
On Dynamic Bit-Probe Complexity∗

Mihai Pǎtraşcu† Corina E. Tarniţǎ‡

Abstract

This work present several advances in the understanding of dynamic data structures in the
bit-probe model:

• We improve the lower bound record for dynamic language membership problems to Ω((lg n
lg lg n)2).

Surpassing Ω(lg n) was listed as the first open problem in a survey by Miltersen.

• We prove a bound of Ω(lg n
lg lg lg n) for maintaining partial sums in Z/2Z. Previously, the

known bounds were Ω(lg n
lg lg n) and O(lg n).

• We prove a surprising and tight upper bound of O(lg n
lg lg n) for the greater-than problem,

and several predecessor-type problems. We use this to obtain the same upper bound for
dynamic word and prefix problems in group-free monoids.

We also obtain new lower bounds for the partial-sums problem in the cell-probe and external-
memory models. Our lower bounds are based on a surprising improvement of the classic chrono-
gram technique of Fredman and Saks [1989], which makes it possible to prove logarithmic lower
bounds by this approach. Before the work of M. Pǎtraşcu and Demaine [2004], this was the
only known technique for dynamic lower bounds, and surpassing Ω(lg n

lg lg n) was a central open
problem in cell-probe complexity.

1 Introduction

The bit-probe model is an instantiation of the cell-probe model with one-bit cells. In this model,
memory is organized in cells, and algorithms may read or write a cell in constant time. The
number of cell probes is taken as the measure of complexity, and the model allows free nonuniform
computation. For formal definitions, see [Mil99]. It should be noted that our upper bounds do not
use the power of the model in any unnatural way, and in particular do not use nonuniformity.

Bit-probe complexity can be considered a fundamental measure of computation. When analyz-
ing space-bounded algorithms (branching programs), it is usually preferred to cell-probe complexity
with higher cell sizes. In data structures, a cell size of Θ(lg n) bits is assumed more frequently, but
the machine independence and overall cleanness of the bit-probe measure have made it a persistent
object of study since the dawn of theoretical computer science. Nonetheless, many of the most fun-
damental questions are not yet understood. In this paper, we present better upper or lower bounds
for several important problems: maintaining partial sums, dynamic connectivity, the greater-than
problem, a few variants of predecessor search, and dynamic word problems.

∗A preliminary version of this paper appeared in the Proceedings of the 32nd International Colloquium on Au-
tomata, Languages and Programming (ICALP’05).

†MIT, Computer Science and Artificial Intelligence Laboratory.
‡Harvard University, Department of Mathematics. Has previously published as Corina E. Pǎtraşcu.

1

Our lower bound of Ω((lg n
lg lg n)2) for dynamic connectivity also has an important complexity-

theoretic significance, as it is the highest known bound for an explicit dynamic language membership
problem. The previous record was Ω(lg n), shown in [MSVT94]. A survey on cell-probe complexity
by Miltersen [Mil99] lists improving this bound as the first open problem among three major
challenges for future research. It should be noted that our Ω̃(lg2 n) bound1 is far from a mere
echo of a Ω̃(lg n) bound in the cell-probe model. Indeed, Ω(lg n

lg lg n) bounds in the cell-probe model
have been known for one and a half decades (including for dynamic connectivity), but the bit-
probe record has remained just the slightly higher Ω(lg n). To our knowledge, our bound is the
first to show a quasi-optimal Ω̃(lg n) separation between bit-probe complexity and the cell-probe
complexity with cells of Θ(lg n) bits, when the cell-probe complexity is superconstant.

Interestingly, our ideas also yield important consequences beyond the bit-probe model. On the
upper bound side, our result for the greater-than problem has recently served as inspiration for a
novel RAM upper bound for dynamic range reporting in one dimension [MPP05]. This work also
extends our upper bound to an optimal trade-off between update and query times.

On the lower bound side, we present a subtle improvement to the classic chronogram technique
of Fredman and Saks [FS89], which enables it to prove logarithmic lower bounds in the cell-probe
model with cells of Θ(lg n) bits. To fully appreciate this development, one must remember that the
chronogram technique was virtually the only known approach for proving dynamic lower bounds
before the work of [PD06]. At the same time, obtaining a logarithmic bound in the cell-probe model
was viewed as one of the most important problems in data-structure lower bounds. It is now quite
surprising to find that the answer has always been this close.

We also strengthen the chronogram technique by making it possible to derive lower bound
trade-offs in the regime of fast updates and slow queries. Though [PD06] could derive some bounds
in this regime, their technique was limited and failed to analyze the partial-sums problem for a
higher cell size (the natural nonuniform equivalent of the external-memory model). The present
paper does imply such a lower bound, almost matching the bounds achieved by buffer trees, which
constitute one of the most important tools for external-memory algorithms.

1.1 The Partial-Sums and Related Problems

Consider an arbitrary group G containing at least 2δ elements. The partial-sums problem asks to
maintain an array A[1 . . n] of elements from G subject to the following operations:

update(k, ∆): modifies A[k]← ∆.

sum(k): returns the partial sum
∑k

i=1 A[i].

Our lower bounds are specializations of the following theorem, which studies the problem in the
most general setting. Note in particular that the theorem does not assume δ ≤ b (i.e. that every
group element fits into a single cell).

Theorem 1. Consider an implementation of the partial-sums problem in the cell-probe model with
b-bit cells. Let tu denote the expected amortized running time of an update, and tq the expected
running time of a query. Then, in the average case of an input distribution, the following lower

1We use eΩ(f) to mean a lower bound of f/ lgO(1) f .

2

bounds hold:

tq lg
(

tu
lg n
· b + lg lg n

δ

)
= Ω

(⌈
δ

b + lg lg n

⌉
· lg n

)
tu lg

(
tq

lg n
/
⌈

δ

b + lg lg n

⌉)
= Ω

(
δ

b + lg(tq/d δbe)
· lg n

)

The following notation is used in this theorem and the remainder of the paper. First, we define
lg x = dlog2(x + 2)e, so that lg x ≥ 1 even if x ∈ [0, 1]. Regarding the asymptotic notation for
several parameters, we say f(x1, . . . , xt) = Ω(g(x1, . . . , xt)) if there exists a constant γ > 0 such
that for all by finitely many tuples (x1, . . . , xt), we have f(x1, . . . , xt) ≥ γ · g(x1, . . . , xt).

The proof of Theorem 1 appears in Section 2. We now proceed to apply this theorem in three
interesting interesting setups, and compare with the best previously known results. Of these, the
application to dynamic connectivity is the only one which requires a nontrivial set of ideas.

Higher cell size and buffer trees. Assuming b = Ω(lg n) and δ ≤ b, our bounds simplify to:

tq

(
lg

tu
lg n

+ lg
b

δ

)
= Ω(lg n) tu lg

tq
lg n

= Ω
(

δ

b
· lg n

)
The first trade-off was recently obtained by [PD06], who also provided a matching upper bound.
Note in particular that this implies max{tu, tq} = Ω(lg n), which had been a major open problem
since [FS89].

The second tradeoff for fast updates is new. The techniques of [PD06] did not apply in this
range, and they explicitly discussed this as an interesting open problem. Similarly, epoch-based
arguments in the style of [FS89] cannot yield any lower bound when tq = Ω(lg n).

