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Abstract
We present a novel connection between binary search trees
(BSTs) and points in the plane satisfying a simple property.
Using this correspondence, we achieve the following results:

1. A surprisingly clean restatement in geometric terms
of many results and conjectures relating to BSTs and
dynamic optimality.

2. A new lower bound for searching in the BST model,
which subsumes the previous two known bounds of
Wilber [FOCS’86].

3. The first proposal for dynamic optimality not based
on splay trees. A natural greedy but offline algorithm
was presented by Lucas [1988], and independently by
Munro [2000], and was conjectured to be an (additive)
approximation of the best binary search tree. We
show that there exists an equal-cost online algorithm,
transforming the conjecture of Lucas and Munro into
the conjecture that the greedy algorithm is dynamically
optimal.

1 Introduction
Instance optimality. One of the pillars of theoretical

computer science is worst-case analysis: “assume the worst
possible data.” By this account, binary search trees (BSTs)
need Θ(lg n) time for a search; in particular, information the-
ory shows that searching1 for a uniformly random element
requires Ω(lg n) comparisons on average.

However, no sooner is a proof of a lower bound or
conditional hardness discovered than questions of the fol-
lowing flavor pop up: “Do these hard instances actually
show up in real life? Can we do better on some inter-
esting, easier instances?” A multitude of measures for in-
stance hardness have been developed, and algorithms at-
tempt to match them for the benefit of easier instances. For
BSTs, such measures include the entropy bound [ST85],

∗Many of the results in this paper appeared in the second author’s PhD
thesis [Har06].

†MIT Computer Science and Artificial Intelligence Laboratory, 32 Vas-
sar St., Cambridge, MA 02139, USA, {edemaine,mip}@mit.edu

‡New England Complex Systems Institute, 24 Mount Auburn St., Cam-
bridge, MA 02138, USA, dion.harmon@gmail.com. Work performed while
at MIT.

§Department of Computer and Information Science, Polytechnic Insti-
tute of New York University, 5 MetroTech Center, Brooklyn, NY 11201,
USA, jiacono@poly.edu

¶Department of Mathematics, Harvard University, 1 Oxford St., Cam-
bridge, MA 02139, USA, dankane@math.harvard.edu.

1For simplicity, this paper only considers exact and successful searches
(not predecessor searches).

the working-set bound [ST85], static/dynamic finger bounds
[CMSS00, Col00], key-independent optimality [Iac05], the
unified bound [Iac01, BCDI07], etc.

The “theoretical dream” that can unify such work is an
instance-optimal algorithm [FLN03]: for any instance S, this
algorithm would run on S (almost) as fast as any possible
algorithm. Unfortunately, instance optimality is often not
well-defined. Consider, for example, search algorithms on
the pointer machine. If we query elements in an order given
by a permutation, the “luckiest” algorithm can just store a
linked list of the elements in that particular order, and obtain
constant time per query. However, no single algorithm can
run in o(lg n) per query for all permutations.

For binary search trees, however, the best running time
on a particular sequence is an interesting (and poorly un-
derstood) measure for the complexity of the sequence. For
example, there exist some very structured, deterministic se-
quences of n queries (such as the bit-reversal permutation)
that provably have a total running time of Ω(n lg n) for any
BST algorithm [Wil89]. In contrast, many other types of se-
quences can be supported in o(lg n) time per query.

Most interestingly, however, instance optimality might
be possible in the BST model. This question has fasci-
nated researchers ever since STOC’83, when Sleator and
Tarjan [ST85] conjectured that their splay tree is such a “best
binary search tree.”

The BST model. For concreteness, we choose the fol-
lowing model for BSTs, among many choices that are
constant-factor equivalent. A search is conducted with a
pointer starting at the root, which is free to move about
the tree and perform rotations; however, the pointer must at
some point in the operation visit the item being searched.
The cost of a search is simply the total number of distinct
nodes in the tree that have been visited by the pointer during
the operation.

We measure the total cost of executing a sequence of
searches S = 〈s1, s2, . . . sm〉, where each search si is
chosen from among the fixed set of n keys in the BST. Let
OPT(S) denote the minimal cost for executing the access
sequence S in the BST model, or equivalently, the cost of
the best offline BST algorithm which knows S a priori. This
value is well-defined and its decision version is in NP (by
exhibiting a sequence of rotations and pointer moves).

OPEN PROBLEM 1.1. Can we compute or approximate
OPT(S) in polynomial time?

There are reasons to suspect that computing OPT(·) ex-
actly may be NP-complete, and obtaining a constant-factor
approximation might be doable in near-linear time. For
static BSTs (no rotations allowed), the question was ad-
dressed by a well-known dynamic-programming algorithm
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of Knuth [Knu71].
Instance optimality (historically called “dynamic opti-

mality” for the special case of BSTs) entails a more stringent
requirement: we need to approximately achieve OPT(S)
in an online setting, where the queries are revealed one at
a time. We are only interested in the cost of the specified
BST operations, not in the planning work the algorithm does
outside of the BST model. (Of course, any practical algo-
rithm will need to have very fast computation outside the
BST model.)

OPEN PROBLEM 1.2. Is there an online BST algorithm
whose total cost is O(OPT(S)) for all S?

The best known guarantee is the O(lg lg n) competitive
ratio achieved recently by Tango trees [DHIP07]. This is also
the best proven approximation factor achieved for the offline
problem.

Splay trees have been famously conjectured to be dy-
namically optimal [ST85], but they are not known to have
any o(lg n) competitive ratio. Nonetheless, they are known
to have many properties that OPT(·) has: static optimality
[ST85], the working-set bound [ST85], the dynamic-finger
bound [CMSS00, Col00], linear traversal [Tar85], near-
optimal deque behavior [Pet08, Sun92], and near-optimal
splitting [Luc88].

The formulation of Open Problems 1.1 and 1.2 puts the
instance-optimality questions in the familiar land of approx-
imation algorithms and competitive analysis. However, the
general feel of these problems is quite different from prob-
lems about renting skis, because the BST model seems closer
to “a model of computation” than just “a constrained prob-
lem.” From this perspective, instance optimality appears like
an ambitious goal of understanding computation in this (ad-
mittedly very restrictive) model—a goal that we still seem
far from achieving. The appeal of the question lies in the
contrast between the scant progress on optimality, and the
simplicity of the model. To put this in a different light, we
do not find BST optimality interesting despite that “the worst
case is a just O(lg n), anyway,” but precisely because of it.

