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ASS

Point set in the plane

ASS = any nontrivial rectangle 
spanned by two points 
contains another point
(interior or on boundary)



MinASS Problem

Problem: Given a point 
set, find the minimum 
ASS superset
▪ Up to constant factors, 

can assume input points 
are in general position 
(no two horiz/vert aligned)

original points
added points



MinASS in Worst Case

O(n lg n) points always suffice

Ω(n lg n) points are sometimes necessary
(random; bit-reversal permutation matrix)

≤ n≤½n ≤½n≤¼n ≤¼n ≤¼n ≤¼n



NP-completeness

Theorem:
MinASS is 
NP-complete

OPEN:
General 
position
MinASS



Approximating MinASS

OPEN: O(1)-approximation?

Known: O(lg lg n)-approximation
[and it’s not easy]

original points
added points



GreedyASS

Imagine points arriving 
row by row

Add necessary points 
on the new row
to remain ASS

Conjecture:
O(1)-approximation

original points
added points



Binary Search Tree (BST)

Recall our good old friends:

Unit-cost operations:
▪ Move finger up/left/right

▪ Rotate left/right
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The Best BST

Problem:
▪ Given (offline) access sequence S =x1, x2, …, xm

▪ OPT(S) = minimum sequence of unit-cost ops
in BST to touch x1, x2, …, xm in order

Without rotations, this problem is solved 
by (static) optimal BSTs of Knuth [1971]

Ultimate goal:
O(1)-competitive online algorithm
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Example of
BST Execution

Access sequence:
1, 4, 5, 7, 6, 2, 3
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Example of
BST Execution

Access sequence:
1, 4, 5, 7, 6, 2, 3
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ASS/BST Equivalence

In fact, any ASS 
point set is a BST 
execution!
▪ Treap by next 

access time

Corollary: 
MinASS(S)
= OPT(S)
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Attacks on OPT(S)

Splay trees  [Sleator & Tarjan 1983]
Conjecture: O(1)-competitive
Many nice properties known,
but no o(lg n)-competitiveness known

Tango trees [Demaine, Harmon, Iacono, Pătraşcu 
2004]

▪ O(lg lg n)-competitive

GreedyASS [Lucas 1988; Munro 2000]
Proposed as offline BST algorithm
(“Order by Next Request”)
No o(n)-competitiveness known



Online ASS/BST Equivalence

Theorem: If ASS sequence computed 
online row by row (like GreedyASS), then 
can convert to an online BST algorithm 
with constant-factor slowdown
▪ Transform to geometry and back

Main ingredient: split trees
▪ Support any sequence of n splits in O(n) time

▪ Splay trees take O(n (n)) time  [Lucas 1988]

▪ Splay trees take O(n *(n)) time  [Pettie 20??]

>x≤x

x



New Dynamic Optimality 
Conjecture

GreedyASS is now an online algorithm!

Conjecture:
GreedyASS is O(1)-competitive

Previously conjectured to be an
offline O(1)-approximation to OPT
[Lucas 1988; Munro 2000]



Lower Bounds

Need lower bounds on OPT(S) to compare 
algorithms (like GreedyASS) against

Wilber [1989] proved two lower bounds:
▪ Wilber I used for O(lg lg n)-competitiveness 

of Tango trees

▪ Wilber II used for key-independent 
optimality  [Iacono 2002]

▪Conjecture: Wilber II ≥ Wilber I

▪Conjecture: OPT(S) = Θ(Wilber II)



Independent Set Lower Bounds

Wilber I and Wilber II fall in the (new) 
class of independent rectangle bounds

Theorem: MinASS(S) = Ω(largest 
independent rectangle set)

What is the best lower bound in this class?

independent dependent



SignedGreedy

Max of:

original points
added points

original points
added points

original points
added points

Just fix empty 
positive-slope 
rectangles

Just fix empty 
negative-slope 
rectangles

+ −



Lower Bounds: SignedGreedy

Theorem: SignedGreedy(S) is within
a constant factor of the best
independent rectangle bound

Corollary:
▪ OPT(S) ≥ SignedGreedy(S)

▪ SignedGreedy(S) = Ω(Wilber I + WilberII)

SignedGreedy (lower bound) is annoyingly 
similar to GreedyASS (upper bound)



Open Problems

Does GreedyASS share all the nice 
properties of splay trees?
▪Recent result: [Iacono & Pătraşcu]

GreedyASS satisfies access theorem
(from splay trees)

working-set bound
entropy bound
static finger bound
O(lg n) amortized per operation

▪ Anyone for dynamic finger?



Open Problems

Hardness of approximability

NP-hardness of general position



P.S.

ASS = 
Arborally 
Satisfied Set

[Arboral = 
arboreal = 
related to 
trees]


