
+
(

n
s−1

)
+ · · ·+

(
n
0

)
.

Proof: Let ai ∈ Rn be the incidence vector of Ai. Arrange the sets such that |Ai| ≤ |Aj |. Define:

fi : Rn → R, fi(x) =
∏

`∈L,`<|Ai|

(ai · x− `)

Clearly fi(ai) 6= 0 because we only consider ` < |Ai|. For every j < i, we have |Aj ∩ Ai| < |Ai|. So
fi(aj) = 0 ⇐⇒ ai · aj ∈ L ⇐⇒ |Ai ∩ Aj | ∈ L; hence, fi(aj) = 0, (∀)j < i. This implies that the fi’s are
independent.

Now every fi has degree ≤ |L| = s and has n variables. We only considered inputs in {0, 1}n, and for
x ∈ {0, 1}, xk = x, (∀)k > 1. So we can linearize the polynomial, i.e. transform every power to the first
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power. With this linearization, there are only
(
n
s

)
+
(

n
s−1

)
+ · · · +

(
n
0

)
independent monomials of degree

≤ s.

Theorem 13. Let L be a set of s integers. Also let A1, . . . , Am ⊂ [n] with |Ai| = k and |Ai∩Aj | ∈ L, (∀)i 6= j.
Then m ≤

(
n
s

)
.

Proof: Let fi be the linearized polynomials from the previous proof. For all I ⊂ [n], |I| < s, define:

gI : Rn → R, gI(x1, . . . , xn) =
∏
j∈I

xj

 n∑
j=0

xj − k


Clearly, there are

(
n

s−1

)
+ · · ·+

(
n
0

)
such I’s. Also gI(aj) = 0, (∀)I, j, because |Aj | = k. For every I, let

uI be the incidence vector of I. Now gI(uI) 6= 0 and gI(uJ) = 0. This means that all vectors {gI}∪ {fi} are
linearly independent – first apply the ai’s to the sum, and deduce that the coefficients of the fi’s are zero,
then apply the uI ’s to show the coefficients for the gI ’s are zero. By the dimension count from the previous
theorem, we are done.

2.4 Modular Constraints

Theorem 14. Let A1, . . . , Am ⊂ [n], with |Ai ∩Aj | even and |Ai| odd. Then m ≤ n.

Proof: We will work in F2. Consider the matrix M with Mij = [j ∈ Ai]. Now M ·M t = Im because
|Ai ∩Aj | ≡ 0, |Ai ∩Ai| ≡ 1 (in F2). Now rank(Im) = m ≤ rank(M) = rank(M t) ≤ n.

Proof (alternative): The incidence vectors ai ∈ (F2)n are orthonormal, hence independent.

Theorem 15. Let A1, . . . , Am ⊂ [n], with |Ai ∩Aj | even and |Ai| even. Then m ≤ 2bn/2c.

Proof: Consider the incidence vectors ai ∈ (F2)n. Let U = span({ai}). We have ai ⊥ aj , (∀)i, j so
U ⊂ U⊥ ⇒ dim U ≤ dim U ′. But dim U⊥ = n−dim U , because impose dimU independent linear constraints
on the vectors from U⊥ (perpendicularity to a basis of U). So dim U ≤ n/2.

Theorem 16. Let p be a prime, and L a set of s integers in {0, . . . , p− 1}. Also let A1, . . . , Am ⊂ [n], with
|Ai|mod p /∈ L and |Ai ∩Aj |mod p ∈ L. Then m ≤

(
n
s

)
+
(

n
s−1

)
+ · · ·+

(
n
0

)
.

Proof: We will work in Fp. For each Ai, consider its incidence vector ai and define:

fi : (Fp)n → Fp, fi(x) =
∏
`∈L

(ai · x− `)

Clearly fi(aj) = 0 because |Ai ∩Aj |mod p ∈ L and fi(ai) 6= 0 because |Ai|mod p /∈ L. Then the fi’s are
independent. Each has degree |L| = s and n variables. We can linearize the polynomials as before, and we
get

(
n
s

)
+
(

n
s−1

)
+ · · ·+

(
n
0

)
independent monomials.

Corollary 17. Let p be a prime, n = 4p− 1 and A1, . . . , Am ⊂ [n], with |Ai| = 2p− 1 and |Ai ∩Aj | 6= p− 1.
Then m ≤ 2

(
4p−1
p−1

)
.

Proof: Note that 2p − 1 ≡ p − 1(mod p), and this is the only element excluded from L. So we have
L = {0, . . . , p− 2}, and by the previous theorem m ≤

(
4p−1
p−1

)
+
(
4p−1
p−2

)
+ · · ·+

(
4p−1

0

)
. The bound follows by

induction.
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2.5 Application: Disproving the Borsuk Conjecture

Borsuk’s conjecture states that any set B ⊂ Rd can be broken into d + 1 parts, all having diameter strictly
smaller than diam(B). The conjecture is true for dimension 2 and 3, and when B is a body with smooth
boundary. However, the conjecture is false in general, for large enough d.

Theorem 18 (Kahn-Kalai). There exists a set B ⊂ Rd such that breaking B into parts of diameter strictly
smaller than diam(B) requires at least 2Ω(

√
d) parts.

Proof: Let p be a prime. Consider all sets Ai ∈
(
[4p−1]
2p−1

)
. For every Ai, let Fi = {{x, y} | x ∈ Ai, y ∈

[4p−1]\Ai}. The Fi’s are subsets of a
(
4p−1

2

)
-dimensional set, so we can view them as points in this dimension

(by taking the incidence vector) – B will consist exactly of these points. Then d2(Fi, Fj) = |Fi\Fj |+|Fj \Fi|.
Let r = |Ai ∩Aj |. We have:

Fi \ Fj = {{x, y} | x ∈ Ai, y /∈ Ai, x, y ∈ Aj} ∪ {{x, y} | x ∈ Ai, y /∈ Ai, x, y /∈ Aj}
⇒ |Fi \ Fj | = |Ai ∩Aj | · |Ai ∩Aj |+ |Ai ∩Aj | · |Ai ∩Aj |
⇒ |Fi \ Fj | = r((2p− 1)− r) + ((2p− 1)− r)(r + 1) = −2r2 + (4p− 3)r + (2p− 1)

By symmetry, |Fj \Fi| has the same value. So the distance from Fi to Fj is maximum when r ≈ p− 3/4,
which means r = p − 1 (because r is an integer). Thus the diameter of B is defined by Fi, Fj when
|Ai ∩ Aj | = p − 1. If we break B into parts of smaller diameter, a part must not contain any sets that
intersect in p− 1 places. By the previous corollary, each part can then have at most 2

(
4p−1
p−1

)
points, so there

must be at least
(
4p−1
2p−1

)
/2
(
4p−1
p−1

)
parts. This is roughly (2/1.8)4p−1 = 2Ω(

√
d).

