
Lower Bounds for Dynamic Connectivity (2004; Pǎtraşcu, Demaine)

Mihai Pǎtraşcu, MIT, web.mit.edu/∼mip/www/

Index terms: partial-sums problem, prefix sums, dynamic lower bounds
Synonyms: dynamic trees

1 Problem Definition

The dynamic connectivity problem asks to maintain a graph G subject to the following operations:

insert(u, v): insert an undirected edge (u, v) into the graph.
delete(u, v): delete the edge (u, v) from the graph.
connected(u, v): test whether u and v lie in the same connected component.

Let m be an upper bound on the number of edges in the graph. This entry discusses cell-probe
lower bounds for this problem. Let tu be the complexity of insert and delete, and tq be the
complexity of query.

The partial-sums problem. Lower bounds for dynamic connectivity are intimately related to
lower bounds for another classic problem: maintaining partial sums. Formally, the problem asks
to maintain an array A[1 . . n] subject to the following operations:

update(k,∆): let A[k]← ∆.
sum(k): returns the partial sum

∑k
i=1A[i].

testsum(k, σ): returns a boolean value indicating whether sum(k) = σ.

To specify the problem completely, let elements A[i] come from an arbitrary group G, containing
at least 2δ elements. In the cell-probe model with b-bit cells, let tΣu be the complexity of update,
and tΣq be the complexity of testsum (which is also a lower bound on sum).

The trade-offs between tΣu and tΣq are well understood for all values of b and δ. However, this
entry only considers lower bounds under the standard assumptions that b = Ω(lg n) and tu ≥ tq.
Assuming b = Ω(lg n) is standard for upper bounds in the RAM model, and also means that the
lower bound applies to the pointer machine. Then, Pǎtraşcu and Demaine [6] prove:

Theorem 1. The complexity of the partial-sums problems satisfies: tΣq · lg(tΣu/t
Σ
q) = Ω(δb · lg n).

Observe that this matches the text-book upper bound using augmented trees. One can build
a balanced binary tree over A[1], . . . , A[n], and store in every internal node the sum of its subtree.
Then, updates and queries touch O(lg n) nodes (and spend O(dδ/be) time in each one, due to the
size of the group). To decrease the query time, one can use a B-tree.

1

A[1]

n

A[2] A[n]

Figure 1: Constructing an instance of dynamic connectivity that mimics the partial-sums problem.

Relation to dynamic connectivity. We now clarify how lower bounds for maintaining partial
sums imply lower bounds for dynamic connectivity. Consider the partial-sums problem over the
group G = Sn, i.e., the permutation group on n elements. Note that δ = lg(n!) = Ω(n lg n). It is
standard to set b = Θ(lg n), as this is the natural word size used by dynamic connectivity upper
bounds. This implies tΣq lg(tΣu/t

Σ
q) = Ω(n lg n).

The lower bound follows from implementing the partial-sums operations using dynamic connec-
tivity operations. Refer to Figure 1. The vertices of the graph form an integer grid of size n × n.
Each vertex is incident to at most two edges, one edge connecting to a vertex in the previous col-
umn and one edge connecting to a vertex in the next column. Point (x, y1) in the grid is connected
to point (x+ 1, A[x](y1)), i.e. the edges between two adjacent columns describe the corresponding
permutation from the partial sums vector.

To implement update(x, π), all the edges between column x and x+1 are first deleted, and then
new edges are inserted according to π. This gives tΣu = O(2n · tu). To implement testsum(x, π), one
can use n connected queries, between the pairs of points (1, y) (x+1, π(y)). Then, tΣq = O(n·tq).
Observe that the sum query cannot be implemented as easily. Dynamic connectivity is the main
motivation to study the testsum query.

The lower bound of Theorem 1 translates into ntq · lg 2ntu
ntq

= Ω(n lg n), hence tq lg tu
tq

= Ω(lg n).
Note that this lower bound implies max{tu, tq} = Ω(lg n). The best known upper bound (using
amortization and randomization) is O(lg n(lg lg n)3) [9]. For any tu = Ω(lg n(lg lg n)3), the lower
bound trade-off is known to be tight. Note that the graph in the lower bound is always a disjoint
union of paths. This implies optimal lower bounds for two important special cases: dynamic
trees [8], and dynamic connectivity in plane graphs [2].

