
Chapter 1

Near Neighbor Search in `∞

In this chapter, we deal with near neighbor search (NNS) under the distance d(p, q) =
‖p− q‖∞ = maxi∈[d] |pi − qi|, called the `∞ norm. See §?? for background on near-neighbor
search, and, in particular, for a discussion of this important metric.

The structure of the `∞ space is intriguingly different, and more mysterious than other
natural spaces, such as the `1 and `2 norms. In fact, there is precisely one data structure
for NNS under `∞ with provable guarantees. In FOCS’98, Indyk [Ind01] described an NNS
algorithm for d-dimensional `∞ with approximation 4dlogρ log2 4de+1, which required space

dnρ lgO(1) n and query time d · lgO(1) n, for any ρ > 1. For 3-approximation, Indyk also
gives a solution with storage O(nlog2 d+1). Note that in the regime of polynomial space, the
algorithm achieves an uncommon approximation factor of O(log log d).

In this chapter, we begin by describing Indyk’s data structure in a manner that is con-
ceptually different from the original description. Our view relies on an information-theoretic
understanding of the algorithm, which we feel explains its behavior much more clearly.

Inspired by this understanding, we are able to prove a lower bound for the asymmetric
communication complexity of c-approximate NNS in `∞:

Theorem 1.1. Assume Alice holds a point q ∈ {0, . . . ,m}d, and Bob holds a database
D ⊂ {−m, . . .m}d of n points. They communicate via a deterministic protocol to output:
“1” if there exists some p ∈ D such that ‖q − p‖∞ ≤ 1;

“0” if, for all p ∈ D, we have ‖q − p‖∞ ≥ c.

Fix δ, ε > 0; assume the dimension d satisfies Ω(lg1+ε n) ≤ d ≤ o(n), and the approximation
ratio satisfies 3 < c ≤ O(log log d). Further define ρ = 1

2
(ε

2
log d)1/c > 10.

Then, either Alice sends Ω(δρ log n) bits, or Bob sends Ω(n1−δ) bits.

Note that this result is tight in the communication model, suggesting the Indyk’s unusual
approximation is in fact inherent to NNS in `∞. As explained in Chapter ??, this lower bound
on asymmetric communication complexity immediately implies the following corollaries for
data structures:

Corollary 1.2. Let δ > 0 be constant, and assume Ω(lg1+δ n) ≤ d ≤ o(n). Consider
any cell-probe data structure solving d-dimensional NNS under `∞ with approximation c =

9

O(logρ log d). If the word size is w = n1−δ and the query complexity is t, the data structure

requires space nΩ(ρ/t).

Corollary 1.3. Let δ > 0 be constant, and assume Ω(lg1+δ n) ≤ d ≤ o(n). A decision tree
of depth n1−2δ with predicate size nδ that solves d-dimensional near-neighbor search under
`∞ with approximation c = O(logρ log d), must have size nΩ(ρ).

As with all known lower bounds for large space, Corollary 1.2 is primarily interesting for
constant query time, and degrades exponentially with t. On the other hand, the lower bound
for decision trees holds even for extremely high running time (depth) of n1−δ. A decision
tree with depth n and predicate size O(d logM) is trivial: simply test all database points.

Indyk’s result is a deterministic decision tree with depth d · logO(1) n and predicate size
O(lg d + lgM). Thus, we show an optimal trade-off between space and approximation, at
least in the decision tree model. In particular, for polynomial space, the approximation
factor of Θ(lg lg d) is intrinsic to NNS under `∞.

1.1 Review of Indyk’s Upper Bound

Decision trees. Due to the decomposability of `∞ as a maximum over coordinates, a
natural idea is to solve NNS by a decision tree in which every node is a coordinate comparison.
A node v is reached for some set Qv ⊆ Zd of queries. If the node compares coordinate i ∈ [d]
with a “separator” x, its two children will be reached for queries in Q` = Qv ∩ {q | qi < x},
respectively in Qr = Qv ∩ {q | qi > x} (assume x is non-integral to avoid ties).

pi

x− 1 x x + 1

N` Nr

Q` Qr

v

` r

Figure 1-1: A separator x on coordinate i.

