
Searching the Integers (2006; Pǎtraşcu, Thorup)

Mihai Pǎtraşcu, MIT, web.mit.edu/∼mip/www/

Index terms: cell-probe lower bounds, rank space, orthogonal range queries
Synonyms: predecessor problem, successor problem, IP lookup

1 Problem Definition

Consider an ordered universe U , and a set T ⊂ U with |T | = n. The goal is to preprocess T , such
that the following query can be answered efficiently: given x ∈ U , report the predecessor of x,
i.e. max{y ∈ T | y < x}. One can also consider the dynamic problem, where elements are inserted
and deleted into T . Let tq be the query time, and tu the update time.

This is a fundamental search problem, with an impressive number of applications. Later,
this entry discusses IP lookup (forwarding packets on the Internet), orthogonal range queries and
persistent data structures as examples.

The problem was considered in many computational models. In fact, most models below were
initially defined to study the predecessor problem.

comparison model: The problem can be solved through binary search in Θ(lg n) comparisons.
There is a lot of work on adaptive bounds, which may be sublogarithmic. Such bounds may
depend on the finger distance, the working set, entropy etc.

binary search trees: Predecessor search is one of the fundamental motivations for binary search
trees. In this restrictive model, one can hope for an instance optimal (competitive) algorithm.
Attempts to achieve this are described in a separate entry.1

word RAM: Memory is organized as words of b bits, and can be accessed through indirection.
Constant-time operations include the standard operations in a language such as C (addition,
multiplication, shifts and bitwise operations).

It is standard to assume the universe is U = {1, . . . , 2`}, i.e. one deals with `-bit integers.
The floating point representation was designed so that order is preserved when values are
interpreted as integers, so any algorithm will also work for `-bit floating point numbers.

The standard transdichotomous assumption is that b = `, so that an input integer is repre-
sented in a word. This implies b ≥ lg n.

cell-probe model: This is a nonuniform model stronger than the word RAM, in which the oper-
ations are arbitrary functions on the memory words (cells) which have already been probed.
Thus, tq only counts the number of cell probes. This is an ideal model for lower bounds, since
it does not depend on the operations implemented by a particular computer.

1O(log log n)-competitive Binary Search Trees (2004; Demaine, Harmon, Iacono, Pǎtraşcu)

1

communication games: Let Alice have the query x, and Bob have the set T . They are trying
to find the predecessor of x through τ rounds of communication, where in each round Alice
sends mA bits, and Bob replies with mB bits.

This can simulate the cell-probe model when mB = b and mA is the logarithm of the memory
size. Then τ ≤ tq and one can use communication complexity to obtain cell-probe lower
bounds.

external memory: The unit of access is a page, containing B words of ` bits each. B-trees solve
the problem with query and update time O(logB n), and one can also achieve this oblivious
to the value of B.2 The cell-probe model with b = B · ` is stronger than this model.

AC0 RAM: This is a variant of the word RAM in which allowable operations are functions that
have constant depth, unbounded fan-in circuits. This excludes multiplication from the stan-
dard set of operations.

RAMBO: this is a variant of the RAM with a nonstandard memory, where words of memory
can overlap in their bits. In the static case this is essentially equivalent to a normal RAM.
However, in the dynamic case updates can be faster due to the word overlap [5].

The worst-case logarithmic bound for comparison search is not particularly informative when
efficiency really matters. In practice, B-trees and variants are standard when dealing with huge
data sets. Solutions based on RAM tricks are essential when the data set is not too large, but a
fast query time is crucial, such as in software solutions to IP lookup [7].

2 Key Results

Building on a long line of research, Pǎtraşcu and Thorup [15, 16] finally obtained matching up-
per and lower bounds for the static problem in the word RAM, cell-probe, external memory and
communication game models.

Let S be the number of words of space available. (In external memory, this is equivalent to S
B

pages.) Define a = lg S·`
n . Also define lg x = dlog2(x+ 2)e, so that lg x ≥ 1 even if x ∈ [0, 1]. Then

the optimal search time is, up to constant factors:

min

logb n = Θ(min{logB n, log` n})

lg `−lgn
a

lg `
a

lg
(

a
lg n

· lg `
a

)
lg `

a

lg
(
lg `

a
/ lg lg n

a

)
(1)

The bound is achieved by a deterministic query algorithm. For any space S, the data structure
can be constructed in time O(S) by a randomized algorithm, starting with the set T given in
sorted order. Updates are supported in expected time tq + O(Sn). Thus, besides locating the
element through one predecessor query, updates change a minimal fraction of the data structure.

2See Cache-oblivious B-tree (2005; Bender, Demaine, Farach-Colton).

2

Lower bounds hold in the powerful cell-probe model, and hold even for randomized algorithms.
When S ≥ n1+ε, the optimal trade-off for communication games coincides to (1). Note that the
case S = n1+o(1) essentially disappears in the reduction to communication complexity, because
Alice’s messages only depends on lgS. Thus, there is no asymptotic difference between S = O(n)
and, say, S = O(n2).

