Computational Geometry through the Information Lens
by
Mihai Patragcu

Submitted to the Department of
Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2007
(© Massachusetts Institute of Technology 2007. All rights reserved.

Department of

Electrical Engineering and Computer Science
May 22, 2007

Certified Dy . ..o
Erik D. Demaine

Associate Professor

Thesis Supervisor

Accepted Dy . ..o
Arthur C. Smith

Chairman, Department Committee on Graduate Students

Computational Geometry through the Information Lens
by
Mihai Patrascu

Submitted to the Department of
Electrical Engineering and Computer Science
on May 22, 2007, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

This thesis revisits classic problems in computational geometry from the modern algorithmic
perspective of exploiting the bounded precision of the input. In one dimension, this viewpoint
has taken over as the standard model of computation, and has led to a powerful suite of
techniques that constitute a mature field of research. In two or more dimensions, we have
seen great success in understanding orthogonal problems, which decompose naturally into
one dimensional problems.

However, problems of a nonorthogonal nature, the core of computational geometry, have
remained uncracked for many years despite extensive effort. For example, Willard asked in
SODA’92 for a o(nlgn) algorithm for Voronoi diagrams. Despite growing interest in the
problem, it was not successfully solved until this thesis.

Formally, let w be the number of bits in a computer word, and consider n points with
O(w)-bit rational coordinates. This thesis describes:

e a data structure for 2-d point location with O(n) space, and O(min {15;17 ./ lgw}

query time.
e randomized algorithms with running time n - 200V8187) < p1g°MW yy for 3-d conver hull,
2-d Voronot diagram, 2-d line segment intersection, and a variety of related problems.

e a data structure for 2-d dynamic convex hull, with O(lgl‘?gn) query time, and O(lg*n)

update time.

More generally, this thesis develops a suite of techniques for exploiting bounded precision in
geometric problems, hopefully laying the foundations for a rejuvenated research direction.

Thesis Supervisor: Erik D. Demaine
Title: Associate Professor

Acknowledgments

Erik Demaine has been my research adviser for 4 years and a half, throughout my undergrad-
uate and graduate work. I am profoundly grateful to him for the unconditional support that
he has provided throughout these years. My work in theoretical computer science started
with Erik’s willingness to trust and guide a freshman with great dreams, but no real idea of
what this research field meant. Throughout the years, Erik’s understanding and tolerance
for my unorthodox style, including in the creation of this thesis, have provided the best
possible research environment for me.

This thesis is based primarily on three publications, in FOCS’06 [Pat06], STOC’07
[CP07], and SoCG’07 [DP07]. From my point of view, this line of work started during the
First Machu Picchu Workshop on Data Structures. Though I shall refrain from discussing
details of this event, I am profoundly grateful to John Iacono, as the main organizer, and
again to Erik for supporting such research endeavors. My interactions with John during this
workshop and beyond have been most gratifying. In particular, it was John who sparked
my interest in sublogarithmic point location. Furthermore, his support, through research
discussions and otherwise, was key to me finding a solution during the workshop.

Through a remarkable coincidence, my paper in FOCS’06 on point location was accom-
panied by an independent submission by Timothy Chan [Cha0O6] with similar results. This
has lead to subsequent collaboration with Timothy, and in particular, our joint STOC’07
paper. Collaborating with Timothy has been a flawless experience, and this thesis owes a lot
to his remarkable research prowess. Finally, I am once more grateful to Erik for an enjoyable
and engaging collaboration on our joint SoOCG’07 paper.

Beyond research, I wish to thank my friends and colleagues, among whom Alex Andoni
stands out, for their constant support, good company, and the great time spent together.
Last but not least, I am grateful to Akamai for sponsoring the Akamai Presidential Fellowship
that supported me this year.

Contents

4.1
4.2
4.3

3.3.3 Bounding the Dependence on m

General Point Location via Reductions

Technical Overview
Method 1: Planar Separators
Method 2: Random Sampling

1 Introduction
1.1 Technical Overview
1.2 Motivation
1.2.1 Theory for Reality
1.2.2 Theory for Practice
1.2.3 The Problems in Historical Context
1.2.4 The Model in Historical Context
1.2.5 Practice for Theory
1.2.6 Theory for Theory
2 Point Location in a Slab
2.1 Technical Overview
2.2 Warm-Up: A Simpler 1-d Fusion Tree
2.3 A Solution for 2-d
2.4 Alternative Boundso
3 Sorting Points and Segments
3.1 An Initial Algorithm
3.1.1 The Basic Recursive Strategy
3.1.2 An O(nyIgm +m) Algorithm
3.2 Ann-20Wklem™ L O(m) Algorithm
3.2.1 Preliminaries
3.2.2 The Improved Algorithm
3.2.3 Analysis
3.3 Avoiding Nonstandard Operations
3.3.1 The Center Slab
3.3.2 Lateral Slabs

10
12
13
14
14
15
17
17

19
19
20
22
24

27
28
28
29
31
31
32
33
34
35
36
37

4.4 Method 3: Persistence and Exponential Search Trees
4.4.1 The Segment Predecessor Problem
4.4.2 Geometric Exponential Trees
4.4.3 Application to Point Location

Reexamining Computational Geometry

5.1 Improved Data Structures
5.2 Segment Intersection oo
5.3 Convex Hulls in 3-d and Voronoi Diagrams in 2-d
5.4 Other Consequences v

Improving Dynamic Search

6.1 Technical Overview
6.1.1 Review of Overmars-van Leeuwen

6.2 Adaptive Point Location

6.3 Quantifying Geometric Information 0L

6.4 The Data Structure
6.4.1 Query Invariantso
6.4.2 Querying a Hull-Fusion Node
6.4.3 Updates

Open Problems

7.1 Open Problems in Algorithms
7.2 Open Problems in Static Data Structures
7.3 Open Problems in Dynamic Data Structures

Results in Higher Dimensions

A.1 Online Point Location
A.2 Offline Point Location
A.3 Applications in Higher Dimensions

A Careful Look at Dynamic Queries

B.1 Query Taxonomy
B.2 Fast Queries with Near-Logarithmic Update Time
B.3 Lower Bound

51
ol
52
23
54

57
o7
58
59
60
63
64
64
66

67
67
69
70

73
73
74
74

Chapter 1

Introduction

Sorting requires Q(nlgn) time for comparison-based algorithms, yet this lower bound can
be beaten if the n input elements are integers in a restricted range [0,U). For example,
if U = n°®, radix-sort runs in linear time. In practice, radix sort is one of the most
popular and most efficient sorting algorithms. In theory, the field of integer search provides
a fascinating understanding of how information can be manipulated algorithmically, and the
consequences this has on problem complexity.

Exploiting bounded precision has also been considered frequently for geometric problems,
but up to now, results are essentially limited to problems about axis-parallel objects or met-
rics, which can be decomposed into one-dimensional problems. The bulk of computational
geometry deals with non-orthogonal things (lines of arbitrary slopes, the Euclidean metric,
etc.) and thus has largely remained a passive observer of the breakthroughs on integer sort-
ing and searching. This shortcoming was highlighted by Willard in SODA’92 [Wil00], and
repeatedly since then.

This thesis answers Willard’s 15-year old challenge, and makes computational geometry
an active player in the world of bounded precision algorithms. We provide the first o(nlgn)
running times for core algorithmic problems in geometry, such as constructing Voronoi di-
agrams, 3-d convex hull, segment intersection, etc. We also provide the first o(lgn) query
times for planar point location, 2-d nearest nearest neighbor, dynamic convex hull, etc.

More than providing an answer to an old question, our results open the door to a whole
new playing field where most geometric problems do not yet have optimal solutions. At the
heart of this research direction is the attempt to elucidate the fundamental ways in which
bounded information about geometric objects such as points and lines can be decomposed
in algorithmically useful ways. In computational geometry, this leads to many fascinating
puzzles and a deeper understanding of the relative difficulty of geometric problems. In
the world of RAM algorithms, our work had to develop significantly novel approaches for
exploiting fixed precision. By analogy with the successes in one dimension, one can hope
that an equally rich theory for multidimensional problems is waiting to be explored.

%
\
(a)

(b)

Figure 1-1: (a) Point location in a slab. (b) General point location.

1.1 Technical Overview

Model of computation. The underlying model of computation in finite-precision results
is a Random Access Machine (RAM) that supports standard operations on w-bit words with
unit cost. The supported operations are those available in a typical language such as C:
additions, subtractions, multiplications, shifts, and bitwise operations. To make the model
realistic, one assumes w = O(lgU), i.e. the task of the algorithm is to handle numbers
represented in one (or maybe O(1)) machine words. One can also reasonably assume that
w > lgn, so that we can have n distinct numbers, and an index or pointer can fit in a word.
The adjective “transdichotomous” is often associated with this model of computation. These
assumptions fit the reality of computing as it is understood and deployed today, including
in common programming languages such as C, and standard programming practice.

Searching in 2-d. In the one-dimensional world, predecessor search is one of the most
fundamental and well-studied problems. Given a set S of n integers in [0,2%), the problem
is to build a data structure supporting the following query: for some ¢ € [0,2"), report
max{z € S|z < ¢}.

Point location in a slab is perhaps the simplest toy problem which extends predecessor
search to two dimensions, and captures the nonorthogonal behavior that we want to study.
Refer to Figure 1-1(a). In this problem, we are given a set S of n disjoint (nonvertical) line
segments inside a vertical slab, where the endpoints all lie on the boundary of the slab and
have integer coordinates in the range [0,2"). The goal is to preprocess S so that given a
query point ¢ with integer coordinates inside the slab, we can quickly find the segment that
is immediately below q.

If we simply store the sorted segments, the problem is immediately solved in O(lgn) query

10

time by binary search. In Chapter 2, we describe the first data structure which can beat this
simple bound. Specifically, we describe a data structure of O(n) space, supporting queries

in time O (min {15;71’ . /lng}>' This is a theoretical improvement to a sublogarithmic query

time for any precision w, and a roughly quadratic improvement when the input comes from
a polynomial universe (w = O(lgn)).

Sorting in 2-d. The offline version of predecessor search is the problem of sorting n
numbers. In 2-d, the offline version of our toy problem is an equally natural incarnation of
our intuitive notion of ordering. We are given a vertical slab in the plane, m nonintersecting
segments cutting across the slab, and n points inside the slab. The goal is to identify for each
of the n points, the segments immediately below and above it. In other words, we would like
to sort the points “relative to” the segments.

By running n queries to the online data structure, we already have a solution beating the
standard O(m+nlgm). In Chapter 3, however, we provide a more efficient algorithm beating
the standard bound more dramatically: we obtain a running time of n - 20WVgle™) 1 O(m).
Note that this bound does not depend on the universe at all, and it grows more slowly than
m + nlg®m for any constant £ > 0.

Planar point location. In this problem, we are given n segments, dividing the plane into
polygons; segments are only allowed to touch at end-points. The query asks for a polygon
(face) which contains a given point. See Figure 1-1(b).

Point location is one of the most fundamental and well-studied search problems in com-
putational geometry. Every introductory book in computational geometry discusses the
problem at length, and the problem is almost surely the topic of hundreds of publications.
There are also important applications in the offline case (such as finite-element simulations
with FEuler-Lagrange coupling, and overlay problems in GIS and CAD systems).

It turns out the one can reduce the problem to the slab problem discussed above, both
in the online and offline case, while maintaining the same space and running times. This is
the topic of Chapter 4. We thus obtain the first sublogarithmic bounds for point location,
an important theoretical milestone.

In fact, we describe three independent reductions: two of them are adaptations of clas-
sic techniques in computational geometry, while the third requires significant theoretical
development, and is of independent interest.

Voronoi diagrams, segment intersection etc. The “toy” problem that we study cap-
tures core aspects of nonorthogonality, and our sublogarithmic bounds have far-reaching
consequences across computational geometry. In Chapter 5, we describe reductions leading
to improved bounds for a wide array of problems, both algorithmic and data structural.

In particular, we obtain running times of n - 200V87) for problems like constructing
Voronoi diagrams, 3-d convex hulls, segment intersection etc. These are the first results
improving on classic O(nlgn) bounds for these bread-and-butter problems in computational

geometry.

11

It turns out that our techniques for improved point location can be extended to higher
dimensions, and they have a number of applications there, as well. Appendix A discusses
results in higher dimensions.

Dynamic convex hull. So far, we have only discussed static data structures and algo-
rithms. Dynamic problems bring an entirely different, but very interesting, set of challenges,
addressed in Chapter 6. We study the dynamic convexr hull problem, as the most important
example of a dynamic nonorthogonal problem.
The problem is to maintain a set S, |S| < n, of points in 2-d under:

INSERT(p): insert a point p into S. Points in S are not necessarily in convex position.
DELETE(s): delete a point p from S.
TANGENT(p): return the two tangents through point p to the convex hull of S. It is guar-

anteed that p is outside the convex hull.
LP(v): return an extreme point in the direction given by vector v (linear programming).

As our main result in the dynamic world, we show how to support queries in O(; églg”n)
time, while supporting updates in O(lg*n). The highlight of this result is the unusual flavor
of the dynamic context.

In fact, tangent and linear programming queries are only two examples of queries we may
wish to support. In Appendix B, we discuss the various queries that are typically considered,
and prove additional upper and lower bounds. In particular, we show tangent and linear
programming queries require time €2(log,, n) when the update time is polylog(n). This proves

optimality of our upper bound for precision w = polylog(n).

1.2 Motivation

On a global level, our results open more problems than they close. We are now in front of a

whole new playing field where most geometric problems do not yet have optimal solutions.

By analogy with one dimension, one can hope for an equally rich theory for multidimensional

problems. But before proceeding through these open gates, we need to make sure that we

are going down a meaningful and worthy path. In the following sections, we discuss several

of our motivations for considering geometric problems in the bounded-precision context:

1.2.1 Real computers and therefore their inputs have bounded precision.

1.2.2 Bounded precision is already exploited in practice.

1.2.3 The fundamental problems under consideration have been studied and optimized ex-
tensively.

1.2.4 Exploiting bounded precision for these problems has been posed and attempted exten-
sively.

1.2.5 New, faster algorithms may impact engineering practice.

1.2.6 The problems require the development of fascinating new techniques that force us to
rethink our understanding of both bounded precision, and geometry.

12

1.2.1 Theory for Reality

A central issue in computational geometry is the discrepancy between the idealized geometric
view of limited objects with infinite precision, and the realistic computational view that
everything is represented by (finitely many) bits.

The geometric view is inspired by Euclidean geometric constructions from circa 300 BC.
In computational geometry, this view is modeled by the real RAM and related models con-
sidered for lower bounds, e.g., linear/algebraic decision/computation trees. These models
postulate a memory of infinite-precision cells, holding real values, and specify the operations
that can be performed on these values (typically, a subset of addition, multiplication, divi-
sion, roots, and comparisons). Inputs and, depending on the problem, outputs consist of
real values.

The computational view matches the reality of digital computers as we know them today
and as set forth by Turing in 1936 [Tur36]. This view assumes input is given with some
finite precision, and that memory cells (words) have a precision comparable to the input.
The preferred model for upper bounds is the word RAM, which allows operations commonly
available in a programming language such as C, including bitwise operations. Lower bounds
are usually shown in the cell-probe model, which allows any operation on a constant num-
ber of words. Thus, lower bounds have a deep information-theoretic meaning, and apply
regardless of the exotic operations that might be implemented on some machine.

Traditionally, computational geometry has seen the negative side of the contrast between
these two models. Algorithms are typically designed and analyzed in the real RAM, which
makes the theoretical side easier. However, practitioners must eventually deal with the finite
precision, making theoretical algorithms notoriously difficult to implement.

Given that algorithms must eventually be implemented in a bounded-precision model, it
seems only natural not to tie our theoretical hands by using the real RAM. By recognizing
that actual input data has bounded precision, and by designing algorithms for the word
RAM, one could potentially obtain significantly better bounds. This ability is demonstrated
for some key problems by our work. In addition, this approach has the advantage that it
does not hide a large implementation cost by idealizing the model, and therefore has the
potential to lead more directly to fast practical algorithms.

A question that we wish to touch on briefly is whether an integer (or rational) universe
is the right model for bounded precision. In certain cases, the input is on an integer grid
by definition (e.g. objects are on a computer screen). One might worry, however, about the
input being a floating point number. We believe that in most cases this is an artifact of
representation, and numbers should be treated as integers after appropriate scaling. One
reason is to note that the “floating-point plane” is simply a union of bounded integer grids
(the size depending on the number of bits of the mantissa), at different scale factors around
the origin. Since the kind of problems we are considering are translation-invariant, there
is no reason the origin should be special, and having more detail around the origin is not
particularly meaningful. Another reason is that certain aspects of the problems are not well-
defined when inputs are floating point numbers. For example, the slope of a line between two
points of very different exponents is not representable by floating point numbers anywhere

13

close to the original precision.

1.2.2 Theory for Practice

When scrutinizing a direction of theoretical research, it is important to understand not only
whether it studies an aspect of reality, but also whether it studies an interesting aspect of
reality. After all, the greatest payoff for a real application is often achieved by considering
an appropriate abstraction of the object of study, not all the real but irrelevant details.

A common theoretical fallacy is that it is irrelevant to study algorithms in a bounded
universe because “only comparison-based algorithms are ever implemented”. However, this
thesis has been attacked forcefully in one dimension; see, e.g., [HT02]. It is well known, for
instance, that the fastest solutions to sorting are based on bounded precision (radix sort).
Furthermore, when search speed matters, such as for forwarding packets in Internet routers,
implementing search by comparisons is inconceivable [DBCP97].

In nonorthogonal geometry, the object of our study, there are at least two classes of
examples showing the benefit of using bounded precision.

First, as discussed in a survey by Snoeyink [Sno04], the most efficient and popular ap-
proaches for planar point location use pruning heuristics on the grid. These heuristics are
similar in spirit to the point-location algorithms we develop in this thesis. To some extent,
our work justifies the advantage of these algorithms compared to the traditional approaches
taking logarithmic time, which have been regarded as optimal.

Second, there is extensive study and implementation of the approximate nearest neigh-
bor problem, even in two dimensions; see, e.g., [AEIS01, Cha02]. This is hard to under-
stand when viewed through the real-RAM abstraction, because the exact nearest neighbor
problem should be equally hard, both taking logarithmic time. However, the approximate
version turns out to be equivalent to one-dimensional predecessor search. When dealing with
bounded precision, this problem admits an exponentially better solution compared to exact
search in two dimensions — O(lgw) versus O(\/w/lgw).

Thus, some of our work so far can already be seen as a theoretical justification for practi-
cally proven approaches. Though giving a theoretical understanding of practical algorithms
is not our foremost goal, it is a normal and important outcome of theoretical research, in
line with a significant body of modern work.

We should note, however, that not all aspects of engineering practice are yet understood.
For example, practical implementations of grid-based search typically work with the original
instance of planar point location. By contrast, our theoretical analysis assumes that the
input is first reduced to the slab case, which incurs a constant but practically significant
overhead.

1.2.3 The Problems in Historical Context

The problems that we have studied are some of the most fundamental in computational
geometry. Problems like planar point location or constructing Voronoi diagrams appear in

14

virtually every textbook and are the topic of numerous surveys. Interest in these problems
has not waned throughout the years, and new techniques have been developed continuously.

Taking planar point location as an example, we note that there are at least five fundamen-
tally different ways to achieve O(lgn) query time with O(n) space: planar separators [LT80],
persistence [Col86, ST86], triangulation refinement [Kir83|, separating chains plus fractional
cascading [EGS86], and randomized incremental construction of a trapezoidal decomposition
[Mul90]. Taking this bound even further, Seidel and Adamy [SA00] obtain a running time of
exactly logy n + 24/logy n + O({/logy n) point-line comparisons, with expected linear space.

In recent years, there has been a lot of interest in obtaining adaptive (but still comparison-
based) bounds for point location, which can sometimes be sublogarithmic. The setup assumes
queries are chosen from a biased distribution of entropy H, and one tries to relate the query
time to H. Following some initial work on the subject, SODA 2001 saw no less than three
results in this direction: Arya et al. [AMMO1b] and Iacono [lac04] independently achieve
expected O(H) comparisons with O(n) space, while Arya et al. [AMMO01a] achieves H +o(H)
comparisons but with O(nlg"n) space.

Historically, such directions have also been pursued intensively in one dimension (e.g.,
static and dynamic optimality). Some central problems in this field remain open. Despite
this, almost two decades after Fredman and Willard’s fusion trees [FW93|, it appears that
bounded precision safely occupies the center stage, and has grown into a much larger and
more cohesive theory.

1.2.4 The Model in Historical Context
RAM Algorithms in 1-d

Work in one dimension dates back at least to 1977, when van Emde Boas [vEBKZ77| showed
how to support predecessor queries in O(lglgU) time with linear space, and thus sort in
O(nlglgU) time. Fredman and Willard [FW93| showed that o(lgn) searching and o(nlgn)
sorting is possible even regardless of how U relates to n: their fusion tree can search in
O(log, n) < O(%).

Many integer-sorting results have been published since then, and a survey is beyond the
scope of this work. Currently, the best linear-space deterministic and randomized algorithms
(independent of U and w) have running time O(nlglgn) and O(n\/Iglgn) respectively, due
to Han [Han04] and Han and Thorup [HT02]. A linear randomized time bound [AHNR9S]
is known for the case when w > lg*™n, for any fixed ¢ > 0. Thorup [Tho02a] showed a
black-box transformation from sorting to priority queues, which makes the above bounds
carry over to this dynamic problem.

For predecessor search, note that taking the minimum of fusion trees and van Emde
Boas search yields a bound of O(y/Ign). As opposed to sorting, only small improvements
are possible, and only for polynomial space [BF02]. Together with Thorup [PT06, PT07],
we showed optimal upper and lower bounds for this problem, giving an exact understanding
of the time-space tradeoffs.

Most importantly, our lower bounds show that for near linear space (say, space n 1go(1) n),

15

the optimal query time is ©(min{log, n, lgw/lg 15%). The first branch is achieved by
fusion trees, while the second branch is a slight improvement to van Emde Boas when
precision is (very) large. We note that point location is harder than predecessor search, so
the lower bounds apply to our problems as well.

