The Geometry of Binary Search Trees

Erik Demaine MIT

John Iacono
Poly Inst. of NYU

Dion Harmon

 NECSI Daniel Kane HarvardMihai Pătraşcu IBM Almaden

ASS

- Point set in the plane
- ASS = any nontrivial rectangle spanned by two points contains another point

(interior or on boundary)

MinASS Problem

Problem: Given a point set, find the minimum ASS superset

- Up to constant factors, can assume input points are in general position (no two horiz/vert aligned)

MinASS in Worst Case

$O(n \lg n)$ points always suffice

- $\Omega(n \lg n)$ points are sometimes necessary (random; bit-reversal permutation matrix)

NP-completeness

- Theorem: MinASS is NP-complete OPEN: General position MinASS

(a) Wire and split gadget.

(b) Shift gadget.

(c) Crossover gadget.

(d) Not-All-Equal clause gadget.

Approximating MinASS

OPEN: O(1)-approximation?

- Known: $O(\lg \lg n)$-approximation
[and it's not easy]

GreedyASS

Imagine points arriving
row by row

- Add necessary points on the new row to remain ASS

Conjecture:
O(1)-approximation

original points added points

Binary Search Tree (BST)

Recall our good old friends:

- Unit-cost operations:
- Move finger up/left/right
- Rotate left/right

The Best BST

- Problem:
- Given (offline) access sequence $S=x_{1}, x_{2}, \ldots, x_{m}$
- OPT (S) = minimum sequence of unit-cost ops in BST to touch $x_{1}, x_{2}, \ldots, x_{m}$ in order
- Without rotations, this problem is solved by (static) optimal BSTs of Knuth [1971]
- Ultimate goal:

O(1)-competitive online algorithm

Example of BST Execution

- Access sequence: $1,4,5,7,6,2,3$

Example of BST Execution

- Access sequence: $1,4,5,7,6,2,3$

ASS/BST Equivalence

$1,2,4]$ 35

- In fact, any ASS point set is a BST execution!
- Treap by nex \dagger access time

Corollary: MinASS(S)
= OPT(S)

Attacks on OPT(S)

Splay trees [Sleator \& Tarjan 1983]

- Conjecture: O(1)-competitive
- Many nice properties known, but no o(lg n)-competitiveness known
Tango trees [Demaine, Harmon, Iacono, Pătraşcu 2004]
- O(lg $\lg n$)-competitive

GreedyASS [Lucas 1988; Munro 2000]

- Proposed as offline BST algorithm ("Order by Next Request")
- No o(n)-competitiveness known

Online ASS/BST Equivalence

Theorem: If ASS sequence computed online row by row (like GreedyASS), then can convert to an online BST algorithm with constant-factor slowdown

- Transform to geometry and back - Main ingredient: split trees

- Support any sequence of n splits in $O(n)$ time
- Splay trees take $O(n \alpha(n))$ time [Lucas 1988]
- Splay trees take $O\left(n \alpha^{*}(n)\right)$ time [Pettie 20??]

New Dynamic Optimality Conjecture

GreedyASS is now an online algorithm!

- Conjecture:

GreedyASS is O(1)-competitive

- Previously conjectured to be an offline O(1)-approximation to OPT [Lucas 1988; Munro 2000]

Lower Bounds

- Need lower bounds on OPT(S) to compare algorithms (like GreedyASS) agains \dagger
- Wilber [1989] proved two lower bounds:
- Wilber I used for $O(\lg \lg n)$-competitiveness of Tango trees
- Wilber II used for key-independent optimality [Iacono 2002]
- Conjecture: Wilber II \geq Wilber I
- Conjecture: OPT(S) = Θ (Wilber II)

Independent Set Lower Bounds

- Wilber I and Wilber II fall in the (new) class of independent rectangle bounds

independent

dependent

Theorem: $\operatorname{MinASS}(S)=\Omega$ (larges \dagger independent rectangle set)

- What is the best lower bound in this class?

SignedGreedy

Just fix empty Just fix empty positive-slope negative-slope rectangles rectangles

original points added points

original points added points

Lower Bounds: SignedGreedy

Theorem: SignedGreedy(S) is within a constant factor of the best independent rectangle bound
Corollary:

- OPT(S) \geq SignedGreedy(S)
- SignedGreedy(S) = Ω (Wilber I + WilberII)

SignedGreedy (lower bound) is annoyingly similar to GreedyASS (upper bound)

Open Problems

Does GreedyASS share all the nice properties of splay trees?

- Recent result: [Iacono \& Pătraşcu]

GreedyASS satisfies access theorem (from splay trees)
\Rightarrow working-set bound
\Rightarrow entropy bound
\Rightarrow static finger bound
$\Rightarrow O(\lg n)$ amortized per operation

- Anyone for dynamic finger?

Open Problems

- Hardness of approximability
- NP-hardness of general position

(a) Wire and split gadget.

(b) Shift gadget.

- ASS =

Arborally
Satisfied Set

- [Arboral = arboreal = related to trees]