Buffer trees [Arg03] are a general algorithmic paradigm for obtaining fast updates, given a higher
cell size. For our problem, this yields a cell-probe upper bound of tu = O(

⌈
δ+lg n

b · lgtq/ lg n n
⌉
), for

any tq = Ω(lg n). Thus, we obtain tight bounds when δ = Ω(lg n). (Note that in the cell-probe
model, we have a trivial lower bound of tu ≥ 1, matching the ceiling in the upper bound.)

To appreciate these bounds in a natural setup, let us consider the external memory model,
which is the main motivation for looking at a higher cell size. In this model, the unit for memory
access is a page, which is modeled by a cell in the cell-probe model. A page contains B words,
which are generally assumed to have Ω(lg n) bits. The model also provides for a cache, a set of cells
which the algorithm can access at zero cost. We assume that the cache is not preserved between
operations (algorithmic literature is ambivalent in this regard). This matches the assumption of the
cell-probe model, where each operation can only learn information by probing the memory. Note
that the nonuniformity in the cell-probe model allows unbounded internal state for an operation,
so any restriction on the size of the cache cannot be captured by cell-probe lower bounds.

Under the natural assumption that δ matches the size of the word, we see that our lower bound
becomes tu = Ω(1

B lgtq/ lg n n). Buffer trees offer a matching upper bound, if the update algorithm
is afforded a cache of Ω(tq/ lg n) pages. As mentioned before, we cannot expect cell-probe lower
bounds to be sensitive to cache size.

3

The bit-probe complexity for fixed groups. Setting b = 1 and δ = O(1), our lower bounds
simplify to:

tq lg
(

tu
lg n/ lg lg n

)
= Ω(lg n) tu · lg

(
tq

lg n

)
· lg tq = Ω(lg n)

The folklore solution to the problem achieves the following tradeoffs:

tq lg
tu

lg n
= Ω(lg n) tu · lg

tq
lg n

= Ω(lg n)

It can be seen that our lower bounds come close, but do not exactly match the upper bounds. In
the most interesting point of balanced running times, the upper bound is max{tu, tq} = O(lg n),
while our lower bound implies max{tu, tq} = Ω(lg n

lg lg lg n). Thus, our lower bound is off by just a
triply logarithmic factor.

Previously, the best known lower bound was max{tu, tq} = Ω(lg n
lg lg n) achieved by Fredman [Fre82].

This was by a reduction to the greater-than problem, which Fredman introduced specifically for
this purpose. As we show below, there is an O(lg n

lg lg n) upper bound for this problem, so Fredman’s
technique cannot yield a better result for partial sums.

Dynamic connectivity and a record bit-probe bound. With b = 1 and superconstant δ,
Theorem 1 easily implies a nominally superlogarithmic bound on max{tu, tq}. For instance, for
partial sums in Z/nZ (i.e. δ = lg n), we obtain max{tu, tq} = Ω(lg2 n

lg lg n·lg lg lg n). This is a modest

improvement over the Ω(lg2 n
(lg lg n)2

) bound of Fredman and Saks [FS89].
However, it is not particularly relevant to judge the magnitude of such bounds, as we are only

proving a hardness of Ω̃(lg n) per bit in the query output and update input, and we can obtain
arbitrarily high nominal bounds. As advocated by Miltersen [Mil99], the proper way to gauge the
power of lower bound techniques is to consider problems with a minimal set of operations, and,
in particular, decision queries. Specifically, for a language L, we look at the dynamic language
membership problem, defined as follows. For any fixed n (the problem size), maintain a string
w ∈ {0, 1}n under two operations: flip the i-th bit of w, and report whether w ∈ L.

We prove a lower bound of Ω((lg n
lg lg n)2) for dynamic connectivity. This problem asks to maintain

an undirected graph, under insertion and deletion of edges, and queries asking whether two nodes
are in the same connected component. The best upper bound is O(lg2 n · (lg lg n)3) [Tho00], so
our lower bound is optimal up to doubly logarithmic factors. Our lower bound also holds in the
important special case when the graph is guaranteed to be a forest.

Dynamic connectivity can be phrased as a dynamic language membership problem [PD06]. The
best previous bound for any explicit problem was Ω(lg n) due to [MSVT94], so we obtain an almost
quadratic improvement. Our trick for handling decision problems is to use the tradeoffs for slow
queries and fast updates, since it is not hard to convert a decision query into one returning a large
output, at the price of an appropriate slow down. This is the second time, after the analysis of
buffer trees, when our extension of the chronogram technique for the regime of slow queries turns
out to be very relevant.

Theorem 2. Consider a bit-probe implementation for dynamic connectivity, in which updates take
expected amortized time tu, and queries take expected time tq. Then, in the average case of an input

distribution, tu = Ω
(

lg2 n
lg2(tu+tq)

)
. In particular max{tu, tq} = Ω

(
(lg n
lg lg n)2

)
.

4

π√nπ2π1

√
n

Figure 1: Our graphs can be viewed as a sequence of
√

n permutation boxes.

Proof. We first describe the shape of the graphs used in the reduction to Theorem 1; refer to
Figure 1. The vertex set is roughly given by an integer grid of size

√
n ×
√

n. The edge set is
given by a series of permutation boxes. A permutation box connects the nodes in a column to the
nodes in the next column arbitrarily, according to a given permutation in S√n. Notice that the
permutations decompose the graph into a collection of

√
n paths. As the paths evolve horizontally,

the y coordinates change arbitrarily at each point due to the permutations. In addition to this,
there is a special test vertex to the left, which is connected to some vertices in the first column.

We now describe how to implement the partial sums macro-operations in terms of the connec-
tivity operations:

update(i, π): sets πi = π. This is done by removing all edges in permutation box i and inserting
new edges corresponding to the new permutation π. Thus, the running time is O(tu ·

√
n).

sum(i): returns σ = π1 ◦ · · · ◦ πi. We use O(lg n) phases, each one guessing a bit of σ(j) for all j.
Phase k begins by removing all edges incident to the test node. Then, we add edges from the
test vertex to all vertices in the first column, whose row number has a one in the k-th bit.
Then, we test connectivity of all vertices from the i-th column and the test node, respectively.
This determines the k-th bit of σ(j) for all j. In total, sum takes time O((tu + tq)

√
n · lg n).

Finally, we interpret the lower bounds of Theorem 1 for these operations. We have b = 1 and
δ = Θ(

√
n · lg n). The first trade-off is less interesting, as we have slowed down queries by a factor

of lg n. The second trade-off becomes:

tu
√

n·lg
(

(tu + tq)
√

n · lg n
√

n · lg2 n/ lg lg n

)
= Ω

(√
n · lg n

lg(tu + tq)
· lg n

)
⇒ tu lg

(
tu + tq

lg n/ lg lg n

)
= Ω

(
lg2 n

lg(tu + tq)

)
Since the lower bound implies max{tu, tq} = Ω((lg n

lg lg n)2), we have lg(tu+tq
lg n/ lg lg n) = Θ(lg(tu + tq)), so

the bound simplifies to tu = Ω(lg2 n
lg2(tu+tq)

).

1.2 The Greater-Than and Related Problems

We begin with a discussion of the greater-than problem. As mentioned already, this was initially
considered by Fredman in [Fre82], who used it to deduce a lower bound for the bit-probe complexity
of partial sums in Z/2Z. Consider an infinite memory of bits, initialized to zero. The problem has
two stages. In the update stage, the algorithm is given a number a ∈ {1, . . . , n}. After seeing a,

5

the algorithm is allowed to flip T bits in the memory. In the query stage, the algorithm is given
b ∈ {1, . . . , n}. Now the algorithm may inspect T bits, and must decide whether or not a > b.