2.6 Application: The Chromatic Number of Rd

Definition 19. The chromatic number of Rd is the minimum number of colors needed to color every point
in Rd such that any segment of unit length has its ends colored by different colors.

The chromatic number of a plane is known to be between 4 and 7. For high dimensions, we can prove
exponential bounds:

Theorem 20. The chromatic number of Rd is at most 2O(d lg d).

Proof: Cover Rd with cubes of side 1
2
√

d
. Note the that diameter of such cubes is 1/2. It suffices to color

with different colors all such cubes from inside a cube of side 2. So (4
√

d)d colors suffices.

Theorem 21. The chromatic number of Rd is at least 2Ω(d).

Note: A lower bound of 2Ω(
√

d) follows trivially from the disproof of the Borsuk conjecture.

Proof: Let p be prime, and d = 4p − 1. For each set Ai ∈
(
[4p−1]
2p−1

)
, consider the point xi ∈ Rd given by

the incidence vector. The distance d(xi, xj) =
√
|Ai \Aj |+ |Aj \Ai|. If |Ai ∩ Aj | = r, then d(xi, xj) =√

2((2p− 1)− r). Rescale everything so that
√

2((2p− 1)− (p− 1)) is the “unit” distance. A coloring of
Rd must now color sets that intersect in p− 1 places with different colors. By the known corollary, there can
be at most 2

(
4p−1
p−1

)
sets for each color, so at least

(
4p−1
2p−1

)
/2
(
4p−1
p−1

)
= 2Ω(d) colors are needed.
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3 Partially Ordered Sets
poset – a set X with a partial order � which is transitive (a � b, b � c ⇒ a � c), anti-symmetric

(a � b, b � a⇒ a = b) and reflexive (a � a), but possibly incomplete ((a � b) ∧ (b � a));
chain – a list of elements x0 � x1 � x2 . . . ;
saturated chain – (∀)i, (@)y : xi � y � xi+1;
maximal chain – saturated chain, whose ends are minimal and maximal;
antichain – a list of elements, no two of which are comparable;
graded poset – elements are on levels according to some rank; every saturated chain goes through consec-

utive levels;
(Bn,⊆) – the Boolean poset; Bn = 2[n] = all subsets of [n];

3.1 Decompositions

Theorem 22. If the longest chain has n elements, the poset can be decomposed into n disjoint antichains.

Proof: Put all minimal elements in an antichain; remove them and repeat.

Corollary 23. In any sequence of (n− 1)(m− 1)+1 numbers, either there exists an increasing subsequence
of length n or a decreasing subsequence of length m.

Theorem 24 (Dillworth). If the longest antichain has n elements, the poset can be decomposed into n
disjoint chains.

Proof: By induction on the size of the poset and n. Trivial for n = 1 and any size (the poset must be a
chain). For the general case, let S be an antichain of length n. It follows that any element of the poset is
comparable to some element of S (otherwise S is not maximum) and no element is less than some element of
S and greater than some other (otherwise, two elements of S are comparable by transitivity). So the poset
is decomposed into two parts S+ and S− which are above and below S (by definition S ⊂ S+ and S ⊂ S−).
If both S+ and S− are nontrivial (not equal to S), then both are smaller than the original poset, so by
the induction hypothesis, they can be decomposed into n chains. The elements of S are minimal in S+ and
maximal in S− so there is one chain starting/ending in each one. By gluing these together, we get n chains
that cover the original poset.

The only remaining case is when one cannot choose S such that S+ and S− are both nontrivial; in other
words, the longest antichains consist either of only minimal or only maximal elements. Then take a maximal
chain from the poset, and remove it. Now the longest antichain has size n−1 and we can apply the induction
hypothesis. Indeed, assume that the longest antichain still had size n. Then there is an antichain which is
not formed entirely of minimal or maximal elements (because we removed one minimal and one maximal
elements as part of the maximal chain, and so there are ≤ n− 1 of either one).

Corollary 25 (Hall’s matching theorem). In a bipartite graph G = L ∪ R, there is a perfect matching
from L to R iff (∀)T ⊆ L, |N(T )| ≥ |T |, where N(T ) denotes the neighbors of vertices in T .

Proof: Create a poset with two levels. The lower one is R and the higher one is L. The order relations
correspond to edges in the graph. Any antichain consists of some T ⊆ L and S ⊆ R, such that no elements
of T is comparable to an elements of S. This means that N(T )∩S = ∅. Thus |T |+ |S| ≤ |N(T )|+ |S| ≤ |R|.
Then the poset can be decomposed into |R| disjoint chains, each one of which must contain an element of
R. Then every element in L can be matched to the other element of its chain.
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3.2 The Möbius Function

Consider a poset (P,�). Let’s say we have two functions f and g defined on the poset, related by f(x) =∑
x�y g(y). We would like to find an expression for g in terms of f . To do that, we define the matrix Z with

entries (Z)x,y∈P = ζ(x, y) = [x � y]. Viewing f and g as vectors (f(x))x∈P , (f(y))y∈P , we can rewrite the
relation as f = Zg. Thus, g = Z−1f , so what we want is to find the inverse of Z. We will denote M = Z−1,
and the entries (M)x,y∈P = µ(x, y), where µ is called the Möbius function of P .

Theorem 26. The inverse M always exists and has integer entries.

Proof: By topological sorting, we can arrange the elements of P in a line such that x � y implies x comes
before y. Then Z will be upper-triangular, and it’s diagonal will consist only of ones. So detZ = 1, which
proves the theorem.

Proof (constructive): Since M is upper-triangular, its inverse should also be upper-triangular. So we
let µ(x, y) = 0 whenever it’s not the case that x � y. It is also easy to see that the entries on the diagonal
should be one: µ(x, x) = 1. These conditions alone guarantee that the diagonal of M ·Z contains only ones.
It remains to guarantee that the other entries are zero:

(∀)x 6= y :
∑

c

µ(x, c)ζ(c, y) = 0 ⇒
∑

x�c�y

µ(x, c) · 1 = 0 ⇒ µ(x, y) = −
∑

x≺c�y

µ(x, c)

This gives a recurrence for µ, and finishes the construction. Note that the recursion is well-defined, since
µ(x, y) depends only on values of µ(x, c) where c � y.

Theorem 27. Let pk(x, y) be the number of chains of length k from x to y. Then µ(x, y) =
∑∞

k=0(−1)kpk(x, y).

Note: Viewed as a definition for µ, this is yet another constructive proof of the previous theorem.