1.1 Our Results.
A geometric view. In §2, we present an exact corre-

spondence between the BST model of computation and the
following clean question about points in the plane.

Call a set P of points arborally satisfied if, for any two
points a, b ∈ P not on a common horizontal or vertical
line, there is at least one point from P \ {a, b} in the axis-
aligned rectangle defined by a and b; see Figure 1. We
plot an access sequence S in the natural two-dimensional
way: P = {(s1, 1), (s2, 2), . . . , (sm,m)}. We show that
finding the best BST execution for S is equivalent to finding
the minimum cardinality superset P ′ ⊇ P that is arborally
satisfied.

This geometric view of BSTs is much easier to work
with than BSTs in their natural arboral state. While the con-
nection to the geometric view is not technically complicated,
we find this conceptual change both compelling and useful;
in particular, it has led us to the technical results below. It
is quite plausible that this simple transformation will be the
most enduring message of our paper.

(a) (b) (c) (d)
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Figure 1: Satisfying point sets. Lines connect pairs of points that
define unsatisfied rectangles. (a) is just an access sequence and
is not arborally satisfied; (b) is an arborally satisfied superset (the
output of GREEDYFUTURE); (c) is a superset of (a) that is not arbo-
rally satisfied but is -satisfied (the output of -SIGNEDGREEDY);
(d) is a superset of (a) that is neither arborally satisfied nor -
satisfied.

Another candidate for dynamic optimality. Lu-
cas [Luc88] presented an offline BST algorithm, GREEDY-
FUTURE, that intuitively should work very well: when
searching for an item, re-arrange the nodes on the search
path to minimize the cost of the future searches, by putting
the node or subtree containing the next search as close to the
root as possible, and recursing to the left and right (see §3 for
further details). Intuitively, going off the search path should
not help (too much), and the re-arrangement of the path is
the best possible. Thus, Lucas conjectured that her algorithm
gives a constant-factor approximation for OPT(S).

More than a decade later, Munro [Mun00] proposed the
same algorithm independently. His thought experiments sug-
gested that the only cause for non-optimality is an occasional
wrong choice of the root, leading to an unnecessary additive
cost of 1 per operation. Thus, Munro conjectured that the
cost of GREEDYFUTURE is OPT(S) + O(m). (This con-
jecture about additive optimality is made in our precise BST
model, because other models differ by constant factors.)

This conjecture has survived computer experiments by
Lars Jacobsen and Ian Munro (reported in personal com-
munication), and a few independent experiments by our-
selves. The simple example of Figure 2 demonstrates a cost
of OPT(S) + m/2.
CONJECTURE 1.1. On any access sequence S, GREEDY-
FUTURE has cost O(OPT(S)). More strongly, it has cost
OPT(S) + O(m).

The GREEDYFUTURE algorithm appears like a very
sensible and powerful use of future knowledge, with conjec-
tured near-optimality. Thus, GREEDYFUTURE would seem
to be the most likely candidate for a separation of online and
offline BST algorithms. Emphatically, Lucas and Munro de-
scribe their algorithm as something close to the ideal offline
optimum that online algorithms like splay trees must try to
match.

However, our geometric model allows for a very simple
view of GREEDYFUTURE: the algorithm traverses the access
sequence with a horizontal sweep line, and at any moment,
adds the minimal number of points on the sweep line to
make all rectangles below the line arborally satisfied. In this
geometric view, any dependence on the “future” is lost, and
by (carefully) applying the conversion from the geometric
view back to trees, we obtain an online algorithm with just a
constant factor slow-down (assuming m ≥ n).

In other words, we show that, if Conjecture 1.1 is true
(even in the weak sense), our online version of GREEDY-



Figure 2: A simple three-node example (which repeats searches
for the same key) where the greedy algorithm is suboptimal. The
greedy algorithm is on top and the optimal algorithm is on bottom.
The geometric view is on the left, and a state diagram of the
arboral view is on the right. After the first operation, the optimal
algorithm costs 1.5 per search, while the greedy algorithm costs
2. This difference seems to come from the greedy algorithm’s
unwillingness to pre-emptively visit a node off of the search path, as
this prevents it from moving the root, which will never be searched
again, out of the way.

FUTURE is dynamically optimal! The only previous pro-
posals for dynamic optimality are the original splay trees
[ST85], and the multisplay trees2 of [WDS06] which are a
combination of splay trees and Tango trees [DHIP07]. Un-
fortunately, the full behavior of splay trees can be described
as either “complete magic” or “notoriously hard to under-
stand,” depending on the reader’s mood. One can thus hope
that dynamic optimality will be more approachable, now that
there is a proposal not hinging on splay trees.

It should be noted that, despite Conjecture 1.1, our
understanding of GREEDYFUTURE is rather embarrassing.
We do not even know that its worst case for a sequence of m
updates is O(m lg n)! Nor can we prove typical properties
that the optimum must have, such as finger bounds, the
working set bound, or the entropy bound. Conjecture 1.1
makes a study of these weaker bounds quite interesting, just
as the conjectured optimality of splay trees has historically
led to intense work on bounds of this flavor.

BST lower bounds. The crucial ingredient for under-
standing OPT(·) seems to be constructive lower bounds that
algorithms can try to match (exactly or approximately). So
far, the only known lower bounds on BSTs have been the two
bounds developed by Wilber [Wil89] in FOCS’86. Wilber’s
first bound was used to show that Tango trees [DHIP07] are
O(lg lg n)-competitive. Wilber’s second bound was used to
achieve key-independent optimality [Iac05]. Folk wisdom,
dating back to a conjecture in Wilber’s paper, states that the
second bound is stronger, and potentially even Θ(OPT(S)).
However, all attempts to analyze this bound have failed: it is
not known that the second bound is better than the first, nor

2It is unclear how plausible this proposal is. The authors themselves
only state that “as far as we know, multi-splay trees may be dynamically
optimal.”

that it gives any nontrivial approximation to OPT(·).
In §4, we describe a general class of BST lower bounds,

called independent rectangle bounds, that includes both
Wilber bounds as special cases. Pending the appearance
of a lower bound outside this class (which would be a
very interesting development), one might conjecture that
rectangle bounds hold the final answer, i.e., for any S, the
best independent rectangle bound for S is Ω(OPT(S)). This
motivates an attempt to find the best bound in the class.