Fredman’s result stated that T = Ω(lg n
lg lg n). It is quite tempting to believe that one cannot

improve past the trivial upper bound T = O(lg n), since, in some sense, this is the complexity of
“writing down” a. If this were true, the problem could be used to obtain a higher lower bound
for partial sums. However, we show that Fredman’s bound is in fact optimal. As mentioned
already, [MPP05] have subsequently extended this result, by considering the possible tradeoffs
between the number of bits probes in the update and query stages.

We can obtain the same O(lg n
lg lg n) upper bound for the (more natural) dynamic predecessor

problem. This asks to maintain a dynamic set S ⊂ {1, . . . , n} under insertions and deletions, and
support queries asking for (some information about) the predecessor in S of a given number. We
cannot hope to determine the actual predecessor in o(lg n) time, because the output itself has this
many bits of entropy. However, we can ask for some constant amount of information about the
predecessor (a stored “color”), which proves to be enough for many purposes.

Note that lower bounds for the greater-than problem trivially apply to dynamic predecessor,
so our result is tight. In the first stage of the greater-than problem, insert the numbers 1, colored
red, and a, colored blue. In the second stage, query the color of the predecessor of b, which tells us
whether a > b.

We finally extend the O(lg n
lg lg n) upper bound to two other problems, which are essential for a

new upper bound on dynamic word problems that we discuss below. The first problem is a straight-
forward generalization of the predecessor problem, asking for the colors of the k predecessors of a
value, where k is constant. Discussion of the second problem is deferred to Section 3 to avoid a
digression into technicalities.

1.3 Dynamic Word Problems

Dynamic prefix problems are defined like the partial sums problem, except that all additions take
place in an arbitrary finite monoid. The word problem is identical to the prefix problem, except
that queries only ask for the sum of the entire array, not an arbitrary prefix. Such a problem is
defined by the monoid, so the monoid is considered fixed and constants may depend on it. The
aim is to understand the complexity of the problem in terms of the structure of the monoid. This
line of research was inspired by the intense study of parallel word problems, which eventually led
to a complete classification. Both in the parallel and in the dynamic case, it can be seen that many
fundamental problems are equivalent to word and prefix problems for certain classes of monoids.
Examples include partial sums modulo a constant, colored predecessor, colored priority queue, and
existential range queries in one dimension. In general, we would expect any fundamental problem
of a certain one-dimensional flavor to be represented, making word problems an interesting avenue
for complexity-theoretic research.

The seminal paper of Frandsen, Miltersen and Skyum [FMS97] achieved tight bounds for many
classes of monoids, both in the bit-probe and in the cell-probe models, but the classification is
incomplete in both cases. In this paper, we further the classification for the bit-probe model in
several directions. Table 1.3 summarizes the old and new bounds. Note that traditionally only the
running time of the slowest operation has been considered. We follow this practice, and disregard
the tradeoffs between the update and query complexities.

In Section 4.1, we use our solutions for predecessor problems to give an O(lg n
lg lg n) upper bound

for group-free monoids. This uses the same algebraic toolkit as used by [FMS97] in the cell-probe

6

Monoid New result Old lower bound Old upper bound

Prefix group free Θ(lg n
lg lg n)

problems contains group Ω(lg n
lg lg lg n) Ω(lg n

lg lg n) O(lg n)

commutative group Θ(1)
Word comm. non-group Θ(lg lg n)

problems contains ENCC Ω(lg n
lg lg lg n)

group-free Θ(lg n
lg lg n) Ω(lg n

lg lg n) O(lg n)

other some are Θ(lg n
lg lg n)

Table 1: Classification of dynamic word and prefix problems in the bit-probe model.

model, but our application needs several interesting algorithmic ideas to handle the idiosyncrasies
of the bit-probe model. In particular, while [FMS97] could simply use predecessor queries, we need
to invent some queries which gather “enough” information without finding the actual predecessor,
thus avoiding the Ω(lg n) bottleneck.

On the negative side, our lower bound for partial sums in fixed groups obviously applies to the
prefix problem in any monoid containing groups. This creates a separation inside dynamic prefix
problems, answering an open problem formulated by [FMS97], who asked whether the bit-probe
complexity of prefix queries depends on the monoid at all. Also, we can use [FMS97, Theorem
2.5.1] to imply the same lower bound for the word problem in monoids containing a certain struc-
ture, which we call an “externally noncommutative cycle” (ENCC). An ENCC is defined to be a
cycle {1a = ak, a, a2, . . . , ak−1} such that there exists b with 1aba 6= ab1a. This property can be
interpreted loosely as saying that elements of the cycle don’t necessarily commute with elements
outside the cycle.

To finish the classification, one would need to strengthen the partial sums lower bound to
Ω(lg n), which is well motivated independently. From the point of view of algebraic complexity, the
only remaining question regards the word problem in monoids containing groups, but no ENCCs.
Answering this question seems to require additional insight into the structure of such monoids. The
only result we can give is a family of such monoids for which the word problem can be solved in
O(lg n

lg lg n) time. This is discussed in Section 4.2. On the other hand, we have no example where the
partial sums lower bound applies. In fact, we conjecture no such example exists, and the optimal
complexity for all monoids in this class is Θ(lg n

lg lg n).

2 Lower Bounds for Partial Sums

We begin by reviewing the chronogram method, at an intuitive level. One first generates a sequence
of random updates, ended by one random query. Looking back in time from the query, one partitions
the updates into exponentially growing epochs: for a certain r, epoch i contains the ri updates
immediately before epoch i− 1. One then argues that for all i, the query needs to read at least one
cell from epoch i with constant probability. This is done as follows. Clearly, information about
epoch i cannot be reflected in earlier epochs (those occurred back in time). On the other hand,
the latest i − 1 epochs contain only O(ri−1) updates. Assume the cell-probe complexity of each
update is bounded by tu. Then, during the latest i − 1 epochs, only O(ti−1tub) bits are written.

7

If r = C · tu b
δ for a sufficiently large constant C, this number is at most, say, 1

10riδ. On the other
hand, updates in epoch i contain riδ bits of entropy, so all information known outside epoch i can
only fix a constant fraction of these updates. If a random query is forced to learn information about
a random update from epoch i, it is forced to read a cell from epoch i with constant probability,
because the information is not available outside the epoch. This means a query must make Ω(1)
probes in expectation into every epoch, so the lower bound on the query time is given by the
number of epochs that one can construct, i.e. tq = Ω(logr n) = Ω(lg n

lg(tub/δ)). A tradeoff of this form
was indeed obtained by [AHR98], and is the highest tradeoff obtained by the chronogram method.
Unfortunately, even for δ = b, this only implies max{tu, tq} = Ω(lg n

lg lg n).
We now describe the new ideas that we use to improve this result. Intuitively, the analysis

done by the chronogram technique is overly pessimistic, in that it assumes all cells written in the
latest i − 1 epochs concentrate on epoch i, encoding a maximum amount of information about
it. In the setup from above, this may actually be tight, up to constant factors, because the data
structure knows the division into epochs, and can build a strategy based on it. However, we can
randomize the construction of epochs to foil such strategies. We generate a random number of
updates, followed by one query; since the data structure cannot anticipate the number of updates,
it cannot base its decisions on a known epoch pattern. Due to this randomization, we intuitively
expect each update to write O(tub

logr n) bits “about” a random epoch, as there are Θ(lgr n) epochs

in total. In this case, it would suffice to pick r satisfying r = Θ(tub
δ lgr n), i.e. lg r = Θ(lg b·tu

δ lg n). This

yields tq = Ω(logr n) = Ω(lg n
lg(tu/ lg n)+lg(b/δ)), which means max{tu, tq} = Ω(lg n) when δ = b.