Proof: Let N = Z−I. Since N is upper-triangular and has zeros on the diagonal, it is nilpotent of degree n
(i.e. Nn = 0). Remember the classical power series expansion 1

1+x =
∑∞

k=0(−1)kxk. This will also hold for
finding M = (I +N)−1. Indeed, consider the expression: (N + I)(I−N +N2−N3 + . . . ); note that the first
parenthesis is precisely Z. Since Nn = 0, we can ignore all terms after Nn−1 in the second parenthesis. Then
the expression will become I ±Nn = I. So we have M = Z−1 =

∑∞
k=0(−1)kNk. But

(
Nk
)
x,y

is precisely
the number of chains of length k from x to y, because we are taking a walk in a (directed) graph.

3.3 Application: The Inclusion-Exclusion Principle

Theorem 28 (the inclusion-exclusion principle). For any sets A1, . . . , An we have:

|A1 ∪ · · · ∪An| =
n∑

j=1

(−1)j
∑
|J|=j

∣∣∣∣∣⋂
i∈J

Ai

∣∣∣∣∣ = ∑
J⊆[n],J 6=∅

(−1)|J|
∣∣∣∣∣⋂
i∈J

Ai

∣∣∣∣∣
Proof: The Möbius function of Bn is µ(A,B) = (−1)|B|−|A| if A ⊆ B and 0 otherwise. We need only verify
the identity:

0 =
∑

A⊆C⊆B

µ(A,C) =
∑

A⊆C⊆B

(−1)|B|−|C| =
|B|−|A|∑

r=0

(
|B| − |A|

r

)
(−1)|B|−|A|−r

This is true by the binomial theorem. Now define:

(∀)J ⊆ [n] : f(J) =

∣∣∣∣∣⋂
i∈J

Ai

∣∣∣∣∣ g(J) =

∣∣∣∣∣
(⋂

i∈J

Ai

)
∩

(⋂
i/∈J

Ai

)∣∣∣∣∣
6



Every element x is in some sets Aj , j ∈ J and in the complement of the others – in which case it is
counted in g(J). For every x counted in f(I), we must have I ⊆ J (x is at least in the intersection of all
sets I). We get f(I) =

∑
I⊆J g(J). This means that f = Zg, so g = Mf . Thus:

0 = g(∅) =
∑

J

(−1)|J|f(J) =
∑

J

(−1)|J|
∣∣∣∣∣⋂
i∈J

Ai

∣∣∣∣∣ = |A1 ∪ · · · ∪An|+
∑
J 6=∅

(−1)|J|
∣∣∣∣∣⋂
i∈J

Ai

∣∣∣∣∣

3.4 Sperner’s Property

Definition 29. A graded poset has Sperner’s property if the largest level is a largest antichain.

Theorem 30. The poset (Bn,⊆) has Sperner’s property, and the largest antichain consists of all sets of
cardinality bn/2c (the same is true for cardinality dn/2e).

Proof: Consider an antichain of Bn. A set of cardinality k is contained in exactly k!(n − k)! maximal
chains (we must remove k elements in some order to go down, and add n− k elements to go up). We know
k!(n − k)! ≥ bn/2c!dn/2e!. For the sets of the antichain, these chains must be distinct, or otherwise two
sets are comparable. In total there are n! maximal chains, so the size of the antichain must be at most

n!
bn/2c!dn/2e! =

(
n

bn/2c
)

=
(

n
dn/2e

)
.

We now consider a special case of group action, namely the action of a subgroup G of Sn on the set Bn.
A permutation π ∈ G “acts” on A ∈ Bn by producing π(A) = {π(a) | (∀)a ∈ A}. The orbit of A is the
family {π(A) | (∀)π ∈ G}. Note in particular that all sets of an orbit have the same cardinality.

The quotient poset Bn/G is the set of orbits of G on Bn. The order relation is defined by O � O′ ⇐⇒
(∃)A ∈ O,B ∈ O′ : A ⊆ B. It is easy to check that this is a partial order, and the poset is graded:
O � O because: A ∈ O, A ⊆ A;
O � O′, O′ � O ⇒ O = O′ because: the sets in O and O′ must have the same cardinality; now if there

exist A ∈ O,B ∈ O′ : A ⊆ B, it must be the case that A = B so O = O′;
O � O′, O′ � O′′ ⇒ O � O′′ because: by definition, (∃)A ∈ O,B ∈ O′ : A ⊆ B and (∃)B′ ∈ O′, C ∈

O′′ : B′ ⊆ C; also (∃)π ∈ G : B′ = π(B). But then π(A) ∈ O and π(A) ⊆ π(B) = B′ ⊆ C;

Theorem 31. The poset Bn/G has Sperner’s property.

The proof is quite long and will be given in the next section; we first give an application:

Corollary 32. Consider graphs on n vertices. The largest family of graphs, none of which is isomorphic to
a subgroup of another, consists of all nonisomorphic graphs with

(
n
2

)
/2 edges.

Proof: A graph is given by it’s set of edges, so it is an element of B(n
2). Now for π ∈ Sn, consider the action

π((a, b)) = (π(a), π(b)); this gives a subgroup G of permutations on the
(
n
2

)
edges that is isomorphic to Sn.

A graph is isomorphic to another if they are in the same orbit under this group, so the isomorphic graphs
form the poset Bn/G.

3.5 Proof of Sperner’s Property for Bn/G

We begin with a general method that can be used to show a poset P is Sperner. Let P0, . . . , Pn be the levels
of P ; let the maximum level be Pk. A collection of functions {µi} ∪ {ξi} is called an order matching if it
satisfies the following conditions:

P0
µ0−→ P1

µ1−→ . . .
µk−1−→ Pk

ξk←− Pk+1
ξk+1←− . . .

ξn−1←− Pn

µi, ξi are injective, (∀)i < k,A ∈ Pi : A � µi(A), (∀)i > k,A ∈ Pi+1 : ξi(A) � A
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Lemma 33. If an order matching exists, P is Sperner.

Proof: Consider all elements a ∈ Pk. Start building a chain containing a: as long as the first element has
an inverse through µ, extend the chain down; as long as the last element has an inverse through ξ, extend
the chain up. Since µ and ξ preserve order, this will be a chain. Since µ and ξ are injective, this extension
is unique, so every preimage of a through successive applications of µ’s or ξ’s will be in a’s chain. Thus,
these chains cover the poset, because every element can be mapped to something in Pk through successive
applications of µ’s or ξ’s. We have found |Pk| chains covering the poset, so any antichain can contain at
most |Pk| elements, and thus Pk is a maximal antichain.

