How to Grow Your Balls (Distance Oracles Beyond the Thorup–Zwick Bound)

FOCS'10

Distance Oracles

Distance oracle = replacement of APSP matrix

[Thorup, Zwick STOC'01] For k=1,2,3,...: Preprocess undirected, weighted graph G to answer: query(s,t): return \tilde{d} with $d_G(s,t) \leq \tilde{d} \leq (2k-1) \cdot d_G(s,t)$ Space $O(n^{1+1/k})$ with O(1) query time

Approximation	Space
1	n ²
3	n ^{1.5}
5	n ^{4/3}
2 <i>k</i> -1	<i>n</i> ^{1+1/k}

Compression question:

Encode dense graphs with $\widetilde{O}(n^{1+1/k})$ bits, such that (2k-1)-apx distances can be retrieved [Matoušek'96] (\forall) finite metric space on n points $\mapsto \ell_{\infty}$ with dimension $O(k \cdot n^{1+1/k} \lg n)$ with distortion 2k-1Spanners: (\forall) unweighted graph G (\exists) H \subseteq G with $O(n^{1+1/k})$ edges: $d_{G} \leq d_{H} \leq (2k-1) d_{G}$

Data structures question:

A data structure of size $O(n^{1+1/k})$ can answer (2k-1)-apx distance queries in constant time

Compression question:

Data

Encode dense graphs with $O(n^{1+1/k})$ bits, such that (2k-1)-apx distances can be retrieved

[Matoušek'96] (\forall) finite metric space on *n* points

 $\mapsto \ell_{\infty}$ with dimension $O(k \cdot n^{1+1/k} \lg n)$ with distortion 2k-1

Spar Optimal space, assuming:

Girth conjecture: [Erdős] et al. (3) graphs with $\Omega(n^{1+1/k})$ edges and girth 2k+2

can answer (2k-1)-apx distance queries in constant time

Data structures question:

A data structure of size $O(n^{1+1/k})$ can answer (2k-1)-apx distance queries in constant time

Co Many other spanners: $\begin{bmatrix} \mathsf{BKMP'05} & d_{\mathsf{H}} \leq d_{\mathsf{G}} + 6 \text{ with } \mathsf{O}(\mathsf{n}^{4/3}) \text{ edges} \\ \begin{bmatrix} \mathsf{EP'01} & d_{\mathsf{H}} \leq (1+\varepsilon) d_{\mathsf{G}} + \mathsf{O}(1) \text{ with } \mathsf{O}(\mathsf{n}^{1+\delta}) \text{ edges} \\ \end{bmatrix}$ $\begin{bmatrix} \mathsf{M} & \mathsf{I} \\ \end{bmatrix}$ $\begin{bmatrix} \mathsf{M} &$

(3) $H \subseteq G$ with $O(n^{1+1/k})$ edges: $d_G \leq d_H \leq (2k-1) d_G$

Data structures question:

A data structure of size $O(n^{1+1/k})$ can answer (2k-1)-apx distance queries in constant time

New Upper Bounds

Unweighted graphs:

Preprocess any graph G

 \Rightarrow distance oracle of size $O(n^{5/3})$ that finds distance $\leq 2d_G + 1$

Weighted graphs: Preprocess G with $m=n^2/\alpha$ edges

 \Rightarrow distance oracle of size O($n^2 / \alpha^{1/3}$) with approximation 2

Can report path in O(1) / edge.

A = { \mathbf{x} } = sample $n^{2/3}$ vertices

×

×

×

X

X

×

×

X

A = {*****} = sample $n^{2/3}$ vertices B = {•} = sample $n^{1/3}$ vertices

A = {**x**} = sample $n^{2/3}$ vertices

 $B = \{\bullet\} = \text{sample } n^{1/3} \text{ vertices}$

 $C = U_{u \in B} Ball(u \rightarrow A)$ $E[|C|]=n^{2/3}$

Data structure:

• distances $C \leftrightarrow V$

A = {**x**} = sample $n^{2/3}$ vertices

 $B = \{\bullet\} = \text{sample } n^{1/3} \text{ vertices}$

$$C = U_{u \in B} \text{ Ball}(u \rightarrow A)$$
$$E[|C|] = n^{2/3}$$

Data structure:

• distances $C \leftrightarrow V$

Query(*s*,*t*):

A = {**x**} = sample $n^{2/3}$ vertices

 $B = \{\bullet\} = \text{sample } n^{1/3} \text{ vertices}$

 $C = U_{u \in B} Ball(u \rightarrow A)$ $E[|C|]=n^{2/3}$

Data structure:

• distances $C \leftrightarrow V$

Query(*s*,*t*):

- R_s , R_t = distance to NN in C
- If Ball(s, R_s) \cap Ball(t, R_t) = Ø \Rightarrow min { R_s , R_t } $\leq \frac{1}{2}$ d(s,t)

A = {**x**} = sample $n^{2/3}$ vertices

 $B = \{\bullet\} = \text{sample } n^{1/3} \text{ vertices}$

 $C = U_{u \in B} Ball(u \rightarrow A)$ $E[|C|]=n^{2/3}$

Data structure:

• distances $C \leftrightarrow V$

Query(*s*,*t*):

- R_s , R_t = distance to NN in C
- If Ball(s, R_s) \cap Ball(t, R_t) = Ø \Rightarrow min { R_s , R_t } $\leq \frac{1}{2} d(s,t)$