Other 1-d data structure problems for integer input have also been studied. The classic
problem of designing a dictionary to answer membership queries, typically addressed by
hashing, can be solved in O(1) deterministic query time with linear space, while updates are
randomized and take O(1) time with high probability (see e.g., [FKS84, DadH90]). Range
queries in 1-d (reporting any element inside a query interval) can be solved with O(1) query
time by a linear-space data structure [ABRO1]. Even for the dynamic problem, exponential
improvements over predecessor search are known [MPP05].

(Almost) Orthogonal Problems

As mentioned, known algorithms from the computational geometry literature that exploit the
power of the word RAM mostly deal with orthogonal-type special cases, such as orthogonal
range searching, finding intersections among axis-parallel line segments, and nearest neighbor
search under the f1- or f,-metric. Most of these works are about van-Emde-Boas-type
results, with only a few exceptions (e.g., [Wil00]). For instance, Chew and Fortune [CF97]
showed how to construct the Voronoi diagram under any fixed convex polygonal metric in
2-d in O(nlglgn) time after sorting the points along a fixed number of directions. De Berg et
al. [dBvKS95] gave O((1glg U)°M) results for point location in an axis-parallel rectangular
subdivisions in 2- and 3-d.

There are also approximation results (not surprisingly, since arbitrary directions can be
approximated by a fixed number of directions); for example, see [BKRS92] for an O(nlglgn)-
time 2-d approximate Euclidean minimum spanning tree algorithm.

There is one notable non-orthogonal problem where faster exact transdichotomous algo-
rithms are known: finding the closest pair of n points in a constant-dimensional Euclidean
space. This is also not too surprising, if one realizes that the complexity of the exact clos-
est pair problem is linked to that of the approximate closest pair problem, due to packing
arguments. Rabin’s classic paper on randomized algorithms [Rab76] solved the problem in
O(n) expected time, using hashing. Deterministically, Chan [Cha02] has given a reduction
from closest pair to sorting (using one nonstandard operation on the RAM). Similarly, the
dynamic closest pair problem and (static or dynamic) approximate nearest neighbor queries
reduce to predecessor search [Cha02]. Rabin’s original approach itself has been generalized
to obtain an O(n + k)-time randomized algorithm for finding & closest pairs [Cha0Olb], and
an O(nk)-time randomized algorithm for finding the smallest circle enclosing k points in
2-d [HPMO5].

The 2-d convex hull problem is another exception, due to its simplicity: Graham’s
scan [dBSvKOO00, PS85] takes linear time after sorting the z-coordinates. In particular,
computing the diameter and width of a 2-d point set can be reduced to 1-d sorting.

Chazelle [Cha99] studied the problem of deciding whether a query point lies inside a con-
vex polygon with w-bit integer or rational coordinates. This problem can be easily reduced

16

to 1-d predecessor search, so the study was really about lower bounds. (Un)fortunately,
he did not address upper bounds for more challenging variants like intersecting a convex
polygon with a query line (see Corollary 5.1).

For the asymptotically tightest possible grid, i.e., U = O(n'/?), the discrete Voronoi
diagram [Cha04] can be constructed in linear time and can be used to solve static nearest
neighbor problems.

Nonorthogonal Problems

The quest for faster word-RAM algorithms for the core geometric problems dates back at
least to 1992, when Willard [Wil00] asked for a o(nlgn) algorithm for Voronoi diagrams.
Interest in this question has only grown stronger in recent years. For example, Jonathan
Shewchuk (2005) in a blog comment wondered about the possibility of computing Delaunay
triangulations in O(n) time. Demaine and Iacono (2003) in lecture notes, as well as Baran
et al. [BDP05], asked for a o(lgn) method for 2-d point location.

Explicit attempts at the point location problem have been made by the works of Amir
et al. [AEISO1] or lacono and Langerman [IL00]. These papers achieve an O(lglgU) query
time, but unfortunately their space complexity is only bounded by measures such as the
quad-tree complexity or the fatness. This leads to prohibitive exponential space bounds for
difficult input instances.

1.2.5 Practice for Theory

Though we have not been able to test the practicality of the new ideas from this work,
we believe they may have a practical impact for two reasons. First, as noted above, algo-
rithms of the same flavor (e.g., gridding heuristics) are already used successfully in practice.
Mathematically founded ideas for grid search could lead to better practical algorithms.

Second, for the algorithmic problems we have considered (e.g., constructing Voronoi
diagrams), the theoretical improvement over classic solutions is rather significant — o(n1g® n)
versus O(nlgn). In the similar case of sorting, it is widely appreciated that algorithms based
on bounded precision (radix sort) outperform O(nlgn) sorting algorithms.

1.2.6 Theory for Theory

All things considered, it is perhaps the theoretical view of this emerging field that we find
most compelling. It is a general phenomenon that tools developed in one dimension for
exploiting bounded precision seem foreign to two or more dimensions, and simply do not
help. As such, our results have had to develop interesting new techniques, rebuilding our
understanding of bounded precision from scratch. By analogy with the one-dimensional
case, a mature research field with many dozens of publications, we can hope that in the
multidimensional case lurks a similarly rich theory.

A similar account can be made from the geometric side. Our work has forced us to
re-analyze many “standard” ideas and techniques in geometry through a new, information-

17

theoretic lens. This view of geometry seems interesting in its own right, and the algorithmic
puzzles it raises are very appealing.

Stepping back for a moment, we believe that there are compelling reasons for our study
even outside the realm of bounded precision. An overwhelming number of fundamental
problems in computational geometry are far from understood even in classic models of com-
putation. For example, in the real RAM, or even in the simpler group model, we do not
know how to prove any lower bound exceeding 2(lgn) for a static data structure (and often
not even that).

We believe progress even in these models requires a firm information-theoretic under-
standing of the problems. A good strategy seems to start developing such lower bound tools
from the ground up, starting with smaller lower bounds for the problems where bounded
precision helps. Though these lower bounds are asymptotically small, they are forced to
be in the right spirit of understanding geometry through information. Starting with these
computationally easier problems provides a natural programme for gradual development of
increasing lower bounds.

18

Chapter 2

Point Location in a Slab

In this chapter, we study the special case of the 2-d point location problem in which the input
consists of n disjoint, nonvertical line segments inside a vertical slab, where the endpoints all
lie on the boundary of the slab. Given a query point ¢ inside the slab, the goal is to quickly
find the segment that is immediately above q. We will obtain the following result:

Theorem 2.1. Consider a sorted list of n disjoint line segments spanning a vertical slab in
the plane with O(w)-bit rational coordinates. For any h > 1, we can build a data structure
with space and preprocessing time O(n - 2"), so that point location queries take time:

@) (min{lgn/ lglgn, w/lgw, w/h})

2.1 Technical Overview

We begin with a few words to explain intuitively the difficulty of the problem, and the
contribution of our solution. One of the most influential ideas in one-dimensional search is
given by fusion trees [FW93]. This structure shows how to sketch B = w® words, each w bits
long, into a single word of w bits such that a predecessor query among the B numbers can
be answered in constant time after seeing the sketch. Thus, to find the predecessor among
n numbers, one simply builds a balanced B-tree with such a sketch at every node. A query
walks down a root-to-leaf path in constant time per node.

For planar point location, we suspect that this type of sketching is
impossible for any superconstant B, so a sublogarithmic query algorithm
has to be based on a novel approach. To best understand our idea, we
define an information theoretic measure for a subregion in a vertical slab.
Refer to Figure 2-1. The key observation is that, while we may not be able
to efficiently locate the query point among any B segments, we can do so
as long as the region between segments does not have too small entropy.

More specifically, the search starts by assuming that the query point can
lie anywhere in a slab, a region with high entropy. By appropriate sketching
or tabulation techniques, each step of the algorithm reduces the entropy of

19 Figure 2-1:
H =1g(ya—v1)
+1g(ya—ys)

the region where the query could lie, by some fixed increment AH. The
answer is certainly found when the entropy of the region becomes small
enough, so we can bound the query time in terms of the entropy progress
in each step. We note that information-progress arguments of this flavor
are rather common in lower bounds, but generally their use in designing
algorithms has not been widely appreciated.

We observe that this search strategy behaves quite differently from fusion trees. For
instance, the O(log, n) bound of fusion trees means the problem actually gets easier for
very high precision. For point location, on the other hand, it is not known how to improve
the O(lgn/lglgn) bound for any high precision.

The remainder of this chapter is organized as follows. We start in Section 2.2 by describing
a new fusion tree. Though this yields worse bounds than the regular fusion tree, the effort
best describes the intuition about our search strategy. This section may be skipped by the
impatient readers. The actual data structure for point location in a slab is presented in
Section 2.3, with further time/space trade-offs described in Section 2.4.

2.2 Warm-Up: A Simpler 1-d Fusion Tree

We first re-solve the standard 1-d problem of performing predecessor search in a static set
of n numbers, where the numbers are assumed to be integers in [0,2%). Our main idea is
very simple and is encapsulated in the observation below—roughly speaking, in divide-and-
conquer, allow progress to be made not only by reducing the number of elements, n, but
alternatively by reducing the length of the enclosing interval, i.e., reducing the number of
required bits, ¢. (Beame and Fich [BF02] adopted a similar philosophy in the design of their
data structure, though in a rather different way.)

Observation 2.2. Fiz b and h. Given a set S of n numbers in an interval I of length 2°,
we can divide I into O(b) subintervals such that:

(1) each subinterval contains at most n/b elements of S or has length 2="; and
(2) the subinterval lengths are all multiples of 27"

Proof. Form a grid over I consisting of 2" subintervals of length 2°=". Let B contain the
([in/b])-th smallest element of S for i = 1,...,b. Consider the grid subintervals that contain
elements of B. Use these O(b) grid subintervals to subdivide I (see Figure 2-2(b)). Note
that any “gap” between two such consecutive grid subintervals do not contain elements of
B and so can contain at most n/b elements. O

The data structure. The observation suggests a simple tree structure for 1-d predecessor
search. Because of (ii), we can represent each endpoint of the subintervals by an integer in
[0,2"), with h bits. We can thus encode all O(b) subintervals in O(bh) bits, which can be
packed (or “fused”) into a single word if we set h = |[ew/b| for a sufficiently small constant
e > 0. We recursively build the tree structure for the subset of all elements inside each

20

(a) (b) (c)

Figure 2-2: (a) The rounding idea: locating among the solid segments reduces to locating
among the dotted segments. (b) Proof of Observation 2.2: elements of B are shown as
dots. (c) Proof of Observation 2.3: segments of B are shown, together with the constructed
sequence Sg, S1, - - .

subinterval. We stop the recursion when n <1 (in particular, when ¢ < 0). Initially, £ = w.
Because of (i), in each subproblem, n is decreased by a factor of b or ¢ is decreased by h.
Thus, the height of the tree is at most log, n + w/h = O(log, n + b).

To search for a query point ¢, we first find the subinterval containing ¢ by a word operation
(see the next paragraph for more details). We then recursively search inside this subinterval.
(If the answer is not there, it must be the first element to the right of the subinterval; this
element can be stored during preprocessing.) By choosing b = |/Ign]|, for instance, we get
a query time of O(log,n 4+ b) = O(lgn/lglgn).

Implementing the word operation. We have assumed above that the subinterval con-
taining ¢ can be found in constant time, given O(b) subintervals satisfying (ii), all packed in
one word. We now show that this nonstandard operation can be implemented using more
familiar operations like multiplications, shifts, and bitwise-ands (&’s).

First, because of (ii), by translation and scaling (namely, dividing by 2°7"), we may
assume that the endpoints of the subintervals are integers in [0,2"). We can thus round ¢ to
an integer ¢ in [0, 2"), without changing the answer. The operation then reduces to computing
the rank of an h-bit number ¢ among an increasing sequence of O(b) h-bit numbers ay, as, . . .,
with bh < cw.

This subproblem was considered before [FW93, AMT99|, and we quickly review one
solution. Let (z|z2| ---) denote the word formed by O(b) blocks each of exactly h + 1
bits, where the i-th block holds the value z;. We precompute the word (@, | ag| - - -) during
preprocessing by repeated shifts and additions. Given ¢, we first multiply it with the constant
(1|1]---) to get the word (G|G|---). Now, a; < ¢ iff (2" + a; — ¢) & 2" is zero. With
one addition, one subtraction, and one & operation, we can obtain the word ((2" + a; —

21

Q&2 | (2" + ay — G)&2" | ---). The rank of ¢ can then be determined by finding the
most significant 1-bit (msb) position of this word. This msb operation is supported in most
programming languages (for example, by converting into floating point and extracting the
exponent, or by taking the floor of the binary logarithm); alternatively, it can be reduced to
standard operations as shown by Fredman and Willard [FW93].

2.3 A Solution for 2-d

We now present the data structure for point location in a slab. The idea is to allow progress
to be made either combinatorially (in reducing n) or geometrically (in reducing the length
of the enclosing interval for either the left or the right endpoints).

Observation 2.3. Fix b and h. Let S be a set of n sorted disjoint segments, where all left
endpoints lie on an interval I, of length 2% on a vertical line, and all right endpoints lie
on an interval Ir of length 2% on another vertical line. In O(b) time, we can find O(b)
segments Sg, S1, ... € S in sorted order, which include the lowest and highest segments of S,
such that:

(1) for each i, at least one of the following holds:

(1a) there are at most n/b segments of S between s; and S;41.
(1b) the left endpoints of s; and s;y1 lie on a subinterval of length 2°-=".
(1c) the right endpoints of s; and s;, lie on a subinterval of length 27",

(2) there exist segments 3o, Sa, . .. culting across the slab, satisfying all of the following:
(2&) So-<§0-<82-<§2-<"'.
(2b) distances between the left endpoints of the §;’s are all multiples of 24",
(2¢) distances between right endpoints are all multiples of 2°7 =",

Proof. Let B contain every |n/b|-th segment of S, starting with the lowest segments s.
Impose a grid over I consisting of 2" subintervals of length 227" and a grid over Iy
consisting of 2" subintervals of length 22~ We define s;,; inductively based on s;, until
the highest segment is reached. We let s;,1 be the highest segment of B such that either the
left or the right endpoints of s; and s;; are in the same grid subinterval. This will satisfy
(1b) or (1c). If no such segment above s; exists, we simply let s, be the successor of s;,
satisfying (1a). (See Figure 2-2(c) for an example.)

Let s; be obtained from s; by rounding each endpoint to the grid point immediately above
(ensuring (2b) and (2c)). By construction of the s;’s, both the left and right endpoints of s;
and s;4o are in different grid subintervals. Thus, §; < s;.9, ensuring (2a). O

The data structure. Because of (2b) and (2c¢), we can represent each endpoint of the
;s as an integer in [0,2"), with h bits. We can thus encode all O(b) segments 3, 3o, . . .
in O(bh) bits, which can be packed in a single word if we set h = |[ew/b] for a sufficiently
small constant € > 0. We recursively build the tree structure for the subset of all segments
strictly between s; and s;.1. We stop the recursion when n <1 (in particular, when ¢, < 0

22

or {g < 0). Initially, ¢;, = {r = w. Because of (1), in each subproblem, n is decreased by a
factor of b, or (, is decreased by h, or (g is decreased by h. Thus, the height of the tree is
at most logy n + 2w/h = O(log, n + b).

Given a query point ¢, we first locate ¢ among the s;’s by a word operation. With one
extra comparison we can then locate ¢ among sg, g, S4 . . ., and with one more comparison we
can locate ¢ among all the s;’s and answer the query by recursively searching in one subset.
By choosing b = |/Ign |, for instance, we get a query time of O(log, n+b) = O(lgn/lglgn).

The data structure clearly requires O(n) space. Since the segments s;’s and §;’s can be
found in linear time for pre-sorted input, the preprocessing time after initial sorting can be
bounded naively by O(n) times the tree height, i.e., O(nlgn/lglgn) (which can easily be
improved to O(n) as we will observe in the next subsection). Sorting naively takes O(nlgn)
time, which can be improved by known results.

Implementing the word operation. We have assumed above that we can locate ¢ among
the §;’s in constant time, given O(b) segments 3o, 5 . . ., satisfying (ii), all packed in one word.
We now show that this nonstandard operation can be implemented using more familiar
operations like multiplications, divisions, shifts, and bitwise-ands.

First, by a projective transformation, we may assume that the left endpoint of §; is (0, @;)
and the right endpoint is (2", Bi), where the @,;’s and b;’s are increasing sequences of integers
in [0,2"). Specifically, the mapping below transforms two intervals I;, = {0} x [B, B + 2°%)
and Ip = {C} x [D, D + 2°7) to {0} x [0,2") and {2"} x [0, 2") respectively:

ohttr . g Qh[C'-(y—B)—(D—B)-x])' 2.1)

(x7y) = (QEL(O—I')—FQER'I’ QEL(O_x)+2éR.x

The line segments §;’s are mapped to line segments, and the belowness relation is pre-
served.

We round the query point ¢, after the transformation, to a point ¢ with integer coordinates
in [0,2"). (Note that § can be computed exactly by using integer division in the above
formula.) Observe that a unit grid square can intersect at most two of the §;’s, because the
vertical separation between two segments (after transformation) is at least 1 and consequently
so is the horizontal separation (as slopes are in the range [—1,1]). This observation implies
that after locating ¢, we can locate ¢ with O(1) additional comparisons.

To locate ¢ = (Z,9) for h-bit integers & and g, we proceed as follows. Let (21 |z ---)
denote the word formed by O(b) blocks each of exactly 2(h + 1) bits, where the i-th block
holds the value z; (recall that bh < ew). We precompute (dg|ds| ---) and (b |by| ---)
during preprocessing by repeated shifts and additions. The y-coordinate of s5; at x is given
by [@;(2" —) + b;z] /2". With two multiplications and some additions and subtractions, we
can compute the word (ag(2" — &) 4 bo@ | G2(2" — &) + bo# | ---). We want to compute
the rank of 2"§ among the values encoded in the blocks of this word. This subproblem was
solved before [FW93] (as reviewed in Section 2.2).

23

Remarks. The above data structures can be extended to deal with O(w)-bit rational co-
ordinates, i.e., coordinates that are ratios of integers in the range [—2 2°"] for some con-
stant c¢. (This extension will be important in subsequent applications.) The main reason is
that the coordinates have bounded “spread”: namely, the difference of any two such distinct
rationals must be at least 1/2%**. Thus, when ¢ or m reaches below —2cw, we have n < 1.
The point-segment, comparisons and projective transformations can still be done in constant
time, since O(w)-bit arithmetic can be simulated by O(1) w-bit arithmetic operations.

The data structures can also be adapted for disjoint open segments that may share
endpoints: We just consider an additional base case, when all segments pass through one
endpoint p, say, on I;. To locate a query point ¢ among these segments, we can compute
the intersection of the segment pg with Iz (which has rational coordinates) and perform a
1-d search on Ig.

Proposition 2.4. Given a sorted list of n disjoint line segments spanning a vertical slab
in the plane with O(w)-bit rational coordinates, we can build a data structure in o(nlgn)
time and O(n) space so that point location queries can be answered in t(n) := O(lgn/lglgn)
time.

2.4 Alternative Bounds

We now describe some alternative bounds which depend on the universe size and the space.

Proposition 2.5. Consider a sorted list of n disjoint line segments spanning a vertical slab
in the plane with O(w)-bit rational coordinates. For any h > 1, we can build a data structure
of size O(n - 4") in time O(n - (w/h + 4")) so that point location queries can be answered in

time O(w/h).

Proof. This is a simple variant of our previous data structure, relying on table lookup instead
of word packing. We apply Observation 2.3 recursively, this time with b = 2. The height
of the resulting tree is now at most O(w/h + log,n) = O((w +1gn)/h) = O(w/h).

Because the segments 3y, S, ... can no longer be packed in a word, we need to describe
how to locate a query point ¢ among the §;’s in constant time. By the projective transfor-
mation and rounding as described in Section 2.3, it suffices to locate a point ¢ that has h-bit
integer coordinates. Thus, we can precompute the answers for all 2% such points during
preprocessing. This takes time O(2%*") time: trace each segments horizontally in O(b - 2")
time, and fill in the rest of the table by 2" scans along each vertical grid line.

The total extra cost for the table precomputation is O(n - 4"). We immediately obtain
preprocessing time O(n - (w/h+4")) starting with sorted segments, space O(n-4") and query
time O(w/h), for any given parameter h. O

Now we can obtain a linear-space data structure whose running time depends on w, by
a standard space reduction as follows:

Let R contain the |in/r]|-lowest segment for i = 1,...,r, and apply the data structure
of Proposition 2.5 only for these segments of R. To locate a query point ¢ among S, we first

24

locate ¢ among R and then finish by binary search in a subset of O(n/r) elements between
two consecutive segments in R.

The preprocessing time starting with sorted segments is O(n +r - (w/h + 4")), the space
requirement O(n+7-4"), and the query time is O(w/h+1g(n/r)). Setting r = |n/(w/h+4")|
leads to O(n) preprocessing time and space and O(w/h + h) query time. Setting h = |/w|
yields O(y/w) query time.

We can reduce the query time further by replacing the binary search with a point location
query using Proposition 2.4 to store each subset of O(n/r) elements. The query time becomes
O(w/h +1g(n/r)/1glg(n/r)) = O(w/h + h/1lgh). Setting h = |wlgw] instead yields a
query time of O(\/w/lgw).

Incidentally, the preprocessing time in Proposition 2.4 can be improved to O(n) using
the same trick, for example, by choosing r = [n/logn|. The preprocessing time in Proposi-
tion 2.5 can be reduced to O(n - 4") as well, by choosing r = [n/(w/h)].

We have thus obtained the bounds in Theorem 2.1.

25

26

Chapter 3

Sorting Points and Segments

In this chapter, we deal with the offline version of point location in a slab. We are given a
vertical slab in the plane, m nonintersecting segments cutting across the slab, and n points
inside the slab. The goal is to identify for each of the n points, the segments immediately
above and below it. In other words, we would like to sort the points “relative to” the
segments.