We describe a greedy algorithm, SIGNEDGREEDY, that
obtains a constant-factor approximation of the best indepen-
dent rectangle bound for any sequence S. This bound may
be used in attempts to approximate OPT(S), superseding
the two Wilber bounds, as well as side-stepping the issue of
comparing the two. By our geometric view, the optimal cost
is invariant to flips (running time in reverse) and 90-degree
rotations of a permutation access sequence (interchanging
the roles of space and time). Compared to the Wilber bounds,
our SIGNEDGREEDY bound has the re-assuring feature that
it is provably invariant under these geometric transforma-
tions (up to constants).

The fascinating feature of the SIGNEDGREEDY algo-
rithm is that it is defined almost identically to the geometric
view of GREEDYFUTURE, yet we cannot prove any relation
between the upper and lower bound.

NP-hardness of multisearch. In §5, we show that it is
NP-complete to find the minimum superset that is arborally
satisfied, when the input is a general set of points in the
plane. However, this does not show NP-completeness for
computing OPT(·): the set of points corresponding to an
access sequence has only one point at each y coordinate,
whereas our hard instance has many such points. This
general case corresponds to a multisearch version of the BST
problem: each query is a set St, and the algorithm must visit
all nodes from St (in any order) while executing the query.

A note on independent work. A technical report
of Derryberry, Sleator, and Wang [DSW05] also con-
tains a geometric view of the access sequence as points
(1, s1), (2, s2), . . . , (m, sm). Their view only represents
the access sequence with the goal of arguing about lower
bounds, whereas the highlight of our view is to represent the
actions of any BST algorithm, as an arborally satisfied su-
perset. Representing GREEDYFUTURE in this way was the
inspiration for converting it to an online algorithm.

Like us, [DSW05] propose a class of lower bounds that
contains both of Wilber’s bounds. Ultimately, this class
of lower bounds appears to be identical to ours, though
the definition is slightly more complicated (they consider
rectangles augmented with a “divider” line). The authors
do not consider the question of optimizing over this class of
lower bounds (the question solved by our SIGNEDGREEDY
algorithm).

2 Trees and Arborally Satisfied Points Sets
2.1 Defining the BST Model. As is standard in work
on BST optimality, we consider only (successful) searches,
not insertion and deletion. The letters n and m always
refer to the size of a BST, and the total number of search
operations performed on it, respectively. These are fixed
global constants, and much of the notation depends on



these values, either explicitly or implicitly. For simplicity,
we denote the ordered values in the BST by the integers
1, 2, . . . , n.

We begin with a precise definition of the BST model of
computation and its costs:

DEFINITION 2.1. Given a BST T1, a subtree τ of T1 con-
taining the root, and a tree τ ′ on the same nodes as τ , we say
T1 can be reconfigured by an operation τ → τ ′ to another
BST T2 if T2 is identical to T1 except for τ being replaced by
τ ′. The cost of the reconfiguration is |τ | = |τ ′|.

DEFINITION 2.2. Given a search sequence S =
〈s1, s2, . . . sm〉, we say a BST algorithm executes S by
an execution E = 〈T0, τ1 → τ ′1, . . . , τm → τ ′m〉 if all
reconfigurations are valid, and si ∈ τi for all i. For
i = 1, 2, . . . ,m, define Ti to be Ti−1 with the reconfigura-
tion τi → τ ′i . The cost of execution E is

∑m
i=1 |τi|.

This model is constant-factor equivalent to other BST
models. For example, one other way to model a search tree
is to view each search operation as starting with a pointer at
the root, with the following unit-cost operations supported:
move pointer to left child, move pointer to right child, move
pointer up, right rotate at pointer, left rotate at pointer. This
equivalence holds because any BST can be converted into
any other BST with the same nodes in linear time [STT86].
See [Wil89, Luc88] for discussions of alternative models.

2.2 Arborally Satisfied Sets. Switching to the geometric
side, a point p refers to a point in 2D with integer coordinates
(p.x, p.y) such that 1 ≤ p.x ≤ n and 1 ≤ p.y ≤ m. We use
2ab to denote the axis-aligned rectangle with corners a and b
(viewed as a region including the boundary of the rectangle).

DEFINITION 2.3. A pair of points (a, b) (or their induced
rectangle 2ab) is arborally satisfied with respect to a point
set P if (1) a and b are orthogonally collinear (horizontally
or vertically aligned), or (2) there is at least one point from
P \ {a, b} in 2ab. A point set P is arborally satisfied if all
pairs of points in P are arborally satisfied with respect to P .

See Figure 1 for an illustration of satisfaction.

OBSERVATION 2.1. In an arborally satisfied point set P ,
for any a, b ∈ P not orthogonally collinear, there is at least
one point from P \ {a, b} on the sides of 2ab incident to a,
and at least one point on the sides incident to b. (The two
points need not be distinct.)

Proof: Consider any two points a, b ∈ P that are not
orthogonally collinear. Because 2ab is satisfied, it contains
some other point c ∈ P . If c is not on either of the sides of
2ab incident to a, then we can recurse into 2ac until we find
such a point. Similarly, if c is not on either of the sides of
2ab incident to b, then we can recurse into 2cb until we find
such a point. 2

We now plot an execution of the BST algorithm in an
intuitive way: at time i (row i), we plot all nodes touched
in τi. The BST model has been chosen to ignore just the
right amount of detail (e.g., precise rotations and pointer
movements) to make this geometric view easy.

DEFINITION 2.4. The geometric view of a BST execution E
is the point set P (E) = {(x, y) | x ∈ τy}.

LEMMA 2.1. The point set P (E) for any BST execution E
is arborally satisfied.