Unfortunately, formalizing the intuition that the information written by updates “splits” be-
tween epochs seems to lead to elusive information theoretic arguments. To circumvent this, we
need a second very important idea: we can look at cell reads, as opposed to cell writes. Indeed,
regardless of how many cells epochs 1 through i− 1 write, the information recorded about epoch i
is bounded by the information that was read out of epoch i in the first place. On the other hand,
the information theoretic value of a read is more easily graspable, as it is dictated by combinatorial
properties, like the time when the read occurs and the time when the cell was last written. We can
actually show that in expectation, O(tu

logr n) of the reads made by each update obtain information
about a random epoch. Then, regardless of how many cells are written, subsequent epochs can only
encode little information about epoch i, because very little information was read by the updates in
the first place.

Once we have this machinery set up, there is a potential for applying a different epoch construc-
tion. Assume tu is already “small”. Then, since we don’t need to divide tu by too much to get few
probes into each epoch, we can define epochs to grow less than exponentially fast. In particular,
we will define epochs to grow by a factor of r every r times, which means we can obtain a higher
lower bound on tq (in particular, tq = ω(lg n) is possible). Such a result is inherently impossible to
obtain using the classic chronogram technique, which decides on the epoch partition in advance.
As discussed in the introduction, this is a crucial contribution of our paper, since it leads both to
an understanding of buffer trees, and a ω(lg n) bit-probe lower bound.

2.1 Formal Framework

We first formalize the overall construction. We consider 2M − 1 random updates, and insert a
random query at a uniformly random position after the M -th update. Now we divide the last M
operations before the query into k epochs. Denote the lengths of the epochs by `1, . . . , `k, with `1

8

being the closest to the query. For convenience, we define si =
∑i

j=1 `j .
Our analysis will mainly be concerned with two random variables. Let T u

i be the number of
probes made during epochs {1, . . . , i − 1} that read a cell written during epoch i. Also let T q

i be
the number of probes made by the query that read a cell written during epoch i.

All chronogram lower bounds have relied on an information theoretic argument showing that if
epochs 1 up to i− 1 write too few cells, T q

i must be bounded from below (usually by a constant).
As explained above, we instead want to argue that if T u

i is too small, T q
i must be large. Though

crucial, this change is very subtle, and the information theoretic analysis follows the same general
principles. The following lemma, the proof of which is deferred to Section 2.4, summarizes the
results of this analysis:

Lemma 3. For any i such that si ≤ 3
√

n, the following holds in expectation over a random instance
of the problem:

E[T u
i]

`i

(
b + lg

tusi−1

E[T u
i]

)
+ E[T q

i] ·min
{

δ, b + lg
tq

E[T q
i]

}
= Ω(δ)

We will set M = 3
√

n so that the lemma applies to all epochs i. The lower bound of the lemma
is reasonably easy to grasp intuitively. The first term measures the average information future
updates learn about each of the `i updates in epoch i. There are T u

i future probes into epoch i. In
principle, each one gathers b bits. However, there is also information hidden in the choice of which
future probes hit epoch i. This amounts to O(lg tusi−1

E[Tu
i]) bits per probe, since the total number of

future probes is in expectation tusi−1 (there are si−1 updates in future epochs). The second term
in the expression quantifies the information learned by the query about epoch i. If the query makes
T q

i probes into epoch i, each one extracts b bits of information directly, and another O(lg tq
E[T q

i]
)

bits indirectly, by the choice of which probes hit epoch i. However, there is also another way to
bound the information (hence the min). If E[T q

i] ≤ 1, we have probability at most T q
i that the

query reads any cell from epoch i. If no cell is read, the information is zero. Otherwise, the relevant
information is at most δ, since the answer of the query is δ bits. Finally, the lower bound on the
total information gathered (the right hand side of the expression) is Ω(δ) because a random query
needs a random prefix sum of the updates happening in epoch i, which has Ω(δ) bits of entropy.

Apart from relating to T u
i instead of cell writes, the essential idea of this lemma is not novel.

However, our version is particularly general, presenting several important features. For example,
we achieve meaningful results for E[T q

i] > 1, which is essential to analyzing the case δ > b. We also
get a finer bound on the “hidden information” gathered by a cell probe, such as the O(lg tusi−1

E[Tu
i])

term. In contrast, previous results could only bound this by O(lg n), which is irrelevant when
b = Ω(lg n), but limits the lower bounds for the bit-probe model.

It is easy and instructive to apply Lemma 3 using the ideas of the classic chronogram technique.
Define epochs to grow exponentially with rate r ≥ 2, i.e. `i = ri and si = O(ri). Assume for
simplicity that tu and tq are worst-case bounds per operation. Then T u

i ≤ tu · si−1, since the
number of probes into epoch i is clearly bounded by the total number of probes made after epoch
i. By Lemma 3 we can write O(si−1

`i
tub) + E[T q

i]δ = Ω(δ), which means O(tub
r) + E[T q

i]δ = Ω(δ).
Setting r = Ctu

b
δ for a sufficiently large constant C, we obtain E[T q

i] = Ω(1). Then tq ≥
∑

i E[T q
i] =

Ω(logr M) = Ω(lg n
lg(tub/δ)).

As explained before, the key to improving this bound is to obtain a better bound on E[T u
i].

The next section gives an analysis leading to such a result. Then, Section 2.3 uses this analysis to

9

derive our lower bounds.

2.2 Bounding Probes into an Epoch

Since we will employ two different epoch constructions, our analysis needs to talk about general `i

and si. However, we will need to relate to a certain exponential behavior of the epoch sizes. This
property is captured by defining a parameter β = maxi∗

(∑
i≥i∗

min{`i,si−1,si∗}
`i

)
.

Lemma 4. In expectation over a random instance of the problem and a uniformly random i ∈
{1, . . . , k}, we have E[Tu

i
`i

] = O(β
k · tu).

Proof. Fix the sequence of updates arbitrarily, which fixes all cell probes. Let T be the total number
of cell probes made by updates. Now consider an arbitrary cell probe, and analyze the probability
it will be counted towards T u

i . Let r be the time when the probe is executed, and w the time when
the cell was last written, where “time” is given by the index of the update. Let i∗ be the unique
value satisfying si∗−1 ≤ r − w < si∗ .

Note that if i < i∗, for any choice of the query position after r, epoch i will begin after w. In
this case, the probe cannot contribute to T u

i .
Now assume i ≥ i∗, and consider the positions for the query such that the cell probe contributes

to T u
i . Since w must fall between the beginning of epoch i and its end, there are at most `i good

query positions. In addition, epoch i − 1 must begin between w + 1 and r, so there are at most
r − w < si∗ good query positions. Finally, epoch i − 1 must begin between r − si−1 + 1 and r,
so there are at most si−1 good query positions. Since there are M possible choices for the query
position, the probability the cell probe contributes to T u

i is at most min{`i,si∗ ,si−1}
M .