This problem can easily be solved through n queries to our online point location data

lgm w
lglgm?’ lgw

structure, giving a running time of O (m+n-min { }) However, we will now show

a significantly better algorithm for the offline problem. The relation to the online problem
is parallel to that for 1-d integer sorting. There, 1-d location (predecessor search) is known
lglglgnn
bound per point is known [BF02]). Yet, one can find ways of manipulating information in the
offline problem (1-d sorting), such that the bottleneck of using the online problem is avoided
(e.g. we can sort in O(n+/Iglgn) expected time [HT02]). As for sorting, the highlight of our
pursuit is not to study “bit tricks” in the word RAM model, but to study how information
about points and lines can be decomposed in algorithmically useful ways.

to require comparatively large running times (e.g. in terms of n alone, an () lower

Theorem 3.1. Consider a sorted list of m disjoint line segments spanning a vertical slab
in the plane, and n points inside the slab. Assuming all points and segment endpoints have

O(w)-bit rational coordinates, we determine the segment immediately below each point in
time n - 20WVi8lem) 1 O (m).

Note that this bound does not depend on the universe (aside from assuming a coordinate
fits in a word), and is deterministic. The bound is a dramatic improvement over the online
bounds — note, for example, that the new bound grows more slowly than n lg® m+m for any
constant € > 0. In addition, the new bound represents a much more convincing improvement
over the standard O(n lgm) bound based on binary search, demonstrating the power granted
by bounded precision.

The remainder of this chapter is organized as follows. In Section 3.1, we describe a
simple algorithm running in time O(ny/Igm + m). This demonstrates the basic divide-and-
conquer strategy behind our solution. In Section 3.2, we implement this strategy much more

27

carefully to obtain an interesting recurrence that ultimately leads to the stated time bound
of Theorem 3.1. The challenges faced by this improvement are similar to issues in integer
sorting, and indeed we borrow (and build upon) some tools from that field.

Unfortunately, the implementation of Section 3.2 requires a nonstandard word operation.
In Section 3.3, we describe how to implement the algorithm on a standard word RAM,
using only addition, multiplication, bitwise-logical operations, and shifts. Interestingly, the
new implementation requires some new geometric observations that affect the design of the
recursion itself.

3.1 An Initial Algorithm

3.1.1 The Basic Recursive Strategy

We begin with a recursive strategy based on Observation 2.3, which was also the basis of
our online algorithm. (Later in Section 3.3, we will replace this with a more complicated
recursive structure.) We repeat the observation here for ease of reference:

Observation 3.2. Fix b and h. Let S be a set of n sorted disjoint segments, where all left
endpoints lie on an interval I;, of length 2 on a wertical line, and all right endpoints lie
on an interval Ir of length 2% on another vertical line. In O(b) time, we can find O(b)
segments S, S1, ... € S in sorted order, which include the lowest and highest segments of S,
such that:
(1) for each i, at least one of the following holds:

(1a) there are at most n/b segments of S between s; and ;.

(1b) the left endpoints of s; and s;y1 lie on a subinterval of length 2°-=".

(1c) the right endpoints of s; and s;., lie on a subinterval of length 27",

(2) there exist segments 3o, Sa, . .. culting across the slab, satisfying all of the following:
(2&) Sp < Sg < Sg <89 < ---.
(2b) distances between the left endpoints of the §;’s are all multiples of 22",
(2¢) distances between right endpoints are all multiples of 2°7~".

This naturally suggests a recursive algorithm. In the pseudocode in Figure 3-1, the
input is a set) of n points and a sorted set S of m disjoint segments, where the left and
right endpoints lie on intervals I, and Ir of length 2 and 2°% respectively. At the end,
ANS[q] stores the segment from S immediately below ¢ for each ¢ € (). A special NULL
value for ANS[q] signifies that ¢ is below all segments. We assume a (less efficient) procedure
SLABy(Q, S), with the same semantics as SLAB(Q), S), which is used as a bottom case of the
recursion. The choice of SLABg() is a crucial component of the analysis.

We first explain why the pseudocode works. In step 2, an explicit formula for the trans-
form ¢ has already been given as (2.1) in Chapter 2; this mapping preserves the belowness
relation. According to property (2) in Observation 3.2, we know that the transformed seg-
ments (39), ©(32),... all have h-bit integer coordinates from [2"]. After rounding, the n
points ¢(Q) will lie in the same universe.

28

SLAB(Q, S):
0. if m = 0, set all answers to NULL and return
1. let sg, s1, ... be the O(b) segments from Observation 3.2

Compute ROUND(¢(Q)) and ¢(Sp), ¢(52), . ..
- SLABy(ROUND(p(Q)), {¢(50), ¢(52). - - -})
4. for each g €) with ANS[ROUND(¢(q))] = ¢(5;) do
set ANS[q] = the segment from {s;_y4, ..., s;47} immediately below ¢
5. for each s; do
SLAB({q € Q | ANS[q] = s;}, {s€ S| s <5< 8i41})

w

2. let ¢ be the projective transform mapping I, to {0} x [0,2"] and I to {2"} x [0, 2"].

Figure 3-1: A recursive algorithm for the slab problem. Parameters b and h are fixed in the
analysis; ROUND(-) maps a point to its nearest integral point.

Any unit square can intersect at most two of the ¢(3;)’s, since these segments have vertical
separation at least one and thus horizontal separation at least one (as slopes are between —1
and 1). If ¢(5;) < ROUND(¢(q)) < ¢(8;i12), then we must have p(5;_4) < ¢(q) < ©(Si16),
implying that s;_4 < §;_4 < ¢ < 8;46 < si1s. Thus, at step 4, ANS[q] contains the segment
from s, s1 ... immediately below ¢. Once this is determined for every point ¢ €), we can
recursively solve the subproblem for the subset of points and segments strictly between s;
and s;,1 for each i, as is done at step 5. An answer ANS[g| = NULL from the i-th subproblem
is interpreted as ANS[q| = s;.

Let ¢ = ({1, + €g)/2, where ¢ < w. Denote by T(n,m,¢) the running time of SLAB(),
and Ty(n, V', h) the running time of the call to SLABg() in step 3. Steps 1, 2 and 4 can be
implemented naively in O(n + m) time. We have the recurrence:

b/
T(n,m,0) = Ty(n,b',h) + O(n+m) + Y _ T(ni,m, L), (3.1)

1=0

where b = O(b), > ,n; = n, > ,,m; = m — . Furthermore, according to property (1) in
Observation 3.2, for each ¢ we either have m; < %+ or {; < £ — % This implies that the depth
of the recursion is O(log, m + £).

3.1.2 An O(nyIgm+ m) Algorithm

In Chapter 2, we noticed that for b'h ~ w, SLAB(() can be implemented in Ty (n, b, h) = O(n)
time by packing b’ segments from an h-bit universe into a word. By setting b ~ log® m and
h = w/log® m, this leads to an O((n + m) 1;1;;1) algorithm.

Instead of packing multiple segments in a word, our new idea is to pack multiple points
in a word. To understand why this helps, remember that the canonical implementation for
SLABg() runs in time O(nlgm) by choosing the middle segment and recursing on points

above and below this segment. By packing ¢ segments in a word, we can hope to reduce this

29

time to O(nlog, m). However, by packing ¢ points in a word, we can potentially reduce this
to O(%1gm), a much bigger gain. (One can also think of packing both points and segments,
for a running time of O(% log, m). Since we will ultimately obtain a much faster algorithm,
we ignore this slight improvement.)

To implement this idea, step 2 will pack ROUND(p(Q)) with O(w/h) points per word.
Each point is allotted O(h) bits for the coordinates, plus lgb = O(h) bits for the answer
ANS[ROUND(¢(q))] which SLABy() must output. This packing can be done in O(n) time,
adding one point at a time.

Working on packed points, SLAB(() has the potential of running faster, as evidenced by
the following lemma. For now, we do not concern ourselves with the implementation on a
word RAM, and assume nonstandard operations (an operation takes two words as input,
and outputs one word).

Lemma 3.3. Iflghb < h < w, SLABg() can be implemented on a RAM with nonstandard
operations with a running time of Ty(n,b,h) = O(n21gb + b).

Proof. Given a segment and a number of points packed in a word, we can postulate two
operations which output the points above (respectively below) the segment, packed consec-
utively in a word. Choosing a segment, we can partition the points into points above and
below the segment in O([n%}) time. In the same asymptotic time, we can make both output

sets be packed with [¥] points per word (merging consecutive words which are less than
full).

We now implement the canonical algorithm: partition points according to the middle
segment and recurse. As long as we are working with > 2 points, the cost is O(%) per point
for each segment, and each point is considered O(lgb) times. If we are dealing with less than
¥ points, the cost is O(1), and that can be charged to the segment considered. Thus, the
total time after packing is O(n21gb+ b).

The last important issue is the representation of the output. By the above, we obtain
the sets of points which lie between two consecutive segments. We can then trivially fill in
the answer for every point in the lgb bits allotted for that. However, we want an array of
answers for the points in the original order. To do that, we trace the algorithm from above
backwards in time. We use an operation which is the inverse of splitting a word into points
above and below a segment. O

Plugging the lemma into (3.1), we get T'(n,m, () = O(nlgb+ n+ m) - O(log,m + 1).
Setting lgb = /Igm and h = w/+/Ig m, we obtain T'(n, m,w) = O((n+m)+/Igm). This can
be improved to O(m + n+/Igm) by the standard trick of considering only one in O(y/lgm)
consecutive segments. For every point, we finish off by binary searching among O(1/Igm)
segments, for a negligible additional time of O(nlglgm).

30

3.2 An n-20VElm 1 O(m) Algorithm

3.2.1 Preliminaries

To improve on the O(m + ny/lgm) bound, we bootstrap: we use an improved algorithm
for SLAB() as SLABg(), obtaining an even better bound for SLAB(). To enable such im-
provements, we can no longer afford the O(n) term in the recurrence (3.1). Rather, a call
to SLAB() is passed) in word-packed form, and we want to implement the steps between
recursive calls in sublinear time (close to the number of words needed to represent (), not to
n=1Ql).

This task will require further ideas and more sophisticated word-packing tricks. To un-
derstand the complication, let us contrast implementing steps 2 and 5 of SLAB() in sublinear
time. Computing ROUND(¢(())) in Step 2 is solved by applying a function in parallel to a
word-packed vector of points. This is certainly possible, at least using nonstandard word
operations. However, step 5 needs to group elements of) into subsets (i.e. sort () according
to ANS|g|). This is a deeper information-theoretic limitation, and it is rather unlikely that it
can always be done in time linear in the number of words needed to store (). The problem
has connections to applying permutations in external memory, a well-studied problem which
is believed to obey similar limitations [AV8S].

To implement step 5 (and also step 4), we will use a subroutine SPLIT(Q, LABEL). This
receives a set () of (-bit elements, packed in O(né) words. Each elements ¢ € () has a
(Igm)-bit label LABEL[q] with lgm < ¢. The labels are stored in the same O(nL) words.
We can think of each word as consisting of two portions, the first containing O(%) elements
and the second containing the corresponding O(7) labels. The output of SPLIT(Q), LABEL)
is a collection of sublists, so that all elements of () with the same label are put in the same
sublist (in arbitrary order).

In addition, we will need SPLIT() to be reversible. Suppose the labels in the sublists have
been modified. We need a subroutine UNSPLIT(()), which outputs () in the original order
before SPLIT(), but with the modified labels attached.

The following lemma states the time bound we will use for these two operations. The
implementation of SPLIT() is taken from a paper by Han [Han01] and has been also used as
a subroutine in several integer sorting algorithms [Han04, HT02]. As far as we know, the
observation that UNSPLIT() is possible in the same time bound has not been stated explicitly
before.

Lemma 3.4. Assume LABEL[q] € [m] for all ¢ € Q, and let M be a parameter. If 7 1lgm <
Llg M andlgm < { < w, both SPLIT() and UNSPLIT() require time O(n<lg% + M).

Proof. Let g = 4. Each word contains g elements, with glgm bits of labels. Put words with
the same label pattern in the same bucket. This can be done in O(n/g-++/M) time, since the
number of different label patterns is at most 29'€™ < /M. For each bucket, we form groups
of ¢ words and transpose each group to get g new words, where the ¢-th element of the j-th
new word is the j-th element of the i-th old word. Transposition can be implemented in

31

O(lg g) standard word operations [Tho02b]. Elements in each new word now have identical
labels. We can put these words in the correct sublists, in O(n/g + m) time. There are at
most ¢ leftover elements per bucket, for a total of O(v/Mg) = o(M); we can put them in
the correct sublists in o(M) time. The total time is therefore O((n/g)lgg + M).

To support unsplitting, we remember information about the splitting process. Namely,
whenever we transpose g words, we create a record pointing to the g old words and the g
new words. To unsplit, we examine each record created and transpose its g new words again
to get back the g old words (with labels now modified). We can also update the leftover
elements by creating o(M) additional pointers. O

A particularly easy application of this machinery is to implement the algorithm of Section
3.1 with standard operations (with a minor lglgm slowdown). This result is not interesting
by itself, but it will be used later as the base case of our bootstrapping strategy.

Corollary 3.5. If ¥1gb < L1g M and lgb < h < w, the algorithm for SLABo() from Lemma
3.3 can be implemented on a word RAM with standard operations in time To(n,b,h) =
O(n%lgb lg ¥+ bM).

Proof. The nonstandard operations used before were splitting and unsplitting a set of points
packed in a word, depending on sidedness with respect to a segment. It is not hard to compute
sidedness of all points from a word in parallel using standard operations: we apply the linear
map defining the support of the segment to all points (which is a parallel multiplication and
addition), and keep the sign bits of each result. The sign bits define 1-bit labels for the
points, and we can apply SPLIT() and UNSPLIT() for these. O

Since the algorithm is used with b = /lgm and h = w/y/lgm, we incur a slowdown of
O(lg %) = O(lglgm) per point compared to the implementation with nonstandard opera-
tions. By setting M = m?, the algorithm of the previous section would then run in time
O(ny/1gmlglgm + m?) if implemented with standard operations. (The dependence of the
second term on m can be lowered as well.)

3.2.2 The Improved Algorithm

Our fastest algorithm follows the same pseudocode of Figure 3-1, but with a more careful
implementation of the individual steps. Let ¢ be the number of bits per point and m the
original number of segments in the root call to SLAB(). We have lgm < ¢ < w. In a
recursive call to SLAB(), the input consists of some n points and m < m segments, all with

coordinates from [2¢], where ¢ < ¢. Points will be packed in O(f) bits each, so the entire

set () occupies O(né) words. At the end, the output ANs|g| is encoded as a label with lgm
bits, stored within each point ¢ € (), with the order of the points unchanged in the list Q.
Note that one could think of repacking more points per word as ¢ and m decrease, but this
will not yield an asymptotic advantage, so we avoid the complication (on the other hand,
repacking before the call to SLAB() is essential).

32

In step 2, we can compute ROUND(¢(Q)) in time linear in the number of words O(nL),
by using a nonstandard word operation that applies the projective transform (and rounding)
to multiple points packed in a word. Unfortunately, it does not appear possible to imple-
ment this efficiently using standard operations. We will deal with this issue in Section 3.3,
by changing the algorithm for SLAB() so that we only require affine transformations, not
projective transformations.

Before the call to SLABg() in step 3, we need to condense the packing of the points
ROUND(¢(Q)) to take up O(nk) words. Previously, we had O(%) points per word, but after
step 2, only O(h) bits of each point were nonzero. We will stipulate that points always
occupy an number of bits which is a power of 2. This does not affect the asymptotic running
time. Given this property, we obtain a word of ROUND(p(Q)) by condensing ¢/h words.
This operation requires shifting each old word, and ORing it into the new word.

Note that the order of ROUND(p(Q)) is different from the order of @, but this is irrelevant,
because we can also reverse the condensing easily. We simply mask the bits corresponding
to old word, and shift them back. Thus, we obtain the labels generated by SLAB(() in the
original order of Q). Both condensing and its inverse take O(n<) time.

For the remainder of the steps, we need to SPLIT() and UNSPLIT(). For that, we fix a
parameter M satisfying %1gﬁ1 < %1g M. In step 4, we first split the list ROUND(¢(Q)) into
sublists with the same ANS labels. For each sublist, we can perform the constant number of
comparisons per point required in step 4, and then record the new ANS labels in the list, in
time linear in the number of words O(né) It is standard to implement this in the word RAM
by parallel multiplications (see the proof of Lemma 3.4). To complete step 4, we UNSPLIT()
to get back the entire list ROUND(¢(Q)), and then copy the ANS labels to the original list @
in O(n<) time. Since both lists are in the same order, this can be done by masking labels
and ORing them in.

To perform step 5, we again split) into sublists with the same ANS labels. After the
recursive calls;, we unsplit to get () back in the original order, with the new ANS labels.

3.2.3 Analysis
For 21gm < $1g M and Igm < { < w, the recurrence (3.1) now becomes:
(. w a
T(n,m,l) = To(n,b',h) + O|n—lg=+ M | + ZT(ni,mi,Ei), (3.2)
wof i=0

where b = O(b), > ,n;, =n, > ,,m; = m — U, and for each i, we either have m; < Z* or
; <0 — % As before, the depth of the recursion is bounded by O(log, m + £).
Assume that for 3 1gb < %1gM and lgb < h < w, an algorithm with running time

h w
To(n,b,h) < ¢ (na gt b 1g (Elgb) 1 b]\/[)

33

is available to begin with. This is true for k = 1 with ¢; = O(1) by Corollary 3.5.
Then the recurrence (3.2) yields:

o h 1k w ¢ w !
T(n, i, 0) = O(cy) - ([n; g% b Ig <ﬁ1gb) + n— lg?] : <logbm—|—ﬁ> + mM).

Set 1gb = 1g"**V /i and h = £/1g"**V /. Notice that indeed ¥ 1gb = Ligm < $lg M
and lgb < h < w. Thus, we obtain an algorithm with running time:

T(n,ﬁl,Z) < Cpat (n£ log!*+Y) i 1g (%Lgfﬁ) — ﬁzM)
w

for some ¢ = O(1) - ¢.
[terating this process k times, we get:

. U i~ N\
T(n,m,l) < 200 (n— g% m 1g (%@;m) + mM)
w

for any value of k. Choosing k = /lglgm to asymptotically minimize the expression, and
plugging in ¢ = w and M = m? (so that indeed Llgm < s1g M), we get:

T(n,m,w) = 200Wlm) (n 1 ;m3),

We can reduce the dependence on m to linear as follows. First, select one out of every
m3/* consecutive segments of S, and run the above algorithm on just these m'/* segments.

This takes time 2°0V!818™) (1 m3/4) time. Now recurse between each consecutive pair of
selected segments. The depth of the recursion is O(lglgm), and it is straightforward to

verify that the running time is n - 2°0V1818™) + O(m).

3.3 Avoiding Nonstandard Operations

The only nonstandard operation used by the algorithm of Section 3.2 is applying a projective
transform in parallel to points packed in a word. Unfortunately, it does not seem possible to
implement this in constant time using standard word RAM operations, since, according to
the formula for projective transform (2.1), this operation requires multiple divisions where
the divisors are all different.

One idea is to simulate the special operation in slightly superconstant time. We can
use the circuit simulation results of Brodnik et al. [BMMO97] to reduce the operation to
lgw - (Iglgw)®" standard operations. For the version of the slab problem in dimension 3
or higher (see Appendix A), this is the best approach we know.

However, in two dimensions we can get rid of the dependence on the universe, obtaining

34

a time bound of n - 2°VI8lE™) + O(m) on the standard word RAM. This constitutes the
object of this section.

3.3.1 The Center Slab

By horizontal translation, we can assume the left boundary of our vertical slab is the y-
axis. Let the abscissa of the right boundary be A. For some h to be determined, let the
center slab be the region of the plane defined by A/2" < 2 < A . (1 —27"). The lateral
slabs are defined in the intuitive way: the left slab by 0 < 2 < A/2" and the right slab by
A-(1-27h) <z <A

The key observation is that distances are somewhat well-behaved in the center slab, so
we will be able to decrease both the left and right intervals at the same time, not just one of
them. This enables us to use (easier to implement) affine maps instead of projective maps.

The following is a replacement for Observation 3.2:

Observation 3.6. Fixz b and h. Let S be a set of m sorted disjoint segments, such that all
left endpoints lie on an interval Iy, and all right endpoints lie on an interval Ir, where both
I1, and Iy have length 2¢. In O(b) time, we can find O(b) segments sg, s1,... € S in sorted
order, which include the lowest segment of S, such that:

(1) for each i, at least one of the following holds:

(1a) there are at most m/b segments of S between s; and s;11.
(1b) both the left and right endpoints of s; and s;y1 are at distance at most 2"

(2) there exist segments 5o < §1 < -+ - culting across the slab, satisfying all of the following:

(2a) distances between the left endpoints of the 3;’s are multiples of 2¢=2".
(2b) ditto for the right endpoints.
(2¢) inside the center slab, sy < Sy < Sg < Sg < - - -.

Proof. Let B contain every |m/b]-th segment of S, starting with the lowest segment sy,. We
define s;,1 inductively. If the next segment after s; has either the left or right endpoints at
distance greater than 2" let s, be this segment, which satisfies (1a). Otherwise, let s;1;
be the highest segment of B which satisfies (1b).

Now impose grids over I and [y, both consisting of subintervals of length
We obtain s; from s; by rounding each endpoint to the grid point immediately above. This
immediately implies 59 < 57 < -+ and s; < §;. Unfortunately, §; and s;y, may intersect
for arbitrarily large k (e.g. s;, ..., S;1x are very close on the left, while each consecutive pair
is far on the right). However, we will show that inside the center slab, §; < s;4o. (See
Figure 3-2(a).)

By construction, s; and s, are vertically separated by more than 2" either on the left
or on the right. Since lateral slabs have a fraction of 27" of the width of the entire slab, the
vertical separation exceeds 2¢7"/2" = 262" anywhere in the center slab. Rounding s; to 3;
represents a vertical shift of less than 2°~2" anywhere in the slab. Hence, §; < s, in the
center slab. 0J

22h 2Z72h)

35

2[—2h l

— ——— center slab ‘“~——~ -

(a) A2 A2t (b) A/2h

Figure 3-2: (a) A center slab, as in Observation 3.6. (b) A left slab, as in Observation 3.7.

We now describe how to implement SLAB(), assuming the intervals containing the left
endpoints (I;) and the right endpoints (Iz) both have length 2¢. In this section, we only
deal with points in the center slab. It is easy to SPLIT()) into subsets corresponding to the
center and lateral slabs, and UNSPLIT() at the end.