Proof: Assume for contradiction that we can find a ∈ τi and
b ∈ τj , with i < j and a 6= b, and yet no other nodes in [a, b]
were touched in the closed time interval [i, j]. Let c be the
lowest common ancestor of a and b in tree Ti. We distinguish
two cases:
c 6= a. Then c must be touched at time i to get to a (c ∈ τi)

and c must have a key value between a exclusive and b
inclusive. Contradiction.

c = a. Then, at time i, a is an ancestor of b. By assumption
that 2ab is unsatisfied, b is not touched from time i
inclusive to j exclusive. Thus a will remain on the
access path of b, i.e., a must be an ancestor of b in Tj ,
and will be touched then (a ∈ τj). Contradiction. 2

2.3 Offline Equivalence. The geometric view seems like
a very lossy (non-injective) representation of a BST execu-
tion, because it represents only the set of nodes in τi, and
does not say how these nodes should be reconfigured through
rotations. Indeed, the geometric representation does not even
mention the sequence τ ′. Quite surprisingly, it turns out that
the exact shape of the tree is not essential information, and
can be reconstructed from just the sets of accessed nodes! In
other words, we can reconstruct the execution sequence of
any geometric view that satisfies the necessary condition of
being arborally satisfied.

LEMMA 2.2. For any arborally satisfied point set X , there
exists a BST execution E with P (E) = X . We call E the
arboral view of X , and write P−1(X) = E.

Proof: We describe an algorithm for the reverse transforma-
tion P−1(·), as illustrated in Figure 3. Define the next access
time N(x, i) of x at time i to be the minimum y coordinate
of any point in X on the ray from (x, y) to (x,∞). If there
is no such point, N(x, i) = ∞.

Let Ti be the treap defined on all points (x,N(x, i)).
Recall that a treap is a BST on the first coordinate and a heap
on the second, where ties are broken arbitrarily. Thus, Ti is
a valid BST on the n data values, chosen to satisfy the heap
property according to the next access time.

Let τi be the points in X with y = i. By the treap
property of Ti, these must form a connected subtree of Ti

that includes the root (because i is the minimum possible
access time N(?, i)). Now, form Ti+1 by re-arranging the
nodes in τi to form a treap based on the next access time
(x,N(x, i + 1)). All we need to show is that Ti+1 is a treap
on (x,N(x, i + 1)). The BST property trivially holds by
construction, so we look at the heap property. It suffices to
show that the heap property holds between every parent/child
pair (q, r) in Ti. If both were in τi, the heap property
follows by construction, and if both were outside τi, the heap
property holds because neither their next access times nor
their parent/child relationship changed from i to i+1. We are
left with the case q ∈ τi and r /∈ τi. But if the heap property
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Figure 3: Illustration of the transformations between the tree and
geometric view. Columns from left to right: (1) The point set X; on
row i (time i for the sweep line algorithm), the light nodes are the
appearances that define N(x, i). (2) The light nodes from column 1
have been redrawn and flipped vertically for easy conversion to a
tree; the even lighter nodes have N(x, i) = ∞ and appear at the
bottom. (3) A general treap, constructed based on these next values.
(4) The tree Ti−1. (5) The treap formed by the next access time of
the nodes of τi at time i+1; τ ′ is an arbitrary binaryification of this
general treap. (6) The tree Ti.

The shaded nodes and edges in columns 4 and 6 indicate τi and
τ ′i . Note that these nodes are exactly the same nodes as the root of
the treap in column 3, and the row being swept in column 1. The
tree Ti (column 6) is obtained by replacing the nodes of τi (shaded
nodes) in Ti−1 with arbitrary binarification of the treap in column 5.
In column 7, we draw the shaded τ nodes from columns 4 or 6, and
obtain the original point set from column 1.

is violated in Ti+1, the rectangle from (q, i) to (r, N(r, i))
violates Observation 2.1: the vertical side at x = q is empty,
because N(q, i + 1) > N(r, i) by the assumption that the
heap property is violated. The horizontal side at y = i is
also empty, because otherwise r could not be the child of q
(i.e., a point on that side would become the lowest common
ancestor of q and r in Ti+1). Contradiction. 2

Let the geometric view of an access sequence S be
the set of points P (S) = {(s1, 1), (s2, 2), . . . , (sm,m)}.
Lemmas 2.1 and 2.2 have shown that the arboral statement
“E executes S” is equivalent to the geometric statement
“P (S) ⊆ P (E).” Letting minASS(S) be the size of
the smallest arborally satisfied superset of P (S), we have
OPT(S) = minASS(P (S)). Thus, Open Problem 1.1 is
equivalent to designing algorithms for finding the minimum
arborally satisfied superset.

2.4 Online Equivalence. Above, we gave a combinatorial
equivalence of tree executions and arborally satisfied sets,
effectively characterizing offline BST algorithms. We now
wish to strengthen this characterization to online BST algo-
rithms, which must produce the transformation τi → τ ′i after

each si is revealed, with no knowledge of future accesses.

DEFINITION 2.5. The online arborally satisfied superset
(online ASS) problem is to design an algorithm that re-
ceives a set of points {(s1, 1), (s2, 2), . . . , (sm,m)} in-
crementally. After receiving point i, the algorithm must
output a set Pi of points on the line y = i such that
{(s1, 1), (s2, 2), . . . , (si, i)} ∪ P1 ∪ P2 ∪ · · · ∪ Pi is arbo-
rally satisfied. The cost of the algorithm is

∑n
i=1 |Pi|.

An online BST algorithm gives an online ASS algorithm
by the standard geometric representation (Lemma 2.1). The
reverse statement is not obvious, because Lemma 2.2 needs
powerful knowledge of the future: it reconstructs the shape
of the tree by imposing a heap order based on future access
times. However, using the following interesting concept, we
will be able to “guess” the shape of the tree dynamically,
with only a constant-factor loss in the running time:

DEFINITION 2.6. A split tree is an abstract data type imple-
menting two operations in the BST model:
MAKETREE(x1, x2, . . . , xn) creates an n-node BST on the

given values.
SPLIT(x) moves x to the root of the tree and then deletes it,

leaving the left and right subtrees as valid split trees.

