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Stability, Influence, and Fourier Analysis on the Cube

In this lecture, we will develop a theory of boolean functions concerned with issues like
stability under random noise, and influence of variables. An increasingly important player in
this research is Fourier analysis on the Hamming cube; we introduce this important notion
and the connections to stability and influence.

This theory of boolean functions can be motivated through reference to an analysis
of social choice (voting schemes, and quantitative versions of Arrow’s theorem) or simply
through mathematical elegance. However, on the practical side, we will use it in the next
lecture to give an optimal (conditional) inapproximability result for MaxCut.

Normally, we think of the boolean domain as {0, 1}. However, to simplify expressions, we
will now use {−1, +1}. The domain {±1}n is called the n-dimensional hypercube. We will
be studying n-variable boolean functions, f : {±1}n → {±1}, or sometimes real functions
defined on the cube, f : {±1}n → <.

1 Influence

Given a n-variable function, one thing we might look at is how “influent” each variable is,
i.e. how much the variable influences the output of the function in the average case.

Definition 1. Let f : {±1}n → <. Then the influence of xi on f is defined as:

Infi(f) = E
x1,...,xi−1,xi+1,...,xn

[var
xi

[f ]]

This definition should already be very intuitive, but for boolean functions we can simplify
it further. Note that for a function g : {±1} → {±1}, var[g] = 1 if g(1) 6= g(−1), and
var[g] = 0 otherwise. Then, if f is defined with an output in {±1}, we can restate the
definition as:

Infi(f) = Pr
x∈{±1}n

[f(x) 6= f(x1, . . . , xi−1,−xi, xi+1, . . . , xn)]

Common metaphors for the influence interpret f as a voting scheme. The n voters
express a binary opinion, and the function decides the outcome of the vote by aggregating
all opinions. Let us consider a few possible schemes:

Predetermined output. If f is constant, Infi(f) = 0 for any i. In general, functions
biased towards +1 or −1 are not too interesting, so we generally work with balanced functions
(satisfying Ex[f(x)] = 0).
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Dictatorship. This is the extreme case when f(x) = xi, for some i. In this case Infi(f) = 1
and Infj(f) = 0 for any j 6= i. A generalization of this notion is a junta, where f only depends
on the choices of a few voters.

Majority. The output is the most popular opinion among the n voters, i.e. f is the majority
function. Let us assume n is odd, so we do not have to deal with tie-breaking (extending to n
even is a simple computation). Since majority is symmetric, we must have Infi(f) = Infj(f)
for any i and j. Thus, let us compute Infn(f). Note that the probability xn influences the
result at all is very small: this only happens when among x1, . . . , xn−1 there is an equal
number of positive and negative votes. The probability of this event is

(
(n−1)/2

n−1

)
/2n−1 =

Θ( 1√
n
). When xn is relevant, this contributes 1 to the influence, so we have Infn(f) = Θ( 1√

n
).

Parity. The output is the xor of the voters’ choices; with a {±1} domain, f(x) =
∏n

i=1 xi.
Note that Infi(f) = 1 for all i. This is an extreme example where the influence of every
variable is maximal, yet if votes are announced simultaneously, nobody has any control of
the output.

Tribes. The smallest influences we have seen so far (for balanced functions) were those of
majority. Can we do better? Consider grouping the variables into n/b “tribes” of b variables.
In each tribe, we take the and of the choices, and then take an or of the choices of each
tribe. We can imagine a bunch of tribes pondering whether to build a temple on a hill top.
The construction requires the joint efforts of b workers, but workers from different tribes
speak different languages. Then, the temple will only be built if (at least) one tribe agrees
unanimously to do it.

For b = log n− lg lg n + Θ(1), the outcome will be balanced. Furthermore, a variable can
influence the outcome only when the remaining b−1 members of the tribe vote YES, so the
influence if at most 1

2b−1 = O( lg n
n

). This is complemented by a famous result of Kahn, Kalai

and Linial [1], showing that any balanced function has a variable with influence Ω( lg n
n

).