We use Observation 3.6 instead of Observation 3.2. Since I, and Ir have equal length,
the map ¢ is affine. Thus, it can be implemented using parallel multiplication and parallel
addition. This means step 2 can be implemented in time O(né) using standard operations.

Because we only deal with points in the center slab, and there s; < §; < s;12 (just like in
the old Observation 3.2), steps 4 and 5 work in the same way.

3.3.2 Lateral Slabs

To deal with the left and right slabs, we use the following simple observation, which we only
state for the left slab by symmetry. Note that the guarantees of this observation (for the left
slab) are virtually identical to that of Observation 3.6 (for the center slab). Thus, we can
simply apply the algorithm of the previous section for the left and right slabs.

Observation 3.7. Fix b and h. Let S be a set of m sorted disjoint segments, such that all
left endpoints lie on an interval I, and all right endpoints lie on an interval Iz, where both
I1, and I have length 2°. In O(b) time, we can find O(b) segments to,t1,... € S in sorted
order, which include the lowest segment of S, such that:

(1) for each i, at least one of the following holds:

(1a) there are at most m/b segments of S between s; and S;41.

(1b) anywhere in the left slab, the vertical separation between s; and s;y1 is less than
2Z7h+1'

(2) there exist segments ty < t1 < --- cutting across the left slab, satisfying all of the
following:
(2a) distances between the left endpoints of the t;’s are multiples of 2¢72".

(2b) ditto for the right endpoints.

36

(2¢) inside the left slab, to <t <ty <ty < ---.

Proof. Let I, be the vertical interval at the intersection of the right edge of the left slab
with the parallelogram defined by I; and Iz. Note I4 also has size 2°.

Let B contain every |m/b]-th segment of S, starting with the lowest segment ¢,. Given
t;, we define ;.1 to be the highest segment of B which has the left endpoint at distance at
most 2/~ away. If no such segment above t; exists, let ¢;1, be the successor of ¢; in B (this
will satisfy (1a)). In the first case, (1b) is satisfied because the right endpoints of ¢; and t;,
are at distance most 2¢, so on I, the separation is at most 2¢-"(1 —27") 4 2¢. 27" < 26=I+1,

Now impose grids over I, and I, both consisting of 2"*1 subintervals of length 2=,
We obtain #; from t; by rounding the points on I; and I, to the grid point immediately
above. Note that the vertical distance between t; and #; is less than 2¢°"~! anywhere in the
left slab. On the other hand, the left endpoints of ¢; and ;.5 are at distance more than 2/=".
The distance on I4 (and anywhere in the left slab) is at least 2¢7"(1 — 2=") > 2="=1 Thus
t; < t; < tiys. (See Figure 3-2(b).) O

3.3.3 Bounding the Dependence on m

Our analysis needs to be modified, because segments are simultaneously in the left, center
and right slabs, so they are included in 3 recursive calls. In other words, in recurrence (3.2),
we have to replace > ., m = m — ' with a weaker inequality >, m < 3m. Recall that for our

choice of b and h, the depth of the recursion is bounded by O(log, m + %) = O(1g"* V) m).

Thus, the cost per segment is increased by an extra factor of 300/ m) — 30(\/lgm) fo;
each bootstrapping round; the cost per point does not change. With k = 4/lglgm rounds,

the overall dependence on m is now increased slightly to 20(V18lem) . m3 . 30(V/lsmlglem))y —
O(m>*%). As before, this can be made O(m) by working with m!'/* segments and recursing.

37

38

Chapter 4

General Point Location via Reductions

We now tackle the 2-d point location problem in the general setting: given a static planar
subdivision formed by a set S of n disjoint open line segments with O(w)-bit integer or
rational coordinates, preprocess S so that given a query point ¢ with integer or rational
coordinates, we can quickly identify (a label of) the face containing ¢. By associating each
segment with an incident face, it suffices to find the segment that is immediately above q.

Assuming a solution for the slab problem with O(n) space and preprocessing time and ¢(n)
query time, we can immediately obtain a data structure with O(n?) space and preprocessing
time, which supports queries in O(t(n)) time: Divide the plane into O(n) slabs through the
z-coordinates of the endpoints and build our 2-d fusion tree inside each slab. Note that the
endpoints of the segments clipped to the slab indeed are rationals with O(w)-bit numerators
and denominators. Given a query point (z,y), we can first locate the slab containing (z,y)
by a 1-d predecessor search on z, and then search in this slab. Since point location among
horizontal segments solves predecessor search, we know predecessor search takes at most ¢(n)
time.

Note that this reduction also relates the two offline problems. If we can sort n points
and m segments in a slab with running time O(m + n - t(m)), general offline point location
is solved in time O(m? +n - t(m)), as each point appears in exactly one slab.

Using more advanced techniques, we can obtain reductions from the general case to the
slab problem without a loss in the bounds. Formally, our results are as follows:

Theorem 4.1. Let all coordinates by O(w)-bit rationals. Suppose there is a data structure
with O(n) preprocessing time and space that can answer point location queries in t(n) time
for n disjoint line segments spanning a vertical slab in the plane.

Then given any planar connected subdivision defined by n disjoint line segments, we can
build a data structure in O(n) time and space so that point location queries can be answered
i time asymptotically:

t(n)-O(lglgn)
min{ t(n), ift(n)/1g’n is monotone increasing for constant § > 0
Vw/lgw

39

Observe that the running time is unaffected if it is a not-too-small function of n, making
this a very general reduction. At present, the best bound is of course t(n) = O(lgn/lglgn)
by Theorem 2.1. If the running time depends on w, we do not get such a nice guarantee.
However, we can still recover the O(y/w/lgw) bound from Theorem 2.1, which is the best
known to date. This needs a somewhat more careful analysis in the reduction, crafter for
the precise bounds of Theorem 2.1.

Theorem 4.2. Suppose there is an algorithm with running time O(m)+mn-7(m), which can
answer offline point location for m segments cutting across a slab, and n points inside the
slab. Then we can locate n given points in an arbitrary planar subdivision with m segments
in time O(m +n - 7(m) - 1glgm).

We could obtain a result similar to the online case, including a bound of \/w/lgw,
and without the lglgm factor for 7(m) large enough. However, we already know 7(m) <
20Wlelem) "5o these cases are irrelevant. Note that 20(Vlelem) . g]gm = 20Wlglem) 5 again
we recover the best known bounds for the slab problem (in the qualitative sense of the
Oh-notation).

4.1 Technical Overview

We describe three different reductions from general point location to point location in a slab.
The first two are careful adaptations of classic techniques in computational geometry, while
the third is a technical contribution of independent interest:

planar separators [LT80] This method has the best theoretical properties, including de-
terministic bounds, a linear-time construction for the online problem, and a linear
dependence on m for the offline problem. However, it is probably the least practical
because of large hidden constants.

random sampling [Mul00] This method is the simplest, but the construction algorithm
is randomized, and takes time O(n - 7(n)). For the offline case, it gives an expected
running time of O((m +n) - 7(m) - lglgm).

persistent search trees [ST86] This is the least obvious to adapt and requires an interest-
ing construction of an exponential search tree with nice geometric properties. It yields
a deterministic construction time of O(sort(n)), and an offline algorithm with running
time O(sort(m) +n - 7(m) -lglgm).

Most importantly, this result shows how our sublogarithmic results can be used in
sweep-line algorithms, which is important for some later applications.

Since the planar separator approach yields the best bounds (Theorems 4.1 and 4.2), we
describe it with all calculations necessary for the theorems. In the other cases, we only
aim to convey the technical ideas, so we only describe the online reduction, and further
assume t(n)/1g° n is increasing. The calculations are essentially the same as for the separator
method.

40

4.2 Method 1: Planar Separators

We describe our first method for reducing general 2-d point location to point location in
a slab. We assume that the given subdivision is a triangulation. Note that for any con-
nected subdivision, we can first triangulate it in linear deterministic time by Chazelle’s
algorithm [Cha91].

Our deterministic method is based on the planar graph separator theorem by Lipton and
Tarjan [LT80] (who also noted its possible application to the point location problem).

Lemma 4.3. Given a planar graph G with n vertices and a parameter r, we can find a
subset of O(y/rn) vertices in O(n) time, such that each connected component of G\ S has
at most n/r vertices.

Proof. The combinatorial bound follows by applying the planar separator theorem recur-
sively. We can get a linear-time algorithm from the results by Aleksandrov and Djid-
jev [AD96] or Goodrich [Goo95]. O

Deterministic divide-and-conquer. Let n denote the number of triangles in the given
triangulation 7. We apply the separator theorem to the dual of T' to get a subset R of
O(y/rn) triangles, such that the removal of these triangles yields subregions each comprising
at most n/r triangles. We store the subdivision induced by R (the number of edges is O(|R|)),
using a point-location data structure with O(Py(y/rn)) preprocessing time, and O(Qq(1/rn))
query time. For each subregion with n; triangles, we build a point-location data structure
with P;(n;) preprocessing time and Q1(n;) query time.

If the problem is offline, we have to solve an offline problem in the subdivision induced
by R, and the an offline problem in each subregion. We will make sure the offline running
time for m segments and n points can be expressed as P(m) + n - Q(m). This is true for
the slab problem by assumption. Then @y, ()1 represent the cost per point, and Fy, P, the
additive cost depending on the number of segments (in R, and each subregion).

As a result, we get a new method with the following bounds for the preprocessing time
P(n) and query time Q(n) for some n;’s with). n; <n and n; <n/r:

Pn) = 2 Pini) + O(n+ Po(v/im)

Q(n) = max@i(ni) + O(Qu(vrn)).
Calculations. To get started, we use the naive method with Py(n) = Pi(n) = O(n?) and
Qo(n) = Q1(n) = O(t(n)) (or 7(n) for the offline problem). Setting r = |y/n] then yields
P(n) = O(n*?) and Q(n) = O(t(n)).

To reduce preprocessing time further, we bootstrap using the new bound Py(n) = O(n?*/?)
and Qo(n) = O(t(n)) and apply recursion to handle each subregion. By setting r = [n'/4],

41

the recurrences
P(n) = Z:PnZ + O(n + Py(v/rn)) ZPnZ) + O(n

Qn) = mgXQ(m) + O(Qo(vrn)) = mgXQ(m) + O(t(n))

have depth O(lglgn). Thus, P(n) = O(nlglgn). If t(n)/1g’ n is monotone increasing for
some constant 6 > 0, the query time is Q(n) = O(t(n)), because the assumption implies
that t(n) > (4/3)%(n**) and so Q(-) expands to a geometric series. If the assumption fails,
the upper bound Q(n) = O(t(n) loglogn) still holds.

Lastly, we bootstrap one more time, using Py(n) = O(nlglgn) and Qy(n) = O(t(n)),
and by Kirkpatrick’s point location method [Kir83], P;(n) = O(n) and Q1(n) = O(lgn). We
obtain the following bounds, where > n; < n and n; < n/r:

P(n) = Zpl(ni) + O(n+ Py(vrn)) = O(n+Vrnlglgn)
Q(n) = maxQi(n) + O(Qu(vrn)) = O(lg(n/r) +t(n)).

Setting » = |n/lgn| then yields the final bounds of P(n) = O(n) and Q(n) = O(t(n))
(as t(n) exceeds lglgn under the above assumption). The space used is bounded by the
preprocessing cost and is thus linear as well.

We note that it is possible to avoid the last bootstrapping step by observing that the
total cost of the recursive separator computations is linear [Goo95]. The first bootstrapping
step could also be replaced by a more naive method that divides the plane into y/n slabs.

Alternative bounds. We can also obtain bounds that depend on the precision w, although
parameters have to be set differently (to avoid increasing the query time by a lglgn factor).
Using the h-sensitive bounds from Theorem 2.1, we start with Py(n) = P;(n) = O(n? - 2")
and Qo(n) = Q1(n) = O(w/h). The first bootstrapping step with r = [/n| yields P(n) =
O(n?-2") and Q(n) = O(w/h).

In the next step, we use Py(n) = O(n®?-2") and Qy(n) = O(w/h) and apply recursion
to handle each subregion. We set r = |n!'/*| and h = |elgn] for a sufficiently small constant
e > 0 (so that (v/rn)*?-2" = o(n)). The recurrences become

P(n) = > P(n;) + O(n)

Qn) = maxQ(n;) + O(w/lgn),
where Y ,n; < n and n; = O(n**). We stop the recursion when n < ny and handle the
base case using Theorem 2.1, with O(nyg) preprocessing time and O(t(ng)) = O(lgno/ 1glgng)
query time. As a result, the recurrences solve to P(n) = O(nlglgn) and Q(n) = O(w/lgne+
lgng/lglgng), because Q(-) expands to a geometric series. Setting ny = 2LV*18%] yields

42

Q(n) = O(vw/lgw).

In the last bootstrapping step, we use Py(n) = O(nlglgn) and Qy(n) = O(\/w/lgw),
and Pi(n) = O(n) and Q1(n) = O(lgn). Setting r = |n/lgn] yields O(n) preprocessing
time and O(y/w/ lgw) query time.

4.3 Method 2: Random Sampling

Again, we assume a solution for the slab problem using O(n) space and construction time, and
supporting queries in ¢(n) time, where #(n)/1g’ n is monotonically increasing. The method
we will describe gives a data structure of O(n) space, which can be constructed in expected
O(n - t(n)) time', and supports queries in O(t(n)) query time. Although construction is
slower and randomized, the method is simpler and the idea itself has further applications.

Randomized divide-and-conquer. Take a random sample R C S of size r. We first
compute the trapezoidal decomposition T'(R): the subdivision of the plane into trapezoids
formed by the segments of R and vertical upward and downward rays from each endpoint
of R. This decomposition has O(r) trapezoids and is known to be constructible in O(rlgr)
time. We store T'(R) in a point-location data structure, with Py(r) preprocessing time, Sy(r)
space, and Qo(r) query time.

For each segment s € S, we first find the trapezoid of T'(R) containing the left endpoint
of sin Qo(r) time. By a walk in T'(R), we can then find all trapezoids of T'(R) that intersects
s in time linear in the number of such trapezoids (note that s does not intersect any segment
of R and can only cross vertical walls of T'(R)). As a result, for each trapezoid A € T'(R),
we obtain the subset Sa of all segments of S intersecting A (the so-called conflict list of A).
The time required is O(nQo(r) + 3 acr(r) [9al)-

By a standard analysis of Clarkson and Shor [CS89, Mul00], the probability that

Z |Sal = O(n) and max |[Sal = O((n/r)lgr)

AST(R) A€ET(R)

is greater than a constant. As soon as we discover that these bounds are violated, we stop
the process and restart with a different sample; the expected number of trials is constant.
We then recursively build a point-location data structure inside A for each subset Sa.

To locate a query point ¢, we first find the trapezoid A € T(R) containing ¢ in Qo(r)
time and then recursively search inside A.

The expected preprocessing time P(n), worst-case space S(n), and worst-case query
time Q(n) satisfy the following recurrences for some n;’s with >, n, = O(n) and n;, =

n fact, O(n - 7(n)) because construction is an offline problem. We ignore this detail, since planar
separators already give us a theoretically optimal bound.

43

O((n/r)lgr):
P(n) = ZP(ni) + O(Po(r) + nQo(r))

S(n) = Zs(ni) + O(So(r))
Qn) = m?XQ(”z‘) + O(Qo(r)).

Calculations. To get started, we use the naive method with Py(r) = Sy(r) = O(r?) and
Qo(r) = O(t(r)). By setting r = |\/n], the above recurrence has depth O(Iglgn) and solves
to P(n),S(n) = O(n-20012") = O(n1g®Y n) and Q(n) = O(t(n)), because Q(-) expands
to a geometric series under our assumption.

To reduce space further, we bootstrap using the new bounds Py(r), So(r) = O(r1g°r) and
Qo(r) = O(t(r)) for some constant c¢. This time, we replace recursion by directly invoking
some known planar point location method [Sno04] with P;(n) = O(nlgn) preprocessing
time, S1(n) = O(n) space, and Q1(n) = O(lgn) query time. We then obtain the following
bounds, where). n; = O(n) and n; = O((n/r)lgr):

P(n) = ZPl(ni) + O(Py(r) + nQo(r)) = O(nlgn/r) +rigtr+n-t(r))
S(n) = ZSl(ni) + O(So(r)) = O(n+rlgr)
Qn) = max@Qi(ni) + O(Qo(r)) = O(g(n/r) +1(r)).

Remember than ¢(n) exceeds lglgn under our assumption. Setting r = |n/lgn| yields
O(n - t(n)) expected preprocessing time, O(n) space, and O(t(n)) query time.

4.4 Method 3: Persistence and Exponential Search Trees

We now show how to use the classic approach of persistence: perform a sweep with a vertical
line, inserting and deleting segments into a dynamic structure for the slab problem. The
structure is the same as in the naive solution with quadratic space: what used to be separate
slab structures are now snapshots of the dynamic structure at different moments in time.
The space can be reduced if the dynamic structure can be made persistent with a small
amortized cost in space.

In 1-d, the pervasive approach for dynamization and persistence would be bucketing.
The idea is to bucket, say, O(k) consecutive elements, building a bottom structure inside
each bucket, and a top structure for elements separating the ©(n/k) buckets. A particularly
aggressive type of bucketing is the exponential tree, a structure that we will describe below.

In two dimensions, the equivalent of bucketing seems very difficult to achieve. Indeed, this
would have important applications even for unbounded precision: it would imply logarithmic

44

upper bounds for dynamic point location, a famous open problem. The difficulty in bucketing
comes from the apparent impossibility to choose good separators. Say, for instance, that some
segment s is chosen to separate two buckets. In the very next step, s; could be deleted, and
another s, which intersects s; can be inserted. Now, unless we rebuild the top structure to
replace s; (a very expensive operation), we do not know in which bucket to place ss.

Though we do not know how to make bucketing work in general, we can make it work
for our application, by observing that point location only needs to construct exponential
trees in the semionline case: for every element, we are told the time in the future when
it will be deleted. This is a natural property of any sweep-line algorithm. Motivated by
this property, we construct semionline geometric exponential trees by a careful interplay of
geometric separation arguments and standard amortization arguments.

4.4.1 The Segment Predecessor Problem

We define the segment-predecessor problem as a dynamic version of the slab problem, in a

changing (implicit) slab. Formally, the task is to maintain a set S of segments, subject to:

QUERY(p): locate point p among the segments in S. It is guaranteed that p is inside the
maximal vertical slab which does not contain any endpoint from S (and that this slab
is always nonempty).

INSERT(s, s,): insert a segment s into .S, given a pointer to the segment s, € S which is
immediately above s. (This ordering is strict in the maximal vertical slab.)

DELETE(s): delete a segment from S, given by a pointer.

If S does not change, the slab is fixed and we have, by assumption, a solution with O(n)
space and t(n) query time. However, for the dynamic problem we have a different challenge:
as segments are inserted or deleted, the vertical slab from which the queries come can change
significantly. This seems to make the problem hard and we do not know a general solution
comparable to the static case.

However, we can solve the semionline version of the problem, where INSERT is replaced
by the following operation:

INSERT(S, s;,t): insert a segment s as above. Additionally, it is guaranteed that the seg-
ment will be deleted at time ¢ in the future.

Note that our application will be based on a sweep-line algorithm, which guarantees that
the left endpoint of every inserted segment and the right endpoint of every deleted segment
appear in order. Thus, by sorting all z-coordinates, we can predict the deletion time, even
at the time of insertion.

4.4.2 Geometric Exponential Trees

We will use exponential trees [And96, AT02|, a remarkable idea coming from the world of
integer search. This is a technique for converting a black-box static predecessor structure
into a dynamic one, while maintaining (near) optimal running times. The approach is based
on the following key ideas:

45

e construction: Pick B splitters, which separate the set S into subsets of size n/B.
Build a static data structure for the splitters (the top structure), and then recursively
construct a structure for each subset (bottom structures).

e query: First search in the top structure (using the search for the static data structure),
and then recurse in the relevant bottom structure.

e update: First search among splitters to see which bottom structure is changed. As
long as the bottom structure still has between % and %” elements, update it recur-
sively. Otherwise, split the bottom structure in two, or merge with an adjacent sibling.
Rebuild the top structure from scratch, and recursively construct the modified bottom

structure(s).

An important point is that this scheme cannot guarantee splitters are actually in S.
Indeed, an element chosen as a splitter can be deleted before we have enough credit to
amortize away the rebuilding of the top structure. However, this creates significant issues for
the segment-predecessor problem, due to the changing domain of queries. If some splitters are
deleted from S, the vertical slab defining the queries may now extend beyond the endpoints
of these splitters. Then, the support lines of the splitters may intersect in this extended slab,
which means splitters no longer separate the space of queries.

Our contribution is a variant of exponential trees which ensures splitters are always
members of the current set S given semionline knowledge. Since splitters are in the set, we
do not have to worry about the vertical slab extending beyond the domain where the splitters
actually decompose the search problem. Thus, we construct exponential trees which respect
the geometric structure of the point location problem.

Construction and queries. We maintain two invariants at each node of the exponential
tree: the number of splitters B is ©(n'/?); and there are ©(n?3) elements between every
two consecutive splitters. Later, we will describe how to pick the splitters at construction
time in O(n) time, satisfying some additional properties. Once splitters are chosen, the
top structure can be constructed in O(B) = o(n) time and we can recurse for the bottom
structures. Given this, the construction and query times satisfy the following recurrences,
for Y, n; = n and n; = O(n*3):

P(n) = O(m)+> P(n) = Onlglgn)
Qn) = O(t(B)) +maxQ(n;) < O(t(n'*)) +Q(O(n*?))

The query satisfies the same type of recurrence as in the other methods, so Q(n) = O(t(n))
assuming t(n)/1g’ n is increasing for some § > 0.