We show below (§2.5) that split trees can be imple-
mented with worst-case cost O(n) for MAKETREE and an
arbitrary sequence of n SPLITs. Using this fact, we can show
a constant-factor equivalence of online ASS and online BST
algorithms.

LEMMA 2.3. For any online ASS algorithm A, there exists
an online BST algorithm A′ such that, on any access se-
quence, the cost of A′ is bounded by a constant times the
cost of A.

Proof: The main idea is that, whenever we would like to put
a set of elements in some unknown future order, we avoid
making any decisions and keep them in a split tree. The
construction that we are led to can be seen as inverting the
proof of Lemma 2.2, because split trees are stored in heap
order by the previous access (instead of the next access).

Formally, let ρ(x, i) be the last access of x before time i,
that is, the y coordinate of the highest point on the ray from
(x, y) to (x,−∞). If there is no such point, ρP (x, i) = −∞.
Let Gi be a general treap defined on all points (x,N(x, i)),
i.e., a BST on the x coordinates and a general heap on
N(x, i). In a general heap, any ties result in a supernode with
more than one key value. The supernode is implemented in
the BST model by storing the keys in a split tree.

Now consider how this structure can change from time i
to i + 1. All points on row y = i + 1 will have ρ(x, i + 1) =
i + 1, and they will be moved from wherever they are in Gi

to the root of Gi+1.
The key property that follows from arboral satisfaction

is that, whenever a key x from node v is accessed, its prede-
cessor and successor in its parent must also be accessed. This
means that we can move all the appropriate values to the root,
in a single root-to-leaf traversal of the treap. At each supern-
ode, we SPLIT the nodes being searched to form a new sin-
gleton node and two children supernodes. Now, all the sin-
gleton nodes that we have collected on the path can be turned



into the root supernode by calling MAKETREE. Because
each SPLIT takes constant time amortized, and MAKETREE
takes linear time, the cost of simulating the accesses at y = i
is a constant times the number of points on that line. 2

2.5 Split Trees. The split-tree data type has been stud-
ied before by Lucas [Luc88], who was interested in the
performance of splay trees under these operations (where
MAKETREE initializes the splay tree to a path, for example).
She conjectured that the running time for splay trees over any
sequence of n SPLITs is O(n), and managed to prove that it
is O(n ·α(n)). Here we construct another tree with provably
linear performance:

LEMMA 2.4. There is a split-tree data structure supporting
MAKETREE and any sequence of n SPLITs in total time
O(n).

Proof: We start the design from a 2-3-4 tree. Assume for
the moment that we have a pointer to the minimum element
in such a tree and we wish to unlink the smallest k items
from the tree. The unlinking can be done in O(lg k) time,
including the rebalancing of the O(lg k) affected nodes. The
rebalancing proceeds in the typical way: first attempt to
borrow from a neighbor at O(1) cost, and if that fails, merge
with the neighbor. This merging could cascade up the tree,
but in total we can perform only O(n) node merges.

Continuing our wishful thinking, assume that each
SPLIT can choose to start either at the minimum or at the
maximum. Then splitting an n-node tree into trees of size
n1 + n2 = n will take time O(lg min{n1, n2}). It is a stan-
dard exercise to show that the sum of these costs over any
sequence of splits in O(n), by using the potential function
φ(n) = n− lg n.

We must now simulate this ideal algorithm in the BST
model (making it a proper binary tree, and only starting at
the root). Conceptually, the simulation is very easy: the BST
model stores the comparison tree of what we wish to do on
the 2-3-4 tree. Adding some simple markers to every node
allows us to maintain the comparison tree when the 2-3-4
tree is changed locally. Then, SPLIT only needs to rotate the
split element to the root, obtaining two subtrees in the correct
representation. 2

3 Greedy Future
We begin by describing the offline BST algorithm GREEDY-
FUTURE, proposed by Lucas [Luc88] and Munro [Mun00];
refer to Figure 4.

ALGORITHM 3.1. The GREEDYFUTURE algorithm follows
two principles: (1) only touch the nodes on the search path,
and (2) to re-arrange the search path, move the next item to
be accessed as high as possible, and recurse.

More formally, let τi be the search path for si in Ti. If
the next search in the access sequence is in τi, make that
node the root and recurse on both sides. If the next search
is in a subtree hanging from the path τi, re-arrange the
predecessor and successor from τi as the root and the right
child of the root; then recurse on the parts of the tree that
have yet to be specified.

The main “greedy” aspect of the algorithm is that it
makes the locally cheapest decision of only touching the
search path. The re-arrangement of the search path appears
to be an optimal (and powerful) use of knowledge about
the future. Thus, the main intuition behind the conjectured
optimality of this algorithm is this: “there is no need to
access anything off the search path, as you could just access
this stuff later.” As Figure 2 shows, this is not entirely
true, because not going outside the path may force you
to keep some useless nodes on the path. The worst-case
example that has been found [Mun00] is to search the leaves
of a complete tree in bit-reversal order (repeated many
times). The GREEDYFUTURE algorithm will not change
the tree, despite all internal nodes never being searched,
giving a cost of lg n. The optimal cost is lg n

2 + o(1)
as the number of repetitions goes to infinity, because the
useless nodes can be rotated below the useful ones for a fixed
additional cost. Because a worse example was never found,
one may conjecture that GREEDYFUTURE’s cost is at most
OPT(X) + m.

Looking at GREEDYFUTURE in our geometric view
hides the ugly details of re-arranging the path, and trans-
forms the algorithm into the following natural greedy algo-
rithm for the ASS problem:

ALGORITHM 3.2. Sweep the point set with a horizontal line
by increasing y coordinate. At time i, GREEDYASS places
the minimal number of points at y = i to make the point set
up to y ≤ i arborally satisfied. This minimal set of points is
uniquely defined: for any unsatisfied rectangle formed with
(si, i) in one corner, add the other corner at y = i.

The proof of the transformation is rather straightfor-
ward; refer to Figures 1 and 4. Because of the way GREEDY-
FUTURE re-arranges the search path, a future query for an
element off the path touches only two nodes on the current
search path (or only one node, if the query is left of the mini-
mum or right of the maximum on the path). These two nodes
form unsatisfied rectangles, left and right of the query, so
they are also “touched” by GREEDYASS.

