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Distance Oracles

Distance oracle = replacement of APSP matrix

[Thorup, Zwick STOC’01+ For k=1,2,3,…:
Preprocess undirected, weighted graph G to answer:
query(s,t): return đ with     dG(s,t) ≤ đ ≤ (2k-1) · dG(s,t)

Space O(n1+1/k) with O(1) query time

Approximation Space

1 n2

3 n1.5

5 n4/3

2k-1 n1+1/k



Two Sides of Distance Oracles

Compression question:
Encode dense graphs with O(n1+1/k) bits, 

such that (2k-1)-apx distances can be retrieved

*Matoušek’96+ (∀) finite metric space on n points
↦ ℓ∞ with dimension O(k·n1+1/k lg n) with distortion 2k-1

Spanners: (∀) unweighted graph G
(∃) H ⊆ G with O(n1+1/k) edges:    dG ≤ dH ≤ (2k-1) dG

Data structures question: 
A data structure of size O(n1+1/k) 

can answer (2k-1)-apx distance queries in constant time

~

~
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Optimal space, assuming:

Girth conjecture: [Erdős] et al.

(∃) graphs with Ω(n1+1/k) edges and girth 2k+2
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[Sommer, Verbin, Yu   FOCS’09+

Assume m=O(n)  – sparse graphs.
If c-apx distance queries take O(1) time

⇒ the space is ≥ n1+Ω(1/c)

Beat [Thorup, Zwick] for graphs with ≪ n1+1/k edges?
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Many other spanners:

*BKMP’05+   dH ≤ dG+6 with O(n4/3) edges

*EP’01+ dH ≤ (1+ε) dG + O(1) with O(n1+δ) edges 
…

Use additive approximation in distance oracles?



New Upper Bounds

Unweighted graphs:
Preprocess any graph G
⇒ distance oracle of size O(n5/3) that finds distance ≤ 2dG + 1

Weighted graphs:
Preprocess G with m=n2/α edges
⇒ distance oracle of size O(n2 / α1/3) with approximation 2

Can report path in O(1) / edge.
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E[#pairs] = O(n5/3)



The Algorithm
A = {   } = sample n2/3 vertices

B = {   } = sample n1/3 vertices
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This is a lie.



Geometric balls ≠ Balls in graphs

Weighted graphs:

Ball(s,r)=,edges adjacent to vertices at distance ≤ r}

To bound ball, sample edges ⇒ sparsity matters!
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Geometric balls ≠ Balls in graphs

Weighted graphs:

Ball(s,r)=,edges adjacent to vertices at distance ≤ r}

To bound ball, sample edges ⇒ sparsity matters!

Unweighted graphs:

d(s,u) = d(t,v) = ⌈ ½ d(s,t) ⌉

Just accept additive 1…

s t

u v



Upper Bounds

Unweighted graphs:
Preprocess any graph G
⇒ distance oracle of size O(n5/3) that finds distance ≤ 2dG + 1

Weighted graphs:
Preprocess G with m=n2/α edges
⇒ distance oracle of size O(n2 / α1/3) with approximation 2

Can we get rid of “+1”

for not-too-dense graphs?

Milder dependence on m?

E.g.   O(m + n5/3)

Better bounds?



Set-Intersection Hardness

Conjecture:  Let X = lgO(1)n.   If query time = O(1),  space = Ω(n2)

Even in sparse graphs, approximation < 2 requires Ω(n2) space

Preprocess S1, …, Sn ⊆ [X]
query(i,j):  is Si ∩ Sj = ∅ ?

~
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New Lower Bounds

Conjecture:  Let X = lgO(1)n.   If query time = O(1),  space = Ω(n2)

In unweighted graphs with m=n2/α edges,
constant-time 2-approximation needs space Ω(n2 / √α)

Constant-time approximation 2dG+O(1) needs space Ω(n1.5)

Preprocess S1, …, Sn ⊆ [X]
query(i,j):  is Si ∩ Sj = ∅ ?

~

~

~

Actually, randomized conjecture…



Lower Bound

In graphs with O(n) edges, 2-apx needs space Ω(n1.5)~~

(a,b)

*√n+ ×*√n+

*√n+ × X2 *√n+ × X2

(c,d)

*√n+ ×*√n+

(a,x,y)

(c,x,y)

Sab × Ta

Tc× Sab

(Sab ∩ Tc ≠ ∅) ∧ (Ta ∩ Scd ≠ ∅)
⇒ distance = 3

3-apx ⇒ distance ≤ 5



Lower Bound

In graphs with O(n) edges, 2-apx needs space Ω(n1.5)~~

(a,b)

*√n+ ×*√n+

*√n+ × X2 *√n+ × X2

(c,d)

*√n+ ×*√n+

(a,x,y)

(c,x,y)

Sab × Ta

Tc× Sab

(Sab ∩ Tc ≠ ∅) ∧ (Ta ∩ Scd ≠ ∅)
⇒ distance = 3

3-apx ⇒ distance ≤ 5

⇒ either Ta ∩ Scd ≠ ∅
or   Sab ∩ Tc ≠ ∅

(a,b’)



Recent progress:
• space Ω(n5/3) for 2-apx
• many result for apx > 2

My flight is at 4:36. 
Questions @ 857-253-1282