Handling updates. Let n be the number of segments, and B the number of splitters, when
the segment-predecessor structure was created. As before, n and B denote the corresponding
values at present time. We make the following twists to standard exponential trees, which
leads to splitters always being part of the set:

46

e choose splitters wisely: Let an ideal splitter be the splitter we would choose if we only
cared about splitters being uniformly distributed. (During construction, this means
n/ B elements apart; during updates, the rule is specified below.) We will look at
=(n/ B) segments above and below an ideal splitter, and choose as the actual splitter
the segment which will be deleted farthest into the future. This is the crucial place
where we make use of semionline information. Though it is possible to replace this
with randomization, we are interested in a deterministic solution.

e rebuild often: Normally, one rebuilds a bottom structure (merging or splitting) when
the number of elements inside it changes by a constant factor. Instead, we will rebuild
after any %(ﬁ/ B) updates in that bottom structure, regardless of how the number of
segments changed.

o rebuild aggressively: When we decide to rebuild a bottom structure, we always include
in the rebuild its two adjacent siblings. We merge the three lists of segments, decide
whether to break them into 2, 3 or 4 subsets (by the balance rule below), and choose
splitters between these subsets. Ideal splitters are defined as the (1, 2 or 3) segments
which divide uniformly the list of segments participating in the rebuild.

Lemma 4.4. No segment is ever deleted while it is a splitter.

Proof. Say a segment s is chosen as a splitter. In one of the two adjacent substructures,
there are at least -+ (7/ B) segments which get deleted before s. This means one of the two
adjacent structures gets rebuilt before the splitter is deleted. But the splitter is included in
the rebuild. Hence, a splitter is never deleted between the time it becomes a splitter and the
next rebuild which includes it. O

Lemma 4.5. There exists a balance rule ensuring all bottom structures have O(i/B) ele-
ments at all times.

Proof. This is standard. We ensure inductively that each bottom structure has between
0.6(7/B) and 2(71/B) elements. During construction, ideal splitters generate bottom struc-
tures of exactly (7/B) elements. When merging three siblings, the number of elements is
between 1.8(7/B) and 6(72/B). If it is at most 3(7/B), we split into two ideally equal sub-
sets. If it is at most 3.6(72/B), we split into three subsets. Otherwise, we split into four.
These guarantee the ideal sizes are between 0.9(72/B) and 1.5(72/B). The ideal size may be
modified due to the fuzzy choice of splitters (by 0.1(72/B) on each side), and by 0.1(72/B)
updates that we tolerate to a substructure before rebuilding. Then, the number of elements

stays within bounds until the structure is rebuilt. O

We can use this result to ensure the number of splitters is always B = O(B). For a
structure other than the root, this follows immediately: the lemma applied to the parent
shows n for the current structure can only change by constant factors before we rebuild,
i.e. n = O(n). For the root, we enforce this through global rebuilding when the number of
elements changes by a constant factor. Thus, we have ensured that the number of splitters
and the size of each child are within constant factors of the ideal-splitter scenario.

47

Let us finally look at the time for an INSERT or DELETE. These operations first update
the appropriate leaf of the exponential tree; we know the appropriate leaf since we are given
a point to the segment (for delete) or its neighbor (for insert). Then, the operations walk
up the tree, triggering rebuilds where necessary.

For each of the O(lglgn) levels, an operation stores O(lglgn) units of potential, making
for a total cost of O((lglgn)?) per update. The potential accumulates in each node of the
tree until that node causes a rebuild of itself and some siblings. At that point, the potential
of the node causing the rebuild is reset to zero. We now show that this potential is enough
to pay for the rebuilds. Rebuilding a bottom structure (including the siblings involved in
the rebuild) takes time O(1) - P(O(n/B)) = O(%1glg #). Furthermore, there is a cost of
O(B) = O(n'/?) = o(n/B) for rebuilding the top structure. However, these costs are incurred
after Q(7/B) = Q(n/B) updates to that bottom structure, so there is enough potential to
cover the cost.

Bucketing. We now show how to reduce the update time to a constant. We use the
structure from above over O(n/(lglgn)?) splitters. The bottom structures have ©((lglgn)?)
elements, and we can simply use a linked list to represent them in order. The query time is
increased by O((Iglgn)?) because we have to search through such a list, but that is a lower
order term. Updating the bottom structure now takes constant time, given a pointer to the
segment or a neighbor. As shown above, an update to the top structure only occurs after
Q((1glgn)?) updates to a bottom structure. So operations in the top structure cost O(1)
amortized.

4.4.3 Application to Point Location

Sweep-line construction. We first sort the z-coordinates corresponding to the endpoints,
taking sort(2n) time. To know which of the O(n) slabs a query point lies in, we construct an
integer predecessor structure for the z-coordinates. The optimal complexity of predecessor
search cannot exceed the optimal complexity of point location, so this data structure is
negligible.

We now run the sweep-line algorithm, inserting and deleting segments in the segment-
predecessor structure, in order of the z-coordinates. For each insert, we also need to perform
a query for the left endpoint, which determines where the inserted segment goes (i.e. an
adjacent segment in the linear order). Thus the overall construction time is O(n - t(n)).

We can reduce the construction time to O(sort(n)), if we know where each insert should
go, and can avoid the queries at construction time. To achieve this, we first convexify the
outer face, adding edges of the convex hull. The convex hull can be found in linear time by
gift wrapping, since we can walk the edges of the polygon in order. Then, we triangulate
the planar subdivision by the deterministic linear-time algorithm of [Cha91].

Now consider any vertex at the time when the vertical sweep line hits it. Since we are
working with a triangulation, the vertex must have an incident edge to the left of the sweep
line, unless it is on the outer face. Since the outer face is convex, the vertex must have

48

an edge to the left unless it is the very first vertex inserted. Thus, every segment insert
immediately follows a segment delete with a shared vertex, so we know a neighbor of the
inserted segment by examining the neighbors of the deleted segment. These neighbors are
known in constant time since we can just maintain a linked list of all active segments in
order.

Persistence. It remains to make the segment predecessor structure persistent, leading
to a data structure with linear space. Making exponential trees persistent is a standard
exercise. We augment each pointer to a child node with a 1-d predecessor structure (the
dimension is time). Whenever the child is rebuilt, we store a pointer to the new version and
the time when the new version was created. To handle global rebuilding at the root, the
predecessor structure for the x-coordinates stores a pointer to the current root when each
slab is considered. The leaves of the tree are linked lists of O((Iglgn)?) elements, which can
be made persistent by standard results for the pointer machine [DSSTS89].

Given k numbers in {1,...,2n} (our time universe), a van Emde Boas data structure for
integer predecessor can be constructed in O(k) time deterministically [Ruz07], supporting
queries in O(lglgn) time. Thus, our point location query incurs an additional O(1glgn) cost
on each of the O(lglgn) levels, which is a lower order term.

The space cost for persistence is of course bounded by the update time in the segment
predecessor structure. Since we have 2n updates with constant cost for each one, the space
is linear. The additional space due to the van Emde Boas structures for child pointers is
also linear, as above.

49

20

Chapter 5

Reexamining Computational Geometry

It turns out the our results for point location lead to improved bounds for many fundamental
problems in computational geometry. This highlights once again the center-stage position
that point location occupies in nonorthogonal geometry.
In the next sections, we discuss the following applications of our results:

5.1 applications to online data structures, such as 2-d nearest neighbor queries.

5.2 application to the segment intersection problem.

5.3 a reduction from computing 3-d convex hulls and 2-d Voronoi diagrams, to offline point

location.
5.4 further algorithmic consequences of the previous two results.

5.1 Improved Data Structures

Corollary 5.1. Let all coordinates be O(w)-bit rationals. If the point location problem can

be solved by a data structure of size O(n) with query time t(n,w), then:
(a) given n points in the plane, we can build a data structure of size O(n), so that near-

est/farthest neighbor queries under the Fuclidean metric can be answered in O(t(n,w))
time.
(b) given n points in the plane, we can build an O(nlglgn)-space data structure supporting
the following queries in O(t(n,w) + k) time:
e circular range queries: report all k points inside a query circle;
e k-nearest neighbors queries: report the k nearest neighbors to a query point.

(c) given a convex polygon P with n vertices, we can build an O(n)-space data structure
supporting the following queries in O(t(n,w)):
e tangent queries: find the two tangents of P through an exterior point;
e [ine stabbing queries: find the intersections of P with a line.

Proof. (a) Nearest neighbor queries reduce to point location in the Voronoi diagram. (From
the results below, the construction time of the Voronoi diagram, and hence the data
structure, relates to offfine point location.) Farthest neighbor queries also reduce to
point location.

o1

(b) The result is obtained by adopting the range reporting data structure from [Cha00],
using Theorem 4.1 to handle the necessary point location queries.

(c) For tangent queries, it suffices to compute the tangent from a query point ¢ with P to
the left, say, of this directed line. Decompose the plane into regions where two points
are in the same region iff they have the same answer; the regions are wedges. The
result follows by performing a point location query.

Ray shooting queries reduce to gift wrapping queries in the dual convex polygon (whose
coordinates are still O(w)-bit rationals).
O

5.2 Segment Intersection

We now consider the problem of computing all k intersections among a set S of n line
segments in the plane, where all coordinates are O(w)-bit rationals. We actually solve a
more general problem: constructing the trapezoidal decomposition 7'(S), defined as the
subdivision of the plane into trapezoids formed by the segments of S and vertical upward
and downward rays from each endpoint and intersection. Notice that the intersection points
have O(w)-bit rational coordinates.

This problem turns out to be related to offline point location, by the random sam-
pling approach used in Section 4.3. Unfortunately, we are unable to adapt the separator or
persistence approaches. Thus, we can only beat classic O(nlgn) bounds with randomized
algorithms.

Theorem 5.2. Assume offline point location with n points and m segments can be solved in
time O(m +n - 7(m)), and that 7(n) = Q(lglgn). In particular, T(m) < 20Wlglem),

Then, given n line segments in the plane, we can find all k intersections, and compute
the trapezoidal decomposition, in O(n - 1(n) + k) expected time.

Proof. Take a random sample R C S of size r. Compute its trapezoidal decomposition
T(R) by a known algorithm [Mul00] in O(rlgr + |T'(R)|) time. For each segment s € S, we
first find the trapezoid of T'(R) containing the left endpoint of s by a point location query.
This is an offline problem with O(|T(R)|) segments and n query points, so it takes time
O(IT(R)| +n-7(|T(R)|)). Since |T(R)| < n* and 7(m) < O(lgm), this running time is
O(T(R)|+n-7(n)).

By a walk in T'(R), we can then find all trapezoids of T'(R) that intersects s in time
linear in the total face length of such trapezoids, where the face length A of a trapezoid A
refers to the number of edges of T'(R) on the boundary of A. As a result, for each trapezoid
A € T(R), we obtain the subset S of all segments of S intersecting A (the so-called conflict
list of A). The time required thus far is O(n - 7(n) + > A crr) [9alla)-

We then construct T'(Sa) inside A, by using a known algorithm in O(|Sa|lg[Sa| + ka)
time, where ka denotes the number of intersections within A (with)\ ka = k). We finally
stitch these trapezoidal decompositions together to obtain the trapezoidal decomposition of
the entire set S.

02

By a standard analysis of Clarkson and Shor [CS89, Mul00],

E[|T(R)|] = O(r+kr?/n?) and E Z |Sallg [Sal| = O((r+kr?/n?)-(n/r)1g(n/r)).

A€ET(R)

Clarkson and Shor had also specifically shown [CS89, Lemma 4.2] that:

E| > [Saltal = O((r+kr?/n?) - (n/r)) = O(n-(1+kr/n?)).

A€ET(R)

The total expected running time is O(rlgr +n-7(n) +nlg(n/r)+ k). Setting r = |n/lgn|
yields the desired result. 0

5.3 Convex Hulls in 3-d and Voronoi Diagrams in 2-d

We next tackle the well-known problem of constructing the convex hull of a set S of n
points in 3-d. It is well known that constructing a Voronoi diagram in 2-d reduces to this
problem. As before, our reduction is randomized, and we do not know how to achieve
o(nlgn) algorithms deterministically.

Theorem 5.3. Let 7(n) be as in Theorem 5.2. Given n points in three dimensions with
O(w)-bit rational coordinates, we can compute their convex hull in O(n-71(n)) expected time.

Proof. We again use a random sampling approach. First it suffices to construct the upper
hull (the portion of the hull visible from above), since the lower hull can be constructed
similarly. Take a random sample R C S of size . Compute the upper hull of R in O(rlgr)
time by a known algorithm [dBSvKOO00, PS85]. The xy-projection of the faces of the upper
hull is a triangulation 7.

For each point s € 5, consider the dual plane s* [dBSvKO00, Ede87, Mul00]. Construct-
ing the upper hull is equivalent to constructing the lower envelope of the dual planes. Let
T(R) denote a canonical triangulation [Cla88, Mul00] of the lower envelope LE(R) of the
dual planes of R, which can be computed in O(r) time given LE(R). For each s € S, we
first find a vertex of the LE(R) that is above s*, say, the extreme vertex along the normal
of s*. In primal space, this is equivalent to finding the facet of the upper hull that contains
s when projected to the xy-plane, i.e. a point location query in 7. By a walk in T'(R), we
can then find all cells of T'(R) that intersect s* in time linear in the number of such cells.
As a result, for each cell A € T(R), we obtain the subset S} of all planes s* intersecting A.
The time required thus far is O(n - 7(n) + 3" Acpir) [SAl)-

We then construct LE(S}) inside SX, by using a known O(|SA|lg|SA|)-time convex-
hull /lower-envelope algorithm. We finally stitch these lower envelopes together to obtain the
lower envelope/convex hull of the entire set.

23

By a standard analysis of Clarkson and Shor [CS89, Mul00],

E

Y ISAll =0m) and E| Y |Sillg|Sil| = O(r- (n/r)lg(n/r)).

A€T(R) A€T(R)

The total expected running time is O(rlgr+n-7(n) +nlg(n/r)). Setting r = |n/lgn], the
running time is dominated by O(n - 7(n)). O

5.4 Other Consequences

To demonstrate the impact of the preceding two results, we list a sample of improved algo-
rithms and data structures that can be derived from our work.

Corollary 5.4. Let 7(n) be as in Theorem 5.2. Then:

(a)

gien n points in the plane, we can construct the Voronoi diagram, or equivalently the
Delaunay triangulation, in O(n - 7(n)) expected time;

given n points in the plane, we can construct the Euclidean minimum spanning tree in
O(n-71(n)) expected time;

gien n points in the plane, we can find the largest empty circle that has its center
inside the convex hull in O(n - 7(n)) expected time;

we can triangulate an n-vertex polygon in O(n - 7(n)) deterministic time;

we can compute the convex hull of n points in three dimensions with O(w)-bit rational
coordinates in O(n - T(H' M) expected time, where H is the number of hull vertices.

Proof. (a) By a lifting transformation [dBSvKO00, Ede87, O’'R98], the 2-d Delaunay tri-

(b)

(c)

angulation can be obtained from the convex hull of a 3-d point set (whose coordinates
still have O(w) bits). The result follows from Theorem 5.3.

The minimum spanning tree (MST) is contained in the Delaunay triangulation. We
can compute the MST of the Delaunay triangulation, a planar graph, in linear time,
for example, by Boruvka’s algorithm. The result thus follows from (a).

The coordinates of the optimal circle are still O(w)-bit rationals, and can be determined
from the Voronoi diagram in linear time [PS85]. Again the result follows from (a).
Curiously, the 1-d version of the problem admits an O(n)-time RAM algorithm by
Gonzalez [PS85].

It is known [FM84] that a triangulation can be constructed from the trapezoidal de-
composition of the edges in linear time. The result follows from Theorem 5.2 if ran-
domization is allowed. Deterministically, we can instead compute the trapezoidal de-
composition by running the algorithm from Section 4.4, since that algorithm explicitly
maintains a sorted list of segments that intersect the vertical sweep line at any given
time.

o4

(e) The result is obtained by adopting the output-sensitive convex hull algorithm from
[Cha96], using Theorem 5.3 to compute the subhull of each group. For readers familiar
with [Cha96|, we note that the running time for a group size m is now O(n - 7(m) +

H(n/m)lgm); we can choose m = | Hlg H| and apply the same “guessing” trick.
U

25

26

Chapter 6

Improving Dynamic Search

Dynamic data structures present some of the toughest challenges in our study. As opposed
to static data structures, where we are free to organize a hierarchical structure based on our
information-progress argument, dynamic data structures already need a different hierarchical
structure for the sake of dynamic maintenance. Quite expectedly, the requirements of these
two structures can clash in catastrophic ways.

In this chapter, we study tangent queries in the dynamic conver hull problem, as the
prime example of a dynamic nonorthogonal problem. Recall that the tangent query asks
for the two tangents through a given point to the convex hull of the set S of points in the
data structure. Remember that tangent queries for a static polygon are reducible to point
location; see Corollary 5.1(c). In the dynamic setting, we show:

Theorem 6.1. Assuming points have O(w)-bit rational coordinates, tangent queries can be

supported in time O(lgl%gn), while updates are supported in time O(1g%n).

As opposed to the static case, we cannot hope for a substantially better bound for small
universes. In Appendix B, we show that for any polylog(n) update time, the query time
must be Q(lgn/lgw). Thus, our query time is optimal, at least for precision w = polylog(n).

Tangent queries are only one of the queries that are typically considered for the dynamic
convex hull problem. In Appendix B, we discuss the various queries in more detail. While
most of these can be reduced to finding tangents, it turns out that some queries (e.g. linear
programming) are in essence one-dimensional, and enjoy better bounds. In this chapter, we
focus only on tangent queries, which have a strong nonorthogonal, two-dimensional flavor,
and use them to study techniques needed for sublogarithmic query time in a dynamic setting.

6.1 Technical Overview

All previous data structures for dynamic planar convex hull assume infinite precision and
are therefore limited to running queries in ©(lgn) time. The original such data structure,
of Overmars and van Leeuwen [OvL81], introduced the idea of recursively representing the
convex hull, leading to a ©(Ig”n) update time. Eighteen years later, Chan [ChaOla] had

27

the breakthrough idea of using techniques from decomposable search problems, reducing the
update time to @(lgprs n). This approach was subsequently improved by Brodal and Jacob
to update times of O(lgnlglgn) [BJOO] and finally ©(lgn) [BJ02].

Our upper bound starts from the classic dynamic convex hull structure of Overmars and
van Leeuwen [OvL81]. The first idea is to convert the binary tree in this structure into a
tree with branching factor ©(Ig® n), so that its height is @(lé%gn). The many years of failed
attempts at sublogarithmic planar point location suggest, however, that it is impossible to
solve any nontrivial query by spending ©(1) time per node in such a tree. For example,
determining which child to recurse into for a tangent query boils down to planar point

location in a subdivision of complexity ©(lg°n), which we do not know how to solve in
oFH52) time.

Instead, by carefully exploiting the partial information that a query learns about its
answer, we show that the time a query spends to determine which child to visit is proportional
to the knowledge it learns about the answer. By charging the time cost to the information
progress, we can use an amortization argument to show that expensive nodes are rare and
thus bound the overall query cost to O(lé‘?;n). This type of insight does not appear in the
static problems.

In contrast, the decomposition techniques of [Cha0la, BJ02], which achieve o(lg*n) up-
date time, seem fundamentally incompatible with information progress arguments. The
trade-off we can obtain between a node’s query cost and the information it reveals relies
on an essentially explicit representation of the convex hull as in the Overmars-van Leeuwen
structure. Representing the convex hull as the hull of O(1glglgn) overlapping convex hulls,
as in Chan’s structure, means that we must make independent information progress for all
hulls, which is too slow.

Our information-theoretic lens therefore highlight an even stronger contrast between
the original Overmars-van Leeuwen structure and the more modern structures based on
decomposable search: the latter structures are not informationally efficient. It is a fascinating

open question to break the ©(lg®n) barrier (again) while achieving information efficiency.

6.1.1 Review of Overmars-van Leeuwen

Before proceeding, we quickly sketch the classic data structure of [OvL81], skipping all
implementation details which are treated as a black box by our modifications.

The data structure is a binary tree, in which every node v contains the set of points 5,
in a certain vertical slab. Let left(v) and right(v) be the children of v. The node v stores a
vertical line, splitting S, into S, = Sies(v) U Sright(v), With min{|Siesv)|, |Sright(v) |} = 2(]Su])-
The children split the sets recursively, down to singleton sets in the leaves. Maintaining this
partition is equivalent to maintaining a balanced binary search tree with values stored only
in the leaves.

Although Overmars and van Leeuwen developed their structure before the invention of
persistence [DSST89], it is easier to see its workings using persistent catenable search trees.
Every node v stores a list of the nodes on the convex hull H, of S,, represented as a (partially)
persistent binary search tree. Then, a query can be answered in logarithmic time based on

o8

the hull stored at the root. By standard tree-threading techniques, we can also support
gift-wrapping queries in O(1) time.

To maintain this hull dynamically, note that H, is defined by a convex subchain of Hief(v)
and one from Higni(v), plus two new edges (bridges) that join them. It is shown in [OvLS81]
that the bridges can be computed in O(lg|S,|) time through binary search. Then, because
the binary search trees storing the hulls are persistent and catenable, the information at
every node can be recomputed in O(Ign) time. Thus, updates cost O(lg”n).

6.2 Adaptive Point Location

As hinted already, we will store the hulls in the Overmars-van Leeuwen structure as (persis-
tent, catenable) B-trees, for some B = lg°n. It turns out (see below) that the subproblem
that must be solved at each node is point location among O(B) segments. Unfortunately, we
do not know how to achieve the equivalent of 1-d fusion trees, handling a superconstant B
in O(1) time. To obtain our improvement, one must refine the fusion tree paradigm to hull
fusion: querying a node of the B-tree (a hull-fusion node) is allowed to take superconstant
time, but averaged over all O(logz n) nodes that are considered, we spend constant time per
node. This follows from an information-progress argument: if querying one node is slow,
it is because we have made a lot of progress in understanding the query, and therefore this
cannot happen too often.

