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In this corrigendum, we correct an error in the paper [1].
The error was discovered by Alexandr Andoni, and the cor-
rected theorem is due to the three authors of [1], along with
Alexandr Andoni and Mihai Pǎtraşcu.

Theorem 4 of [1] states:
Let D be a collection of n points in R

d. Let r1, . . . rm be

random unit vectors in R
d, where m = αε−2 log n with

α suitably chosen. Let q ∈ R
d be an arbitrary point,

and define, for each i with 1 ≤ i ≤ m, the ranked

list Li of the n points in D by sorting them in in-

creasing order of their distances to the projection of q
along ri. For each element x of D, let medrank(x) =
median(L1(x), . . . , Lm(x)). Let z be a member of D
such that medrank(z) is minimized. Then with proba-

bility at least 1−1/n, we have ‖z−q‖2 ≤ (1+ε)‖x−q‖2

for all x ∈ D.

As stated, the above theorem does not hold, but a ver-
sion of it holds if one replaces the median over ranks by a
median over suitably defined scores. Below, we give a coun-
terexample to the original theorem, and then present our
modification to the theorem, and the resulting algorithm.

1. A COUNTEREXAMPLE
Intuitively, the above theorem does not hold in the follow-

ing situation. Suppose q is the query point, p is the nearest
neighbor of q, and z is at distance (1 + ε)‖p − q‖2. For a
random unit vector r, let rankr(p) denote the rank of the
point p in the list Lr of the set D of points sorted by their
distance to the projection of q along r. While it is true that
rankr(p) < rankr(z) holds 1/2 + Ω(ε) fraction of the time
(over the random choice of r), we cannot infer the same for
the overall median rank when taking into the consideration
the other points in D. In particular, a bad dataset is one
where whenever rankr(p) < rankr(z) then about half of the
time both ranks are high, but when rankr(p) > rankr(z) the
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point z has very small rank and p has a high rank. Then, in
the end, p will have a high rank for about 75% of the time,
while z has a high rank about 25% of time. Our counterex-
ample constructs a set with (roughly) such characteristics.

We give a specific set of n ≥ 10 points in 2-dimensional
space. Consider the following point set for very small ε,
illustrated in Fig. 1:

• point q = (0, 0), the query;
• point p = (0, 1), the nearest neighbor;
• point z = (1 + ε, 0), the false nearest neighbor;
• a set H of n−3

2
points all at distance (1 + ε)2 from q,

specifically at h = (1 + ε)2 · ( 1√
2
, 1√

2
);

• a set S of the same size as H, namely n−3
2

points, all

situated at s = (1 + ε)2 · (1, 0).
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Figure 1: The pointset for our counterexample,

where q is the query and p is the nearest neighbor.

The grey point is the midpoint of the segment ps.

Let r be a random unit vector in R
2, and let Lr, rankr(x)

be as defined earlier. Then we have the following two claims.
Below, Prr denotes probability over the random choice of r.

Claim 1.1. Prr[rankr(z) ≤ 2] ≥ 1/2 + Ω(ε).

Claim 1.1 follows immediately from Lemma 3 of [1].

Claim 1.2. Prr[rankr(p) > |H|] ≥ 1/2 + Ω(1).

We prove Claim 1.2 next. It is sufficient to consider r’s
with non-negative x coordinate (since r and −r yield the
same list Lr), and identify r’s by their angle γr with the x
axis. First, we note that rankr(p) ≤ rankr(s) iff γr ∈ [α, β],
where α is angle formed by the perpendicular to the line



Preprocessing. Input: a set D of points from R
d, |D| = n, and ε > 0.

1. Choose k = O( log n
ε2

) vectors ri ∈ R
d, i = 1 . . . k, where each coordinate of ri is drawn from a Gaussian N(0, 1)

distribution. Vectors ri identify some random projections.
2. Construct k lists, where the ith list contains all the points p ∈ D sorted according to the value p · ri.

Query. Input: a query point q ∈ R
d.

1. For fixed i and p ∈ D, define scoreri
(p) = p · ri − q · ri.

2. Return the point p∗ ∈ D that minimizes mediani∈[k]{|scoreri
(p∗)|}.

Figure 2: The new algorithm for 1 + ε nearest neighbor data structure.

connecting q to the midpoint of the segment ps, and β is the
angle formed by the perpendicular to ps. We can estimate
α and β as follows, using the convention that p = (px, py)
and s = (sx, sy). Since the midpoint of the segment ps is

the point ( px+sx

2
,

py+sy

2
), we obtain that

α = arctan
py+sy

px+sx
−π/2 = arctan 1

(1+ε)2
−π/2 = −π/4−Θ(ε).

Similarly, the slope of the line ps is
py−sy

px−sx
and thus the angle

to its perpendicular line is

β = arctan sx−px

py−sy
= arctan(1 + ε)2 = π/4 + Θ(ε).

Thus, if γr 6∈ [α, β], then rankr(p) > rankr(s), and so
rankr(p) > |S| = |H|.