We now consider the expectation of Tu
i

`i
over the choice of i and the position of the query. We

apply linearity of expectation over the T cell probes. A probe with a certain value i∗ contributes
to the terms min{`i,si∗ ,si−1}

Mk`i
for any i ≥ i∗. The sum of all terms for one cell probe is bounded by

β
Mk , so the expectation of Tu

i
`i

is bounded by βT
kM . Finally, we also take the expectation over random

updates. By definition of tu, E[T] ≤ (2M − 1)tu. Then E[Tu
i

`i
] = O(β

k tu).

We now analyze the two epoch constructions that we intend to use. In the first case, epochs
grow exponentially at a rate of r ≥ 2, i.e. `i = ri. Then, si ≤ 2ri, so:∑

i≥i∗

min{`i, si−1, si∗}
`i

≤ si∗−1

`i∗
+
∑
i>i∗

si∗

`i
≤ 2

r
+

∞∑
j=1

2
rj

= O

(
1
r

)

Then, β = O(1
r), and k = Θ(logr M) = Θ(logr n), so β

k = O(1
r logr n).

In the second case, assume r ≤
√

M and construct r epochs of size rj , for all j ≥ 1. Then
k = Θ(r logr

M
r) = Θ(r logr n). Note that si ≤ (r + 2)`i, since si includes at most r terms equal to

`i, while the smaller terms represent r copies of an exponentially decreasing sum with the highest
term `i

r . Now we have:

∑
i≥i∗

min{`i, si−1, si∗}
`i

≤
∑
i≥i∗

min{1,
si∗

`i
} ≤

∑
i≥i∗

min{1,
(r + 2)`i∗

`i
} ≤ r · 1 + r(r + 2)

∞∑
j=1

1
rj

= O(r)

This means β = O(r) and β
k = O(r

r logr n) = O(1
logr n).

10

Comparing the two constructions, we see that the second one has r times more epochs, but
also r times more probes per epoch. Intuitively, the first construction is useful for large tu, since it
can still guarantee few probes into each epoch. The second one is useful when tu is already small,
because it can construct more epochs, and thus prove a higher lower bound on tq.

2.3 Deriving the Tradeoffs of Theorem 1

We now put together Lemma 3 with the analysis of the previous section to derive our lower bound
tradeoffs. In the previous section, we derived bounds of the form E[Tu

i
`i

] = O(β
k · tu), where the

expectation is also over a random i. By the Markov bound, for at least 2k
3 choices of i, the bound

holds with the constant in the O-notation tripled. Also note that tq ≥
∑

i E[T q
i], so for at least 2k

3

choices of i, we have E[T q
i] ≤ 3tq

k . Then for at least k
3 choices of i the above bounds of T u

i and T q
i

hold simultaneously. These are the i for which we apply Lemma 3.
Since the expression of Lemma 3 is increasing in E[Tu

i
`i

] and E[T q
i], we can substitute upper

bounds for these, obtaining:

β

k
tu

(
b + lg

tusi−1/`i

(β/k)tu

)
+

tq
k
·min

{
δ, b + lg

tq
3tq/k

}
= Ω(δ)

⇒ β

k
tu

(
b + lg

si−1/`i

β/k

)
+

tq
k

/max
{

1
δ
,

1
b + lg k

}
= Ω(δ)

⇒ β

k
tu ·

b + lg(si−1k/(`iβ))
δ

+
tq
k

/
⌈

δ

b + lg k

⌉
= Ω(1) (1)

Since the left hand side is increasing in β
k , we can again substitute an upper bound. This bound

is Θ(1)
r logr n for the first epoch construction, and Θ(1)

logr n for the second one. Also note that si−1

`i
= O(1

r)

in the first construction and O(r) in the second one. Then lg si−1k
`iβ

becomes O(lg k).
Now let us analyze the tradeoff implied by the first epoch construction. Note that it is valid to

substitute the upper bound lg k ≤ lg lg n in (1). Also, we use the calculated values for k and β
k :

tu
r logr n

· b + lg lg n

δ
+

tq
logr n

/
⌈

δ

b + lg lg n

⌉
= Ω(1) (2)

We can choose r large enough to make the first term smaller than any constant ε > 0. This is true
for r satisfying ε r

lg r > tu
lg n ·

b+lg lg n
δ , which holds for lg r = Θ(lg(tu

lg n ·
b+lg lg n

δ)). For a small enough
constant ε, the second term in (2) must be Ω(1), which implies our tradeoff:

tq lg
(

tu
lg n
· b + lg lg n

δ

)
= Ω

(⌈
δ

b + lg lg n

⌉
· lg n

)
Now we move to the second epoch construction. Remember that k = Θ(r logr n). We can

choose r such that the second term of (1) is Θ(ε), i.e. bounded both from above and from below
by small constants. For small enough ε, the O(ε) upper bound implies that the first term of (1) is
Ω(1):

tu
logr n

· b + lg(r logr n)
δ

= Ω(1) ⇒ tu lg r = Ω
(

δ

b + lg(r logr n)
· lg n

)
(3)

11

To understand this expression, we need the following upper bounds:

tq
r logr n

/
⌈

δ

b + lg(r logr n)

⌉
= Ω(ε)

⇒

tq

r logr n /
(⌈

δ
b+lg lg n

⌉
· 1

lg r

)
= Ω(1)⇒ lg r = O

(
lg
(

tq
lg n /

⌈
δ

b+lg lg n

⌉))
tq

r logr n /
(⌈

δ
b

⌉
· 1

lg(r logr n)

)
= Ω(1)⇒ lg(r logr n) = O

(
lg
(
tq /

⌈
δ
b

⌉))
Plugging into (3), we obtain our final tradeoff:

tu lg
(

tq
lg n

/
⌈

δ

b + lg lg n

⌉)
= Ω

(
δ

b + lg(tq/d δbe)
· lg n

)

2.4 Proof of Lemma 3

Remember that our goal is to prove that for any epoch i with si ≤ 3
√

n, the following holds in
expectation over a random instance of the problem:

E[T u
i]

`i

(
b + lg

tusi−1

E[T u
i]

)
+ E[T q

i] ·min
{

δ, b + lg
tq

E[T q
i]

}
= Ω(δ) (4)

Pick `i queries independently at random, and imagine that each is run as the query in our hard
instance. That is, each of these queries operates on its own copy of the data structure, all of which
are in the same state. Now we define the following random variables:

QI = the indices of the `i queries.

QA = the correct answers of the `i queries.

U I
i = the indices of the updates in epoch i.

U∆
i = the ∆ parameters of the updates in epoch i.

U I∆
¬i = the indices and ∆ parameters of the updates in all epochs except i.

By [PD06, Lemma 5.3], H(QA | QI , U I
i , U I∆

¬i) = Ω(`iδ), where H denotes conditional binary
entropy. This result is very intuitive. We expect the set of query indices QI to interleave with
the set of update indices U I

i in Ω(`i) places. Each interleaving gives a query that extracts δ bits
of information about U∆

i (it extract a partial sum linearly independent from the rest). Thus, the
set of query answers has Ω(`iδ) bits of entropy. The cited lemma assumes our condition si ≤ 3

√
n,

because we do not want updates after epoch i to overwrite updates from epoch i. If there are at
most 3

√
n updates in epoch i and later, they all touch distinct indices with probability 1− o(1).

