The Geometry of Binary Search Trees

Erik Demaine Dion Harmon MIT NECSI

John Iacono Poly Inst. of NYU Daniel Kane Harvard

Mihai Pătrașcu IBM Almaden

ASS

- Point set in the plane
- ASS = any nontrivial rectangle spanned by two points contains another point (interior or on boundary)

MinASS Problem

- Problem: Given a point set, find the minimum ASS superset
 - Up to constant factors, can assume input points are in general position (no two horiz/vert aligned)

original points added points

MinASS in Worst Case

O(n lg n) points always suffice $\leq \frac{1}{2}n \leq \frac{1}{4}n \leq n$ $\leq \frac{1}{4}n \leq \frac{1}{2}n$ <<u>₁</u>n ≤≟n • $\Omega(n \log n)$ points are sometimes necessary (random; bit-reversal permutation matrix)

NP-completeness

- Theorem: MinASS is
 NP-complete
- OPEN: General position MinASS

(a) Wire and split gadget.

Approximating MinASS

- **OPEN:** O(1)-approximation?
- Known: O(lg lg n)-approximation [and it's not easy]
 - original points added points

- Imagine points arriving row by row
- Add necessary points on the new row to remain ASS

original points added points

Binary Search Tree (BST)

• Recall our good old friends:

4

• Unit-cost operations:

- Move finger up/left/right
- Rotate left/right

The Best BST

• Problem:

• Given (offline) access sequence $S = x_1, x_2, ..., x_m$

(5)

6

7

12

13

10

11

9

14

 OPT(S) = minimum sequence of unit-cost ops in BST to touch x₁, x₂, ..., x_m in order

4

3

2

- Without rotations, this problem is solved by (static) optimal BSTs of Knuth [1971]
- Ultimate goal:
 O(1)-competitive online algorithm

Example of BST Execution

Access sequence:
 1, 4, 5, 7, 6, 2, 3

Example of BST Execution

 Access sequence: 1, 4, 5, 7, 6, 2, 3

ASS/BST Equivalence

- In fact, any ASS point set is a BST execution!
 - Treap by next access time
- Corollary: MinASS(S)
 = OPT(S)

Attacks on OPT(S)

- Splay trees [Sleator & Tarjan 1983]
 - Conjecture: O(1)-competitive
 - Many nice properties known, but no o(lg n)-competitiveness known
- **Tango trees** [Demaine, Harmon, Iacono, Pătrașcu 2004]
 - O(lg lg n)-competitive
- GreedyASS [Lucas 1988; Munro 2000]
 - Proposed as offline BST algorithm ("Order by Next Request")
 - No o(n)-competitiveness known

Online ASS/BST Equivalence

• Theorem: If ASS sequence computed online row by row (like GreedyASS), then can convert to an online BST algorithm with constant-factor slowdown

Transform to geometry and back

- Main ingredient: **split trees**
 - Support any sequence of n splits in O(n) time
 - Splay trees take $O(n \alpha(n))$ time [Lucas 1988]
 - Splay trees take $O(n \alpha^*(n))$ time [Pettie 20??]

New Dynamic Optimality Conjecture

- GreedyASS is now an online algorithm!
- Conjecture:
 GreedyASS is O(1)-competitive
- Previously conjectured to be an offline O(1)-approximation to OPT [Lucas 1988; Munro 2000]

Lower Bounds

- Need lower bounds on OPT(S) to compare algorithms (like GreedyASS) against
- Wilber [1989] proved two lower bounds:
 - Wilber I used for O(lg lg n)-competitiveness of Tango trees
 - Wilber II used for key-independent optimality [Iacono 2002]
 - Conjecture: Wilber II ≥ Wilber I
 - Conjecture: OPT(S) = Θ(Wilber II)

Independent Set Lower Bounds

 Wilber I and Wilber II fall in the (new) class of independent rectangle bounds

 Theorem: MinASS(S) = Ω(largest independent rectangle set)

• What is the best lower bound in this class?

Lower Bounds: SignedGreedy

- Theorem: SignedGreedy(S) is within a constant factor of the best independent rectangle bound
- Corollary:
 - $OPT(S) \ge SignedGreedy(S)$
 - SignedGreedy(S) = Ω (Wilber I + WilberII)
- SignedGreedy (*lower bound*) is annoyingly similar to GreedyASS (*upper bound*)

Open Problems

- Does GreedyASS share all the nice properties of splay trees?
 - Recent result: [Iacono & Pătraşcu]
 GreedyASS satisfies access theorem (from splay trees)
 - \Rightarrow working-set bound
 - \Rightarrow entropy bound
 - \Rightarrow static finger bound
 - \Rightarrow O(lg n) amortized per operation
 - Anyone for dynamic finger?

Open Problems

- Hardness of approximability
- NP-hardness of general position

P.S.

ASS = Arborally Satisfied Set

 [Arboral = arboreal = related to trees]