2 Key Results

2.1 Understanding Hierarchies

Epochs. To describe the techniques involved in the lower bounds, first consider the sum query,
and assume δ = b. In 1989, Fredman and Saks [3] initiated the study of dynamic cell-probe
lower bounds, essentially showing a lower bound of tΣq lg tΣu = Ω(lg n). Note that this implies
max{tΣq , tΣu} = Ω(lg n/ lg lg n).

At an intuitive level, their argument proceeded as follows. The hard instance will have n random
updates, followed by one random query. Let r ≥ 2 to be determined. Looking back in time from the
query, one groups the updates into exponentially growing epochs: the latest r updates are epoch

2

(a) (b)

Figure 2: Analysis of cell probes in the (a) epochs-based, and (b) time hierarchy, techniques.

1, the earlier r2 updates are epoch 2 etc. Note that epoch numbers increase going back in time,
and there are O(logr n) epochs in total.

For some epoch i, consider revealing to the query all updates performed in all epochs different
from i. Then, the query reduces to a partial-sums query among the updates in epoch i. Unless the
query is to an index below the minimum index updated in epoch i, the answer to the query is still
uniformly random, i.e. has δ bits of entropy. Furthermore, even if one is given, say, riδ/100 bits of
information about epoch i, the answer still has Ω(δ) bits of entropy on average. This is because the
query and updates in epoch i are uniformly random, so the query can ask for any partial sum of
these updates, uniformly at random. Each of the ri partial sums is an independent random variable
of entropy δ.

Now one can ask how much information is available to the query. At the time of the query,
let each cell be associated with the epoch during which it was last written. Choosing an epoch i
uniformly at random, one can make the following intuitive argument:

1. any cells written by epochs i+ 1, i+ 2, . . . cannot contain information about epoch i, as they
were written in the past.

2. in epochs 1, . . . , i − 1 a number of btΣu ·
∑i−1

j=1 r
j ≤ btΣu · 2ri−1 bits were written. This is less

than riδ/100 bits of information for r > 200tΣu (recall the assumption δ = b). By the above,
this implies the query answer still has Ω(δ) bits of entropy.

3. since i is uniformly random among Θ(logr n) epochs, the query makes an expectedO(tΣq / logr n)
probes to cells from epoch i. All queries which make no cell probes to epoch i have a fixed
answer (entropy 0), and all other queries have answers of entropy ≤ δ. Since an average query
has entropy Ω(δ), a query must probe a cell from epoch i with constant probability. That
means tΣq / logr n = Ω(1), and tΣ = Ω(logr n) = Ω(lg n/ lg tΣu).

One should appreciate the duality between the proof technique and the natural upper bounds based
on a hierarchy. Consider an upper bound based on a tree of degree r. The last r random updates
(epoch 1) are likely to be uniformly spread in the array. This means the updates touch different
children of the root. Similarly, the r2 updates in epoch 2 are likely to touch every node on level 2
of the tree, and so on. Now, the lower bound argues that the query needs to traverse a root-to-leaf
path, probing a node on every level of the tree (this is equivalent to one cell from every epoch).

Time hierarchies. Despite considerable refinement to the lower bound techniques, the lower
bound of Ω(lg n/ lg lg n) was not improved until 2004. Then, Pǎtraşcu and Demaine showed an
optimal bound of tΣq lg(tΣu/t

Σ
q) = Ω(lg n), implying max{tΣu, tΣq } = Ω(lg n). For simplicity, the

discussion below disregards the trade-off, and just sketches the Ω(lg n) lower bound.
Their counting technique is rather different from the epoch technique; refer to Figure 2. The

hard instance is a sequence of n operations alternating between updates and queries. They consider
a balanced binary tree over the time axis, with every leaf being an operation. Now for every node

3

of the tree, they propose to count the number of cell probes made in the right subtree, to a cell
written in the left subtree. Every probe is counted exactly once, for the lowest common ancestor
of the read and write times.