2 Stability under Noise

In interpreting influence as a measure of the quality of a voting scheme, we are faced with
a couple of problems. On the one hand, even if some voter has a high influence, it does
not necessarily mean he has any control over the outcome (parity). However, if our voter is
allowed to delay his decision a bit, he can often decide the outcome, which is clearly bad.
On the other hand, the tribes function can achieve minimal influences, but still it is not
appealing for general purpose voting. We can justify this through a new notion, stability.

Definition 2. Let f : {±1}n → < and −1 ≤ ρ ≤ 1. Let x be uniformly random in {±1}n

and let y be ρ-correlated with x, i.e. each yi is chosen independently so that E[xiyi] = ρ.
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Then the noise stability of f at ρ is defined as:

Sρ(f) = E
x,y

[f(x)f(y)]

In standard probability theory, E[xy] is called the correlation of x and y (assuming

E[x] = E[y] = 0, which is the case for the quantities we are looking at). Thus, we can
imagine evaluating f at an input which is x, plus some random noise. The measure for
the noise is ρ, the correlation between each coordinate of x and the perturbed coordinate.
Stability measures the correlation between f at the original input and f at a noisy input.

Back on the realm of voting, it is not hard to convince ourselves that voting is a noisy
process. Some xi might not represent the true choice of voter i, e.g. due to error in expressing
the vote, or simply because the voter has a bad day and he makes a wrong decision that he
will later regret. Then, high stability is a desirable property of voting schemes.

A dictator function has stability ρ (immediate from the definition), and it can be shown
that this is the highest possible. However, this is not satisfying because we want variables
to have small influences.

The tribes scheme should intuitively have small stability: a unanimity reached by a
tribe is overthrown if any one vote is corrupted by noise, which happens with a probability
decaying exponentially in b. On the other hand, majority should have fairly good stability,
since the vote is often won by a larger margin, and corrupting a few variables doesn’t matter.

3 A Mathematician’s Defense of Democracy

We later show that the stability of the majority is the rather peculiar quantity 1− 2
π

arccos ρ
(plus terms vanishing with n). However, let us now understand the importance of this
quantity. The following theorem, due to Mossel, O’Donnell and Oleszkiewicz [2] is usually
known as “majority is stablest”:

Theorem 3. For any ρ ∈ [0, 1) and ε > 0, there is a small enough δ > 0 such that for any
balanced f : {−1, 1}n → [−1, 1] at least one of the following holds:

Sρ(f) ≤ 1− 2

π
arccos ρ + ε or (∃)i : Infi(f) ≥ δ

This theorem tells us that one cannot beat the stability of majority (by any ε > 0),
without sacrificing a lot: at least one variable has a large (constant) influence. Thus, if
we want to avoid dictator- or junta-like behavior, majority is as stable as you can be. It
should be noted, however, that majority is not the only function achieving this stability. For
example, weighted majorities achieve the same stability, so with regards to this theory it is
Okay to have democratic schemes in which members have different weights (e.g. according
to wealth or IQ).
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4 Stability of Majority

Let us now try to show how one obtains a stability of 1 − 2
π

arccos ρ + o(1) for major-
ity. First, we sketch a formal proof based on the Central Limit Theorem. Then, we give
a semiformal geometric argument, which is very similar to the geometric analysis in the
Goemans-Williamson algorithm for MaxCut.

The random experiment defining the stability chooses x uniformly, and y to be ρ-
correlated with x. This means each coordinate of y differs from the corresponding coordinate
in x with probability p = 1−ρ

2
. Since coordinates are independent, a standard concentra-

tion argument shows that with 1 − o(1) probability, the fraction of differing coordinates is
p + o(1). Ignoring o(1) factors in the stability, we can simply condition on the number of
differing coordinated to be some d = (p + o(1)) · n.

Now we can express the random experiment as follows. First choose d coordinates where
x and y will differ. By symmetry, this choice is irrelevant, so let’s say coordinates 1, . . . , d
differ. Then, choose common values for coordinates d+1, . . . , n. Finally, choose values for x
on coordinates 1, . . . , d; the values for y are the negations. The majority of x will be different

from the majority of y iff
∣∣∣∑d

i=1 xi

∣∣∣ ≥ ∣∣∑n
i=d+1 xi

∣∣. But by the Central Limit Theorem, both

of these sums behave are normals (within o(1) error). The remaining task is computational
(integrating normal distributions), and we ignore the details.