Moreover, as we will see, if the angle of r is around −π/4,
then rankr(p) > rankr(h). Indeed, consider r with angle
γr ∈ [−π/4−π/16,−π/4+π/16] to the x axis. Then, |p·r| =
|0 · cos γr + sin γr| > 0.5 and |h · r| = |(1 + ε)2 1√

2
· (sin γr +

cos γr)| < 0.2(1+ε)2. Thus, when γr ∈ [−π/4−π/16,−π/4+
π/16], we have that rankr(p) > |H|.

Combining the two ranges of the angle of r, we conclude
that if the angle of r is in the range (−π/2,−π/4 + π/16)
or (β, π/2), we have rankr(p) > |H|. This happens with

probability at least π/4+π/16+π/4−Θ(ε)
π

= 1/2 + 1/16 −Θ(ε).
Standard high concentration bounds yield, with high prob-

ability, that medrank(z) ≤ 2 and medrank(p) ≥ |H| and
thus medrank(z) < medrank(p). For completeness, we in-
clude one such lemma, due to Indyk:

Lemma 1.3 (cf. [2], Claim 2). Let D be a distribution

on R and F be its cumulative distribution function. Then,

for ε, δ > 0 and some k = O( log 1/δ

ε2
), if X1 . . . Xk are iid

from D, then X = median{X1, . . . Xk} satisfies Pr[F (X) ∈
(1/2 − ε, 1/2 + ε)] ≥ 1 − δ.

2. A NEW ALGORITHM
To correct the theorem, we propose to replace rankr(x)

by |x · r − q · r|, which we refer to as (the absolute value
of) a score, and, consequently, we replace medrank by an
alternative function medscore(x) = mediani(|x · ri − q · ri|).

The rest of the algorithm remains unchanged. The result-
ing algorithm is presented in Fig. 2. Next, we show that we
obtain a 1 + ε nearest neighbor data structure.

Theorem 2.1. The algorithm from Figure 2 returns a 1+
ε nearest neighbor of q with probability at least 1 − 1/n.

Proof. Fix some p and let ∆ = ‖p − q‖2. For each
i ∈ [k], we have that scoreri

(p) = (p−q) ·ri is distributed as
N(0, ∆2), the normal distribution with standard deviation
∆. We will once again use Lemma 1.3 for estimating the
median of iid samples.

Let Mp = mediani∈[k]{|scoreri
(p)|}. We apply Lemma 1.3

with Xi = |scoreri
(p)| which is distributed as the absolute

value of the Gaussian N(0, ∆2) and thus has cumulative dis-

tribution function F (x) = erf(x/∆) = 2√
π

R x/∆

0
e−t2dt. We

then conclude that, setting δ = 1/n2, we have F (Mp) ∈
(1/2 − O(ε), 1/2 + O(ε)) with probability at least 1 − 1/n2.
Then, for x∗ = ∆ · c where c = erf−1(1/2), we have that

F (x∗ − O(ε) · ∆) = 2√
π

R (x∗−O(ε)·∆)/∆

0
e−t2dt = erf(c) +

2√
π

R c−O(ε)

c
e−t2dt = 1/2 − O(ε) and similarly F (x∗ + O(ε) ·

∆) = 1/2 + O(ε). We conclude, by the monotonicity of
F , that, with probability at least 1 − 1/n2, we have that
Mp ∈ (x∗ − O(ε) · ∆, x∗ + O(ε) · ∆) and thus Mp/c ∈
(∆−O(ε), ∆+O(ε)). Finally, choosing the implicit constant
in k sufficiently high, we conclude that, with probability at
least 1 − 1/n2,

(1 − ε/3)‖p − q‖2 ≤ Mp/c ≤ (1 + ε/3)‖p − q‖2. (1)

By the union bound, (1) holds for all p ∈ D with prob-
ability at least 1 − 1/n. Now, minimizing Mp is equivalent
to minimizing Mp/c, which we can bound as minp Mp/c ≤
minp(1 + ε/3)‖p − q‖2 = (1 + ε/3)‖p∗ − q‖2, where p∗ is
the nearest neighbor of q. Then, for any p with ‖p − q‖2 >
(1+ ε)‖p∗− q‖2, we have, by (1), that Mp/c ≥ (1− ε/3)‖p−

q‖2 > (1 − ε/3)(1 + ε)‖p∗ − q‖ ≥ (1−ε/3)(1+ε)
1+ε/3

minp Mp/c >

minp Mp/c. Thus, step (2) of the query algorithm returns a
point p with ‖p − q‖2 ≤ (1 + ε)‖p∗ − q‖2, with probability
≥ 1 − 1/n.

We note that, for Step 2 of the query algorithm, we can use
also other aggregation functions instead of the median func-
tion. In particular, if we use the `2 norm of the score vec-
tor instead of the median, then the same theorem as above
holds, implied by the Johnson–Lindenstrauss lemma [3]. Fur-
thermore, if use the `1 norm of the score vector, then again
the same theorem as above holds, and is implied by the `2

to `1 embedding of [4].
Finally, we note that instance-optimality claims similar to

those in [1] carry over to our algorithm (except that random
accesses are also required).
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