Now focus on two sibling subtrees, each containing k operations. The k/2 updates in the
left subtree, and the k/2 queries in the right subtree, are expected to interleave in index space.
Thus, the queries in the right subtree ask for Ω(k) different partial sums of the updates in the left
subtree. Thus, the right subtree “needs” Ω(kδ) bits of information about the left subtree, and this
information can only come from cells written in the left subtree and read in the right one. This
implies a lower bound of Ω(k) probes, associated with the parent of the sibling subtrees. This
bound is linear in the number of leaves, so summing up over the tree, one obtains a total Ω(n lg n)
lower bound, or Ω(lg n) cost per operation.

An optimal epoch construction. Rather surprisingly, Pǎtraşcu and Tarniţǎ [7] managed to
reprove the optimal trade-off of Theorem 1 with minimal modifications to the epoch argument. In
the old epoch argument, the information revealed by epochs 1, . . . , i−1 about epoch i was bounded
by the number of cells written in these epochs. The key idea is that an equally good bound is the
number of cells read during epochs 1, . . . , i− 1 and written during epoch i.

In principle, all cell reads from epoch i − 1 could read data from epoch i, making these two
bounds identical. However, one can randomize the epoch construction, by inserting the query
after an unpredictable number of updates. This randomization “smoothes” out the distribution
of epochs from which cells are read, i.e. a query reads O(tΣq / logr n) cells from every epoch, in
expectation over the randomness in the epoch construction. Then, the O(ri−1) updates in epochs
1, . . . , i − 1 only read O(ri−1 · tΣu/ logr n) cells from epoch i. This is not enough information if
r � tΣu/ logr n = Θ(tΣu/t

Σ
q), which implies tΣq = Ω(logr n) = Ω(lg n/ lg tΣu

tΣq
).

2.2 Technical Difficulties

Nondeterminism. The lower bounds sketched above are based on the fact that the sum query
needs to output Ω(δ) bits of information about every query. If dealing with the decision testsum
query, an argument based on output entropy can no longer work.

The most successful idea for decision queries has been to convert them to queries with non-
boolean output, in an extended cell-probe model that allows nondeterminism. In this model, the
query algorithm is allowed to spawn an arbitrary number of computation threads. Each thread
can make tq cell probes, after which it must either reject, or return an answer to the query. All
non-rejecting threads must return the same output. In this model, a query with arbitrary output
is equivalent to a decision query, because one can just nondeterministically guess the answer, and
then verify it.

By the above, the challenge is to prove good lower bounds for sum even in the nondeterminstic
model. Nondeterminism shakes our view that when analyzing epoch i, only cell probes to epoch i
matter. The trouble is that the query may not know which of its probes are actually to epoch i. A
probe that reads a cell from a previous epoch provides at least some information about epoch i: no
update in the epoch decided to overwrite the cell. Before this was not a problem, because the goal
was only to rule out the case that there are zero probes to epoch i. Now, however, different threads
can probe any cell in memory, and one cannot determine which threads actually avoid probing
anything in epoch i. In other words, there is a covert communication channel between epoch i and

4

the query, in which the epoch can use the choice of which cells to write in order to communicate
information to the query.

There are two main strategies for handling nondeterministic query algorithms. Husfeldt and
Rauhe [4] give a proof based on some interesting observations about the combinatorics of nonde-
terministic queries. Pǎtraşcu and Demaine [6] use the power of nondeterminism itself, to output
a small certificate that rules out useless cell probes. The latter result implies the optimal lower
bound of Theorem 1 for testsum and, thus, the logarithmic lower bound for dynamic connectivity.

Alternative histories. The framework described above relies on fixing all updates in epochs
different from i to an average value, and arguing that the query answer still has a lot of variability,
depending on updates in epoch i. This is true for aggregation problems, but not for search problems.
If a searched item is found with equal probability in any epoch, then fixing all other epochs renders
epoch i irrelevant with probability 1− 1

logr n
.