In what follows, we will ignore the ξ functions, and consider only the “lower half” of the poset; results
for the other half follow symmetrically. For any finite set S, let RS be the real vector space of dimension
|S|, with a basis given by the elements of S. In other words, this is a set of formal sums of elements from S:
RS = {

∑
A∈S cAA | (∀)(cA) ∈ R|S|}.

Definition 34. A linear transformation Ui : RPi → RPi+1 is said to be raising, if (∀)A ∈ Pi : Ui(A) =∑
A≺B∈Pi+1

cBB. In other words, the coefficient in Ui(A) of any element incomparable to A is zero.

Lemma 35. Assume there exists a linear transformation Ui : RPi → RPi+1 which is injective and raising.
Then there exists an order matching µi as defined above.

Proof: Consider the matrix of Ui in the standard bases Pi and Pi+1. Since Ui is injective, the rank of
the matrix must be |Pi|. Consider a minor of size |Pi| which has nonzero determinant. Let S ⊂ Pi+1 be
the elements corresponding to the rows of this minor. Denote the entries of the minor by (cA,B)A∈Pi,B∈S .
Since the determinant is nonzero, at least one term in the sum-of-products expansion must be nonzero, so
there exists a permutation π : Pi → S such that cA,π(A) 6= 0, (∀)A ∈ Pi. But this is precisely an order
matching, since it is injective on Pi, and each A can only be mapped to π(A) � A, because cA,B = 0
whenever A ⊀ B.

We now switch to the special case of P = Bn. Define the following linear maps:

Ui : R(Bn)i → R(Bn)i+1, Ui(A) =
∑

A≺B∈(Bn)i+1

B, (∀)A ∈ (Bn)i

Di : R(Bn)i → R(Bn)i−1, Di(A) =
∑

B≺A,B∈(Bn)i−1

B, (∀)A ∈ (Bn)i

Note that Ui and Di are completely defined, since they are defined on a basis of R(Bn)i. Also note that
[Ui] = [Di+1]t, where [Ui] is the matrix of Ui in the standard bases. Finally, Ui is trivially raising.

Lemma 36. For i < n/2, the map Ui is injective.

Note: Combined with the previous lemmas, this gives another proof that Bn is Sperner.

Proof: We will first prove that Di+1Ui−Ui−1Di = (n−2i)I|Pi|. It suffices to prove the functional identity for
elements of the basis, i.e. when applied to all A ∈ Pi. Consider the coefficient of B in (Di+1Ui−Ui−1Di)(A).
This corresponds to the number of paths from A to B, taken through up or down moves. We have three
cases:
• B = A: the map Ui could add any one of n− i elements, and the map Di must remove this element;

similarly, the map Di must remove one of the i elements, and Ui−1 must add it back. So the coefficient
is n− 2i.
• |B ∩ A| = i− 1: one element must be removed from A and another added to B. So the coefficient in

both Di+1Ui and Ui−1Di is 1, and the final coefficient is zero.
• |B ∩A| < i− 1: the coefficient is zero, because there is no way to reach B from A by two changes.

We have thus proved that Di+1Ui−Ui−1Di = (n− 2i)I|Pi|. This can be rewritten as U t
i Ui = (n− 2i)I +

Ui−1U
t
i−1. Now note that Ui−1U

t
i−1 is positive semidefinite. Since i < n/2, we have that (n− 2i)I is positive

definite, so U t
i Ui must be positive definite. This means that U t

i Ui has full rank, so Ui is injective.

The rest of the proof that Bn/G is Sperner is omitted.

8



4 Young Diagrams

• a partition λ of n is a decreasing sequence of non-negative integers which sum to n: (λ1 ≥ λ2 ≥ · · · ≥
0),
∑

λi = n.

• let L(m,n) be the set of partitions with at most m nonzero parts, in which each part is at most n.
The diagram associated with a partition in L(m,n) fits in a rectangle of m× n.

• we can organize L(m,n) as a poset with the partial order: λ � µ ⇐⇒ (∀)i : λi ≤ µi. From a graphical
point of view, λ � µ iff we can get from µ to λ by removing some squares.

• L(m,n) is isomorphic to L(n, m) – just transpose the rectangle.

• |L(m,n)| =
(
m+n

n

)
because the boundary of the Young diagram is a walk from (0, 0) to (m,n).

• L(m,n) is a graded poset, with the rank being the sum of the partition (the number of filled boxes).

• the longest chain has length m + n (add a new box each time).

Theorem 37. The poset L(m,n) is Sperner, and the largest antichain consists of partitions of bmn/2c.

Proof: We show that L(m,n) ∼= Bmn/G for a certain group G. The group G is generated by the following
permutations: the transposition of any two rows (this is actually the product of n transpositions), and the
transposition of any two elements in the same row. Given any subset of [mn], which is a subset of the cells
in the m× n rectangle, we can sort it using permutations in G to reach a Young diagram: first arrange all
filled cells in each row at the beginning of the row, and then permute the rows in decreasing order of the
number of filled cells. So there is at least one Young diagram in each orbit. Also, this rearrangement is
uniquely specified, so there is exactly one Young diagram in each orbit, so Bmn/G ∼= L(m,n).

Let Pi(m,n) be the size of the i-th level of L(m,n). We now develop a way to find the Pi’s, based on
q-nomial coefficients. Let q be a nondeterminate; define:

• [j] = 1 + q + q2 + · · ·+ qj−1;

• [k]! = [1] · [2] · · · · · [k];

•
[

k
j

]
= [k]!

[j]![k−j]! ;

• plugging q = 1, we get [k]! = k!,
[

k
j

]
=
(
k
j

)
;

Theorem 38 (Pascal’s formula). The q-nomial coefficients satisfy
[

m
n

]
=
[

m−1
n

]
+
[

m−1
n−1

]
· qm−n.

Note: This shows that q-nomial coefficients are polynomials in q with integer coefficients.

Proof: Computation.

Theorem 39. We have:
∑

Pi(m,n)qi =
[

m+n
m

]
.

Proof: Let P (m,n) =
∑

Pi(m,n)qi. If we prove P (m,n) = P (m,n−1)+qnP (m−1, n), we are done because
this is also the recursion for the q-nomial coefficients. To establish this relation, compare the coefficient of
qi on both sides. We get Pi(m,n) = Pi(m,n − 1) + Pi−n(m − 1, n). The left-hand side counts the number
of partitions of i which fit in an m× n rectangle. A partition either has all parts strictly smaller than n, in
which case we can remove the last column and get Pi(m,n− 1), or has at least one part equal to n, in which
case we can remove this part and get Pi−n(m− 1, n).
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5 Application: Subsets With The Same Sum

For given n and k, we want to find a set S ⊂ R+, |S| = n and a number α, such that the number of k-subsets
of S of sum α is maximized.