Define [x, y]i =
{
p | pi ∈ [x, y]

}
. Then, Q` =

Qv ∩ [−∞, x]i and Qr = Qv ∩ [x,∞]i.
If the query is known to lie in some Qv, the

set of database points that could still be a near
neighbor is Nv = D ∩

(
Qv + [−1, 1]d

)
, i.e. the

points inside the Minkowski sum of the query
set with the `∞ “ball” of radius one. For our
example node comparing coordinate i ∈ [d] with
x, the children nodes have N` = Nv ∩ [−∞, x+
1]i, respectively Nr = Nv ∩ [x− 1,+∞]i.

Observe that N` ∩Nr = Nv ∩ [x− 1, x+ 1]i.
In some sense, the database points in this slab
are being “replicated,” since both the left and
right subtrees must consider them as potential
near neighbors. This recursive replication of database points is the cause of superlinear
space. The contribution of Indyk [Ind01] is an intriguing scheme for choosing a separator
that guarantees a good bound on this recursive growth.

Information progress. Our first goal is to get a handle on the growth of the decision
tree, as database points are replicated recursively. Imagine, for now, that queries come from

10

some distribution µ. The reader who enjoys worst-case algorithms need not worry: µ is just
an analysis gimmick, and the algorithm will be deterministic.

We can easily bound the tree size in terms of the measure of the smallest Qv ever reached:
there can be at most 1/minv Prµ[Qv] distinct leaves in the decision tree, since different
leaves are reached for disjoint Qv’s. Let IQ(v) = log2

1
Prµ[Qv]

; this can be understood as the

information learned about the query, when computation reaches node v. We can now rewrite
the space bound as O

(
2maxv IQ(v)

)
.

Another quantity that can track the behavior of the decision tree is HN(v) = log2 |Nv|.
Essentially, this is the “entropy” of the identity of the near neighbor, assuming that all
database points are equally likely neighbors.

At the root λ, we have IQ(λ) = 0 and HN(λ) = lg n. Decision nodes must reduce the
entropy of the near neighbor until HN reaches zero (|Nv| = 1). Then, the algorithm can
simply read the single remaining candidate, and test whether it is a near neighbor of the
query. Unfortunately, decision nodes also increase IQ along the way, increasing the space
bound. The key to the algorithm is to balance this tension between reducing the entropy of
the answer, HD, and not increasing the information about the query, IQ, too much.

In this information-theoretic view, Indyk’s algorithm shows that we can (essentially)
always find a separator that decreases HN by some δ but does not increase IQ by more than
ρ · δ. Thus, HD can be pushed from lg n down to 0, without ever increasing IQ by more than
ρ lg n. That is, space O(nρ) is achieved.

Searching for separators. At the root λ, we let i ∈ [d] be an arbitrary coordinate,
and search for a good separator x on that coordinate. Let π be the frequency distribution
(the empirical probability distribution) of the projection on coordinate i of all points in the
database. To simplify expressions, let π(x : y) =

∑y
j=x π(j).

If x is chosen as a separator at the root, the entropy of the near neighbor in the two child
nodes is reduced by:

HN(λ)−HN(`) = log2

|Nλ|
|N`|

= log2

|D|
|D ∩ [−∞, x+ 1]i|

= log2

1

π(−∞ : x+ 1)

HN(λ)−HN(r) = log2

1

π(x− 1 :∞)

Remember that we have not yet defined µ, the assumed probability distribution on the
query. From the point of view of the root, it only matters what probability µ assigns toQ` and
Qr. Let us reason, heuristically, about what assignments are needed for these probabilities
in order to generate difficult problem instances. If we understand the most difficult instance,
we can use that setting of probabilities to obtain an upper bound for all instances.

First, it seems that in a hard instance, the query needs to be close to some database point
(at least with decent probability). Let us simply assume that the query is always planted in
the neighborhood of a database point; the problem remains to find this near neighbor.

Assume by symmetry that HN(`) ≥ HN(r), i.e. the right side is smaller. Under our
heuristic assumption that the query is planted next to a random database point, we can

11

lower bound Prµ[Qr] ≥ π(x + 1,∞). Indeed, whenever the query is planted next to a point
in [x+1,∞]i, it cannot escape from Qr = [x,∞]i. Remember that our space guarantee blows
up when the information about Qv increases quickly (i.e. the probability of Qv decreases).
Thus, the worst case seems to be when Prµ[Qr] is as low as possible, namely equal to the
lower bound.