Alstrup, Husfeldt and Rauhe [1] propose a very interesting refinement to the technique, proving
Ω(lg n/ lg lgn) lower bounds for an impressive collection of search problems. Intuitively, their idea
is to consider O(logr n) alternative histories of updates, chosen independently at random. Epoch
i is relevant in at least one of the histories with constant probability. On the other hand, even if
one knows what epochs 1 through i− 1 learned about epoch i in all histories, answering a random
query is still hard.

Bit-probe complexity. Intuitively, if the word size is b = 1, the lower bound for connectivity
should be roughly Ω(lg2 n), because a query needs Ω(lg n) bits from every epoch. However, ruling
out anything except zero probes to an epoch turns out to be difficult, for the same reason that the
nondeterministic case is difficult. Without giving a very satisfactory understanding of this issue,
Pǎtraşcu and Tarniţǎ [7] use a large bag of tricks to show an Ω((lgn

lg lgn)2) lower bound for dynamic

connectivity. Furthermore, they consider the partial-sums problem in Z2, and show an Ω(lgn
lg lg lgn)

lower bound, which is a triply-logarithmic factor away from the upper bound!

3 Applications

The lower bound discussed here extends by easy reductions to virtually all natural fully-dynamic
graph problems [6].

4 Open Problems

By far, the most important challenge for future research is to obtain a lower bound of ω(lg n)
per operation for some dynamic data structure in the cell-probe model with word size Θ(lg n).
Miltersen [5] specifies a set of technical conditions for what qualifies as a solution to such a challenge.
In particular, the problem should be a dynamic language membership problem.

For the partial-sums problem, though sum is perfectly understood, testsum still lacks tight
bounds for certain ranges of parameters [6]. In addition, obtaining tight bounds in the bit-probe
model for partial sums in Z2 appears to be rather challenging.

5

5 Experimental Results

None is reported.

6 Data Sets

None is reported.

7 URL to Code

None is reported.

8 Cross References

Please link to sections on dynamic connectivity upper bounds.

9 Recommended Reading

[1] S. Alstrup, T. Husfeldt, and T. Rauhe, Marked ancestor problems, in Proc. 39th IEEE
Symposium on Foundations of Computer Science (FOCS), 1998, pp. 534–543.

[2] D. Eppstein, G. F. Italiano, R. Tamassia, R. E. Tarjan, J. R. Westbrook, and
M. Yung, Maintenance of a minimum spanning forest in a dynamic planar graph, Journal
of Algorithms, 13 (1992), pp. 33–54. See also SODA’90.

[3] M. L. Fredman and M. E. Saks, The cell probe complexity of dynamic data structures, in
Proc. 21st ACM Symposium on Theory of Computing (STOC), 1989, pp. 345–354.

[4] T. Husfeldt and T. Rauhe, New lower bound techniques for dynamic partial sums and
related problems, SIAM Journal on Computing, 32 (2003), pp. 736–753. See also ICALP’98.

[5] P. B. Miltersen, Cell probe complexity - a survey, in 19th Conference on the Foundations
of Software Technology and Theoretical Computer Science (FSTTCS), 1999. Advances in
Data Structures Workshop.

[6] M. Pǎtraşcu and E. D. Demaine, Logarithmic lower bounds in the cell-probe model, SIAM
Journal on Computing, 35 (2006), pp. 932–963. See also SODA’04 and STOC’04.

[7] M. Pǎtraşcu and C. Tarniţǎ, On dynamic bit-probe complexity, Theoretical Computer
Science, (2007). To appear. See also ICALP’05.

[8] D. D. Sleator and R. E. Tarjan, A data structure for dynamic trees, Journal of Computer
and System Sciences, 26 (1983), pp. 362–391. See also STOC’81.

[9] M. Thorup, Near-optimal fully-dynamic graph connectivity, in Proc. 32nd ACM Symposium
on Theory of Computing (STOC), 2000, pp. 343–350.

6