Now let us switch to the geometric view. Viewing x and y as vectors, we can compute
the angle between them. This is arccos 〈x,y〉

‖x‖·‖y‖ = arccos n−2d√
n·
√

n
= arccos ρ + o(1); here 〈·, ·〉

and ‖ · ‖ denote the standard Euclidean inner product and norm. The majority function
(and in general, any weighted majority function) can be described by a hyperplane going
through the origin. Points on one side receive an answer of +1, and points on the other side
an answer of −1. Projecting on the 2-dimensional plane defined x and y, this separation
hyperplane becomes a line. The majorities of x and y are different iff the line falls inside the
angle between x and y.

In the Goemans-Williamson algorithm, the separation hyperplane is random, while the
two vectors are fixed. In our case, the hyperplane is fixed, but x and y are chosen randomly
(at a fixed angle from each other). If they were chosen from the sphere in n dimensions, we
would be done: the probability they are separated would be arccos ρ

π
+ o(1), translating into

the desired stability. Intuitively, the n-dimensional cube behaves very much like the sphere
in n dimensions with regard to projections in 2 dimensions, so the same result should hold.

5 Fourier Analysis on the Hypercube

Consider the space of all functions {f : {±1}n → <}. We can look at this as a linear space
with the operation (f · g)(x) = f(x) · g(x). Furthermore, we can define an inner product
on this space by 〈f, g〉 = Ex[f(x)g(x)]. In Euclidean space, the inner product describes how
close the two vectors are (i.e. how small an angle they make). This intuition extends to
functions, since our inner product describes the correlation between f and g (at least for
balanced f and g).
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Now for any S ⊆ [n], define the character χS(x) =
∏

i∈S xi. By computation, it can be
shown that the χS’s form an orthonormal basis of our linear space. This means that we can
express any function as a weighted sum of the characters: f =

∑
S f̂(S)χS. The weights f̂(S)

are called the Fourier coefficients of f . By orthonormality of the basis, a Fourier coefficient
can be computed by f̂(S) = 〈f, χS〉. Furthermore, the inner product can be computed as
〈f, g〉 =

∑
S f̂(S)ĝ(S).

To draw the connection to Fourier analysis over the reals, note that the characters there
are sinusoidals at different frequencies. In the appropriate setup, these also form an or-
thonormal basis, and functions can be expressed in this basis.

6 Connections to Influence and Stability

To see why Fourier analysis over the cube comes in, let us first draw the connection to
stability. For this, we need the following definition:

Definition 4. The Bonami-Beckner operator Tρ is a linear map on the space of functions
taking f to Tρf satisfying Tρf(x) = E[f(y)], where y is a noisy ρ-correlated version of x.

We can see Tρ as “error-correcting” or “antialiasing” f : each value is decided by averaging
values from the neighbors. By inspection of the definition of stability, we see Sρ(f) =
〈f, Tρf〉. To understand this intuitively, remember that stability is measuring the correlation
(a.k.a. inner product) between f at some input x and at a noisy version of x. The average of
the noisy copies is centralized at x by Tρ. Finally, we have to connect the Bonami-Beckner
operator to the Fourier coefficients:

Proposition 5. Tρf =
∑

S ρ|S| · f̂(S)χS.

Proof. Tρf(x) = Ey[f(y)] = Ey[
∑

S f̂(S)χS(y)] =
∑

S f̂(S) Ey[χS(y)] =
∑

S f̂(S) Ey[
∏

i∈S yi] =∑
S f̂(S)

∏
i∈S E[yi] =

∑
S f̂(S)

∏
i∈S(ρxi) =

∑
S ρ|S| · f̂(S)χS(x).

Having established a connection to stability, let us consider influence:

Proposition 6. Infi(f) =
∑

S:i∈S f̂(S)2.