We now propose an encoding for QA given QI and U I∆
¬i . Comparing the size of this encoding

with the previous information lower bound, we will obtain the conclusion of Lemma 3. Consider
the following random variables:

T u
<i = the number of cell probes made during epochs {1, . . . , i− 1}.

12

T u
i = as defined previously, the number of cell probes made during epochs {1, . . . , i− 1} that read

a cell written during epoch i.

TQ = the total number of cell probes made by all `i queries.

TQ
i = the total number of cell probes made by all `i queries that read a cell written during epoch

i.

Lemma 5. There exists an encoding for QA given QI and U I∆
¬i whose size in bits is:

O

(
T u

i · b + lg
(

T u
<i

T u
i

)
+ min

{
TQ

i · δ + lg
(

`i

TQ
i

)
, TQ

i · b + lg
(

TQ

TQ
i

)})
Proof. The encoding begins by describing the cell probes made during epochs {1, . . . , i − 1} into
epoch i. First, we specify the subset of probes reading a cell from epoch i in the set of all probes
made by future epochs. This takes O

(
lg
(Tu

<i
Tu

i

))
bits, where the O notation accounts for lower

order terms from encoding the integers T u
<i and T u

i using O(lg T u
<i) and O(lg T u

i) bits respectively.
Second, for all probes into epoch i, we specify the contents of the cell, taking T u

i · b bits.
We now claim that based on the previous information, one can deduce the contents of all cells

that were not last written during epoch i. We can of course simulate the data structure before
epoch i, because we know the updates from U I∆

¬i . Also, we can simulate the data structure after
epoch i, because we know which probes read a cell from epoch i, and we have the cell contents in
the encoding.

We now choose among two strategies for dealing with the `i queries. In the first strategy, the
encoding specifies all queries which make at least one cell-probe into epoch i. Obviously, there are
at most TQ

i such queries, so this takes O
(
lg
(`i

TQ
i

))
bits. For each query making at least one cell

probe into epoch i, we simply encode its answer using at most TQ
i · δ bits in total. Otherwise, we

can simulate the query and find the answer: we know the queried index from QI , and we know the
contents of all cells that were last written in an epoch other than i.

In the second strategy, the encoding describes all cell probes made by the queries into epoch i.
This is done by specifying which is the subset of such cell probes, and giving the cell contents for
each one. Thus, in the second strategy we use TQ

i · b + O
(
lg
(TQ

TQ
i

))
bits. Given this information,

we can simulate all queries and obtain the answers.
It is important to point out that we actually need to know which probes touch a cell written

during epoch i. Otherwise, we would have no way to know whether a cell has been updated during
epoch i, or it still has the old value from the simulation before epoch i.

We now aim to analyze the expected size of the encoding. By linearity of expectation over the
`i random queries, E[TQ] = tq`i and E[TQ

i] = E[T q
i]`i. Using convexity of x 7→ x lg y

x , we have:

E
[
lg
(

TQ

TQ
i

)]
= O

(
E

[
TQ

i · lg
TQ

TQ
i

])
= O

(
E[TQ

i] · lg E[TQ]

E[TQ
i]

)
= O

(
E[T q

i]`i · lg
tq

E[T q
i]

)

Similarly, E[lg
(`i

TQ
i

)
] = O(E[T q

i]`i · lg 1
E[T q

i]
).

To bound T u
<i, note that it is the sum of si−1 random variables Xj , each giving the number

of probes made by the j-th update before the query. By definition of tu, the total number of

13

probes made by all 2M − 1 updates is in expectation at most (2M − 1)tu. Our query is inserted
randomly in one of M possible positions, so the update described by Xj is chosen randomly among
M possibilities. Then, E[Xj] ≤ (2M−1)tu

M < 2tu, and by linearity of expectation E[T u
<i] = O(tusi−1).

Then, using convexity as before, we can bound:

E
[
lg
(

T u
<i

T u
i

)]
= O

(
E
[
T u

i · lg
T u

<i

T u
i

])
= O

(
E[T u

i] · lg
E[T u

<i]
E[T u

i]

)
= O

(
E[T u

i] · lg tusi−1

E[T u
i]

)
We now use the previous calculations and the fact E[min{a, b}] ≤ min{E[a],E[b]} to bound the

expected size of the encoding. Comparing with the entropy lower bound of Ω(δ`i), we obtain:

E[T u
i]

`i

(
b + lg

tusi−1

E[T u
i]

)
+ E[T q

i] ·min
{

δ + lg
1

E[T q
i]

, b + lg
tq

E[T q
i]

}
≥ cδ

Here c is a positive constant. This is the desired (4), except that the first term in the min is δ+lg 1
T q

i

instead of δ. We now show that this makes no difference up to constant factors. First of all, when
the second term in the min is smaller, the expressions are obviously identical. Otherwise, pick a
constant c′ > 0 such that c′ lg 1

c′ ≤
c
2 . If E[T q

i] ≤ c′, we have E[T q
i lg 1

T q
i
] ≤ c

2 . Then, moving the
offending term to the right hand side, we obtain a lower bound of cδ − c

2 = Ω(δ). Finally, assume
E[T q

i] > c′. Then (4) is trivially true if the constant in the Ω notation is at most c′, because just
the term E[T q

i δ] is larger than the lower bound.

3 The Greater-Than and Related Problems

3.1 The Greater-Than Problem

The solution is remarkably easy. Consider a balanced tree with branching factor B = Θ(lg n
lg lg n), and

with n leaves representing the values {1, . . . , n}. In the update stage, we mark the root-to-leaf path
leading to a, taking time O(logB n) = O(lg n

lg lg n). In the query stage, we first find the lowest common
ancestor of a and b. This can be done by scanning b’s path upwards, until we find the first marked
node, taking time O(logB n). Next, we examine the children of the lowest common ancestor. We
find the marked child (corresponding to a), and determine whether it is to the left or to the right
of the child corresponding to b. Thus, the total time for the query is O(logB n + B) = O(lg n

lg lg n).

3.2 The Colored k-Predecessors Problem

As before, we use a B-ary tree whose leaves represent the universe. Let S ⊂ {1, . . . , n} be the
current set stored by the data structure. A node of the tree is called active if any leaf under it is in
S. Active nodes are labeled as such. We also attach distinct labels to the minimum and maximum
active children of each node. We first show that these labels can be maintained efficiently.

For insertions, traverse the leaf-to-root path looking for an active node. Along the way, label
nodes as simultaneously active, minimum and maximum among siblings. When we find the lowest
active ancestor, we scan all its children, and relabel the minimum and maximum, as these might
have changed. No labels higher in the tree need to be changed. Deletes are symmetric. Climb
up the tree from the leaf. As long as the current node is both a minimum and a maximum, we
mark its parent inactive. When this is no longer the case, the parent remains active. We end by

14

relabeling the minimum and maximum children at this level. Both operation take time O(lgB n)
for the climbing phase and O(B) for examining the children on one node, which is O(lg n

lg lg n) in total.
We now show how to use the labels to solve the k-predecessors problem. Active nodes will hold

the colors of the largest k elements from S under them, or of all elements if there are less than k.
Remember that k = O(1) so this takes O(1) bits per node.