To summarize, we have convinced ourselves that it’s reasonable to define µ such that:

Pr
µ

[Q`] = π(−∞ : x+ 1); Pr
µ

[Qr] = π(x+ 1,∞) (1.1)

We apply similar conditions at all nodes of the decision tree. Note that there exists a µ
safisfying all these conditions: the space of queries is partitioned recursively between the left
and right subtrees, so defining the probability of the left and right subspace at all nodes is
an (incomplete) definition of µ.

From (1.1), we can compute the information revealed about the query:

IQ(`)− IQ(λ) = log2

Pr[Qλ]

Pr[Q`]
= log2

1

π(−∞ : x+ 1)

IQ(r)− IQ(λ) = log2

1

π(x+ 1 :∞)

Remember that our rule for a good separator was “∆IQ ≤ ρ · ∆HN .” On the left side,
IQ(`) − IQ(λ) = HN(λ) − HN(`), so the rule is trivially satisfied. On the right, the rule
asks that: log2

1
π(x+1:∞)

≤ ρ · log2
1

π(x−1:∞)
. Thus, x is a good separator iff π(x + 1 : ∞) ≥[

π(x− 1 :∞)
]ρ

.

Finale. As defined above, any good separator satisfies the bound on the information
progress, and guarantees the desired space bound of O(nρ). We now ask what happens
when no good separator exists.

We may assume by translation that the median of π is 0, so π([1 :∞]) ≤ 1
2
. If x = 11

2
is

not a good separator, it means that π(3 :∞) <
[
π(1 :∞)

]ρ ≤ 2−ρ. If x = 31
2

is not a good

separator, then π(5 : ∞) <
[
π(3 : ∞)

]ρ ≤ 2−ρ
2
. By induction, the lack of a good separator

implies that π(2j + 1 :∞) < 2−ρ
j
. The reasoning works simmetrically to negative values, so

π(−∞ : −2j − 1) < 2−ρ
j
.

Thus, if no good separator exists on coordinate i, the distribution of the values on that
coordinate is very concentrated around the median. In particular, only a fraction of 1

2d
of

the database points can have |xi| > R = 2 logρ log2 4d. Since there is no good separator on
any coordinate, it follows that less than d · n

2d
= n

2
points have some coordinate exceeding

R. Let D? be the set of such database points.

To handle the case when no good separator exists, we can introduce a different type of
node in the decision tree. This node tests whether the query lies in an `∞ ball of radius
R+ 1 (which is equivalent to d coordinate comparisons). If it does, the decision tree simply
outputs any point in D \D?. Such a point must be within distance 2R + 1 of the query, so

12

it is an O(logρ log d) approximation.

If the query is outside the ball of radius R+1, a near neighbor must be outside the ball of
radius R, i.e. must be in D?. We continue with the recursive construction of a decision tree
for point set D?. Since |D?| ≤ |D|/2, we get a one-bit reduction in the entropy of the answer
for free. (Formally, our µ just assigns probability one to the query being outside the ball of
radius R + 1, because in the “inside” case the query algorithm terminates immediately.)

1.2 Lower Bound

Armed with this information-theoretic understanding of Indyk’s algorithm, the path to a
lower bound is more intuitive. We will define a distribution on coordinates decaying roughly
like 2−ρ

x
, since we know that more probability in the tail gives the algorithm an advantage.

Database points will be independent and identically distributed, with each coordinate drawn
independently from this distribution.

In the communication view, Alice’s message sends a certain amount of information re-
stricting the query space to some Q. The entropy of the answer is given by the measure of
N(Q) = Q+ [−1, 1]d, since the expected number of points in this space is just n ·Pr[N(Q)].
The question that must be answered is: fixing Pr[Q], how small can Pr[N(Q)

]
be?