Assume S = [n]; we now seek to compute the best α. Consider a subset {i1 < · · · < ik} ⊂ S with∑
ij = α. We can consider the set {i1−1 ≤ i2−2 ≤ · · · ≤ ik−k} which will have sum

∑
(ij−j) = α−

(
k+1
2

)
.

Such subsets are actually partitions of α−
(
k+1
2

)
that are in L(k, n− k). By the previous result, the number

of partitions is maximized when:

α−
(

k + 1
2

)
=
⌊

k(n− k)
2

⌋
⇒ α =

⌊
k(n + 1)

2

⌋
We now prove that one cannot have more subsets with the same sum even for arbitrary S. Consider some

S = {a1 < a2 < · · · < an} and some α. A subset {ai1 , . . . , aik
} of sum α can be described by the partition

(i1 − 1, i2 − 2, . . . , ik − k) which is a partition in L(k, n− k). Now consider another subset of sum α, giving
the partition (j1 − 1, j2 − 2, . . . , jk − k). Observe that these two partitions cannot be comparable. Indeed, if
(∀)t : it ≤ jt (and the inequality is strict at least once), then ait

≤ ajt
(and the inequality is strict at least

once) so
∑

ait
<
∑

ajt
⇒ α < α. So the subsets give an antichain of L(k, n− k). By the Sperner property,

no antichain can be larger than the largest level, and for S = [n] we managed to achieve exactly the size of
the largest level of L(k, n− k), so S = [n] is optimal.

6 Polya Theory

We want to count the number inequivalent colorings of a set X under the action of a subgroup G of the
permutation group on X. Two colorings are equivalent if a permutation can take one to the other (so
inequivalent colorings are orbits under G). Let K(i1, i2, . . . ) be number of colorings using the first color i1
times, the second color i2 times and so on; this is only defined for

∑
ik = |X|. Let c(σ, `) be the number of

cycles of σ of length `. Define:

ZG(z1, z2, . . . ) =
1
|G|

∑
σ∈G

|X|∏
`=0

z
c(σ,`)
k

Theorem 40 (Polya). Let r1, r2, . . . be indeterminates. We have:∑
i1+i2+···=|X|

K(i1, i2, . . . ) ri1
1 ri2

2 . . . = ZG(r1 + r2 + . . . , r2
1 + r2

2 + . . . , . . . )

Corollary 41. The number of inequivalent colorings using n colors (and no restriction on the number of
times each color is used) is 1

|G|
∑

σ∈G nc(σ), where c(σ) is the number of cycles of σ.

7 Counting Spanning Trees of Graphs

Theorem 42 (Cauchy-Binet formula). If A ∈ Mat(m× n) and B ∈ Mat(n×m), with n ≤ m, then:

det AB =
∑

S⊂{1,...,m},|S|=n

detAs detBs.

Proof: Use the identity:∣∣∣∣( In Anm

0mn Im

)∣∣∣∣ · ∣∣∣∣( Anm 0n

−Im Bmn

)∣∣∣∣ = ∣∣∣∣( 0nm (AB)n

−Im Bmn

)∣∣∣∣ = ±det AB
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Definition 43. Let G be a loopless graph on n vertices. The Laplacian of G is:

L(G) =


deg v1 0 . . . 0

0 deg v2 . . . 0
...

... . . .
...

0 0 . . . deg vn

−Adj(G).

Give an arbitrary orientation to G, |V | = n, |E| = m. Then, let M be the n×m matrix which has the
vertices on the rows and the edges on the columns. For instance, if (v3, v7) = e is an oriented edge from v3

to v7, then column e of M will have a 1 on the row corresponding to v3 and a −1 on the row corresponding
to v7 and will have 0’s everywhere else.

Then, L(G) = M ·M t. Let M0 be the matrix M with the last row removed.

Lemma 44. Let S ⊂ {1, ...,m}, |S| = n− 1. Then:

det(M0)s =
{
±1 if the edges of G corresponding to the columns indicated by S form a spanning tree
0 otherwise

Proof: If the edges don’t form a tree, then they must contain a cycle and so, there must exist a linear
combination of ±1 times the columns corresponding to them which equals 0⇒ the determinant is 0.

If they form a spanning tree, then we can prove by induction that the determinant is ±1. Assume it is
true for |S| = n − 2 and we will prove for n − 1. Vertex vn must be covered by the spanning tree, so there
exists an edge in this tree which enters it ⇒ there is a −1 on that column on the final row. So, in M0,
there is only a 1 on that column, say on row vk. Then, if we expand the determinant of M0 by that column,
the matrix that we’re left with is the same as M0 but for a graph without the vertex vk, and for which the
columns of S left form a spanning tree; and so we can apply the induction hypothesis.

Corollary 45. The number of spanning trees of G is exactly det(M0 ·M t
0).

Proof: Using the Cauchy Binet formula and the previous result, we get:

det M0 ·M t
0 =

∑
S⊂{1,...,m},|S|=n−1

det(M0)s det(M t
0)s =

∑
det(M0)2s

which is precisely the number of spanning trees.

Corollary 46. Let L0 be L with the last column and last row removed. Then, the number of spanning trees
is given by detL0.

Proof: This is clear by just multiplying M0 and M t
0.

Corollary 47. The number of spanning trees of G is 1
nµ1 . . . µn−1, where {µi} are the non-zero eigenvalues

of L.

Proof: Let’s compute det(L − xI). We know that the sum of all rows and of all columns in L is equal to
zero. Then, adding all rows to the last one and all columns to the last one will not change the determinant
and we get:

det(L− xI) = det


−x

L0 − xI
...
−x

−x . . . −x −nx
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Then, the coefficient of x is −n detL0. However, if we think about the polynomial as det(L − xI) =
(µ1 − x) . . . (µn − x), where the µi’s are the eigenvalues of L, then the coefficient of x is the product of the
non-zero eigenvalues of L⇒

detL0 =
1
n

µ1 . . . µn−1.

7.1 Examples – Special Cases

G is a regular graph. Then, the degree of each vertex is the same and equals d and L(G) = d·In−Adj(G).
The eigenvalues of L are {d− λi}, where {λi} are the eigenvalues of Adj(G).

G is a complete graph. Then, Adj(G) = J − I and so its eigenvalues are {−1, ... − 1, n − 1}. Also,
L(G) = (n− 1)I −Adj(G). Then, the number of spanning trees in G is:

1
n

n−1∏
i=1

(n− 1− (−1)) = nn−2.

G = Cn = {0, 1}n, the graph of the cube Then, Adj(G) has eigenvalues n − 2i with multiplicities
(
n
i

)
,

and L(G) = nI −Adj(G), so the number of spanning trees in G is:

1
2n

n∏
i=1

(n− (n− 2i))(
n
i).

