Lecture Notes for $O(lg \lg n)$-Competitive BSTs

Recap:
- Binary Search Tree (BST) model
 - consider a set S of $|S| = n$ ordered elements
 - let $S = \{1, 2, \ldots, n\}$ for concreteness
 - must maintain a dynamic BST with elements in S
 - can be changed through rotations
 - only operation: search(x), where $x \in S$
 - Cost = Running Time = # nodes touched by search + # rotations performed

Goals:
- given a sequence $\bar{x} = (x_1, \ldots, x_m)$, find $OPT(\bar{x})$
 - optimal cost to run search(x_1), search(x_2), ..., search(x_m) in BST model
 - Examples:
 - $OPT(1, 2, \ldots, n) = \Theta(n)$
 - $E[OPT(\bar{x})] \leq 2 (m \lg n)$ for random $\bar{x} \in [n]^m$
 - Wanted: d-approximation algorithm

Why?
- "All-Pairs Shortest Paths should take $O(n^3)$, but on my company's graphs, my optimized algorithm runs much faster."
- "This problem is NP-complete, but this optimized backtracking solves it very well on my practical instances."

We'll pick a very simple problem where we understand the worst-case well.

Can we understand the "difficulty" of each particular instance?

Results:
- $O(lg \lg n)$-competitive = trivial
- Tango trees: $O(lg \lg n)$ competitive, $O(lg lg n)$ approximation
 - today's topic
- Conjecture: splay trees $O(1)$-competitive [Sleator, Tarjan '83]
- Conjecture: a greedy algorithm is $O(1)$-approx [Lucas '88, Munro '00]
 - $\text{if so } \Rightarrow \text{ online } O(1)$-competitive [DHJKP '09]
How to prove approximation/competitive ratio:

Compare upper bound with lower bound → often value of linear program, etc.

Here:

- Lower bound = lower bound on computation

Wilber [Wilber '86]

- Plot sequence \(X \) on time/value diagram
- Build a tree over values → "lower bound tree" (arbitrary, static)
- "Interleave thru a node" = switching from left subtree to right subtree

Lower bound = \(\sum \) all nodes (number of interleave)

Proof: Later

Tango trees

Cost = (Wilber I) \(\times \) \(O(\log \log n) \)

Each node has a preferred child (where most recent access happened)

"Preferred path decomposition" of the lower bound tree

1. Lower bound tree = perfect binary tree
2. Maintain each preferred path as dynamic BST (red-black tree, AVL, splay tree, etc)
 - Preferred path has \(\leq \log n \) nodes \(\Rightarrow \) \(O(\log \log n) \) time/operation
 - # preferred paths visited = Wilber I

Implementation details:

- Preferred path

 \[\text{we want to break this link in preferred decompo} \]

 \[\begin{align*}
 1. & \text{split after successor(x)} \\
 2. & \text{split before parent successor(x)} \\
 3. & \text{insert preferred path before successor(x)}
 \end{align*} \quad (\text{split; concatenate; concatenate}) \]

- Successor found by search(x)

- Build a BST over these elements
Proof of Wilber I — a lower bound on computation

Conceptual shift: what are BSTs useful for?
- searching for elements? maybe, but not really optimal (think hashing, etc)
- augmented BSTs maintain aggregates!

Partial-sums problem: given array $A[1..n]$
- update (i, Δ): change $A[i] \leftarrow A[i] + \Delta$
- query (i): return $\sum_{j=1}^{i} A[j]$

Computational model:
- let $S =$ arbitrary semigroup
- each $A[i] \in S$; machine memory stores $Mem[i] \in S$
- Cost = # semigroup additions performed

Given $X = (x_1, \ldots, x_m)$ execute: update (x_1, Δ_1), query (x_1); update (x_2, Δ_2), query (x_2), ...
- BSTs support these $2m$ operations in $O(\text{OPT}(X))$ cost (additions)

Given $X = (x_1, \ldots, x_m)$, the answer to query at x_5 is $\Delta_1 + \Delta_2 + \Delta_3 + \Delta_5$

Signatures:
- Each memory location looks like $\text{Mem}[a] = \Delta_1 + \Delta_2 + \cdots$
- Signature at $\text{Mem}[a]$: $(\Delta_1, x_1, \Delta_2, x_2, \ldots)$

Wilber I: for each node $v \in$ lowerbound tree, let
- $A(v) = \{ \text{all additions "} M_1 + M_2 \text{" with } \text{Signature}(m_1) \in [a,b] \times [1,m] \}$
- $\text{Signature}(m_2) \in [b,c] \times [1,m]$

$A(v)$ for all v is a partition of all additions executed by code \implies cost $= \sum_{v} |A(v)|$

Conclusion: $\text{Cost} \geq \sum_{v} \# \text{interleaves through } v$

Proof by picture: Fig 2
Fig. 1

"X" mark access sequence \((X_1, \ldots, X_m)\).

There are 3 interleaves through \(U\); 2 interleaves through \(V\).

Fig. 2

Say there are 4 interleaves.

There must be 3 elements in those boxes.

To get the query answers right, must add \(\mu M_1 + M_2\).

\(\text{While} \Rightarrow \text{signature}(M_1) \in \text{curly box}\).

\(\text{signature}(M_2) \in \{b, c, \text{step}\}\).

This is trivial once you understand that signatures can only move right and down through additions.