Upper Bounds. The following algorithmic techniques give the optimal result:

• B-trees give O(logB n) query time with linear space.

• fusion trees, by Fredman and Willard [10], achieve a query time of O(logb n). The basis of
this is a fusion node, a structure which can search among bε values in constant time. This is
done by recognizing that only a few bits of each value are essential, and packing the relevant
information about all values in a single word.

• van Emde Boas search [18] can solve the problem in O(lg `) time by binary searching for
the length of the longest common prefix between the query and a value in T . Beginning the
search with a table lookup based on the first lg n bits, and ending when there is enough space
to store all answers, the query time is reduced to O(lg `−lgn

a).

• a technique by Beame and Fich [4] can perform a multiway search for the longest common
prefix, by maintaining a careful balance between ` and n. This is relevant when the space is
at least n1+ε, and gives the third branch of (1). Pǎtraşcu and Thorup [15] show how related
ideas can be implemented with smaller space, yielding the last branch of (1).

Observe that external memory only features in the optimal trade-off through the O(logB n) term
coming from B-trees. Thus, it is optimal to either use the standard, comparison-based B-trees, or
use the best word RAM strategy which completely ignores external memory.

Lower Bounds. All lower bounds before [15] where shown in the communication game model.
Ajtai [1] was the first to prove a superconstant lower bound. His results, with a correction by
Miltersen [12], show that for polynomial space, there exists n as a function of ` making the query
time Ω(

√
lg `), and likewise there exists ` a function of n making the query complexity Ω(3

√
lg n).

Miltersen et al [13] revisited Ajtai’s proof, extending it to randomized algorithms. More impor-
tantly, they captured the essence of the proof in an independent round elimination lemma, which
is an important tool for proving lower bounds in asymmetric communication.

Beame and Fich [4] improved Ajtai’s lower bounds to Ω(lg `
lg lg `) and Ω(

√
lgn

lg lgn) respectively. Sen
and Venkatesh [17] later gave an improved round elimination lemma, which can reprove these lower
bounds, but also for randomized algorithms.

Finally, using the message compression lemma of [6] (an alternative to round elimination),
Pǎtraşcu and Thorup [15] showed an optimal trade-off for communication games. This is also an
optimal lower bound in the other models when S ≥ n1+ε, but not for smaller space.

More importantly, [15] developed the first tools for proving lower bounds exceeding communica-
tion complexity, when S = n1+o(1). This showed the first separation ever between a data structure
or polynomial size, and one of near linear size. This is fundamentally impossible through a direct
communication lower bound, since the reduction to communication games only depends on lgS.

3

The full result of Pǎtraşcu and Thorup [15] it the trade-off (1). Initially, this was shown only for
deterministic query algorithms, but eventually it was extended to a randomized lower bound as well
[16]. Among the surprising consequences of this result was that the classic van Emde Boas search
is optimal for near-linear space (and thus for dynamic data structures), whereas with quadratic
space it can be beaten by the technique of Beame and Fich.

A key technical idea of [15] is to analyze many queries simultaneously. Then, one considers a
communication game involving all queries, and proves a direct-sum version of the round elimination
lemma. Arguably, the proof is even simpler than for the regular round elimination lemma. This
is achieved by considering a stronger model for the inductive analysis, in which the algorithm is
allowed to reject a large fraction of the queries before starting to make probes.

Bucketing. The rich recursive structure of the problem can not only be used for fast queries, but
also to optimize the space and update time — of course, within the limits of (1). The idea is to
place ranges of consecutive values in buckets, and include a single representative of each bucket in
the predecessor structure. After performing a query on the predecessor structure (now with fewer
elements), one need only search within the relevant bucket.

Because buckets of size wO(1) can be handled in constant time by fusion trees, it follows that
factors of w in space are irrelevant. A more extreme application of the idea is given by exponential
trees [3]. Here buckets have size Θ(n1−γ), where γ is a sufficiently small constant. Buckets are
handled recursively in the same way, leading to O(lg lg n) levels. If the initial query time is at least
tq ≥ lgε n, the query times at each level decrease geometrically, so overall time only grows by a
constant factor. However, any polynomial space is reduced to linear, for an appropriate choice of
γ. Also, the exponential tree can be updated in O(tq) time, even if the original data structure was
static.

3 Applications

Perhaps the most important application of predecessor search is IP lookup. This is the problem
solved by routers for each packet on the Internet, when deciding which subnetwork to forward the
packet to. Thus, it is probably the most run algorithmic problem in the world. Formally, this
is an interval stabbing query, which is equivalent to predecessor search in the static case [9]. As
this is a problem where efficiency really matters, it is important to note that the fastest deployed
software solutions [7] use integer search strategies (not comparison-based), as theoretical results
would predict.

In addition, predecessor search is used pervasively in data structures, when reducing problems
to rank space. Given a set T , one often wants to relabel it to the simpler {1, . . . , n} (“rank space”),
while maintaining order relations. If one is presented with new values dynamically, the need for a
predecessor query arises. Here are a couple of illustrative examples:

• in orthogonal range queries, one maintains a set of points in Ud, and queries for points in
some rectangle [a1, b1]× · · · × [ad, bd]. Though bounds typically grow exponentially with the
dimension, the dependence on the universe can be factored out. At query time, one first runs
2d predecessor queries transforming the universe to {1, . . . , n}d.