8 Eulerian Cycles and Spanning Trees

Definition 48. An Eulerian cycle in a general graph G is a closed path that uses every edge in G exactly
once.

Theorem 49. Let G be a directed graph. If G, seen as a non-directed graph, is connected, and ∀v ∈
V (G), outdeg(v) = indeg(v), then G has an Eulerian cycle.

Proof: Start at a vertex v and walk in the graph, going through every edge once. The only place where we
could get stuck (because G is balanced) is back at v. Now remove this entire cycle from the graph, removing
the vertexes that have been completely used. We will be left with a balanced, connected graph in which,
by induction, we can find an Eulerian cycle. But since the original graph was connected, then the Eulerian
path must have at least a vertex in common with the cycle that we originally found. And thus, when we get
to that vertex in the original cycle, we simply walk on the Eulerian cycle next and then return to complete
the cycle.

Definition 50. An oriented tree T with a root v0 is a directed tree such that from every vertex of T there
is a unique path to v0.

Definition 51. Let G be a directed graph, e an edge and v a vertex. Then, ε(G, e) is the number of Eulerian
cycles in G that start with e. τ(G, v) is the number of oriented spanning trees of G, rooted at v.

Theorem 52. If G is a balanced and connected, directed graph, e and edge and v is the initial vertex of e,
then:

ε(G, e) = τ(G, v) ·
∏

u∈V (G)

(outdeg(u)− 1)!

Proof:
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“⇒” Consider an Eulerian cycle starting with e. For every vertex u 6= v, let eu be the last edge used in
the Eulerian cycle, and for which init(eu) = u.

We claim that the set of n− 1 edges eu forms an oriented tree. We just need to show that there are no
oriented cycles made out of eu’s. Assume that there is a cycle. Then, when we walk on the Eulerian path
and get to vertex u for the last time, so we must take eu out; but since eu is part of a cycle made only of
edges that can be used the last time by the Eulerian cycle, we will return to vertex u and since we already
took eu ⇒ we are stuck. Contradiction, because we can only get stuck at v.

Thus, we showed that when we take an Eulerian path starting at e, we must fix the edge we walk on the
last time we leave u 6= v and we can use all the other (outdeg(u) − 1) edges in any order we want, which
gives us the inclusion we want.

“⇐” Given an oriented tree T rooted at v, we start an Eulerian cycle by taking the edge e first. At every
vertex we choose arbitrarily an outgoing edge, such that the edges of the T are used last in the Eulerian
tour.

We claim that we always end up with an Eulerian graph. First, note that we can only get stuck at v
because the graph is balanced (as before). Now, assume there is one edge, e′, which is not used in the path
and let init(e′) = u. Then, by the way we construct our path, the edge in T outgoing from u will also not
be used (because it was supposed to be used last); say this enters vertex w. Since this edge is not used,
then this means that we entered w less than the maximum number of times and thus, the edge in the tree
outgoing from w will also not be used. This way, we get to v and conclude that v is also visited less than
the maximum number of possible times, which means that we couldn’t have gotten stuck at v and that we
can keep going.

Corollary 53. τ(G, v) is independent of the choice of v.

Proof: This follows from the fact that ε(G, e) does not depend on e. This is because an Eulerian tour has
to go through all edges once and thus, instead at starting at e, we can just rotate it and start at any other
edge.

Definition 54. If G is a directed graph, define L(G) ∈ Mat(n× n) such that:

lij =
{

outdeg(vi) if i = j
−#of edges from vi to vj if i 6= j

Note that the sum of the rows and the sum of the columns of this matrix are the zero vector.

Theorem 55. Let v1, . . . , vn be the vertices of G and let L0(G) to be the matrix L(G) with the last row and
column removed. Then: τ(G, vn) = det L0(G).

Proof: By induction on the number of edges of G. If G has n − 1 edges, then we have the following two
cases:
• there exists a vertex v′ 6= vn such that outdeg(v′) = 0, in which case there are 0 trees rooted at vn;
• for all vertices v 6= vn, outdeg(v) = 1, in which case G is an oriented tree rooted at vn.

In both cases, we get the desired results. Now, if the number of edges ≥ n, we have the following cases:
• if outdeg(vn) > 0, then we remove one of the edges going out of vn and we don’t change the number of

spanning trees rooted at vn; also, L0 doesn’t change either because we only affect the row and columns
deleted from L. Thus, the determinant also doesn’t change and we get the same answer.

• if outdeg(vn) = 0, then there must exist v 6= vn such that outdeg(v) ≥ 2. Let e1, . . . , ek be all the edges
going out from v, and consider the two subgraphs G \ {e1} and G \ {e2, . . . , ek} whose numbers we
know by induction hypothesis. For these two sets, the sum of the determinants of their corresponding
matrices is equal to the sum of the determinant of the original matrix because it is simply a split of
the row corresponding to v into two sums. And thus we get the result.
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Note that here we assumed that this formula is true even for disconnected graphs. To show that this is
indeed true, assume that the graph is disconnected – then, clearly, the number of spanning trees is equal to
zero. In the matrix L0, consider the connected component which does not contain vn. Then, it is unaffected
by the fact that we removed the last row and last column, and is we add the columns corresponding to this
connected component, we will get 0, which means that the determinant will be 0.

Corollary 56. If L(G) has eigenvalues µ1, . . . µn, with µn = 0, then:

τ(G, vn) =
1
n

µ1 . . . µn−1.

Proof: This follows from the same reasoning as for the number of trees in an undirected graph.

Corollary 57. The number of spanning trees of a graph G defined as in the previous corollary is 1
nµ1 . . . µn−1.

9 Brower’s Fixed Point Theorem
simplex – the convex hull of n + 1 independent points in Rn, called vertices;
face – the convex hull of a subset of the vertices;
facet – a face of dimension n− 1 in Rn;
simplicial complex – a family F of sets F1, . . . Fk ⊂ [n] such that if A ⊂ Fi, then A ∈ F .

Lemma 58 (Sperner). Let T be a triangulation of a simplex in Rn. We have a labeling of the vertices of
T by the numbers [n + 1] such that:
• the n + 1 vertices of the original simplex get pairwise different labels;
• let F be a face of the original simplex and x ∈ F a vertex of T ; then, x is labeled by one of the labels

of the vertices of F .

Then, there is an odd number of n-dimensional simplices in the triangulation, such that their vertices are
labeled by n + 1 pairwise different labels.

Proof: By induction on the dimension n. Assume true for n−1 and count the number of (n−1)-dimensional
simplices in T with n different labels (we have n + 1 classes of such simplices, depending on which one of
the n + 1 colors is missing).