The key observation is that GREEDYASS is an online
ASS algorithm, because its decisions depend only on the
past (points at lower y coordinates). This means that the
only important part of the algorithm is the greedy decision to
only touch the search path (equivalently, to add the minimum
number of points on the sweep line). Then, by Lemma 2.3,
the online GREEDYASS can be turned back into an online
BST algorithm with equal cost (up to a constant factor) as
the original GREEDYFUTURE!

This onlinification of a “maximally offline” algorithm
seems to suggest that offline algorithms cannot asymptoti-
cally beat the best online algorithms in the BST model, i.e.,
that dynamic optimality is possible.

4 Lower Bounds
This section discusses lower bounds for BST algorithms in
our geometric view. Equivalently, these are lower bounds
on the size of the minimum satisfied superset, which an
approximation algorithm can try to match. Our main results
are (1) a class of lower bounds that includes all known lower
bounds ideas, in particular Wilber’s bounds; and (2) a greedy



Figure 4: Black nodes in the first four columns illustrate a search
sequence X , while the lighter nodes illustrate the incremental
construction of the greedy algorithms: add (X) in column 1,
add (X) in column 2, add (X) ∪ add (X) in column 3, and
GREEDYFUTURE in column 4. The first three columns are lower
bounds, while the fourth column is an upper bound. The fifth and
sixth columns illustrate GREEDYFUTURE in the arboral view. At
each step, the yellow node denotes the query. The search path
(blue) is reconfigured to bring the next node among the unsearched
nodes (black) as close to the root as possible (and recursively, bring
the second-to-next node as closest to the root as possible, etc.).
Given multiple choices that obey this rule, an arbitrary choice is
made. Observe that exactly the same nodes are shaded in blue in
each G(X) frame (4th column) and future greedy frame (5th and
6th). These two algorithms are identical under the tree-geometric
transformations.

algorithm, SIGNEDGREEDY, that gives the best lower bound
in this class, up to a factor of two. SIGNEDGREEDY is
strikingly similar to GREEDYASS, though we cannot prove
a formal connection between these lower and upper bounds.

To simplify proofs, this section assumes that the access
sequence S is a permutation, i.e., m = n and each item

independent pairs of +−rectangles dependent pairs of +−rectangles

Figure 5: All combinatorially distinct cases when overlapping -
rectangles are independent / dependent.

is searched exactly once. This restriction captures all of
the complexity of the problem, and can be removed at the
expense of some additional casework. Geometrically, this
restriction says that the point set X = P (S) is in “general
position” from an orthogonal perspective (no two points are
orthogonally collinear).

4.1 Independent Rectangle Bounds. We call two rectan-
gles 2ab and 2cd independent (in X) if the rectangles are
not arborally satisfied and no corner of either rectangle is
strictly inside the other rectangle; see Figure 5. It turns out
that independent sets of rectangles are lower bounds:

CLAIM 4.1. If a point set X contains an independent set
I of rectangles, then minASS(X) ≥ |I|/2 + |X|. In
particular, if X = P (S) for an access sequence S, then
OPT(S) ≥ |I|/2 + |S|.

The proof of this claim is deferred (see Theorem 4.1
below) until we can develop some required machinery. We
now demonstrate that independent rectangle bounds are a
rich class by showing that they contain Wilber’s two bounds
[Wil89] as special cases. We construct independent rectangle
sets equivalent to each Wilber bound, but do not formally
prove the equivalence as the precise definitions of Wilber’s
bounds are too cumbersome to repeat here. In fact, one
motivation of our geometric lower bounds is to give a clear
independent presentation of those bounds.

The following construction corresponds to Wilber’s first
bound:

ALGORITHM 4.1. Let L = 〈`1, `2, . . .〉 be any sequence of
vertical lines. To define an independent set of unsatisfied
rectangles, we first consider `1, and examine the points of X
sorted by their y coordinate. For every pair of consecutive
points that switch sides of `1 (i.e., pi is left and pi+1 is
right, or vice versa), we output the rectangle between the
two. When we are done with `1, we recurse among all points
and subsequence of lines to the left of `1, and then recurse
among all points and subsequence of lines to the right of `1.

The fact that the output rectangles are independent
is immediate by construction. The canonical choice for
the set of vertical lines are the lines at x coordinates
〈 1
2 n, 1

4 n, 3
4 n, 1

8 n, 3
8 n, 5

8 n, 7
8 n, 1

16 n, . . .〉.
The next construction corresponds to Wilber’s second

bound.

ALGORITHM 4.2. Consider each point p of X in increasing
order by y coordinate. Consider the orthogonal envelope
of all points in the quadrant {(x, y) | x < p.x, y < p.y},
and the orthogonal envelope of all points in the quadrant



{(x, y) | x > p.x, y < p.y}. (The orthogonal envelope is
the set of points that are not orthogonally dominated by any
other point, when looking from p.) Merge the two envelopes
and sort them by y coordinate. Now draw a rectangle
between any pair of consecutive points switching between
the left and right quadrants.

Again, the independence of the rectangles follows easily
by construction.

The exact relationship between the two Wilber bounds
remains unknown, though Wilber conjectured that the sec-
ond one is better. It is also unclear how the bounds are
affected by 90-degree rotations of the point set represent-
ing the access sequence and, for the second bound, by flips.
Computer search reveals many examples where the bounds
change slightly, and proving that they change by only a con-
stant factor seems daunting. This is not good news for the
potential optimality of the Wilber bounds, because our geo-
metric view makes it clear that minASS(·) is invariant under
these geometric transformations.

Instead of concentrating on the Wilber bounds, it seems
sensible to focus on the maximum independent rectangle
bound that can be formed on the point set X , which we de-
note maxIRB(X). This lower bound is certainly at least as
strong as either of the Wilber bounds, and must be invari-
ant to flips and rotations, because the class of independent
rectangles bounds is closed under these transformations.

While we cannot compute maxIRB(X) efficiently, we
will be able to give a simple greedy algorithm, SIGNED-
GREEDY, that approximates it to within a constant factor.