We will show an isoperimetric inequality proving that the least expanding sets are exactly
the ones generated by Indyk’s algorithm: intersections of coordinate cuts [x,∞]i. Note that
Pr
[
[x,∞]i

]
≈ 2−ρ

x
, and N

(
[x,∞]i

)
= [x − 1,∞]i. Thus, the set expands to measure

Pr
[
x − 1,∞]i

]
≈ 2−ρ

x−1 ≈ Pr
[
[x,∞]i

]1/ρ
. Our isoperimetric inequality will show that for

any Q, its neighborhood has measure Pr[N(Q)] ≥ Pr[Q]1/ρ.

Then, if Alice’s message has o(ρ lg n) bits of information, the entropy of the near neighbor
decreases by only o(lg n) bits. In other words, n1−o(1) of the points are still candidate near
neighbors, and we can use this to lower bound the message that Bob must send.

The crux of the lower bound is not the analysis of the communication protocol (which is
standard), but proving the isoperimetric inequality. Of course, the key to the isopermitetric
inequality is the initial conceptual step of defining an appropriate biased distribution, in
which the right inequality is possible. The proof is rather non-standard for an isoperimetric
inequality, because we are dealing with a very particular measure on a very particular space.
Fortunately, a few mathematical tricks save it from being too technical.

Formal details. We denote the communication problem, c-approximate NNS, by the
partial function F . Let the domain of F̄ be X × Y , where X = {0, 1, . . .m}d and Y =(
{0, 1, . . .m}d

)n
. Complete the function F by setting F̄ (q,D) = F (q,D) whenever F (q,D)

is defined (in the “0” or “1” instances), and F̄ (q,D) = ? otherwise.

As explained already, our lower bound only applies to deterministic protocols, but it
requires conceptual use of distributions on the input domains X and Y . First define a
measure π over the set {0, 1, . . .m}: for i ≥ 1, let π({i}) = πi = 2−(2ρ)i ; and let π0 =
1−

∑
i≥1 πi ≥

1
2
. Here ρ is a parameter to be determined.

13

Now, define a measure µ over points by generating each coordinate independently ac-
cording to π: µ(x1, x2, . . . , xd)}) = πx1 · · · πxd . Finally, define a measure η over the database
by generating each point independently according to µ.

First, we show that F̄ is zero with probability Ω(1):

Claim 1.4. If d ≥ lg1+ε n and ρ ≤ 1
2
(ε

2
lg d)1/c, then Prq←µ,D←η[F̄ (q,D) 6= 0] ≤ 1

2
.

Proof. Consider q and some p ∈ D: their jth coordinates differ by c or more with probability
at least 2π0πc ≥ πc. Thus,

Pr[‖q−p‖∞ < c] ≤ (1−πc)d ≤ e−πcd ≤ e−2−(ε/2) lg d·d ≤ e−d
1−ε/2 ≤ e−(lgn)(1+ε)(1−ε/2) ≤ e−(lgn)1+ε/4

By a union bound over all p ∈ D, we get that q has no neighbor at distance less than c with
probability at least 1− n · exp(−(lg n)1+ε/4) = 1− o(1).

Claim 1.5. If Alice sends a bits and Bob sends b bits, there exists a combinatorial rectangle
Q × D ⊆ X × Y of measure µ(Q) ≥ 2−O(a) and η(D) ≥ 2−O(a+b), on which F̄ only takes
values in {0, ?}.

Proof. This is just the deterministic richness lemma (Lemma ??) in disguise. Let F ′ :
X × Y → {0, 1} be the output of the protocol. We have F ′(q,D) = F̄ (q,D) whenever
F̄ (q,D) 6= ?. Since Pr[F ′(q,D) = 0] ≥ 1

2
, F ′ is rich: half of the columns are at least half

zero (in the weighted sense). Thus, we can find a rectangle of size µ(Q) ≥ 2−O(a) and
η(D) ≥ 2−O(a+b), on which F ′ is identically zero. Since the protocol is always correct, this
means that F̄ is 0 or ? on the rectangle.

To obtain a lower bound, we show that any big rectangle must contain at least a value
of “1.” This will follow from the following isoperimetric inequality in our measure space,
shown in §1.3:

Theorem 1.6. Consider any set S ⊆ {0, 1, . . .m}d, and let N(S) be the set of points at
distance at most 1 from S under `∞: N(S) = {p | ∃s ∈ S : ‖p − s‖∞ ≤ 1}. Then,

µ(N(S)) ≥
(
µ(S)

)1/ρ
.