Our basic tool for relating the complexity of point location to information progress is the
following lemma, which is an adaptive version of our point location result from Section 2.3:

Lemma 6.2. Consider a vertical slab {xp,...,xg} X [u], and a set S of B < w segments
between points (xp,¢;) and (xg,r;), where {4 < -+ < g and ry < --- < rg, and l;,r; are
O(w)-bit rationals. In O(B?) time, we can construct a data structure, such that a query for a

point between segments i and i+ 1 is supported in time O <1 + g (lg eﬁf%fil +lg %)) '

Ti4+2—Ti—1

Proof. For convenience, if s is the i-th segment in S, let ¢(s) = ¢; and r(s) = r;. As before,
we start by applying Observation 2.3, with parameters n = b = B and h = ©(w/B). Then,
in time O(B) we select a subset of at most B segments s, s1,... from S, such that:

(1) for each i, at least one of the following holds:

(la) there is at most one segment in S between s; and s;.
(1b) €(sis1) = £(si) < (Lp — £1) /2"
(1¢) r(ses1) — r(s:) < (1 — 11)/2"
(2) there exist segments 3¢, So, . .. cutting across the slab, satisfying all of the following:

(2a) sp < §9 < S2 < 82 < -+, where < denotes the belowness relation.
(2b) distances between the left endpoints of the 3;’s are all multiples of ({5 — ¢1)/2".
(2¢) distances between right endpoints are all multiples of (rg —ry)/2".

As shown in Section 2.3, for our choice h = O(w/B), we can pack 3¢, S, ... in a word,
and perform point location among them in constant time. If we know the query lies between

29

§; and S;19, by (2a) it must lie between s; and s;,4. In constant time, we can compare the
point against these 5 segments. Assume that it is found to lie between s; and s;;. If case
(1a) happens, we compare the query to one more segment and point location is completed.

In cases (1b) or (1c), we recurse among the segments in S between s; and s;41. In the
preprocessing phase, we build a data structure recursively for every such interval of segments
from S. Because in every recursive step we eliminate at least two segments, each original
segment appears in O(B) nodes of the recursion tree, so the total cost is O(B?).

At query time, every recursive step takes constant time, and reduces either the left (case
1(b)) or right (case (1c)) span of the remaining segments by a factor of 2" = 29/B) Now
assume the final answer is that the query lies between original segments 7 and 7 + 1. After

E(lgégB_él g rg— 1)

w i+2 — liy Tito — Ti—1

steps, the subset we are left with cannot include both segments ¢ — 1 and ¢ + 2, because

either the left or right span is too small. Then in at most one additional recursion, we are
done. O

We will think of 1g(¢5 — ¢1) +1g(rp —r1) as the entropy of the search region. If the above
data structure takes time ¢ for a query, the entropy decreases by at least %(€(t) — 1) bits.
Thus, we can hope that the sum of the running times for logz n applications of the lemma
is bounded by (14t1) + (L +t2) + -+ (L +tigg,n) < O(loggn +1gu/%) = O(loggn + B),
implying a running time of O(lgn/lglgn) for, say, B = y/Ign. This intuition will indeed
prove to be correct, but we need to carefully analyze the geometry of the problem, and show
that the information progress is maintained as we query various vertical slabs at various
hull-fusion nodes.

6.3 Quantifying Geometric Information

For simplicity, we will only try to determine the right tangent, and assume it lies in the
upper convex hull. Left tangents and the lower hull can be handled symmetrically.

We denote an upper convex chain P by its list of vertices from left to right: P =
(p1,D2, - -, Pm) Where z(p;) < x(p;41) for all 7. Define the exterior exterior(P) of an upper
convex chain P to be the region bounded by the chain and by the two downward vertical
rays emanating from p; and p,, that includes points above the chain. In other words, the
exterior exterior(P) of P consists of all points left, above, or right of P.

Given an upper convex chain P and indices 1 < i < j < m, the Zorro Zp(p;,p;,) is the
region of points exterior to P, strictly right of the ray from p;,; to p;, and nonstrictly left of
the ray from p;,1 to p;. Thus the Zorro is bounded by these two rays and by the subchain
Pis Pi+1, - - -, Dj, as illustrated in Figure 6-1. Note that the Zorro is an object in the infinite
real plane, not on the grid.

The following fact justifies our interest in this definition:

60

Zp(pi, pj) N

Figure 6-1: The Zorro Zp(p;, p;) is the shaded region.

Fact 6.3. Let q be a point exterior to an upper convex chain P. Then q is in the Zorro
Zp(pi,pj) if and only if the answer to the right tangent query for q in P is in {pit1,...,p;}-

Proof. By definition, for each k with i +1 < k < 7, the region of points whose right tangent
query answers pj is a cone emanating from p; with bounding rays from py to pr_; and
from pii1 to pr. This cone is precisely the Zorro Zp(pp_1,pr). Two adjacent such cones,
Zp(pr—1,pr) and Zp(pg, pry1), share a bounding ray from pgyq to pr. Thus their union is
Zp(pr—1,Dr+1), so by induction, the union over all k is Zp(p;, p;). Therefore this Zorro is
precisely the region of points whose right tangent query answers one of p;1,...,p;. O

We also establish a few basic facts that will be useful later:

Fact 6.4. Given a point q¢ guaranteed to be exterior to an upper convex chain P, we can test
whether q is in the Zorro Zp(p;,p;) in O(1) time.

Proof. Though the Zorro’s boundary is potentially complicated, if ¢ is known to be outside
the polygon, it suffices to test the side of ¢ relative to the lines p;11p;, pjpj+1, and p;p; (the
dashed lines in Figure 6-1). O

Fact 6.5. For any upper convex chain P and any indices 1 < i < j < k < m, we have the
decomposition: Zp(pi, pr) = Zp(pi, pj) U Zp(pj, pr) and Zp(pi, p;) N Zp(ps,pe) = 0.

Proof. Disjointness follows from Fact 6.3. The union property follows from taking the union
of adjacent Zorro cones as argued in the proof of Fact 6.3. O

Because Zorros describe the structure of our search problem, we want to define a quan-
titative measure that allows us to make the information progress argument outlined above.
It turns out that information progress is only need (and, actually, only true) for a region
of the Zorro. We define the left slab of Zp(p;,pj) as the vertical slab between z = 0 and
x = x(piy1). The left vertical extent L(Zp(p;,p;)) is the length of the subsegment of the
vertical line z = 0 intersected by Zp(p;,p;). The right vertical extent R(Zp(pi,p;)) is the
length of the subsegment of the vertical line x = z(p;1) intersected by the Zorro.

61

L(Zp(pi; pj)) {

[]

[]

[]

[]

[]

[]

[]

[]

:
S o
N
[}

[}

[}

:

[}

[}

:

[}

[}

----y---------------

L(Zp(pr,p) |

Figure 6-2: The Zorro Zp(py, p;/) is contained in Zp(p;, ;).

Definition 6.6. The entropy of a Zorro Zp(p;,p;) is:

H(Zp(pi,p;)) =18 L(Zp(pi, ;) + 12 R(Zp(pi, ps))-

We now establish the following monotonicity property about Zorros “contained” in other
Z.0r108:

Fact 6.7. For an upper convex chain P and indices 1 < i < i < j' < j < m, we have
Zp(pir,py) € Zp(pis pj) and H(Zp(py,pjr)) < H(Zp(pi ps))-

Proof. Refer to Figure 6-2. Fact 6.5 immediately implies that Zp(py, p;/) € Zp(ps, p;). This
geometric containment implies £(Zp(pir,pjr)) < L(Zp(pi,p;)), because Zp(py,py) N {x =
0} € Zp(pi,p;) N {x = 0}. The segments at the intersection with x = x(p;+1) are similarly
contained. Furthermore, z(py41) > x(p;+1). Because we are working with an upper chain,
moving to the right can only decrease vertical extents, so R(Zp(pi,pj1)) < R(Zp(pi,p;)). O

Finally, we need to analyze Zorros with respect to a subset of the original chain, because
in one step, we plan to analyze only B points out of the hull. The following fact follows from
monotonicity of slopes along a convex chain, similarly to previous facts:

62

Fact 6.8. For an upper convexr chain S and a subsequence P C S of m wertices, and for
indices 1 < i < j <m, we have:

Zp(pi,pj—1) Nexterior(S) C Zs(p;i, p;) € Zp(pi—1,pj),
H(Zp(pi,pj-1)) < H(Zs(pi,p;)) < H(Zp(pi-1,Dp5))-

6.4 The Data Structure

We first reinterpret the results of Lemma 6.2 in the language of Zorros. The reason we insist
to relate the query time to the entropy of Zp(pk_1,prio), instead of Zp(pg, pry1) is that
we will need some slack when switching between Zorros with respect to P, and Zorros with
respect to the whole convex hull (see Fact 6.8).

Lemma 6.9. Given an upper convex chain P = (py,pa,...,pg), in time BOW we can build
a data structure that answers queries of the following form: given indices 1 < i < j < B—1,
and given a point q guaranteed to be within the Zorro Zp(p;,p;) and its left slab, find an
index i < k < j such that q is in the Zorro Zp(pg, pr+1). The running time of the query is:

t=01+LZ(H(Zp(pi,p;) — H(Zp(pr-1,D1+2))))-

Proof. We build the structure for every choice of 7 and j, incurring an O(B?)-factor penalty
in construction time. For some fixed ¢ and j, we need to solve a point location problem
in the left slab of Zp(p;,p;), with the segments given by the intersection of the slab with
the rays pi1pi, DivoPit1, - - - Pj+1p;- A Zorro Zp(pk, pr+1) is actually the wedge between two
consecutive rays.

Denote by ¢;,...,¢; the y coordinate of the intersections of these rays with z = 0 (the
left boundary of the slab). Similarly denote by r;,...,r; the intersections with the right
boundary of the slab. Note that ¢;, r; are rational.

We will now use the adaptive point location data structure of Lemma 6.2. If the answer
is k, the query time will be asymptotically:

B 0 — ¢ —
t ~ 1+—(lg ! +1g LT)
w Cigo — Ly Tk+2 — Tk—1

= 1+ g(lg L(Zp(li 6)) +1g R(Zp(Li, 43)) — 18 L(Zp(l-r, lira)) = 18(rhs2 — Th-1))
< 1+ g(H(Zp(&-,Ej)) — H(ZP(pkflakarQ)))

The last inequality follows from x(py) > x(pi+1), using the familiar observation that moving
to the right reduces vertical extents. O

The general structure in which we will be performing queries is a B-tree representation
of an upper convex chain. For a node v of such a B-tree, let S, be the set of points in v’s
subtree, and P, the set of at most B points stored in the node v. For the sake of queries,
each node is augmented with the following information:

63

e an atomic heap [FWO94] for the x coordinates of the points in P,.
e the structure of Lemma 6.9 for the convex chain given by P,.

6.4.1 Query Invariants

A tangent query proceeds down a root-to-leaf path of the B-tree, spending O(1) time at each
node but also applying Lemma 6.9 at some of the nodes. Therefore the time required by a
query is O(loggz n) plus the total time spent in Lemma 6.9.

For readability, we will write Z,(a, b) for Zg, (a,b). At each recursive step of the query, we
have ¢ € Z,(a,b) where v is the current node and a,b € S,. We write succ,(b) for the point
in S, which follows b to the right on the upper convex chain. We also assume succ,(b) € S,,
to make the Zorro well-defined. In addition, we maintain the invariant that a, b, and succ,(b)
are nodes of the global upper convex hull C' as well. Thus Z,(a,b) = Z¢(a,b).

At the next level of recursion, the Zorro will be some Z,/(a’, ") where v’ is a child of v and
a' b suce, (b)) € S,y N C. Furthermore, we will guarantee that z(a) < z(a’) < (V') < z(b).
Hence, by Fact 6.7, Z,(a',b") = Zc(d', V') C Zc(a,b), and H(Zc(d', V) < H(Zc(a,b)).

The query may apply Lemma 6.9 at this recursive step to a Zorro Zp, (p;, p;), locating ¢
in a Zorro Zp,(pr, pr+1)- In this case, we guarantee further that

Z,(a,b) D Zp,(pi, p;) Nexterior(C) 2 Zp, (pr—1, Pr+2) N exterior(C) D Z,(a', V),
H(Z,(a,b)) > H(Zp,(pisp;)) = H(Zp,(pr—1,Prs2)) = H(Zy(a',V')).

Now we bound the total cost incurred by Lemma 6.9. By the invariants stated above,
H(Z) never increases as we shrink our Zorro Z known to contain ¢. Furthermore, when we
apply Lemma 6.9, if we spend ¢ time, we guarantee that H(Z) decreases by %(€(t) — 1).
Hence the total cost incurred by Lemma 6.9 is at most the maximum total range of H(-),
divided by 7. Because the points are on a u X u grid, any nonzero vertical extent, measured
at an x coordinate of the grid, between two lines drawn between grid points, is between
1/u and w. Thus, —2lgu < H(:) < 2lgu. Because w > lgu, the total cost incurred by
Lemma 6.9 is O(B). Therefore the total query time is O(loggn + B) = O(lgn/lglgn), by
choosing B = lg° n, for any constant £ > 0.

6.4.2 Querying a Hull-Fusion Node

We now describe how to implement a query using O(1) time at each node plus possibly one
application of Lemma 6.9, while satisfying all of the invariants described above. First we
apply the following lemma:

Lemma 6.10. Given a node v with P, = (p1,D2,...,Pm), given two points a and b on v’s
hull where x(a) < x(b), and given a query point q € Z,(a,b) N exterior(C') we can find in
O(1) time one of the following outcomes:

1. Anindex 1 < k <m — 1 such that q is in the Zorro Z,(pk, Prs1)-

2. Indices 1 < i < j <m—1 such that ¢ € Zp,(p;,p;) and x(a) < z(p;) < z(pj+1) < z(b).

64

Proof. We round a to the clockwise next bridge point p; € P,, and we round b to the
counterclockwise next bridge point p; € P,. The implementation of this depends on the
representation of points, so we defer a discussion of this step until later. We will be able to
support this step in constant time.

If i > j, then ¢ € Z,(a,b) C Z,(p;,pj+1) (Case 1). Otherwise, 1 < i < j < m. By
Fact 6.5, Z,(a,b) = Z,(a,p;) U Z,(pi, pj—1) U Z4(pj-1,p;) U Z4(p;,b). In O(1) time, we can
determine which of these Zorros contains ¢. If it is the first Zorro, ¢ € Z,(a, p;) C Z,(pi_1, pi)
(Case 1). If it is the second Zorro, ¢ € Z,(p;,pj—1) (Case 2). If it is the third Zorro,
q € Z,(pj—1,p;) (Case 1). If it is the fourth Zorro, ¢ € Z,(p;,b) € Z,(pj,pj+1) (Case 1). O

Now, if we are in Case 1, say ¢ € Z,(pk, Prs1), then we know to recurse into the recursive
subchain between p;, and py,1, corresponding to some child ¢’. In this case, we want to
recurse with ¢’ = max{a,px} and ' = min{b, pred,, (px+1)} (where max and min are with
respect to « coordinates). Thus z(a) < z(a') < (V') < z(b), satisfying the guarantee above.
Before recursing, however, we check in O(1) time whether ¢ € Z,/(a’,); if not, we determine
the answer to the right-tangent query to be pgi1.

If we are in Case 2, say ¢ € Zp,(pi,pj) where z(a) < z(p;) < x(pj+1) < x(b), then there
are two subcases. If ¢ is not in the left slab of the Zorro Zp, (p;,p;), then we perform a
successor query z(q) among the z coordinates of the bridge points P, to find an index @',
i < i < j,such that x(py_1) < x(q) < z(py). Next we test in O(1) time whether ¢ is in the
Zorro Zp, (py, p;). If not, we know to recurse in the recursive chain between p;_; and py, and
we proceed as in Case 1. Otherwise, we determine that ¢ is in the left slab of Zp, (pi, p;), so
we replace 7 with 7’ to obtain the other subcase.

So now suppose ¢ is in the left slab of the Zorro Zp, (p;,p;) where z(a) < z(p;) <
z(pj—1) < x(b). We can apply Lemma 6.9 to obtain a Zorro Zp, (pg, pr+1) containing g.
By Fact 6.8, Zp, (pk, prs1) N exterior(C) C Z,(pr,pree). By Fact 6.5, Z,(pk, pra2) =
Zo(Pk, Pks1) U Zo(Drs1, Pea2). In O(1) time, we can determine which of these three Zor-
ros contains ¢, and recurse in the corresponding child v" as in Case 1 with Zorro Z,/ (a’, V).

Finally we prove the guarantees about Zorro containment and entropy monotonicity. By
Fact 6.8, we have:

Zp, (piapj) N exterior(C) C Zv(pi,pj+1),
H(Zp,(pi,p;) < H(Z,(pispj+1))-

z(pi) < z(pjp1) < z(b), Zu(pi, pjr1) € Zu(a,b), and by Fact 6.7, H(Z,(pi, pj1)) <

Because x(a) <
Thus, H(Zp,(pi,p;)) < H(Z,(a,b)) as desired. On the other hand, by Fact 6.8:

H(Z,(a,0)).

Zo(pk, Pkv2) S Zp,(Pr—1, Dr+2)s
H(Z,(pr,pr+2)) < H(Zp,(Pk—1,Pr+2))-

65

By Fact 6.7 and because z(p;) < z(a') < x(V') < z(pr+2), we have the desired result:

Zv’(ala b/) g Zv(pkakarQ) g va (pkflakarQ)a
H(Zy(d V) < H(Z,(pk:pes2)) < H(Zp, (Pe-1,Pr+2))

6.4.3 Updates

It remains to describe how we maintain a B-tree with the upper convex hull, as used by the
query. A straightforward approach is to only modify the representation of the convex hulls
at each node of the Overmars-van Leeuwen structure, storing these as persistent catenable
B-trees. Because we do not use parent pointers, we can use standard persistence techniques
[DSST89]. Unfortunately, however, a catenable B-tree rebuilds O(logyz n) nodes per update.
Rebuilding a node takes B time, because we must rebuild the associated data structure
of Lemma 6.9. Finally, the Overmars-van Leeuwen structure performs O(lgn) splits and
joins, so the total update time is O(lg” nlg%) = 0(1g* n).

To reduce updates to O(lg2 n), we abandon persistence, and build the query B-tree in
close parallel to the Overmars-van Leeuwen tree. This has a similar flavor to the original
approach of Overmars and van Leeuwen [OvL81], which was developed before persistence
was known.

Each node of the Overmars-van Leeuwen tree discovers one bridge (because we are only
dealing with the upper hull), and two bridge points that define it. We compress the bridge
points from all nodes on lg B—2 consecutive levels of the Overmars-van Leeuwen tree into one
node of our B-tree. This means a B-tree node will store 2-(2-2'8572 —1) = B—2 < B points.
The depth will be O(lgn/lg B). Note, however, that this “B-tree” is not necessarily balanced
with respect to the values it stores (the nodes on the hull), but is balanced with respect to
the original set of points, closely following the balance of the Overmars-van Leeuwen tree.

An update can only change bridge points on a root-to-leaf path in the Overmars-van
Leeuwen tree. This means that only O(logz n) nodes of the B-tree are changed, and we can
afford to rebuild the associated structures for all of them. This takes time logz n - B0 =
lg'™¢ n, which is a lower-order term.

Finally, we must augment each node to support the constant-time operation we have
assumed: given a point on the node’s hull, round it to the next bridge point. Since the
upper hull is sorted by x coordinates, it suffices to store an atomic heap [FW94] for the z
coordinates of the bridge points. Maintaining the atomic heap is a lower order term compared
to reconstructing our hull fusion data structure at each node.

66

Chapter 7

Open Problems

We now turn to a collection of fundamental problems in computational geometry that our re-
sults bring to light. We believe further examination of these problems from the point of view
of geometric information could reveal additional structure on the problem in particular and
geometric information in general. We divide the open problems into three major categories:
algorithms (compute an entire structure such as the Voronoi diagram, or bulk offline queries),
static data structures (preprocess the geometry to support fast queries), and dynamic data
structures (maintain geometry subject to fast updates and queries). Computational geom-
etry is ripe with relations between such categories of problems: many data structures have
been invented solely because they resulted in an optimal geometric algorithm. But under
this new vantage point, we need to reconsider whether such reductions still produce optimal
solutions, or whether additional structure and separations result.

7.1 Open Problems in Algorithms

Offline point location. Our current best solution to this problem runs in O(m) + n -
20(Vlelem) time, given m segments and n points. Intuitively, the bound does not “look”
optimal, but we have so far failed to improve it.

Open Problem 1. Can offline planar point location be solved with running time n(lglgn)°™ 2
Does randomization help?

A faster randomized algorithm would be particularly interesting, as it would be the
first improvement through randomization of a search strategy in geometry. There is ample
precedent for randomization offering simpler optimal solutions to geometric problems, such
as randomized incremental construction, but randomization also plays an important role in
the current state-of-the-art in integer sorting [HT02].

On the other hand, it seems unlikely that planar point location can be solved in linear
time. So far, sorting has been essentially the only search problem with complexity between
w(n) and o(nlgn). Having point location as a second example with radically different prop-
erties might shed some light into the area. One can hope for lower bounds under a natural

67

restriction on the model, perhaps obtained by examining the common features between sort-
ing and planar point location.

Voronoi diagrams. For computing the Voronoi diagram in the plane, or more generally
the convex hull in 3-d, we obtain a randomized reduction to offline point location. Although
frequently used in tandem with point location, Voronoi diagrams and 3-d convex hulls are
important structures in their own right, and it is natural to wonder whether they are in
fact easier problems than offline planar point location. The additional structure offered by
Voronoi diagrams may make the problem easier to solve. Alternatively, and perhaps more
likely, one may be able to find a reverse reduction, converting any offline planar point location
problem into an equivalent 2-d Voronoi or 3-d convex hull problem.

Open Problem 2. Is computing a Voronoi diagram as hard as offline planar point location?

Another direction to pursue is whether the random-sampling reduction from 2-d Voronoi
and 3-d convex hull to offline planar point location can be made deterministic via deran-
domization. Unless we find a faster solution to offline planar point location that exploits
randomization, it is unsatisfying to require randomization just for this reduction. Instead of
derandomizing the reduction directly, an alternative is to attempt to apply our point-location
techniques directly to constructing Voronoi diagrams, and therefore obtain a deterministic
time bound.

Open Problem 3. Can Voronoi diagrams be computed in o(nlgn) time without random-
ization?

Line-segment intersection. The segment intersection problem comes in three flavors:
reporting (list all intersections), counting (count intersections) and existential (does there
exist an intersection?). It is reasonable to assume the existential and reporting problems
behave the same way, up to an additive cost in the output size. For these problems, we
may ask the same questions as for constructing Voronoi diagrams: Can we beat offline point
location? Can we obtain o(nlgn) bounds without randomization?