Proof. For ease of notation, assume i = 1. Then

Inf1(f) = E
x2,...,xn

[var
x1

[f(x)]] = E
x2,...,xn

[
E
x1

[f 2(x)]− E
x1

[f(x)]2
]

= E
x
[f 2(x)]− E

x2,...,xn

[E
x1

[f(x)]2]

To evaluate the first term, note Ex[f
2(x)] = 〈f, f〉 =

∑
S f̂(S)2. For the second term, note

Ex1 [f(x)] = Ex1 [
∑

S f̂(S)χS(x)] =
∑

S:1/∈S f̂(S)χS(x), because when 1 ∈ S, the expectation
of χS(x) is zero. Then

E
x2,...,xn

[E
x1

[f(x)]2] = E
x2,...,xn

(∑
S:1/∈S

f̂(S)χS(x)

)2
 = E

x

(∑
S:1/∈S

f̂(S)χS(x)

)2

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because x1 does not appear inside the expectation. Finally, this is the inner product of∑
S:1/∈S f̂(S)χS(x) with itself, so it is

∑
S:1/∈S f̂(S)2. We conclude that Inf1(f) =

∑
S f̂(S)2−∑

S:1/∈S f̂(S)2 =
∑

S:1∈S f̂(S)2.

7 Proving Something Useful

Having developed all this theory, let us finally prove a technical result that we shall use in the
next lecture. Remember that for functions which are noticeably more stable than majority,
the majority-is-stablest theorem guarantees a variable with constant influence. But on the
upper-bound side, there could be as many as n variables with constant influence (remember
parity). To get a better upper bound, we slightly change the notion of influence:

Definition 7. The k-degree influence of coordinate i on f is Inf≤k
i (f) =

∑
S:i∈S,|S|≤k f̂(S)2.

This definition should be contrasted to Proposition 6.
For f valued in {±1}, observe that

∑
i Inf≤k

i (f) ≤ k. Indeed, the sum includes each

Fourier coefficient at most k times, so it is bounded by k
∑

S f̂(S)2 = k〈f, f〉 = k. Then,
there can be at most O(k) variables having a k-degree influence of Ω(1).

To make k-degrees influences useful, we must show that majority-is-stablest continues to
hold when replacing Infi(f) by Inf≤k

i (f), for some constant k:

Proposition 8. For any ρ ∈ [0, 1) and ε > 0, there exist constants δ > 0 and k such that
for any balanced f : {−1, 1}n → [−1, 1] at least one of the following holds:

Sρ(f) ≤ 1− 2

π
arccos ρ + ε or (∃)i : Inf≤k

i (f) ≥ δ

Proof. We apply Theorem 3 to g = T1−γf , where γ > 0 is a small enough constant. The

intuition is that this makes a Fourier coefficient f̂(S) decrease by (1−γ)|S|, so for large enough
|S|, it becomes negligible, and hence we can only look at influence up to some degree. At
the same time, we can show that stability doesn’t change too much if γ is small enough.

Note that Ex[g(x)] = Ex[Ey[f(y)]] = Ey[f(y)] = 0. In other words, g is unbalanced
because a noisy ρ-correlated version of a uniformly random vector is uniformly random.

We use Theorem 3 with ε′ = ε/4. Let δ′ be the constant it gives for influences, and define
δ = δ′/2. Note that:

Infi(g) =
∑
S:i∈S

(1−γ)2|S|f̂(S)2 ≤
∑

S:i∈S,|S|≤k

f̂(S)2+(1−γ)2k
∑

S:i∈S,|S|≤k

f̂(S)2 ≤ Inf≤k
i (f)+(1−γ)2k

By choosing k large enough (depending on γ), the second term can be at most δ′/2. Then,
Infi(g) ≥ δ′ implies Inf≤k

i (f) ≥ δ′/2 = δ.
The other possibility is that Sρ(g) ≤ 1− 2

π
arccos ρ + ε

4
. Note that:

Sρ(g) = 〈g, Tρg〉 =
∑

S

ρ|S|ĝ(S)2 =
∑

S

ρ|S|
(
(1− γ)|S|f̂(S)

)2
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But now we have:

Sρ(f) =
∑

S

ρ|S|f̂(S)2 = Sρ(g) +
∑

S

ρ|S|f̂(S)2 ·
(
1− (1− γ)2|S|)

The first term is at most 1− 2
π

arccos ρ+ ε
4
. By making γ a small enough constant (depending

on ρ and ε), we can make ρt(1− (1− γ)2t) ≤ 3
4
ε, for any t ≥ 1. Then, the second term is at

most 3
4
ε, and we have Sρ(f) ≤ 1− 2

π
arccos ρ + ε.
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