
How to Grow Your Balls
(Distance Oracles Beyond the Thorup–Zwick Bound)

Mihai Pătrașcu Liam Roditty

FOCS’10

Distance Oracles

Distance oracle = replacement of APSP matrix

[Thorup, Zwick STOC’01+ For k=1,2,3,…:
Preprocess undirected, weighted graph G to answer:
query(s,t): return đ with dG(s,t) ≤ đ ≤ (2k-1) · dG(s,t)

Space O(n1+1/k) with O(1) query time

Approximation Space

1 n2

3 n1.5

5 n4/3

2k-1 n1+1/k

Two Sides of Distance Oracles

Compression question:
Encode dense graphs with O(n1+1/k) bits,

such that (2k-1)-apx distances can be retrieved

*Matoušek’96+ (∀) finite metric space on n points
↦ ℓ∞ with dimension O(k·n1+1/k lg n) with distortion 2k-1

Spanners: (∀) unweighted graph G
(∃) H ⊆ G with O(n1+1/k) edges: dG ≤ dH ≤ (2k-1) dG

Data structures question:
A data structure of size O(n1+1/k)

can answer (2k-1)-apx distance queries in constant time

~

~

Two Sides of Distance Oracles

Compression question:
Encode dense graphs with O(n1+1/k) bits,

such that (2k-1)-apx distances can be retrieved

*Matoušek’96+ (∀) finite metric space on n points
↦ ℓ∞ with dimension O(k·n1+1/k lg n) with distortion 2k-1

Spanners: (∀) unweighted graph G
(∃) H ⊆ G with O(n1+1/k) edges: dG ≤ dH ≤ (2k-1) dG

Data structures question:
A data structure of size O(n1+1/k)

can answer (2k-1)-apx distance queries in constant time

~

~

Optimal space, assuming:

Girth conjecture: [Erdős] et al.

(∃) graphs with Ω(n1+1/k) edges and girth 2k+2

Two Sides of Distance Oracles

Compression question:
Encode dense graphs with O(n1+1/k) bits,

such that (2k-1)-apx distances can be retrieved

*Matoušek’96+ (∀) finite metric space on n points
↦ ℓ∞ with dimension O(k·n1+1/k lg n) with distortion 2k-1

Spanners: (∀) unweighted graph G
(∃) H ⊆ G with O(n1+1/k) edges: dG ≤ dH ≤ (2k-1) dG

Data structures question:
A data structure of size O(n1+1/k)

can answer (2k-1)-apx distance queries in constant time

~

~

[Sommer, Verbin, Yu FOCS’09+

Assume m=O(n) – sparse graphs.
If c-apx distance queries take O(1) time

⇒ the space is ≥ n1+Ω(1/c)

Beat [Thorup, Zwick] for graphs with ≪ n1+1/k edges?

~

Two Sides of Distance Oracles

Compression question:
Encode dense graphs with O(n1+1/k) bits,

such that (2k-1)-apx distances can be retrieved

*Matoušek’96+ (∀) finite metric space on n points
↦ ℓ∞ with dimension O(k·n1+1/k lg n) with distortion 2k-1

Spanners: (∀) unweighted graph G
(∃) H ⊆ G with O(n1+1/k) edges: dG ≤ dH ≤ (2k-1) dG

Data structures question:
A data structure of size O(n1+1/k)

can answer (2k-1)-apx distance queries in constant time

~

~

Many other spanners:

*BKMP’05+ dH ≤ dG+6 with O(n4/3) edges

*EP’01+ dH ≤ (1+ε) dG + O(1) with O(n1+δ) edges
…

Use additive approximation in distance oracles?

New Upper Bounds

Unweighted graphs:
Preprocess any graph G
⇒ distance oracle of size O(n5/3) that finds distance ≤ 2dG + 1

Weighted graphs:
Preprocess G with m=n2/α edges
⇒ distance oracle of size O(n2 / α1/3) with approximation 2

Can report path in O(1) / edge.

The Algorithm
A = { } = sample n2/3 vertices

The Algorithm
A = { } = sample n2/3 vertices

B = { } = sample n1/3 vertices

The Algorithm
A = { } = sample n2/3 vertices

B = { } = sample n1/3 vertices

C = ∪u∈B Ball(u → A)

E[|C|]=n2/3

Data structure:
• distances C ↔ V

The Algorithm
A = { } = sample n2/3 vertices

B = { } = sample n1/3 vertices

C = ∪u∈B Ball(u → A)

E[|C|]=n2/3

Data structure:
• distances C ↔ V

Query(s,t):

s
t

The Algorithm
A = { } = sample n2/3 vertices

B = { } = sample n1/3 vertices

C = ∪u∈B Ball(u → A)

E[|C|]=n2/3

Data structure:
• distances C ↔ V

Query(s,t):
• Rs, Rt = distance to NN in C

• If Ball(s, Rs) ∩ Ball(t, Rt) = ∅
⇒ min { Rs, Rt - ≤ ½ d(s,t)

The Algorithm
A = { } = sample n2/3 vertices

B = { } = sample n1/3 vertices

C = ∪u∈B Ball(u → A)

E[|C|]=n2/3

Data structure:
• distances C ↔ V

Query(s,t):
• Rs, Rt = distance to NN in C

• If Ball(s, Rs) ∩ Ball(t, Rt) = ∅
⇒ min { Rs, Rt - ≤ ½ d(s,t) ✔

The Algorithm
A = { } = sample n2/3 vertices

B = { } = sample n1/3 vertices

C = ∪u∈B Ball(u → A)