• every n-dimensional simplex of T , with less than n + 1 different labels has on its boundary either 0
such (n− 1)-simplices or 2 of the same class; so far, the cardinality of the classes is even;

• denote by X the number of n-dimensional simplices in T with (n + 1) different labels; then, X con-
tributes with |X| to each class; thus, the cardinality of each class has the same parity as |X|;

• when we did this count, we counted twice all interior (n− 1)-dimensional simplices and once all those
on the boundary;

• each facet ((n−1)-dimensional simplex) of the original simplex is part of only one of those classes, and
all (n − 1)-dimensional simplices inside it will have the same colors as itself (will belong to the same
class) and by the induction hypothesis, the number of such simplices colored by all n colors of the class
is odd; thus, the cardinality of the class is odd.

• finally, |X| is odd.

Theorem 59 (Brower’s Fixed Point Theorem). Given f : Bn → Bn continuous, there exists x ∈ Bn

such that f(x) = x.
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Proof: We will do the proof using a simplex ∆n instead of Bn. Assume there exists such a function without
a fixed point from ∆n to ∆n. Then, we can define a new function g : ∆n → ∂∆n such that g(x) is the point
on the boundary where the line (f(x), x) intersects it. Clearly, g is the identity on the boundary. So, assume
such a function g exists.

Then, take an arbitrarily small triangulation. Label the vertices by n + 1 different colors and label the
interior vertices of the triangulation by the color of the points on the boundary to which they are mapped
by g. Also, label the points on the boundary with the color of the closest vertex. This coloring satisfies
the conditions of the Sperner lemma ⇒ there must exist an (n− 1)-dimensional simplex colored with n + 1
distinct colors.

g is continuous on ∆n, so g is uniformly continuous. Take ε = 1
10 and take such a fine triangulation that

every two vertices of it are at distance at most δε; there will be at least one vertex which is mapped very far
from the others by g ⇒ contradiction.

10 The Borsuk-Ulam Theorem
Bn = {x ∈ Rn | ‖x‖ ≤ 1}
Sn = boundary of Bn = {x ∈ Rn+1 | ‖x‖ = 1}

Lemma 60 (Tucker’s Lemma). Let T be a triangulation of an n-dimensional Gross polytope (G = the
convex hull of {−1,+1}n) and let λ : V (T ) → {±1, . . . ,±n} be a labeling of the vertices antipodal on the
boundary (λ(v) = −λ(−v), if v ∈ ∂G). Then, there exists a 1-dimensional simplex (an edge) labeled by
opposite (antipodal) numbers.

Theorem 61 (Borsuk-Ulam – Version IV). There exists no F : Bn → Sn−1, antipodal on the boundary
and continuous.

Proof: Take a fine triangulation of Bn, antipodal on the boundary, in the following way: if v ∈ T ⇒ f(v) =
(a1, . . . , an) ∈ Sn−1 ⇒

∑
a2

i = 1⇒ there exists i such that ai ≥ 1√
n
. Then, the label of v will be:

λ(v) = min{i | |ai| ≥
1√
n
} · sign(ai)

f is antipodal on the boundary, so if v ∈ ∂Bn, then λ(v) = −λ(−v). Then, by Tucker’s Lemma, we
have an edge (v1, v2) with two opposite colors (i,−i). Then, ‖f(x) − f(y)‖ ≥ 2√

n
, contradiction with the

continuity of f .

Theorem 62 (Version I.). For any f : Sn → Rn continuous, there exists x ∈ Sn such that f(x) = f(−x).

Theorem 63 (Version II.). For any f : Sn → Rn continuous and antipodal (f(x) = −f(−x),∀x ∈ Sn),
there exists x ∈ Sn such that f(x) = 0.

Theorem 64 (Version III.). There exists no antipodal, continuous function f : Sn → Sn−1.

Theorem 65 (Version IV.). There is no continuous function f : Bn → Sn−1 antipodal on the boundary
of Bn.

Theorem 66 (Version V.). If F1, . . . , Fn+1 is a closed cover of Sn, then there exist x, i such that x and
−x are both in Fi.

Lemma 67. Sn−1 can be covered by n + 1 sets, none of which contains two antipodal points.

10.1 Equivalence of the Five Versions

I ⇒ II. f : Sn → Rn continuous ⇒ by I, there must exist x0 such that f(x0) = f(−x0). Since f is also
antipodal, this implies that f(x0) = −f(−x0)⇒ f(x0) = 0.
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II ⇒ III. assume there exists a function f : Sn → Sn−1, continuous and antipodal. Since Sn−1 ⊂ Rn,
then by II, we have that there must exist x ∈ Sn such that f(x) = 0, but such x can’t exist because
0 /∈ Sn−1.

III ⇒ I. Assume there exists f : Sn → Rn continuous and f(x) 6= f(−x),∀x. Then, consider the function
g : Sn → Sn−1 defined as follows:

g(x) =
f(x)− f(−x)
‖f(x)− f(−x)‖

Clearly, g is continuous and is antipodal, contradiction with III.

I ⇒ V . Let F1, . . . , Fn+1 be a closed cover of Sn and define f : Sn → Rn as follows: f(x) = (d(x, F1), . . . , d(x, Fn)).
Clearly, f is continuous and by I we have that there must exist an x0 ∈ Sn such that f(x0) = f(−x0).

• if one of the coordinates of f(x0) = f(−x0) is zero, then d(x0, Fi) = d(−x0, Fi) = 0 and so both x0

and −x0 belong to the same set, Fi;

• if no coordinate is 0, then x0,−x0 /∈ Fi, for any i ∈ {1, . . . , n} and since F1, . . . , Fn+1 is a cover, then
both x0 and −x0 must be in Fn+1.

V ⇒ III. Assume there exists a function f : Sn → Sn−1, antipodal and continuous. Then, we know by the
previous lemma, that Sn−1 can be covered with n + 1 closed sets, say F1, . . . , Fn+1 such that none of them
contain two antipodal points. Then, f−1(F1), . . . , f−1(Fn+1) will form a closed cover of Sn. But, by V , this
means that there must exist x0 ∈ Sn and i such that x0,−x0 ∈ f−1(Fi) ⇐⇒ f(x0) and f(−x0) ∈ Fi and
since f is antipodal, this means that f(x0) and −f(x0) ∈ Fi which is a contradiction with the choice of the
sets.