The general counting problem is suspected to have complexity n®, for a > 1, making it
uninteresting from the point of view of our study. Consider, however, red-blue intersection
counting: given n line segments, each marked red or blue, count the number of intersections
between red and blue. It is guaranteed that red, respectively blue, segments do not intersect
among themselves. This problem can be solved in O(nlgn) time, and it is the only “natural”
problem of this complexity for which our techniques do not offer any improvement.

Note, however, that in this case we cannot hope to achieve bounds similar to offline
point location. This problem is at least as hard as counting inversions in a sequence of
integers, for which it is a long-standing open question to obtain a running time better than
O(nlgn/lglgn). Unfortunately, we do not know how to mimic even this running time for
the geometric problem.

Open Problem 4. Is there a o(nlgn)-time algorithm for red-blue line-segment intersection
counting?

68

Note that the same problem can be easily solved in the orthogonal case, by using an
optimal partial-sums data structure [PD06].

7.2 Open Problems in Static Data Structures

Next we turn to data structural open problems where the data is static but queries come
online. Because we need an instant answer for each query, we cannot expect the same kind
of speedup as for offline queries. Indeed, here there are many more interesting questions
about lower bounds, building on the field of 1-d data structural lower bounds.

Planar point location. Perhaps the central open problem suggested by our work is:

Open Problem 5. How fast can point-location queries be supported by a linear-space data
structure on n points?

Improving the present results would require the development of new techniques in finite-
precision geometric algorithms. On the other hand, the present bounds are fairly natural, and
may well turn out to be the correct answer. In this case, we would aim to find a matching
lower bound. Such a lower bound would be particularly interesting because it would be
fundamentally geometric, being the first lower bound for static data structures that is not
an immediate consequence of known one-dimensional lower bounds. Specifically, the point of
comparison here is the predecessor problem (the one-dimensional analog of point location).
We [PTO06] recently established the optimal query bound for a linear-space predecessor data
structure to be roughly ©(min{lgn/lgw,lgw}). This bound differs substantially from our
point-location bound in the second term, roughly a square root versus a logarithm.

A somewhat easier question in this context is whether one can prove that standard
techniques for the predecessor problem, such as the sketching approach of fusion trees, cannot
generalize to the multidimensional setting (in some model). For example, it seems that there
is no data structure supporting planar point location queries among w® segments in constant
time, thus making impossible the black box of a fusion-tree node.

Nearest neighbor. In traditional computational geometry and the algebraic computation
tree model, this problem requires Q(lgn) time in the worst case, so it is optimal to reduce
it to planar point location. But from the finite-precision perspective, we may be able to
circumvent any lower bounds for planar point location in the special case of finding nearest
neighbors. Of course, the lower bounds of the predecessor problem still apply here, but it
is possible that the difficulty of nearest neighbor falls strictly in between predecessor and
planar point location.

Open Problem 6. How fast can nearest-neighbor queries be supported by a linear-space
data structure on n points?

69

Alternatively, we may establish lower bounds for nearest neighbor stronger than predeces-
sor. For example, if we can establish such strong lower bounds for planar point location, the
argument may be transferable to the special case of nearest neighbors. Such lower bounds
would give the first formal sense in which approzimate nearest neighbor, which reduces to
a one-dimensional predecessor problem [Cha(2|, is asymptotically easier to solve than exact
nearest neighbors.

Connectivity. A subtle variation on point location is planar point connectivity: preprocess
a planar map subject to queries for whether two given points are in the same face of the map.
Obviously, this problem reduces to planar point location: determine the face containing the
two points and test for equality. But it is possible that planar point connectivity can be
solved faster than not only planar point location, but possibly even the predecessor problem.
The analogy here is to one-dimensional range reporting (is there a point in a given interval?),
for which bounds substantially better than predecessor search are known [MPPO05].

Open Problem 7. Can static data structures for planar point connectivity outperform those
for planar point location?

This problem arises in a natural setting studied by Thorup (personal communication).
Specifically, an efficient data structure for connectivity is essentially what is needed to obtain
efficient approximate distance oracles. Here we would like to know the approximate number
of faces (dual vertices) along the best path between two query points in a static planar map.

Polygons. On the simpler side, we can think of queries about just a single convex polygon
in the plane. As noted in Corollary 5.1, tangent queries, and the dual line-stabbing queries,
can be solved through point location. However, the special convex structure may make the
complexity of the problem fall strictly in between point location and predecessor search.

Open Problem 8. How fast can tangent queries be supported by a static data structure on
a convex n-gon?

7.3 Open Problems in Dynamic Data Structures

Our final collection of open problems is also the most challenging: maintain geometric data
subject to both queries and updates. The techniques for static data structures do not
generally apply, requiring the development of new techniques.

Convex hull. Our lower bound for dynamic convex hull queries (Appendix B) is Q(lgn/lgw),
given polylog(n) update time. While we achieve this query time for some of the simpler
queries (e.g. linear programming), for the hardest queries (e.g. tangent queries) the running
time is O(lgn/lglgn) regardless of precision. To the best of our knowledge, this running
time independent of w is rather unique. If this distinction is indeed real, it separates convex

70

hull queries, which would be interesting. Furthermore, this would separate dynamic geo-
metric search (tangent queries) from the related 1-d search problems, which have O(log, n)
upper bounds.

Open Problem 9. What is the optimal complexity of tangent queries, given update time
polylog(n) ?

Of course, another natural question is whether the updates can be improved to logarith-
mic or even sublogarithmic while maintaining fast queries. In principle, we do not know
of any lower bounds that prevent, say, an O(lglgn) update time, although this seems un-
likely. Resolving this issue will likely require the development of new lower bound techniques.
Achieving an upper bound of o(lg* n) may be a rather difficult question, given the subloga-
rithmic queries seem to prohibit the single known idea for breaking the O(lg”n) barrier.

Open Problem 10. What is the optimal update time for dynamic convex hull while sup-
porting O(lgn/lglgn) queries?

Point location. Achieving O(lgn) bounds for dynamic point location is a well-known
open problem. Current bounds revolve around O(lgnlglgn). However, given our bounded-
precision perspective, it is not even clear that O(lgn) is the right goal.

Open Problem 11. Can dynamic planar point location be solved with o(lgn) time per
operation?

Plane graphs. Part of dynamic planar point location is the maintenance of a planar map
subject to insertion and deletion of points and edges. Two other natural queries on such
dynamic planar maps are (a) are two given edges on the same face? and (b) are two vertices
in the same connected component of the graph? The latter query is a natural analog of
dynamic connectivity in graphs. It is known that dynamic connectivity requires Q(lgn)
time per operation, even when the graph is planar. However, the lower bound does not
preserve the planar embedding of the graph; it can change drastically in each step. When
the user must explicitly maintain the embedding by modifying the points that define vertices,
the problem may be substantially easier.

Open Problem 12. Can dynamic connectivity in plane graphs be solved in sublogarithmic
time per operation?

If the answer to this question is positive, we would have a nice contrast where the two-
dimensional problem is actually easier than the motivating data structural problem: geom-
etry helps. Even if dynamic connectivity is not possible in sublogarithmic time, the simper
query of testing whether two edges bound the same face may be possible, cutting a finer line
through the problem space.

71

72

Appendix A

Results in Higher Dimensions

A.1 Online Point Location

The sublogarithmic point location algorithm from Chapter 2 can be generalized to any
constant dimension d. The main observation is very similar to Observation 2.3:

Observation A.1. Let S be a set of n disjoint (d — 1)-dimensional simplices in R?, whose
vertices lie on d wvertical segments Iy, ..., 151 of length 2%, ... 2% We can find O(b)
simplices sg, S1,... € S in sorted order, which include the lowest and highest simplex of S,
such that:
(1) for each i, there are at most n/b simplices of S between s; and s;y1, or the endpoints
of s; and s;q lie on a subinterval of I; of length 2%~" for some j; and
(2) there exist simplices 3q, Sa, ..., with sg < Sg < Sg < S9 < -+ and vertices on Iy, ..., Iy,
such that distances between endpoints of the §;’s on I; are all multiples of 2bi—h,

Applying this observation recursively in the same manner as in Section 2.3, we can get
an O(lgn/lglgn)-time query algorithm for point location among n disjoint (d — 1)-simplices
spanning a vertical prism, with O(n) space, for any fixed constant d.

In the implementation of the special word operation, we first apply a projective trans-
formation to make I, = {(0,...,0)} x [0,2"), I, = {(2",0,...,0)} x [0,2"), ..., I,y =
{(0,...,0,2™M} x [0,2"). This can be accomplished in three steps. First, by an affine trans-
formation, we can make the first d—1 coordinates of Iy, ..., ;1 tobe (0,...,0), (1,0,...,0),
..., (0,0,...,0,1), while leaving the d-th coordinate unchanged. Then by a shear transfor-

mation, we can make the bottom vertices of Iy,..., ;1 lie on x4 = 0. Finally, we map
(1,...,14) to:
1 (2h+£1:1:1 2h+£d7133'd 1 2h33'd> .
2&)(1_'1'1_"'_xdfl)‘*‘%lxl+"'+2£d*1$d,1 ’) 1,

The coordinates of the §;’s become h-bit integers. We round the query point ¢ to a point
¢ with h-bit integer coordinates, and by the same reasoning as in Section 2.3, it suffices to
locate ¢ among the §;’s (since every two (d — 1)-simplices have separation at least one along

73

all the axis-parallel directions). The location of § can be accomplished as in Section 2.3,
by performing the required arithmetic operations on O(h)-bit integers in parallel, using a
constant number of arithmetic operations on w-bit integers.

Proposition A.2. Given a sorted list of n disjoint (d — 1)-simplices spanning a vertical
prism in R with O(w)-bit rational coordinates, we can build a data structure in O(n) time
and space, so that point location queries can be answered in t(n) := O(lgn/lglgn) time.

A.2 Offline Point Location

Observation A.1 works equally well with the offline algorithm from Section 3.2. By contrast,
the variation in Section 3.3 does not seem to generalize to higher dimensions, because there
is no equivalent of a central slab. Thus, the trick that allowed us to use only standard
operation in 2-d does not help us in higher dimensions.

Remember that the offline algorithm needs to apply the projective transform in parallel
to points packed in a word. It does not seem possible to implement this in constant time
using standard word RAM operations (since, according to the formula for projective trans-
form, this operation requires multiple divisions where the divisors are all different). We will
instead simulate the special operation in slightly superconstant time. We can use the circuit
simulation results of Brodnik et al. [BMM97] to reduce the operation to lgw - (Iglgw)°™
standard operations. Since precision is generally polylogarithmic (w < polylog(n)), we tend
to think of this slowdown per operation as very small. We obtain:

Proposition A.3. Given a sorted list of m disjoint (d — 1)-simplices spanning a vertical

prism in R?, and n points in the prism, we can sort the points relative to the simplices in
time O(m) +n - 90(Viglgm) 1g1+o(1) w.

A.3 Applications in Higher Dimensions

As many geometric search problems can be reduced to point location in higher-dimensional
space, our result leads to many more applications. We mention the following:

Corollary A.4. Let t(n) be as in Proposition A.2, and assume d is fived.

(a) We can solve the point location problem for any subdivision of R¢ into polyhedral cells,
with n°Y space and preprocessing time, and O(t(n)) query time.

(b) We can preprocess n points in R¢ with O(w)-bit rational coordinates, in n°M pre-

processing time and space, so that exact nearest/farthest neighbor queries under the

FEuclidean metric can be answered in O(t(n)) time.

(c) We can preprocess a fized polyhedral robot and a polyhedral environment with n facets
in R with O(w)-bit rational coordinates, in n°W time and space, so that we can decide
whether two given placements of the robot are reachable by translation, in O(t(n)) time.

74

(d)

Given an arrangement of n semialgebraic sets of the form {x € R | p;(x) > 0} where
each p; is fized-degree polynomial with O(w)-bit rational coefficients, put two points in
the same region iff they belong to exactly the same sets. (Regions may be disconnected.)
We can build a data structure in n®Y time and space, so that (a label of) the region
containing a query point can be identified in O(t(n)) time.

(Point location in 2-d among curved segments.) Given n disjoint x-monotone curve
segments that are graphs of fized-degree univariate polynomials with O(w)-bit rational
coefficients, we can build a data structure in n°Y) time and space, so that the curve
segment immediately above a query point can be found in O(t(n)) time.

Part (b) also holds under the ,, metric for any constant integer p > 2.

We can preprocess a polyhedral environment with n facets in R¢ with O(w)-bit rational
coordinates, in n°Y) time and space, so that ray shooting queries (finding the first facet
hit by a ray) can be answered in O(t(n)) time.

We can preprocess a convex polytope with n facets in R¢ with O(w)-bit rational coordi-
nates, in n°Y time and space, so that linear programming queries (finding the extreme
point in the polytope along a given direction) can be answered in O(t(n)) time.

Proof. (a) For a naive solution, we project all (d — 2)-faces vertically to %!, triangulate

the resulting arrangement in 141, lift each cell to form a vertical prism, and build the
data structure from Proposition A.2 inside each prism. Given a point ¢, we first locate
the prism containing ¢ by a (d — 1)-dimensional point location query (which can be
handled by induction on d) and then search inside this prism. The overall query time
is O(t(n)) for any fixed d.

This follows by point location in the Voronoi diagram.

This reduces to point location in the arrangement formed by the Minkowski difference
[dBSvKOO00, O’R98] of the environment with the robot.

By linearization (i.e., by creating a new variable for each monomial), the problem is
reduced to point location in an arrangement of n hyperplanes in a sufficiently large
but constant dimension.

This is just a 2-d special case of (d).

This follows by applying (d) to the O(n?) semialgebraic sets {z € R? | ||z — a;]|, <
|z — a;l|,} over all pairs of points a; and a.

Parametrize the query ray {z +ty | t > 0} with 2d variables z,y € R¢. Suppose that
the facets are defined by hyperplanes {z € R¢ | a;-x = 1}. The “time” the ray hits such
a hyperplane (i.e., when a;-(z+ty) = 1) is given by t = (1 —a;-x)/(a;-y). We apply (c)
to the O(n?) semialgebraic sets {(z,y) € R* | (1 —a;-z)/(a;-y) < (1 —a;-x)/(a; y)}
over all i, j and {(z,y) € ®%? | a;-x < 1} over all i. It is not difficult to see that all rays
whose parameterizations lie in the same region in this arrangement of semialgebraic
sets have the same answer.

Linear programming queries reduce to ray shooting inside the dual convex polytope,
which has n®®) facets, so the result follows from (g).
O

75

We remark that by proceeding exactly as in Section 2.4, we can also obtain a w-sensitive
version of all the bounds, with query time ¢(n,w) := O (min {lg n/lglgn, Jw/lg w})

The preprocessing time and space in Corollary A.4 can be reduced by applying random
sampling techniques [Cla88, CS89] like in Section 4.3. For example, for (a), we can achieve
O(t(n,w)) query time with O(n/%211g%Y n) space. For (d), we can achieve O(t(n,w)) query
time with O(n) space.

The offline result has a few applications as well, to offline nearest neighbor search in higher
dimensions and curve-segment intersection in 2-d. The former follows from (b) above. For
the latter, we combine (d) with the same technique as for regular segment intersection, in
Section 5.2. Then, intersecting curved segments has the same bound as for straight segments,
up to the factor lg* ™™ .

76

Appendix B

A Careful Look at Dynamic Queries

In Chapter 6, we discussed the tangent query in the dynamic convex hull problem, and
obtained O(lglffg”n) query time, with O(lg*n) update time. This is just one of the many
queries that are typically considered in this problem, but it turns out that these results
extend to all queries. However, for some queries we can do better, as we describe here. In
addition, we describe (almost) tight lower bounds for the query times.

In Section B.1, we discuss and classify the commonly considered queries.

In Section B.3, we prove lower bounds of Q(lgn/lgw) for the query time of almost
all queries, assuming updates (point insertion and deletion) run in polylogarithmic time.
The sole exception is the gift-wrapping query (walking the hull), which requires only ©(1)
time. Our lower bounds are based on a reduction from the classic marked ancestor problem
[AHR9S8|. This result holds in the all-powerful cell-probe model, which just measures the
number of memory accesses required per operation, without worrying about any computation
costs. Of course, such lower bounds apply to the word RAM, and any computer architecture
commonly used today.

This lower bound matches the results of Chapter 6, if the precision is polylogarithmic,
and if we are not optimizing the precise update time. In Section B.2, we show how to support
a certain subset of the queries in time exactly O(lgn/lgw), while also supporting updates in
just O(lgnlglgn) time. This result shows that in essence, some queries are one-dimensional,
and can be implemented by a careful combination of results in 1-d search. In particular, this
result holds for linear programming (extreme-point queries), but not for tangent queries.

This upper bound starts from the decomposable-search approach introduced by Chan [Cha0la]
and refined by Brodal and Jacob [BJ00]. In this structure, it seems impossible to support the
most difficult decomposable query, tangent, in the optimal time bound © (15;71)' Essentially,
the trade-off we could make in Chapter 6 between a node’s query cost and the information it
reveals relies on an essentially explicit representation of the convex hull as in the Overmars-
van Leeuwen structure. Representing the convex hull as the hull of O(lé‘?g”n) overlapping
convex hulls, as in the Brodal-Jacob structure, restricts us to optimal implementation of
linear-programming queries, which can be viewed as tangent queries for points at infinity.
So although the update time is better in this case, the techniques required for optimal query
bounds actually become less interesting.

7

——————————————————————— ~
I

<«— tangent decomposable

,,,,,,,,,,,,,,,,,,,,,,
hull membership <«—— containment o(lgz n) update
0(1) '\Eift wrapping vertical stabbing ~<«—— linestabbing
,,,,,, 2
zero—dimensional one—dimensional two—dimensional

Figure B-1: Dynamic convex hull queries. The queries in the top row are all decomposable;
the rest are not. Arrows indicate reducibility between queries: generalization — specializa-
tion. Vertically aligned queries are also dual to each other.

Our results therefore illustrate a refined sense of the difficulty of various queries about
dynamic planar convex hulls. The challenge with tangent queries is that the input has two
geometric degrees of freedom (the coordinates of the query point); thus we call the query
two-dimensional. On the other hand, linear programming is essentially one-dimensional, the
input being defined by a single directional coordinate. This distinction is what makes both
linear-programming and tangent queries possible in sublogarithmic query time in the explicit
structure, but only linear-programming queries possible in the decomposable structure. Our
information-theoretic lens therefore highlight an even stronger contrast between the original
Overmars-van Leeuwen structure and the more modern structures based on decomposable
search: the latter structures are not informationally efficient. It thus remains open to break
the ©(lg n) barrier (again) while achieving informationally efficient two-dimensional queries.

B.1 Query Taxonomy

Formally, the dynamic planar convex hull problem is to maintain a dynamic set of points, S,
subject to insertion and deletion of points and a number of potential queries summarized in
Figure B-1. We assume for simplicity of exposition that all z coordinates in S are distinct,
as are all y coordinates in S. We classify queries by the number of (continuous) degrees of
freedom in their input:

e Zero-dimensional queries, where the input is the discrete set S:

Gift wrapping: Given a vertex of the convex hull, report the two adjacent vertices
of the hull. This is the one query that can be supported in O(1) time, as a direct
consequence of applying standard tree-threading and persistence techniques to
the Overmars-van Leeuwen structure.

Hull membership: Test whether a point is on the convex hull.

e One-dimensional queries, which have only one degree of freedom:

Linear programming: Report the extreme point of the set S in a given direction.

78

Line decision: Given a line ¢, test whether it intersects the convex hull. Although
this query might seem two-dimensional, in fact it is a decision version of linear-
programming queries: it tests whether the extreme points in the direction per-
pendicular to £ are on opposite sides of /.

Vertical line stabbing: Given a vertical line that intersects the convex hull, report
the two edges it cuts.

Containment: Report whether a point ¢ is contained in the interior of the convex
hull. This query is a decision version of vertical line stabbing, because we only
need to test that ¢ is between the two edges that intersect the vertical line. This
query is more general than hull membership: applying this query to a perturbation
(away from the center of mass) determines whether the point is on the hull.

e Two-dimensional queries:

Tangent: Given a point ¢ outside the convex hull, report the two tangents of the
hull that pass through ¢. This query is more general than linear programming,
because linear programming can be reduced to tangents of points at infinity. This
query is also more general than containment: we can assume that the point is
outside the hull, find its tangents, and then verify that the tangents are correct
(by running linear-programming queries perpendicular to the tangents).

Line stabbing: (a.k.a. bridge finding) Given a line that intersects the convex hull,
report the two edges that it cuts.

The original data structure by Overmars and van Leeuwen [OvL81] supported all queries
in O(Ign) time, with ©(lg® n) update time. The later data structures with o(lg*n) update
time [ChaOla, BJ0O, BJ02] use techniques from decomposable search problems, and thus
are limited to decomposable queries. Though containment and hull membership are not
decomposable, the trick of reducing containment to tangent means that these queries also
can be supported with o(lg”n) update time. Referring to Figure B-1, the horizontal dashed
line marks the class of queries for which o(lg> n) updates and O(lgn) queries are known.

For our lower bound, it suffices to consider the sinks of this reduction graph: hull mem-
bership and line decision. All other queries are harder than at least one of them, so we

obtain an Q(log, n) lower bound for all queries but gift wrapping.
Ign
Iglgn

O(1g® n) update time. The data structure from Section B.2 below has update time O(Ign lglgn),
and supports one-dimensional, decomposable queries in O(log, n) — that is, it supports
linear programming, and, by reduction, line decision queries. Like all previous structures
with o(lg2 n) update times, ours cannot support nondecomposable queries like line stab-
bing. However, there is an additional discrepancy: because we cannot handle the two-
dimensional tangent queries in this data structure, we cannot support the nondecomposable
hull-membership or containment queries through the trick of reducing them to tangent. Thus
our information-theoretic lens highlights an even stronger contrast between decomposable
and nondecomposable queries.

Our data structure from Chapter 6 supports all queries in O() query time, and

79

Static problems. To situate these queries in context, we remind the reader about their
behavior on a static convex polygon. Zero-dimensional queries trivially take constant time.
For the other queries, we can only consider half of them, because duality makes vertically
aligned queries identical. (Note that this is different from the dynamic setting, in which
duals are expensive to maintain.)