Claim 1.7. Consider any rectangle Q × D ⊆ X × Y of size µ(Q) ≥ 2−δρ lgn and η(D) ≥
2−O(n1−δ). Then, there exists some (q,D) ∈ Q×D such that F̄ (q,D) = 1.

Proof. By isoperimetry, µ(N(Q)) ≥
(
µd(Q)

)1/ρ ≥ 1/nδ. All we need to show is that there
exists a set D ∈ D that intersects with N(Q).

For D ∈ Y , let σ(D) = |D ∩ N(Q)|. The proof uses a standard concentration trick on
σ. Suppose D is chosen randomly according to η, i.e. not restricted to D. Then E[σ(D)] =
n · Prµ[N(Q)] ≥ n1−δ. Furthermore, σ(D) is tightly concentrated around this mean, by the

Chernoff bound. In particular, Pr[σ(D) = 0] ≤ e−Ω(n1−δ).
This probability is so small, that it remains small even is we restrict to D. We have

Pr[σ(D) = 0 | D ∈ D] ≤ Pr[σ(D)=0]
Pr[D∈D]

≤ e−Ω(n1−δ)/η(D). Thus, if η(D) ≥ 2−γ·n
1−δ

for some

14

small enough constant γ, we have Pr[σ(D) = 0 | D ∈ D] = o(1). In other words, there exists
some D ∈ D such that N(Q)∩D 6= ∅, and thus, there exists an instance in the rectangle on
which F̄ = 1.

Combining Claims 1.5 and 1.7, we immediately conclude that either Alice sends a =
Ω(δρ log n) bits or Bob sends b = Ω(n1−δ) bits. This concludes the proof of Theorem 1.1.

1.3 An Isoperimetric Inequality

This section proves the inequality of Theorem 1.6: for any S, µ(N(S)) ≥
(
µ(S)

)1/ρ
. As with

most isoperimetric inequalities, the proof is by induction on the dimensions. In our case, the
inductive step is provided by the following inequality, whose proof is deferred to §1.4:

Lemma 1.8. Let ρ ≥ 10 be an integer, and define πi = 2−(2ρ)i for all i ∈ {1, . . . ,m}, and
π0 = 1−

∑m
i=1 πi. For any β0, . . . , βm ∈ R+ satisfying

∑m
i=0 πiβ

ρ
i = 1, the following inequality

holds (where we interpret β−1 and βm+1 as zero):

m∑
i=0

πi ·max {βi−1, βi, βi+1} ≥ 1 (1.2)

To proceed to our inductive proof, let µd be the d-dimensional variant of our distribution.
The base case is d = 0. This space has exactly one point, and µ0(S) is either 0 or 1. We

have N(S) = S, so µ0(N(S)) = µ0(S) =
(
µ0(S)

)1/ρ
.

Now consider the induction step for d−1 to d dimensions. Given a set S ⊂ {0, 1, . . .m}d,
let S[i] be the set of points in S whose first coordinate is i, i.e. S[i] = {(s2, . . . , sd) |
(i, s2, . . . , sd) ∈ S}. Define:

βi =

(
µd−1(S[i])

µd(S)

)1/ρ

⇒
m∑
i=0

πiβ
ρ
i =

m∑
i=0

πi ·
µd−1(S[i])

µd(S)
=

1

µd(S)

m∑
i=0

πiµd−1(S[i]) = 1

We have N(S)[i] = N(S[i−1]) ∪ N(S[i]) ∪ N(S[i+1]). Thus, we can lower bound:

µd(N(S)) =
m∑
i=0

πi·µd−1

(
N(S)[i]

)
≥

m∑
i=0

πi·max
{
µd−1(N(S[i−1])), µd−1(N(S[i])), µd−1(N(S[i+1]))

}
But the inductive hypothesis assures us that µd−1(N(S[i])) ≥

(
µd−1(S[i])

)1/ρ
= βi ·(

µd(S)
)1/ρ

. Thus:

µd(N(S)) ≥
(
µd(S)

)1/ρ ·
m∑
i=0

πi ·max
{
βi−1, βi, βi+1

}
≥
(
µd(S)

)1/ρ
,

where we have used inequality (1.2) in the last step. This finishes the proof of Theorem 1.6.