III ⇒ IV . Assume there exists f : Bn → Sn−1, continuous and antipodal on the boundary of Bn,
which is Sn−1. Then, take the projection π : Sn → Bn. It is continuous and thus the composition
g = f ◦ π : Sn → Sn−1 is continuous. Moreover, f is antipodal on the boundary and so, for x ∈ Sn,
g(−x) = f(π(−x)) = f(−π(x)) = −f(π(x)) = −g(x). So, g is continuous and antipodal, which contradicts
III.

IV ⇒ III. Assume there exists f : Sn → Sn−1 antipodal and continuous. And now construct the function
g : Bn → Sn−1, g(x) = f(π−1(x)), where π is defined as above. Then, g is continuous and for all x ∈ Sn−1,
g(−x) = f(π−1(−x)) = f(−π−1(x)) = −f(π−1(x)) = −g(x), because f is antipodal. Thus, g is antipodal
on the boundary, which contradicts III.

Brower’s Fixed Point Theorem via Borsuk-Ulam. Brower’s fixed point theorem states that: given
f : Bn → Bn continuous, (∃)x ∈ Bn such that f(x) = x. One can give a different proof based on the
Borsuk-Ulam theorem.

Proof: Assume there exists no x such that f(x) = x. Then, construct the function g : Bn → Sn−1 as
follows: for every x ∈ Bn, let g(x) be the point where the line (f(x), x) intersects Sn−1. Thus, for x ∈ Sn−1,
clearly, g(x) = x. g is continuous and, on the boundary Sn−1, it is antipodal since it is the identity. This
contradicts IV .

11 Intersection Graphs

Definition 68. Given m sets F1, . . . , Fm ∈ Rn, the corresponding intersection graph will have m vertices
(corresponding to the sets); we connect two vertices i and j if and only if Fi and Fj intersect.
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11.1 Large Bipartite Structures

Lemma 69. Let U, V ∈ Rd be sets of vectors. Then, there exist U ′ ⊂ U and V ′ ⊂ V such that:

• |U ′| ≥ |U |
2d and |V ′| ≥ |V |

2d ;

• either 〈u, v〉 ≤ 0 for every u ∈ U ′ and v ∈ V ′, or 〈u, v〉 > 0 for every u ∈ U ′ and v ∈ V ′.

Note: It can be shown that in general sets U ′, V ′ larger than |U |
2Ω(n) and |V |

2Ω(n) cannot be found.

Theorem 70. Let G be the intersection graph of m disks in the plane. Then G contains either a complete
bipartite graph of size c ·m× c ·m or an empty bipartite graph of size c ·m× c ·m (in the sense that there
exist sets S, T of size Ω(m) such that either all disks from S intersect all disks from T , or no disk from S
intersects a disk from T ).

Proof: Using the previous lemma, apply the fact that two discs (x1, y1, r1) and (x2, y2, r2) intersect if and
only if:

(x1 − x2)2 + (y1 − y2)2 ≤ (r1 + r2)2

⇐⇒ 〈(x2
1,−2x1, 1, y2

1 ,−2y1, 1,−r2
1,−2r1, 1), (1, x2, x

2
2, 1, y2, y

2
2 , 1, r2, r

2
2)〉 ≤ 0

And if we assign a vector of the first type to U ′ and one of the second type to V ′, we obtain the desired
result, with |U ′|, |V ′| ≥ m

29 .

Note: A similar result can be shown for intersection graphs of segments, by applying the lemma multiple
times. Using results from algebraic geometry, this type of results can be extended to the general class of
semi-algebraic sets.

11.2 Large Cliques or Anticliques

Theorem 71 (Ramsey). Consider a coloring of the edges of Kn (the complete graph on n vertices) by two
colors, red and green. Then, if n ≥

(
a+b−2

a−1

)
, either we have a red clique of size a or a green clique of size b.

Proof: Induction.

Note: This implies that any graph on n vertices contains either a clique of size Ω(log n) or an anticlique of
size Ω(log n). The bound can be shown to be tight by the probabilistic method, but no explicit construction is
known. Below we see that geometric intersection graphs have cliques or anticliques of Ω(nρ), which partially
explains why an efficient construction for O(lg n) is hard to find.

Theorem 72. Let F1, . . . Fm be m disks in the plane. Then, the intersection graph contains either Ω(
√

m)
vertices, every two of which are connected, or Ω(

√
m) vertices, no two of which are connected.

Note: The bound of Θ(
√

m) is easily seen to be tight.

Proof: Start with the smallest disk, take all its neighbors and see if there are
√

m discs connected with it.
If not, delete all neighbors and keep just the smallest disc and put it in a separate list. Then, pick second
smallest and do the same, and so on ⇒

√
m steps. If we end up with

√
m disconnected disks, we’re done.

If there exists a disk with
√

m neighbors, inflate it to radius (3× its radius)⇒ this disk has area 9× that
of the original disk. Since all the other disks intersecting the smallest one have area greater than it, then
any of those disks covers at least 1/9 of the area of the inflated disk. So, the area covered by all neighboring
disks is at least 1

9

√
m (considered only inside the big disk). However, the area of the entire disk is 1, so there

is at least a point which is covered by 1
9

√
m disks, so they all intersect.
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Theorem 73. Let G be the intersection graph of n segments in the plane. Then either G contains either a
clique or an anticlique of size Ω(nρ), where ρ is a positive constant.

Proof: Define a family F of graphs as follows:
• the graph on one vertex is in F ;
• if G1, G2 ∈ F , then the graph formed by the disjoint union of these two graphs is also in F (by disjoint

union, we mean that G1 and G2 are separate components of the new graph) – call this the union
operation;
• if G1, G2 ∈ F , then the graph with G1 in one party, G2 in another party, and all edges between the

two parties, is in F – call this the join operation.

For each G ∈ F , the chromatic number of G is equal to the size of the largest clique. This follows easily
by induction: the union operation makes χ(G) = max(χ(G1), χ(G2)), and the largest clique is the max of
those in G1 and G2; the join operation makes χ(G) = χ(G1)+χ(G2) and the largest clique is formed by the
union of the cliques in G1 and G2 (since we add all possible edges from G1 to G2).

Now observe that a graph on n vertices from F contains either a clique or an anticlique of size Ω(
√

n).
Indeed, if the largest clique is <

√
n, then the graph can be colored with <

√
n colors. Then a color class

has >
√

n nodes, which form an anticlique.
Finally, we show that the intersection graph contains a large induced subgraph (of size Ω(nρ)) which is

in F . By a previous lemma, we can find two large sets S, T (of size Ω(n)), such that either all vertices in S
are connected to all in T , or all are not connected. Recursively, we can find large subgraphs from F with
vertices in S and T . Now we either take the union or join of these two subgraphs, so we stay in F . The
recursion for the size of the subgraph is S(n) = 2S(Ω(n)), which solves to S(n) = nΩ(1).
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