E[|C|]=n2/3

Data structure:
• distances C ↔ V

• pairs when Ball(s)∩Ball(t)

Query(s,t):
• Rs, Rt = distance to NN in C

• If Ball(s, Rs) ∩ Ball(t, Rt) = ∅
⇒ min { Rs, Rt - ≤ ½ d(s,t) ✔

• If Ball(s, Rs) ∩ Ball(t, Rt) ≠ ∅

The Algorithm
A = { } = sample n2/3 vertices

B = { } = sample n1/3 vertices

C = ∪u∈B Ball(u → A)

E[|C|]=n2/3

Data structure:
• distances C ↔ V

• pairs when Ball(s)∩Ball(t)

Query(s,t):
• Rs, Rt = distance to NN in C

• If Ball(s, Rs) ∩ Ball(t, Rt) = ∅
⇒ min { Rs, Rt - ≤ ½ d(s,t) ✔

• If Ball(s, Rs) ∩ Ball(t, Rt) ≠ ∅

Key observation:

E[#pairs] = O(n5/3)

The Algorithm
A = { } = sample n2/3 vertices

B = { } = sample n1/3 vertices

C = ∪u∈B Ball(u → A)

E[|C|]=n2/3

Data structure:
• distances C ↔ V

• pairs when Ball(s)∩Ball(t)

Query(s,t):
• Rs, Rt = distance to NN in C

• If Ball(s, Rs) ∩ Ball(t, Rt) = ∅
⇒ min { Rs, Rt - ≤ ½ d(s,t) ✔

• If Ball(s, Rs) ∩ Ball(t, Rt) ≠ ∅ ✔

This is a lie.

Geometric balls ≠ Balls in graphs

Weighted graphs:

Ball(s,r)=,edges adjacent to vertices at distance ≤ r}

To bound ball, sample edges ⇒ sparsity matters!

s t

Geometric balls ≠ Balls in graphs

Weighted graphs:

Ball(s,r)=,edges adjacent to vertices at distance ≤ r}

To bound ball, sample edges ⇒ sparsity matters!

Unweighted graphs:

d(s,u) = d(t,v) = ⌈ ½ d(s,t) ⌉

Just accept additive 1…

s t

u v

Upper Bounds

Unweighted graphs:
Preprocess any graph G
⇒ distance oracle of size O(n5/3) that finds distance ≤ 2dG + 1

Weighted graphs:
Preprocess G with m=n2/α edges
⇒ distance oracle of size O(n2 / α1/3) with approximation 2

Can we get rid of “+1”

for not-too-dense graphs?

Milder dependence on m?

E.g. O(m + n5/3)

Better bounds?

Set-Intersection Hardness

Conjecture: Let X = lgO(1)n. If query time = O(1), space = Ω(n2)

Even in sparse graphs, approximation < 2 requires Ω(n2) space

Preprocess S1, …, Sn ⊆ [X]
query(i,j): is Si ∩ Sj = ∅ ?

~

~

S1

Sn

1

X

Set-Intersection Hardness

Conjecture: Let X = lgO(1)n. If query time = O(1), space = Ω(n2)

Even in sparse graphs, approximation < 2 requires Ω(n2) space

Apx. (2-ε)dG + O(1) in unweighted graphs requires Ω(n2) space

Preprocess S1, …, Sn ⊆ [X]
query(i,j): is Si ∩ Sj = ∅ ?

~

~

~

Set-Intersection Hardness

Conjecture: Let X = lgO(1)n. If query time = O(1), space = Ω(n2)

Even in sparse graphs, approximation < 2 requires Ω(n2) space

Apx. (2-ε)dG + O(1) in unweighted graphs requires Ω(n2) space

Preprocess S1, …, Sn ⊆ [X]
query(i,j): is Si ∩ Sj = ∅ ?

~

~

~

New Lower Bounds

Conjecture: Let X = lgO(1)n. If query time = O(1), space = Ω(n2)

In unweighted graphs with m=n2/α edges,
constant-time 2-approximation needs space Ω(n2 / √α)

Constant-time approximation 2dG+O(1) needs space Ω(n1.5)

Preprocess S1, …, Sn ⊆ [X]
query(i,j): is Si ∩ Sj = ∅ ?

~

~

~

Actually, randomized conjecture…

Lower Bound

In graphs with O(n) edges, 2-apx needs space Ω(n1.5)~~

(a,b)

√n+ ×√n+

*√n+ × X2 *√n+ × X2

(c,d)

√n+ ×√n+

(a,x,y)

(c,x,y)

Sab × Ta

Tc× Sab

(Sab ∩ Tc ≠ ∅) ∧ (Ta ∩ Scd ≠ ∅)
⇒ distance = 3

3-apx ⇒ distance ≤ 5

Lower Bound

In graphs with O(n) edges, 2-apx needs space Ω(n1.5)~~

(a,b)

√n+ ×√n+

*√n+ × X2 *√n+ × X2

(c,d)

√n+ ×√n+

(a,x,y)

(c,x,y)

Sab × Ta

Tc× Sab

(Sab ∩ Tc ≠ ∅) ∧ (Ta ∩ Scd ≠ ∅)
⇒ distance = 3

3-apx ⇒ distance ≤ 5

⇒ either Ta ∩ Scd ≠ ∅
or Sab ∩ Tc ≠ ∅

(a,b’)

Recent progress:
• space Ω(n5/3) for 2-apx
• many result for apx > 2

My flight is at 4:36.
Questions @ 857-253-1282