15

1.4 Expansion in One Dimension

Let Γ =
{

(β0, . . . , βm) ∈ Rm+1 |
∑m

i=0 πiβ
ρ
i = 1

}
, and denote by f (β0, . . . , βm) the left hand

side of (1.2). Since f is a continuous function on the compact set Γ ⊂ Rm+1, it achieves its
minimum. Call an (m+ 1)-tuple (β0, . . . , βm) ∈ Γ optimal if f (β0, . . . , βm) is minimal. Our
proof strategy will be to show that if (β0, . . . , βm) is optimal, then βi = 1.

We consider several possible configurations for sizes of βi’s in an optimal β, and rule
them out in three separate lemmas. We then prove the inequality by showing that these
configurations are all the configurations that we need to consider.

Lemma 1.9. If there exists an index i ∈ {1, . . . ,m− 1} such that βi−1 > βi < βi+1, then
β̄ = (β0, . . . , βm) is not optimal.

Proof. Define a new vector β̄′ = (β0, . . . , βi−2, βi−1 − ε, βi + δ, βi+1 − ε, βi+2, . . . , βm), where
ε, δ > 0 are chosen suitably so that β̄′ ∈ Γ, and βi−1− ε > βi + δ < βi+1− ε. It’s easy to see
that f

(
β̄
)
> f

(
β̄′
)
, which contradicts the optimality of β̄.

Lemma 1.10. If there exists an index i ∈ {1, . . . ,m} such that βi−1 > βi ≥ βi+1, then
β̄ =(β0, . . . , βm) is not optimal.

Proof. Let β =
(
πi−1β

ρ
i−1+πiβ

ρ
i

πi−1+πi

)1/ρ

and define β̄′ = (β0, . . . , βi−2, β, β, βi+1, . . . βm). Then

β̄′ ∈ Γ, and βi−1 > β > βi.

We claim that f(β̄) > f(β̄′). Comparing the expressions for f
(
β̄
)

and f
(
β̄′
)

term by
term, we see that it’s enough to check that:

πi max
{
βi−1, βi, βi+1

}
+ πi+1 max

{
βi, βi+1, βi+2

}
> πi max

{
β, βi+1

}
+ πi+1 max

{
β, βi+1, βi+2

}
where the terms involving πi+1 are ignored when i = m. For i = m, the inequality becomes
βi−1 > β which holds by assumption. For i = 1, . . . ,m− 1, this inequality is equivalent to:

πi(βi−1 − β) > πi+1 · (max {β, βi+2} −max {βi, βi+2})

which, in its strongest form (when βi ≥ βi+2), is equivalent to πi(βi−1 − β) > πi+1(β − βi).
But this is equivalent to: (

πiβi−1 + πi+1βi
πi + πi+1

)ρ
>
πi−1β

ρ
i−1 + πiβ

ρ
i

πi−1 + πi

which we can rewrite as: (
ci + t

ci + 1

)ρ
− ci−1 + tρ

ci−1 + 1
> 0, (1.3)

letting t = βi
βi−1
∈ [0, 1), and ci = πi

πi+1
≥ 2(2ρ)i+1−(2ρ)i (for i > 0 this is an equality; only for

i = 0 is this a strict inequality, because p is large).

16

We are now left to prove (1.3). Let F (t) denote the left hand side of this inequality, and
note that F (0) > 0, because:(

ci
ci + 1

)ρ
=

(
1− 1

ci + 1

)ρ
≥ 1− ρ

ci + 1
> 1− 1

ci−1 + 1
=

ci−1

ci−1 + 1

Here we used Bernoulli’s inequality: (1− x)n ≥ 1− nx for 0 < x < 1/n. Then, we observed
that ci + 1 > 2(2ρ)i+1−(2ρ)i > ρ · (2(2ρ)i + 1) = ρ(1

πi−1
ci−1 + 1) > ρ(ci−1 + 1).