One-dimensional queries can be solved through predecessor search. Chazelle [Cha99]
provides a matching lower bound. Two-dimensional queries are reducible to point location,
and our Corollary 5.1 provides the first sublogarithmic bound. It is conceivable that these
queries are in fact easier than point location.

B.2 Fast Queries with Near-Logarithmic Update Time

Brodal and Jacob [BJ00] prove a general reduction from a dynamic convex hull data structure
that, on O(Ig*n) points, supports queries in Q(n) time and updates in U(n) time, into a dy-

namic convex hull data structure that, on n points, supports queries in Q(n)- lglglgnn’ updates in

U(n)-g gl“fg”n and deletes in O(lgnlglgn) time. The reduction works for decomposable queries.
We will show how to build the polylogarithmic structure that supports linear-programming
queries in O(1) time and updates in O((Iglgn)?) time, which results in a dynamic convex
hull data structure that supports linear-programming queries in O(lgn/lglgn) time and

updates in O(lgnlglgn) time.

The data structure. Our data structure maintains the upper convex hull of & = O(log® n)
points using four components:
1. A (binary) Overmars-van Leeuwen structure [OvL81], where each node represents the
upper convex hull of its descendant points, as the concatenation of a subchain from
the convex hull of each child, and two bridges.

2. One atomic heap [FW94] storing all slopes that appear in the hulls of the nodes of the
Overmars-van Leeuwen structure. There are k' = O(k) such slopes. An atomic heap
supports insertions, deletions, and predecessor/successor queries on lgo(l) n values in
O(1) time per operation.

3. A list labeling structure [DS87, BCD"02] maintaining O(+/Ig n)-bit labels for each such
slope such that label order matches slope order. Unlike standard list labeling, our labels
must be explicit, without the ability to simultaneously update pieces of several labels
via indirection. Fortunately, our label space 20V is much larger than our object
space k' = O(lg4 n). When the label space is polynomially larger than the object space,
we can maintain explicit labels in O(1) time per update, e.g., using the root-to-node
labels in a weight-balanced search tree structure (BB[a] trees [NR73] weight-balanced
B-trees [AV03]); see [BCD*02].

The lists representing the convex hull in each node have a nontrivial implementation.
First of all, they represent the edges of the hull (in particular, their slopes), rather than the
vertices. Second, they are organized as persistent, catenable B-trees with branching factor

80

B = O(y/Ign), and thus, height O(1). Each slope is replaced by its label of O(y/Ign) bits,
which means that a node has O(lgn) bits of information. We pack each node in one word.
We refer to this representation of the convex hulls as label trees.

Observe that slopes are sorted on the hull, so a label tree is actually a search tree. Using
standard parallel comparisons, we can locate the predecessor/successor labels of a query
label in a label tree in constant time.

Updates. When we insert or delete a point, it affects the hulls of O(lgk) nodes in the
Overmars-van Leeuwen structure. In each of these hulls, we may create O(1) new slopes
and/or delete O(1) old slopes. We can compute these O(lg k) changes in O(Ig” k) time using
the standard Overmars-van Leeuwen data structure. The atomic heap and the list labeling
structures can support these changes in O(lgk) total time. The labeling structure may
update O(lg k) labels in total, and each label appears in O(lg k) label trees. Because we can
search for a label in a label tree in constant time, we can update the label trees in O(lg* k)
total time.

Finally, as we propagate the changes in the node hulls according to Overmars-van Leeuwen,
we update the corresponding label trees using persistence, splits, and concatenations. The
key property here is that a node can be split at an arbitrary point, or two nodes can be
concatenated, in constant time because a node fits in a word. The total update time is

therefore O(lg” k) = O((Iglgn)?).

Linear-programming query. Given a query direction d, we take the slope normal to d.
We search for the two adjacent slopes in the global atomic heap. Then we find the label
assigned to these slopes in the list labeling structure, and average these two labels together
(which is possible if we double the label space). Finally we search for the nearest two labels
in the label tree of the root. Thus we obtain the two edges of the overall (root) convex hull
whose slopes are nearest to the query slope, so the common endpoint of these two edges is
the answer to the query.

B.3 Lower Bound

Our lower bound is based on a reduction from the marked-ancestor problem [AHR9S|. In
this problem, we have a static tree, say, a perfect binary tree with n leaves. Each node can
be either marked or unmarked. Initially all nodes are unmarked. The two update operations
are marking and unmarking a node. The (leaf decision) query is to decide whether a given
leaf has a marked ancestor. We can also assume that every leaf has at most one marked
ancestor, and trivially that the root is unmarked. Under these conditions, the marked-
ancestor problem has the following (tight) lower bound: if updates run in ¢, time, queries
require €2 (lg Uii’fg tu) time.

For dynamic convex hull, we obtain a lower bound in the following form, implying a lower
bound for all queries as in Figure B-1:

81

Figure B-2: The lower bound construction for a perfect binary tree on 8 leaves. Lines are
the duals of points in the convex hull problem, and they correspond to nodes in the tree.

Theorem B.1. Any data structure for maintaining a convex hull subject to insertion and
deletion of points in amortized time t, and either hull-membership or line-decision queries,

requires Q(lgﬁ:{gtu) time per query in the cell-probe model.

Proof. While we can prove a lower bound for dynamic convex hull directly, it turns out
that it is considerably simpler to construct the lower bound in the dual space. In the dual
problem, each point becomes a line, and maintaining the (upper chain of the) convex hull
morphs into maintaining the lower envelope of the lines.

Hull membership dualizes to the question whether a given line from the set is part of the
lower envelope. Line decision dualizes to containment: given a point, we ask whether it is
below or above the lower envelope.

To reduce from marked ancestor, we consider a convex semicircle, and 2n points at
uniform angular distances. Refer to Figure B-2. To leaf number i (i € {1,...,n}) in the
in-order traversal of the complete binary tree, we associate points number 2¢ — 1 and 27 on
the semicircle.

Now consider a node whose subtree spans leaves ¢ through j. We associate this node with
the line from point 2¢ — 1 to point 2j5. For a leaf, this is a line between consecutive points
on the circle.

At all times, the set of lines in the dynamic convex hull problem contains all lines asso-
ciated with leaves, plus lines associated with marked nodes. Thus, marking or unmarking a
node translates into adding or removing a line.

We now argue that a marked ancestor query to leaf ¢ is equivalent to a hull membership
query to the line associated with the leaf. Because the lower envelope is convex, and the
center of the semicircle is always inside it, it follows that the line associated with leaf ¢ is
on the lower envelope iff the segments from the center of the semicircle to points 2¢ — 1 and
2¢ do not intersect any other line in the set. Since these segments cannot intersect lines of
other leaves, we only need to consider lines associated with marked nodes. One of the two
segments intersects a line associated with the marked node iff the left endpoint defining the

82

line is at point < 2¢ — 1 and the right endpoint is at a point > 2¢ on the semicircle. This
happens iff the node is an ancestor of leaf i.

To prove a lower bound for containment also, note that it can be used to test if the
line between point 27 — 1 and point 2¢ is on the lower envelope. Indeed, we can take the
midpoint of this segment, and perturb it slightly towards the center of the semicircle. Then,
the segment is on the envelope iff the point is inside the lower envelope.

Finally, we need to discuss issues of precision, since we are proving a lower bound for
finite precision models. Note that even though we cannot make the points be perfectly on the
circle, our proof only requires than for any triple ¢ < 7 < k, point j is strictly above the line
from 7 to k. Since we have 2n points at uniform distances on the semicircle, the minimum
distance between such a point j and the line from i to j is Q(n). Thus, rounding points in
the dual space to a grid of [cn]?, where ¢ is a sufficiently large constant, will preserve the
needed property.

Once dual points are integral, the lines are described by rational parameters, so points
in the primal space are rational, with a constant-factor increase in precision. Therefore, our
lower bound holds for precision w = Q(Ign). O

83

84

Bibliography

[ABRO1]

[AD96]

[AEIS01]

[AHNROS)]

[AHR9S]

[AMMO1a)]

[AMMO1b]

[AMT99)]

[And96]

Stephen Alstrup, Gerth S. Brodal, and Theis Rauhe. Optimal static range
reporting in one dimension. In Proc. 33rd ACM Symposium on Theory of
Computing (STOC), pages 476-482, 2001.

Lyudmil Aleksandrov and Hristo Djidjev. Linear algorithms for partitioning
embedded graphs of bounded genus. SIAM Journal on Discrete Mathematics,
9(1):129-150, 1996.

Arnon Amir, Alon Efrat, Piotr Indyk, and Hanan Samet. Efficient regular
data structures and algorithms for dilation, location, and proximity problems.
Algorithmica, 30(2):164-187, 2001. See also FOCS’99.

Arne Andersson, Torben Hagerup, Stefan Nilsson, and Rajeev Raman. Sorting
in linear time? Journal of Computer and System Sciences, 57(1):74-93, 1998.
See also STOC’95.

Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. Marked ancestor problems.
In Proc. 39th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 534-543, 1998.

Sunil Arya, Theocharis Malamatos, and David M. Mount. Entropy-preserving
cuttings and space-efficient planar point location. In Proc. 20th ACM/SIAM
Symposium on Discrete Algorithms (SODA), pages 256-261, 2001.

Sunil Arya, Theocharis Malamatos, and David M. Mount. A simple entropy-
based algorithm for planar point location. In Proc. 20th ACM/SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 262-268, 2001.

Arne Andersson, Peter Bro Miltersen, and Mikkel Thorup. Fusion trees can

be implemented with AC? instructions only. Theoretical Computer Science,
215(1-2):337-344, 1999.

Arne Andersson. Faster deterministic sorting and searching in linear space.

In Proc. 37th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 135-141, 1996.

85

[AT02]

[AVSS]

[AV03]

[BCD*02]

[BDP05]

[BF02]

[BJOO]

[BJ02]

[BKRS92]

[BMMO7]

[CF97]

[Cha91]

[Cha96]

Arne Andersson and Mikkel Thorup. Dynamic ordered sets with exponential
search trees. CoRR ¢s.DS/0210006. See also FOCS’96, STOC’00, 2002.

Alok Aggarwal and Jeffrey Scott Vitter. The input/output complexity of sort-
ing and related problems. Communications of the ACM, 31(9):1116-1127, 1988.

Lars Arge and Jeffrey S. Vitter. Optimal external memory interval manage-
ment. SIAM Journal on Computing, 32(6):1488-1508, 2003. See also FOCS’96.

Michael A. Bender, Richard Cole, Erik D. Demaine, Martin Farach-Colton,
and Jack Zito. Two simplified algorithms for maintaining order in a list. In
Proc. 10th European Symposium on Algorithms (ESA), pages 152-164, 2002.

[lya Baran, Erik D. Demaine, and Mihai Patrascu. Subquadratic algorithms
for 3sum. In Proc. 9th Workshop on Algorithms and Data Structures (WADS),
pages 409-421, 2005.

Paul Beame and Faith E. Fich. Optimal bounds for the predecessor problem
and related problems. Journal of Computer and System Sciences, 65(1):38-72,
2002. See also STOC’99.

Gerth S. Brodal and Riko Jacob. Dynamic planar convex hull with optimal
query time and O(logn - loglogn) update time. In Proc. 7th Workshop on
Algorithms and Data Structures (WADS), pages 57-70, 2000.

Gerth S. Brodal and Riko Jacob. Dynamic planar convex hull. In Proc. 43rd
IEEE Symposium on Foundations of Computer Science (FOCS), pages 617
626, 2002.

Marshall W. Bern, Howard J. Karloff, Prabhakar Raghavan, and Baruch
Schieber. Fast geometric approximation techniques and geometric embed-
ding problems. Theoretical Computer Science, 106(2):265-281, 1992. See also
SoCG’89.

Andrej Brodnik, Peter Bro Miltersen, and J. lan Munro. Trans-dichotomous

algorithms without multiplication—some upper and lower bounds. In Proc. 5th
Workshop on Algorithms and Data Structures (WADS), pages 426-439, 1997.

L. Paul Chew and Steven Fortune. Sorting helps for Voronoi diagrams. Algo-
rithmica, 18(2):217-228, 1997.

Bernard Chazelle. Triangulating a simple polygon in linear time. Discrete
Computational Geometry, 6:485-524, 1991. See also FOCS’90.

Timothy M. Chan. Optimal output-sensitive convex hull algorithms in two and
three dimensions. Discrete €& Computational Geometry, 16:361-368, 1996.

86

[Cha99]

[Cha00]

[Cha0O1la)]

[Cha01b]

[Cha02]

[Cha04]

[Cha06]

[Cla88]

[Col86]

[CPO7]

[CS89)

[DadHI0]

Bernard Chazelle. Geometric searching over the rationals. In Proc. 7th Furo-
pean Symposium on Algorithms (ESA), pages 354-365, 1999.

Timothy M. Chan. Random sampling, halfspace range reporting, and con-
struction of (< k)-levels in three dimensions. SIAM Journal on Computing,
30(2):561-575, 2000. See also FOCS’98.

Timothy M. Chan. Dynamic planar convex hull operations in near-logarithmic
amortized time. Journal of the ACM, 48(1):1-12, 2001. See also FOCS’99.

Timothy M. Chan. On enumerating and selecting distances. International
Journal of Computational Geometry and Applications, 11(3):291-304, 2001.
See also SoCG’98.

Timothy M. Chan. Closest-point problems simplified on the RAM. In Proc.
13th ACM/SIAM Symposium on Discrete Algorithms (SODA), pages 472-473,
2002.

Timothy M. Chan. Faster core-set constructions and data stream algorithms in
fixed dimensions. In Proc. 20th ACM Symposium on Computational Geometry
(SoCG), pages 152-159, 2004.

Timothy M. Chan. Point location in o(logn) time, Voronoi diagrams in
o(nlogn) time, and other transdichotomous results in computational geom-
etry. In Proc. 47th IEEE Symposium on Foundations of Computer Science
(FOCS), pages 333-344, 2006.

Kenneth L. Clarkson. A randomized algorithm for closest-point queries. STAM
Journal on Computing, 17(4):830-847, 1988.

Richard Cole. Searching and storing similar lists. Journal of Algorithms,
7(2):202-220, 1986.

Timothy M. Chan and Mihai Patragcu. Voronoi diagrams in n-2°(V8187) time.
In Proc. 39th ACM Symposium on Theory of Computing (STOC), 2007.

Kenneth L. Clarkson and Peter W. Shor. Applications of random sampling in
computational geometry, II. Discrete €9 Computational Geometry, 4:387-421,
1989.

Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. A new universal
class of hash functions and dynamic hashing in real time. In Proc 17th In-
ternational Colloquium on Automata, Languages and Programming (ICALP),
pages 6-19, 1990.

87

[DBCP97]

[dBSVKO00]

[dBvKS95]

[DPO7]

[DS87]

[DSSTSY]

[Ede87]

[EGSS6]

[FKS84]

[FM84]

[FW93]

[FW94]

Mikael Degermark, Andrej Brodnik, Svante Carlsson, and Stephen Pink. Small
forwarding tables for fast routing lookups. In Proc. ACM SIGCOMM, pages
3-14, 1997.

Mark de Berg, Otfried Schwarzkopf, Marc van Kreveld, and Mark Overmars.
Computational Geometry: Algorithms and Applications. Springer-Verlag, 2nd
edition, 2000.

Mark de Berg, Marc J. van Kreveld, and Jack Snoeyink. Two- and three-
dimensional point location in rectangular subdivisions. Journal of Algorithms,
18(2):256-277, 1995. See also SWAT’92.

Erik D. Demaine and Mihai Patragcu. Tight bounds for dynamic convex hull

queries (again). In Proc. 23rd ACM Symposium on Computational Geometry
(SoCG), 2007.

Paul F. Dietz and Daniel D. Sleator. Two algorithms for maintaining order in
alist. In Proc. 19th ACM Symposium on Theory of Computing (STOC), pages
365-372, 1987.

James R. Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre

Tarjan. Making data structures persistent. Journal of Computer and System
Sciences, 38(1):86-124, 1989. See also STOC’86.

Herbert Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-
Verlag, 1987.

Herbert Edelsbrunner, Leonidas J. Guibas, and Jorge Stolfi. Optimal point
location in a monotone subdivision. SIAM Journal on Computing, 15(2):317—
340, 1986.

Michael L. Fredman, Janos Komlds, and Endre Szemerédi. Storing a sparse
table with 0(1) worst case access time. Journal of the ACM, 31(3):538-544,
1984. See also FOCS’82.

Alain Fournier and D. Y. Montuno. Triangulating simple polygons and equiv-
alent problems. ACM Transactions on Graphics, 3(2):153-174, 1984.

Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic
bound with fusion trees. Journal of Computer and System Sciences, 47(3):424—
436, 1993. See also STOC’90.

Michael L. Fredman and Dan E. Willard. Trans-dichotomous algorithms for

minimum spanning trees and shortest paths. Journal of Computer and System

Sciences, 48(3):533-551, 1994. See also FOCS’90.

88

[Go095|

[HanO1]

[Han04]

[HPMO5]

[HT02]

[Tac04]

[ILOO]

[Kir83)

[LT80]

[MPP05]

[Mul90]

[Mul00]

[NR73]

[O'R9S]

Michael T. Goodrich. Planar separators and parallel polygon triangulation.
Journal of Computer and System Sciences, 51(3):374-389, 1995. See also
STOC92.

Yijie Han. Improved fast integer sorting in linear space. Information and
Computation, 170(1):81-94, 2001. See also SODA’01.

Yijie Han. Deterministic sorting in o(n log logn) time and linear space. Journal
of Algorithms, 50(1):96-105, 2004. See also STOC’02.

Sariel Har-Peled and Soham Mazumdar. Fast algorithms for computing the
smallest k-enclosing circle. Algorithmica, 41(3):147-157, 2005. See also ESA’03.

Yijie Han and Mikkel Thorup. Integer sorting in 0(n+/loglogn) expected time
and linear space. In Proc. /3rd IEEE Symposium on Foundations of Computer
Science (FOCS), pages 135-144, 2002.

John Iacono. Expected asymptotically optimal planar point location. Compu-
tational Geometry, 29(1):19-22, 2004. See also SODA’01.

John Tacono and Stefan Langerman. Dynamic point location in fat hyper-
rectangles with integer coordinates. In Proc. 12th Canadian Conference on
Computational Geometry (CCCG), 2000.

David G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal
on Computing, 12(1):28-35, 1983.

Richard J. Lipton and Robert Endre Tarjan. Applications of a planar separator
theorem. SIAM Journal on Computing, 9(3):615-627, 1980. See also FOCS’77.

Christian Worm Mortensen, Rasmus Pagh, and Mihai Patragcu. On dynamic
range reporting in one dimension. In Proc. 37th ACM Symposium on Theory
of Computing (STOC), pages 104-111, 2005.

Ketan Mulmuley. A fast planar partition algorithm. Journal of Symbolic Com-
putation, 10(3/4):253-280, 1990. See also FOCS’SS.

Ketan Mulmuley. Computational Geometry: An Introduction Through Ran-
domized Algorithms. Prentice-Hall, 2000.

Jirg Nievergelt and Edward M. Reingold. Binary search trees of bounded
balance. SIAM Journal on Computing, 2(1):33-43, 1973. See also STOC’72.

Joseph O’Rourke. Computational Geometry in C. Cambridge University Press,
2nd edition, 1998.

89

[OvL81]

[P&t06]

[PDO6]

[PS85]

[PTO6]

[PT07]

[Rab76]

[Ruz07]

[SAO0]

[Sno04]

[STS6]

[Tho02a]

[Tho02b)]

Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the
plane. Journal of Computer and System Sciences, 23(2):166-204, 1981. See
also STOC’80.

Mihai Patragcu. Planar point location in sublogarithmic time. In Proc. 47th
IEEE Symposium on Foundations of Computer Science (FOCS), pages 325-
332, 2006.

Mihai Patragcu and Erik D. Demaine. Logarithmic lower bounds in the cell-
probe model. SIAM Journal on Computing, 35(4):932-963, 2006. See also
SODA’04 and STOC’04.

Franco P. Preparata and Michael Ian Shamos. Computational Geometry: An
Introduction. Springer-Verlag, 1985.

Mihai Patragcu and Mikkel Thorup. Time-space trade-offs for predecessor
search. In Proc. 38th ACM Symposium on Theory of Computing (STOC),
pages 232-240, 2006.

Mihai Patragcu and Mikkel Thorup. Randomization does not help searching
predecessors. In Proc. 18th ACM/SIAM Symposium on Discrete Algorithms
(SODA), pages 555-564, 2007.

Michael O. Rabin. Probabilistic algorithms. In J. F. Traub, editor, Algorithms
and Complexity, pages 21-30. Academic Press, 1976.

Milan Ruzi¢. Making deterministic signatures quickly. In Proc. 18th
ACM/SIAM Symposium on Discrete Algorithms (SODA), pages 900-909, 2007.

Raimund Seidel and Udo Adamy. On the exact worst case query complexity
of planar point location. Journal of Algorithms, 37(1):189-217, 2000. See also
SODA’98.

Jack Snoeyink. Point location. In Jacob E. Goodman and Joseph O’Rourke, ed-
itors, Handbook of Discrete and Computational Geometry (2nd edition), pages
767-785. Chapman & Hall/CRC, 2004.

Neil Sarnak and Robert Endre Tarjan. Planar point location using persistent
search trees. Communications of the ACM, 29(7):669-679, 1986.

Mikkel Thorup. Equivalence between priority queues and sorting. In Proc.
43rd IEEE Symposium on Foundations of Computer Science (FOCS), pages
125-134, 2002.

Mikkel Thorup. Randomized sorting in O(nloglogn) time and linear space
using addition, shift, and bit-wise boolean operations. Journal of Algorithms,
42(2):205-230, 2002. See also SODA’97.

90

[Tur36]

[VEBKZ77]

[Wil0o]

Alan M. Turing. On computable numbers with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, Series 2,
42:230-265, 1936.

Peter van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation
of an efficient priority queue. Mathematical Systems Theory, 10:99-127, 1977.
Announced by van Emde Boas alone at FOCS’75.

Dan E. Willard. Examining computational geometry, van Emde Boas trees, and
hashing from the perspective of the fusion tree. SIAM Journal on Computing,
29(3):1030-1049, 2000. See also SODA’92.

91