A = {*****} = sample $n^{2/3}$ vertices

 $B = \{\bullet\} = \text{sample } n^{1/3} \text{ vertices}$

$$C = U_{u \in B} \text{ Ball}(u \rightarrow A)$$
$$E[|C|] = n^{2/3}$$

Data structure:

- distances $C \leftrightarrow V$
- pairs when Ball(s)∩Ball(t) ←
 Query(s,t):
- R_s, R_t = distance to NN in C
- If Ball(s, R_s) \cap Ball(t, R_t) = Ø \Rightarrow min { R_s , R_t } $\leq \frac{1}{2}$ d(s,t)
- If Ball(s, R_s) \cap Ball(t, R_t) $\neq \emptyset$ •

The Algorithm A = { \mathbf{x} } = sample $n^{2/3}$ vertices X $B = \{\bullet\} = \text{sample } n^{1/3} \text{ vertices}$ $C = U_{u \in B} Ball(u \rightarrow A)$ $F[|||_{n^{2/3}}]$ **Key observation:** $E[\#pairs] = O(n^{5/3})$ pairs when Ball(s)∩Ball(t) Query(*s*,*t*): R_s , R_t = distance to NN in C X If Ball(s, R_s) \cap Ball(t, R_t) = Ø \Rightarrow min { R_s, R_t } $\leq \frac{1}{2}$ d(s,t) \checkmark • If Ball(s, R_s) \cap Ball(t, R_t) $\neq \emptyset$

Geometric balls ≠ Balls in graphs

Weighted graphs:

Ball(s,r)={edges adjacent to vertices at distance $\leq r$ } To bound ball, sample *edges* \Rightarrow sparsity matters!

Geometric balls ≠ Balls in graphs

Weighted graphs:

Ball(s,r)={edges adjacent to vertices at distance $\leq r$ } To bound ball, sample *edges* \Rightarrow sparsity matters!

Unweighted graphs:

 $d(s,u) = d(t,v) = [\frac{1}{2} d(s,t)]$ Just accept additive 1...

Upper Bounds

Unweighted graphs:

Preprocess any graph G

Can we get rid of "+1"

for not-too-dense graphs?

 \Rightarrow distance oracle of size O($n^{5/3}$) that finds distance $\leq 2d_G + 1$

Better bounds?

Weighted graphs:

Preprocess G with $m=n^2/\alpha$ edges

 \Rightarrow distance oracle of size O($n^2 / \alpha^{1/3}$) with approximation 2

Milder dependence on *m*? E.g. $O(m + n^{5/3})$

Set-Intersection Hardness

Preprocess $S_1, ..., S_n \subseteq [X]$ query(i,j): is $S_i \cap S_j = \emptyset$?

Conjecture: Let $X = \lg^{O(1)} n$. If query time = O(1), space = $\widetilde{\Omega}(n^2)$

Even in sparse graphs, approximation < 2 requires $\tilde{\Omega}(n^2)$ space

Set-Intersection Hardness

Preprocess $S_1, ..., S_n \subseteq [X]$ query(i,j): is $S_i \cap S_j = \emptyset$?

Conjecture: Let $X = \lg^{O(1)}n$. If query time = O(1), space = $\widetilde{\Omega}(n^2)$ Even in sparse graphs, approximation < 2 requires $\widetilde{\Omega}(n^2)$ space Apx. $(2-\varepsilon)d_G + O(1)$ in unweighted graphs requires $\widetilde{\Omega}(n^2)$ space

Set-Intersection Hardness

Preprocess $S_1, ..., S_n \subseteq [X]$ query(i,j): is $S_i \cap S_j = \emptyset$?

Conjecture: Let $X = \lg^{O(1)} n$. If query time = O(1), space = $\tilde{\Omega}(n^2)$

Even in sparse graphs, approximation < 2 requires $\widetilde{\Omega}(n^2)$ space Apx. $(2-\varepsilon)d_G + O(1)$ in unweighted graphs requires $\widetilde{\Omega}(n^2)$ space

New Lower Bounds

Preprocess $S_1, ..., S_n \subseteq [X]$ query(i,j): is $S_i \cap S_j = \emptyset$?

Conjecture: Let $X = \lg^{O(1)} n$. If query time = O(1), space = $\widetilde{\Omega}(n^2)$ Actually, randomized conjecture...

In unweighted graphs with $m=n^2/\alpha$ edges, constant-time 2-approximation needs space $\tilde{\Omega}(n^2/\sqrt{\alpha})$ \checkmark Constant-time approximation $2d_G + O(1)$ needs space $\tilde{\Omega}(n^{1.5})$

Lower Bound

In graphs with $\widetilde{O}(n)$ edges, 2-apx needs space $\widetilde{\Omega}(n^{1.5})$

Lower Bound

In graphs with $\widetilde{O}(n)$ edges, 2-apx needs space $\widetilde{\Omega}(n^{1.5})$

 $(S_{ab} \cap T_c \neq \emptyset) \land (T_a \cap S_{cd} \neq \emptyset)$ $\Rightarrow distance = 3$

3-apx \Rightarrow distance ≤ 5

 $\Rightarrow \text{ either } T_a \cap S_{cd} \neq \emptyset$ or $S_{ab} \cap T_c \neq \emptyset$

Recent progress:

- space $\Omega(n^{5/3})$ for 2-apx
- many result for apx > 2

My flight is at 4:36. Questions @ 857-253-1282