Now we let t ∈ (0, 1) and write F (t) = F (0) + tρG(t), where:

G(t) = 1
(ci+1)ρ

((
ρ
1

)
cρ−1
i

1
t

+
(
ρ
2

)
cρ−2
i

1
t2

+ · · ·+
(
ρ
ρ−1

)
ci

1
tρ−1

)
+
(

1
(ci+1)ρ

− 1
ci−1+1

)
.

If G(t) ≥ 0, then clearly F (t) ≥ F (0) > 0, so we are done. Otherwise, G(t) < 0, and in
this case it easily follows that G(1) < G(t) < 0, hence F (t) = F (0)+ tρG(t) > F (0)+G(1) =
F (1) = 0, as desired. This concludes the proof of the lemma.

Lemma 1.11. If there is an index i ∈ {0, 1 . . . ,m− 1} such that βi−1 ≤ βi < βi+1, then
β = (β0, β1, . . . , βm) is not optimal.

Proof. We proceed as in the previous lemma. Let β =
(
πiβ

ρ
i +πi+1β

ρ
i+1

πi+πi+1

)1/ρ

, and define β̄′ =

(β0, . . . , βi−1, β, β, βi+2, . . . , βm). As before, β̄′ ∈ Γ and βi < β < βi+1. We claim that
f(β̄) > f(β̄′). Comparing the expressions for f

(
β̄
)

and f
(
β̄′
)

term by term, we see that it’s
enough to check that

πi−1·max {βi−2, βi−1, βi}+πi·max {βi−1, βi, βi+1} > πi−1·max {βi−2, βi−1, β}+πi·max {βi−1, β, β}

where the terms involving πi−1 appear unless i = 0. If i = 0, the above inequality becomes
βi+1 > β and we are done. For i = 1, . . .m− 1, the inequality is equivalent to

πi(βi+1 − β) > πi−1 · (max {β, βi−2} −max {βi, βi−2})

which, in its strongest form (when βi ≥ βi−2) is equivalent to πi(βi+1 − β) > πi−1(β − βi).
The latter inequality is equivalent to(

πiβi+1 + πi−1βi
πi + πi−1

)ρ
>
πi+1β

ρ
i+1 + πiβ

ρ
i

πi+1 + πi

which we can rewrite as (
ci−1t+ 1

ci−1 + 1

)ρ
− cit

ρ + 1

ci + 1
> 0, (1.4)

where ci = πi/πi+1 as before, and t = βi/βi+1 ∈ [0, 1).

We are left to prove (1.4). Let F (t) denote the left hand side of this inequality, and note

17

that F (0) > 0, because:(
1

ci−1 + 1

)ρ
>

1

(2ci−1)ρ
=

1

πρi−1

· 2−ρ·(2ρ)i−ρ > 2−ρ·(2ρ)i−ρ ≥ 2(2ρ)i−(2ρ)i+1

=
1

ci
>

1

ci + 1

Now we let t ∈ (0, 1) and write F (t) = F (0) + tρG(t), where

G(t) = 1
(ci−1+1)ρ

((
ρ
1

)
ci−1

1
t

+
(
ρ
2

)
c2
i−1

1
t2

+ · · ·+
(
ρ
ρ−1

)
cρ−1
i−1

1
tρ−1

)
+
((ci−1

ci−1+1

)ρ − ci
ci−1+1

)
.

If G(t) ≥ 0, then clearly F (t) ≥ F (0) > 0, so we are done. Otherwise, G(t) < 0, in which case
it easily follows that G(1) < G(t) < 0, hence F (t) = F (0)+tρG(t) > F (0)+G(1) = F (1) = 0,
as desired. This concludes the proof of the lemma.

To prove Lemma 1.8, assume β̄ = (β0, . . . , βm) ∈ Γ is optimal. By Lemmas 1.9 and 1.10,
it follows that β0 ≤ β1 ≤ · · · ≤ βm. Now Lemma 1.11 implies that β0 = β1 = · · · = βm.
Since β̄ ∈ Γ, we have βi = 1, and hence the minimal value of f over Γ is f (1, 1, . . . , 1) = 1.

This concludes the proof of Lemma 1.8.

18