Using this information, a query proceeds as follows. Find the lowest active ancestor of the query
leaf, by scanning the leaf-to-root path. Then, examine all the left siblings of the child leading to
the query. If there are at least k colors stored in these nodes, we return the rightmost k. Otherwise,
we continue scanning towards the root. If we ascend from a node marked as the minimum among
its siblings, we simply go on. Otherwise, we scan left siblings again, collecting more predecessors.
We continue climbing upwards until we find k predecessors, or reach the root. Climbing requires
O(lgB n) time in total. In addition to this, we make at most k +1 scans of the siblings, taking time
O(kB). This is so because we scan the siblings the first time we reach an active node, and then
only when we have not ascended from a node marked as minimum. Thus, for each scan, we collect
at least one additional predecessor. Therefore, the total running time is O(lgB n+kB) = O(lg n

lg lg n).
We now implement insertions. Up until the lowest active ancestor, we attach a list with one

color to every node. Then, we recompute the color list of this ancestor, by examining its children.
We now update the color lists on the remaining path to the root according to the following rules:

• if a node is the only active child (it is labeled as both the minimum and maximum), we just
copy its color list to the parent, in O(1) time per level.

• if a node has less than k colors in its list, we recalculate the list of the parent by traversing
all its children. This takes O(B) time, but we do it at most k times, since the color list of
the current node grows each time.

• otherwise, we are only interested in right siblings (because left siblings cannot add to an
already full list). If the node is marked as the maximum child, we just copy its list to the
parent, in O(1) time.

• otherwise, we recalculate the list of the parent by traversing the right siblings. Each time we
do this, the position of the update shifts by at least one to the left, because our node was
not maximum among siblings, so we picked up at least one more color. Thus, we can stop
updating after we’ve applied this step k times.

By the analysis done in each case, the running time is again O(lgB n+kB) = O(lg n
lg lg n). Deletes

are almost identical. We begin by updating the labels. Then, we recompute the color list of the
lowest active ancestor by scanning its children. Finally, we apply the same algorithm as for an
insertion, which updates the lists of all nodes above.

3.3 Finding Segment Representatives

This problem deals with a more unusual stabbing query. We have to maintain a dynamic set
S = {b1, b2, . . . } under the following query operation: given j ∈ [bi, bi+1), the query determines
a value in [bi, bi+1), which is only a function of bi and bi+1, but not of j or i. Imagine that the
elements of S break {1, . . . , n} into segments. The query must then produce a representative for
the segment stabbed by j, which is inside the segment, but is independent of the actual choice of

15

j. Adding or removing an element merges or splits segments. The representatives of these affected
segments may change arbitrarily, but those of any other segments must remain the same (because
they are only functions of the end-points). The segment representative has lg n bits, so it may
be quite surprising that one can be found in O(lg n

lg lg n) time. Of course, the query cannot actually
write down the representative, but the representative is determined by the query’s input and its
bit probes.

We use the same B-ary tree and the active labels from before. Updates only need to maintain
these labels. It remains to implement queries. The main idea is to find the lowest common ancestor
of bi and bi+1. Once this is known, it is easy to determine a canonical representative. First, take
the bits corresponding to the common ancestor, which are common to j, bi and bi+1. Then, take
the next lg B bits of bi+1, from which we subtract one. Finally, pad with ones. This conceptual
computation of the representative takes zero time, since all values involved are already known.

To find the lowest common ancestor of the predecessor and successor, we proceed as follows.
Traverse the leaf-to-root path from the query until an active node is found. Scan the children of
the node. If there is both an active node to the left and one to the right of the query, we have
found the prefixes of bi and bi+1, which give the answer. Otherwise, assume by symmetry there is
an active node to the left, so we have only found the prefix of bi. We continue searching up the
tree, until we find a node which is not marked as maximum among its siblings. At that point, we
scan the right siblings, finding the next active one, which corresponds to bi+1.

4 Dynamic Word Problems

4.1 Group-Free Monoids

We now show an O(lg n
lg lg n) upper bound for the prefix problem in group-free monoids. We use

a corollary of the Krohn-Rhodes decomposition [KR65], which was also used in the cell-probe
case [FMS97]. Unfortunately, our application of it is considerably more involved since we can’t find
exact predecessors.

Theorem 6 ([KR65]). Let M be a finite nontrivial group-free monoid. One of the following holds:

1. M \ {1} = 〈a〉 = {a, a2, . . . , ak = ak+1};

2. M is left simple, i.e. ∀a, b ∈M \ {1}, ab = a;

3. M = V ∪ T , with V, T proper submonoids of M , and T \ {1} a left ideal of M (i.e. (∀)a ∈
M, b ∈ T : ab ∈ T).

We prove our upper bound by induction on the size of M . However, we need a stronger induction
hypothesis, which assumes a solution for a slightly harder problem. We call this the prefix problem
with breakpoints. Consider an array A[1..n], in which an element can either be an element of M ,
or a breakpoint, denoted ©b . The update operation can change any position of A to any element
from M ∪{©b }. A query on an arbitrary position i must return the composition of A[j+1], . . . , A[i],
where j is the predecessor of i in the set of breakpoints. For uniformity, we say A[0] = A[n+1] =©b .
Also, we assume breakpoints do not appear in consecutive positions. This can easily be arranged
by doubling the array, and inserting an identity at every other position.

Assume by induction that the predecessor problem with breakpoints in all group-free monoids
of size less than |M | has complexity O(lg n

lg lg n). Now apply the decomposition theorem.

16

Case 1 – M = {1M , a, a2, . . . , ak = ak+1}. The solution is simple based on the k-predecessor
structure. We maintain such a structure on the set {i | A[i] 6= 1M} (this includes breakpoints).
A query can always be answered based on the values of the k preceding non-identity elements.
Specifically, we compose these elements from right to left until either we hit a©b , or we reach ak.

Case 2 – ∀a, b ∈M \ {1M}, ab = a. In this case, a partial sum is determined by the value of the
first non-identity element following a breakpoint. Our data structure has the following components:

• a structure for finding segment representatives in the dynamic set B = {i | A[i] =©b }. Denote
the elements B = {b1, b2, . . . }.

• a colored predecessor structure, on the set C = {i | A[i] 6= 1M} (note that this includes
breakpoints). The “color” of i is A[i].

• an array D[1..n]; for any segment (bi, bi+1), the value of D[repr(bi + 1)] is equal to the value
of the first non-identity element from the segment, or 1M if none exists. The values of D at
positions which are not representatives are ignored.

We first implement a query to position i. First, find the color of the predecessor of i in C. If
the predecessor is a breakpoint, return 1M . Otherwise, the answer is B[repr(i)].

We implement an update to position i in two steps: first, we change A[i] to 1M , and then change
it to the new value. Updating B and C is trivial. For updating D, we have the following cases:

• replacing©b by 1M . This merges the two segments around i. The new segment’s representative
value, B[repr(i)], will be obtained either from the first segment, i.e. B[repr(i − 1)] before i
was removed, or from the second segment (B[repr(i + 1)]) if B[repr(i− 1)] = 1M (so the first
segment contained only 1M ’s).

• replacing 1M by©b . This splits a segment in two. We obtain the representative of the right
segment, B[repr(i + 1)], by querying the successor of i in C. For the left segment, we query
the predecessor of i. If it is a breakpoint, B[repr(i − 1)] = 1M ; otherwise, it is the old
representative of the unsplit segment.

• replacing an element of M \ {1M} by 1M . First, we query the predecessor of i; if it is not
a breakpoint, we have nothing to do. Otherwise, we query the successor of i, and update
B[repr(i)] accordingly.