4.2 Signing Satisfaction. Figure 5 suggests a somewhat
unmixable nature of rectangles defined by points at their
southeast and northwest corners, and rectangles defined by
points at their southwest and northeast corners. Motivated by
this idea, we introduce signs to the common concepts that we
have developed so far. We say that a rectangle 2ab defined
by two points a, b is a -rectangle ( -rectangle) if the slope
of the line ab is positive (negative). Below, all statements and
definitions using -rectangles have symmetric statements
for -rectangles, which we do not explicitly state.

A point set is -satisfied if every pair of points (a, b)
that form a -rectangle 2ab is arborally satisfied; see Fig-
ure 1. In other words, -rectangles need not be satisfied for

-satisfaction. Let minASS (X) be the size of the min-
imum -satisfied superset of X . We propose the follow-
ing greedy strategy for computing minASS (X), which is
nothing more than GREEDYASS that ignores -rectangles:

ALGORITHM 4.3. Sweep the point set X with a horizontal
line by increasing y coordinate. When considering point p
on the sweep line, for each unsatisfied -rectangle formed
by x and a point below the sweep line, add the rectangle’s
northwest corner on the sweep line to make it satisfied. Let
add (X) be the final set of added points (excluding X).

Refer to Figure 4 for a sample execution. Our
main interest in this algorithm is not related to computing
minASS (·), but to the following connection to indepen-
dent rectangle bounds:

LEMMA 4.1. For any X , there exists an independent set of
-rectangles IRB (X) with |IRB (X)| = |add (X)|.

Proof: For every point q in add (X), let R(q) be the -
rectangle that q satisfied, i.e., R(q) = 2rs where r is the
point below q in X and s is the point to the right of q in X .
By construction of add (X), R(q) = R(t) if and only if
q = t. Let IRB (X) = {R(q) | q ∈ add (X)}, which has
|add (X)| = |IRB (X)|. To show that the rectangles in
IRB (X) are independent, we note that by construction of
add (X), no point in add (X) ∪ X is strictly inside any
rectangle in IRB (X), and that the northwest corners of all
rectangles in IRB (X) are in the set add (X) ∪X . 2

Combining with Lemma 4.5 below, |add (X)| + |X|
and |add (X)|+|X| are thus lower bounds on minASS(X)
and hence the best BST algorithm OPT(S) where X =
P (S). We define SIGNEDGREEDY by the obvious strat-
egy: run both versions of Algorithm 4.3 and output
max{|add (X)|, |add (X)|} + |X|. This shows an in-
teresting duality, by which the signed version of the greedy
algorithm gives lower bounds, in contrast to the unsigned
GREEDYFUTURE giving upper bounds.

Another interesting contrast is that we can prove opti-
mality of add (X), up to constant factors, unlike the un-
signed GREEDYFUTURE:

LEMMA 4.2. For any X , minASS (X) = |add (X)| +
|X|.
Proof: Follows from Lemma 4.5 below and the fact that, by
construction, all rectangles in add (X) are -rectangles. 2

4.3 How Good is SIGNEDGREEDY? We are now going
to show that the lower bound output by SIGNEDGREEDY is
at least 1

4maxIRB(X) + 1
2 |X|, making it within a constant

factor of the best independent rectangle bound. The proof,
while not technically complicated, is rather subtle. It begins
with the following unintuitive definition:

DEFINITION 4.1. A superset Z of X is -satisfied with
respect to X if there exist subsets Z and Z of Z such
that Z ∪ X is -satisfied and Z ∪ X is -satisfied. Let
minASS (X) be the size of the smallest -satisfied set Z
with respect to X .

Note that Z and Z need not be disjoint; in fact, to
minimize |Z| the two parts might overlap significantly. On
the other hand, any -satisfied superset can be combined
with any -satisfied superset to give a -satisfied superset,
so

(4.1) minASS (X) ≤ minASS (X) + minASS (X).

Furthermore, any arborally satisfied set Y is also -
satisfied (with Z = Z = Y ), so

(4.2) minASS (X) ≤ minASS(X).

Therefore, to prove Claim 4.1, it suffices to show the follow-
ing (see Section 4.4 below for the proof):



THEOREM 4.1. If X contains an independent set I of rect-
angles, then minASS (X) ≥ |I|/2 + |X|.

Next, to prove approximate optimality of SIGNED-
GREEDY, we make the following chain of deductions:

1
2

max{Wilber I(X), Wilber II(X)}+|X|
≤ 1

2
maxIRB(X) + |X|

¯
Algorithms 4.1, 4.2

≤ minASS (X)

¯
Theorem 4.1

≤ minASS (X) + minASS (X)

¯
Equation 4.1

≤ |add (X)| + |add (X)|+ 2 |X|

¯
def. of minASS

= |IRB (X)| + |IRB (X)|+ 2 |X|
¯

Lemma 4.1

≤ 2maxIRB(X) + 2 |X|
¯

def. of maxIRB

≤ 2maxIRB(X) + 4 |X|
¯

2 ≤ 4

≤ 4minASS (X)

¯
Theorem 4.1, again

≤ 4minASS(X).

¯
Equation 4.2

What exactly is going on here? The unintuitive
quantity minASS (X) is sandwiched due to its dual
nature as a lower bound on minASS(X) and as an
upper bound on the best independent rectangle bound
maxIRB(X) + |X|. The Tango BST [DHIP07] estab-
lishes that minASS(X) ≤ Wilber I(X) · O(lg lg n), so
the inequality chain cannot be too loose. In the mid-
dle, we obtain a bound on the output of SIGNEDGREEDY:
max{|add (X)|, |add (X)|} + |X| ≥ 1

2 (|add (X)| +
|add (X)|) + |X| ≥ 1

4maxIRB(X)+ 1
2 |X|.

4.4 Proof of Theorem 4.1.

LEMMA 4.3. Suppose we are given a -satisfied point set Y
with integer x coordinates, a -rectangle 2ab with a, b ∈ Y ,
and a vertical line ` at a non-integer x coordinate strictly
between a.x and b.x. Then we can find two points p, q ∈ Y
in the rectangle 2ab such that p.y = q.y, p is left of `, q
is right of `, and there are no points in Y on the horizontal
segment connecting p to q.