• to make pointer data structures persistent [8], an outgoing link is replaced by a vector of
pointers, each valid for some period of time. Deciding which link to follow (given the time

4

being queried) is a predecessor problem.

Finally, it is interesting to note that the lower bounds for predecessor hold, by reductions, for
all applications described above. To make these reductions possible, the lower bounds are in fact
shown for the weaker colored predecessor problem. In this problem, the values in T are colored red
or blue, and the query only needs to find the color of the predecessor.

4 Open Problems

It is known [2] how to implement fusion trees with AC0 instructions, but not the other query
strategies. What is the best query trade-off achievable on the AC0 RAM? In particular, can van
Emde Boas search be implemented with AC0 instructions?

For the dynamic problem, can the update times be made deterministic? In particular, can
van Emde Boas search be implemented with fast deterministic updates? This is a very appealing
problem, with applications to deterministic dictionaries [14]. Also, can fusion nodes be updated
deterministically in constant time? Atomic heaps [11] achieve this when searching only among
(lg n)ε elements, not bε.

Finally, does an update to the predecessor structure require a query? In other words, can
tu = o(tq) be obtained, while still maintaining efficient query times?

5 Cross References

Please link to: O(log log n)-competitive Binary Search Trees (2004; Demaine, Harmon, Iacono,
Pǎtraşcu); Cache-oblivious B-tree (2005; Bender, Demaine, Farach-Colton).

6 Recommended Reading

References

[1] M. Ajtai, A lower bound for finding predecessors in Yao’s cell probe model, Combinatorica,
8 (1988), pp. 235–247.

[2] A. Andersson, P. B. Miltersen, and M. Thorup, Fusion trees can be implemented with
AC0 instructions only, Theoretical Computer Science, 215 (1999), pp. 337–344.

[3] A. Andersson and M. Thorup, Dynamic ordered sets with exponential search trees, Journal
of the ACM, 54 (2007). See also FOCS’96, STOC’00.

[4] P. Beame and F. E. Fich, Optimal bounds for the predecessor problem and related problems,
Journal of Computer and System Sciences, 65 (2002), pp. 38–72. See also STOC’99.

[5] A. Brodnik, S. Carlsson, M. L. Fredman, J. Karlsson, and J. I. Munro, Worst case
constant time priority queue, Journal of Systems and Software, 78 (2005), pp. 249–256. See
also SODA’01.

5

[6] A. Chakrabarti and O. Regev, An optimal randomised cell probe lower bound for approxi-
mate nearest neighbour searching, in Proc. 45th IEEE Symposium on Foundations of Computer
Science (FOCS), 2004, pp. 473–482.

[7] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, Small forwarding tables for fast
routing lookups, in Proc. ACM SIGCOMM, 1997, pp. 3–14.

[8] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan, Making data structures
persistent, Journal of Computer and System Sciences, 38 (1989), pp. 86–124. See also STOC’86.

[9] A. Feldmann and S. Muthukrishnan, Tradeoffs for packet classification, in Proc. IEEE
INFOCOM, 2000, pp. 1193–1202.

[10] M. L. Fredman and D. E. Willard, Surpassing the information theoretic bound with fusion
trees, Journal of Computer and System Sciences, 47 (1993), pp. 424–436. See also STOC’90.

[11] , Trans-dichotomous algorithms for minimum spanning trees and shortest paths, Journal
of Computer and System Sciences, 48 (1994), pp. 533–551. See also FOCS’90.

[12] P. B. Miltersen, Lower bounds for Union-Split-Find related problems on random access
machines, in Proc. 26th ACM Symposium on Theory of Computing (STOC), 1994, pp. 625–
634.

[13] P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson, On data structures and
asymmetric communication complexity, Journal of Computer and System Sciences, 57 (1998),
pp. 37–49. See also STOC’95.

[14] R. Pagh, A trade-off for worst-case efficient dictionaries, Nordic Journal of Computing, 7
(2000), pp. 151–163. See also SWAT’00.

[15] M. Pǎtraşcu and M. Thorup, Time-space trade-offs for predecessor search, in Proc. 38th
ACM Symposium on Theory of Computing (STOC), 2006, pp. 232–240.

[16] , Randomization does not help searching predecessors, in Proc. 18th ACM/SIAM Sympo-
sium on Discrete Algorithms (SODA), 2007, pp. 555–564.

[17] P. Sen and S. Venkatesh, Lower bounds for predecessor searching in the cell probe model,
Journal of Computer and System Sciences, 74 (2008), pp. 364–385. See also ICALP’01, CCC’03.

[18] P. van Emde Boas, R. Kaas, and E. Zijlstra, Design and implementation of an efficient
priority queue, Mathematical Systems Theory, 10 (1977), pp. 99–127. Conference version by
van Emde Boas alone in FOCS’75.

6