• replacing 1M by an element of M \ {1M}. First, we query the predecessor of i in C; if it is
not a breakpoint, we have nothing to do. Otherwise, we set B[repr(i)] to the new value A[i].

Case 3 – M = T ∪ V . Since |T |, |V | ≤ |M | − 1, we have, by induction, solutions for the prefix
problem with breakpoints, both running in O(lg n

lg lg n). To obtain a data structure for M , we use the
following components:

• a prefix structure for V , built over the array AV [1..n]. The values of AV are defined as follows:
if A[i] ∈ V , AV [i] = A[i]; otherwise (A[i] ∈ T \ V or A[i] =©b), let AV [i] =©b .

• a structure for finding segment representatives in the dynamic set B = {i | AV [i] = ©b }.
Denote the elements B = {b1, b2, . . . }.

17

• a prefix structure for T , built over the array AT . If A[i] = ©b , let AT [i] = ©b . The
other elements are represented in a less straightforward way. For any segment (bi, bi+1),
let AT [repr(bi + 1)] =

⊕bi+1

j=bi+1 A[j]. Note that all but A[bi+1] are elements from V , but
the composition is in T because of the ideal property. All elements which are not segment
representatives are 1M .

• a simple array C. For any segment (bi, bi+1), C[repr(bi +1)] = A[bi+1]. Other values of C are
ignored.

We claim that we can support the following operation: given any element j ∈ (bi, bi+1), compute
the composition of the entire segment in AV . Clearly, we can recover the composition of the elements
between bi +1 and j− 1, by running a prefix query in AV . In addition, we can define a monoid W ,
which is “the reverse” of V : (∀)a, b : a⊕W b = b⊕V a. Since |W | = |V | ≤ m−1, we can construct a
prefix structure on W by the induction hypothesis. We maintain AW [n− i+1] = AV [i], (∀)i. Now,
by running a prefix query in AW at position n− j + 1, we are effectively running a suffix query in
AV . By composing the prefix and the suffix, we obtain the composition of the entire segment.

We can now easily support a prefix query to position i. First, we run a prefix query in AT up
to repr(i) − 1. This will give the desired partial sum up to the predecessor of i in B. To get the
last part of the prefix, which consists only of elements from V ′, we simply ask for the prefix up to
i in AV . This works because the predecessor from B of i is the most recent breakpoint in AV .

Updates are done in two steps: first we change the old value to 1M , and then we change this to
the new value. We distinguish the following cases:

• both the old and new values are in V (possibly 1M). We update AV [i], and compute the
composition of the entire segment containing i. Then, we compose this with C[repr(i)], and
we update AT [repr(i)] to this new value.

• an element from T \V is replaced by 1M . We update AV and remove i from B, which merges
two segments. We remove the old segment representatives from AT (set AT [repr(i − 1)] =
AT [repr(i + 1)] = 1M). Then, we add the representative for the new segment. The value
of B[repr(i)] is given by the old value B[repr(i + 1)], corresponding to the right segment;
AT [repr(i)] is obtained by recomputing the composition of i’s segment, as above.

• 1M is replaced by an element in T \V . We update AV [i] to©b , and insert i into B, thus splitting
a segment. We first remove the old segment’s representative, setting AT [repr(i)] = 1M , and
then we add the two new representatives. The values in B are obvious: B[repr(i − 1)] gets
the new value of A[i], and B[repr(i + 1)] gets the old B[repr(i)] from the unsplit segment.
The values in AT are obtained by recomputing the compositions of the two segments.

• ©b is replaced by 1M . We update AT [i] to 1M . Changing the other structures is identical to
the case when an element from T \ V is removed.

• 1M is replaced by ©b . We propagate the change to AT [i]. Changing the other structures is
identical to the case when an element from T \ V is added.

18

4.2 A Family of Monoids without ENCCs

We now construct monoids which contain only “externally-commutative” groups, i.e. they contain
groups, but no ENCCs. Let M = {1M , a, a2, . . . , ak = ak+1} be a monoid, and G be a commutative
group. Now consider M × G with the operation (x, y) ~ (z, w) = (x ~M z, y ~G w). It follows
trivially that M ×G is a monoid, and it contains groups, such as {1M} ×G.

We now show M × G does not contain ENCCs. Consider some element (x, y) generating a
cycle. Since x to the cycle length must be equal to x, we have x ∈ {1M , ak}, which means
x2 = x. Also, y generates a cycles in G, which contains the identity of G (since G is a group).
Then the identity of the cycle generated by (x, y) must be (x, 1G). For arbitrary (z, w), we have
(x, 1G) ~ (z, w) ~ (x, y) = (xzx, wy) = (x, y) ~ (z, w) ~ (x, 1G), so one cannot find an ENCC.

Finally, observe that there is a trivial solution for the word problem in M×G. We can dissociate
the components from M and the components from G altogether, and solve the word problems in M
and G independently. Since G is a commutative group, the word problem can be solved in constant
time. An O(lg n

lg lg n) solution for M follows by the previous section.

Acknowledgments. We are grateful to Thore Husfeldt and an anonymous referee for the con-
ference version, for many helpful suggestions in the presentation of the lower bound proof. Some of
the results in this paper originate in a project of the first author for a research course at Harvard.
She is grateful to Nick Rogers for useful comments made on that occasion.

References

[AHR98] Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. Marked ancestor problems. In Proc.
39th IEEE Symposium on Foundations of Computer Science (FOCS), pages 534–543,
1998.

[Arg03] Lars Arge. The buffer tree: A technique for designing batched external data structures.
Algorithmica, 37(1):1–24, 2003. See also WADS’95.

[FMS97] Gudmund Skovbjerg Frandsen, Peter Bro Miltersen, and Sven Skyum. Dynamic word
problems. Journal of the ACM, 44(2):257–271, 1997. See also FOCS’93.

[Fre82] Michael L. Fredman. The complexity of maintaining an array and computing its partial
sums. Journal of the ACM, 29(1):250–260, 1982.

[FS89] Michael L. Fredman and Michael E. Saks. The cell probe complexity of dynamic data
structures. In Proc. 21st ACM Symposium on Theory of Computing (STOC), pages
345–354, 1989.

[KR65] Kenneth Krohn and John Rhodes. Algebraic theory of machines I. Prime decomposition
theorem for finite semigroups and machines. Transactions of the American Mathematical
Society, 116:450–464, 1965.

[Mil99] Peter Bro Miltersen. Cell probe complexity - a survey. In 19th Conference on the Foun-
dations of Software Technology and Theoretical Computer Science (FSTTCS), 1999.
Advances in Data Structures Workshop.

19

[MPP05] Christian Worm Mortensen, Rasmus Pagh, and Mihai Pǎtraşcu. On dynamic range
reporting in one dimension. In Proc. 37th ACM Symposium on Theory of Computing
(STOC), pages 104–111, 2005.

[MSVT94] Peter Bro Miltersen, Sairam Subramanian, Jeffrey S. Vitter, and Roberto Tamas-
sia. Complexity models for incremental computation. Theoretical Computer Science,
130(1):203–236, 1994. See also STACS’93.

[PD06] Mihai Pǎtraşcu and Erik D. Demaine. Logarithmic lower bounds in the cell-probe model.
SIAM Journal on Computing, 35(4):932–963, 2006. See also SODA’04 and STOC’04.

[Tho00] Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In Proc. 32nd ACM
Symposium on Theory of Computing (STOC), pages 343–350, 2000.

20