Proof: Let p ∈ Y be the topmost rightmost point in 2ab to
the left of `. (Such a point exists because a is a candidate.)
Let q ∈ Y be the bottommost leftmost point in 2ab to the
right of ` and at or above p. (Such a point exists because b
is a candidate.) By construction, p is left of `, q is right of `,
and there are no points in 2ab strictly between p and q in x
coordinate. It remains to show that p.y = q.y. If p.y 6= q.y,
then by construction p.y < q.y, making 2pq an unsatisfied

-rectangle, contradicting that Y is -satisfied. 2

By symmetry, Lemma 4.3 also holds for -rectangles in
-satisfied sets.

LEMMA 4.4. Given an independent set I of rectangles in a
set X such that each point has a distinct integer x coordi-
nate, there exists a rectangle 2ab ∈ I and a vertical line `
at a non-integer x coordinate strictly between a.x and b.x
such that, inside 2ab, ` does not intersect the interior of any
rectangle from I \ {2ab}.

Proof: We claim that 2ab can be chosen to be any rectangle
in I that does not intersect any wider rectangles in I , for

example, the widest rectangle in I . Assume by symmetry
that 2ab is a -rectangle, and that a.x < b.x. Any rectangle
that intersects 2ab in their interiors cannot have a corner
interior to 2ab, by independence, so such a rectangle must
either intersect both the left and right edges of 2ab or
intersect both the top and bottom edges of 2ab (or both).
But, because 2ab is (locally) maximally wide, only the latter
case is possible. Thus all rectangles interior-overlapping
2ab do so in its entire y extent from bottom edge to top edge.

Now we decompose rectangles interior-overlapping 2ab
into three types: (1) those that have a as a corner, (2) those
that have b as a corner, and (3) those that have neither a nor
b as a corner. All type-1 rectangles must be strictly left of all
type-2 rectangles (in horizontal projection): if two were to
overlap in their interiors, the corner of the type-1 rectangle
on the bottom edge of 2ab other than a itself would be
interior to the type-2 rectangle, violating independence, and
by distinctness of x coordinates, they cannot overlap on their
boundaries either. If a type-3 rectangle intersects a type-1 or
type-2 rectangle, then the former rectangle must be narrower
than the latter and cross its top and bottom sides: otherwise,
by independence, the type-3 rectangle would pierce the left
and right sides and then have to be wider than 2ab, a
contradiction.

Thus we can decompose the horizontal span of 2ab
into a range starting at a containing type-1 rectangles and
any overlapping type-3 rectangles, then a range of type-3
rectangles that intersect neither type-1 nor type-2 rectangles,
followed by a range ending at b containing type-2 rectangles.
(Any of these ranges may actually contain no rectangles.) By
distinctness of x coordinates, there must be a positive-size
gap between any adjacent pair of these ranges, and we can
choose the line ` to be in one of these gaps. For example, we
can choose ` to have x coordinate 1

2 beyond the rightmost
edge of any type-1 rectangle (or a.x if no such rectangle
exists). 2

LEMMA 4.5. Given an independent set I of -rectangles in
a point set X , any -satisfied superset Y of X must have
cardinality at least |I|+ |X|.
Proof: We apply Lemma 4.4 to find a rectangle 2ab in I and
a vertical line ` piercing 2ab with the property that no other
rectangle in I intersects ` interior to 2ab. Then we apply
Lemma 4.3 to find two points p, q horizontally adjacent in Y
and on opposite sides of ` in 2ab. We mark this pair (p, q)
with rectangle 2ab. Then we remove 2ab from I and repeat
the process, until we have marked a pair of horizontally
adjacent points in Y for every rectangle in I .

Whenever we remove a rectangle 2ab from I , if p and
q are not on the top or bottom sides of 2ab, then p and q
do not simultaneously belong to any other rectangle in I ,
so they will never be marked again. On the other hand, if
p and q are on the top (bottom) side of 2ab, then p and q
are neither interior nor on the top (bottom) side of any other
rectangle in I . Furthermore, because all rectangles in I are

-rectangles and coordinates in X are distinct, the top side
of no rectangle in I coincides even partially with the bottom
side of a rectangle in I . Thus, each pair of horizontally
adjacent points in Y can be marked at most once.

Finally, by distinctness of y coordinates in X , at most
one point in a pair of horizontally adjacent points in Y can



belong to X . Therefore the number of points in Y \ X is at
least the number of rectangles in I , proving the lemma. 2

Again, by symmetry, Lemma 4.5 holds for -rectangles
in -satisfied sets as well.

Proof of Theorem 4.1: Let Z be any -satisfied set with
respect to X , where Z ∪X is -satisfied and Z ∪X is -
satisfied. Let I denote the -rectangles in the independent
set I , and similarly let I denote the -rectangles in I . By
two applications of Lemma 4.5, |Z ∪ X| ≥ |I | + |X|
and |Z ∪ X| ≥ |I | + |X|. Suppose by symmetry that
|I | ≥ |I , so |I | ≥ |I|/2. Therefore, |Z| ≥ |Z ∪X| ≥
|I |+ |X| ≥ |I|/2 + |X| as desired. 2

5 Multisearch Is NP-Complete
We do not know whether minASS(X) can be computed
exactly in polynomial time when X = P (S) for an access
sequence S, so that no two points share a y coordinate. We
can show, however, that the general problem of computing
minASS(X), where the set X may have multiple points at
every y coordinate, is NP-complete. This is equivalent to the
multisearch problem described in the introduction: given a
sequence of sets S1, S2, . . . , Sm of elements, visit a subtree
that includes all elements from S1, then visit such a subtree
for S2, etc. The equivalence of Lemmas 2.1 and 2.2 carry
over unchanged for multisearch.

THEOREM 5.1. It is NP-complete to compute the minimum
arborally satisfied superset of a set of points in the plane.

Proof: The decision version is contained in NP by exhibiting
a superset. Figure 6 illustrates the NP-hardness reduction
from Not-All-Equal 3SAT. 2

Unfortunately, this reduction seems quite far from being
relevant to constant-factor approximability, or the restricted
problem with one point per y coordinate.
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