
The Saga of Dynamic Lower Bounds
around the Logarithmic Barrier

Mihai Pǎtraşcu

MIT

Max Planck Institut, June 2005

Mihai P ǎtraşcu Dynamic Lower Bounds

Definitions

the cell-probe model

cells of O(lg n) bits
also, the bit-probe model: cells of one bit

tu = update time

tq = query time

n = number of bits/cells in the problem instance

Mihai P ǎtraşcu Dynamic Lower Bounds

Definitions

the cell-probe model

cells of O(lg n) bits
also, the bit-probe model: cells of one bit

tu = update time

tq = query time

n = number of bits/cells in the problem instance

Mihai P ǎtraşcu Dynamic Lower Bounds

Definitions

the cell-probe model

cells of O(lg n) bits
also, the bit-probe model: cells of one bit

tu = update time

tq = query time

n = number of bits/cells in the problem instance

Mihai P ǎtraşcu Dynamic Lower Bounds

Definitions

the cell-probe model

cells of O(lg n) bits
also, the bit-probe model: cells of one bit

tu = update time

tq = query time

n = number of bits/cells in the problem instance

Mihai P ǎtraşcu Dynamic Lower Bounds

The partial-sums problem

Maintain an array A[1 . . n] subject to:

UPDATE(k , u) modify A[k]← u.

SUM(k) return the partial sum
∑k

i=1 A[i].

VERIFY-SUM(k , σ) verify whether
∑k

i=1 A[i] = σ.
(decision version of SUM)

SELECT(σ) return i : SUM(i) ≤ σ < SUM(i + 1).

Mihai P ǎtraşcu Dynamic Lower Bounds

The partial-sums problem

Maintain an array A[1 . . n] subject to:

UPDATE(k , u) modify A[k]← u.

SUM(k) return the partial sum
∑k

i=1 A[i].

VERIFY-SUM(k , σ) verify whether
∑k

i=1 A[i] = σ.
(decision version of SUM)

SELECT(σ) return i : SUM(i) ≤ σ < SUM(i + 1).

Mihai P ǎtraşcu Dynamic Lower Bounds

The partial-sums problem

Maintain an array A[1 . . n] subject to:

UPDATE(k , u) modify A[k]← u.

SUM(k) return the partial sum
∑k

i=1 A[i].

VERIFY-SUM(k , σ) verify whether
∑k

i=1 A[i] = σ.
(decision version of SUM)

SELECT(σ) return i : SUM(i) ≤ σ < SUM(i + 1).

Mihai P ǎtraşcu Dynamic Lower Bounds

The partial-sums problem

Maintain an array A[1 . . n] subject to:

UPDATE(k , u) modify A[k]← u.

SUM(k) return the partial sum
∑k

i=1 A[i].

VERIFY-SUM(k , σ) verify whether
∑k

i=1 A[i] = σ.
(decision version of SUM)

SELECT(σ) return i : SUM(i) ≤ σ < SUM(i + 1).

Mihai P ǎtraşcu Dynamic Lower Bounds

The partial-sums problem

Maintain an array A[1 . . n] subject to:

UPDATE(k , u) modify A[k]← u.

SUM(k) return the partial sum
∑k

i=1 A[i].

VERIFY-SUM(k , σ) verify whether
∑k

i=1 A[i] = σ.
(decision version of SUM)

SELECT(σ) return i : SUM(i) ≤ σ < SUM(i + 1).

Mihai P ǎtraşcu Dynamic Lower Bounds

Chapters of the saga

STOC’89 Fredman and Saks: chronogram technique
Lower Bound: Ω(lg n

lg lg n) Problem: SUM

ICALP’98 Husfeldt and Rauhe: nondeterminism
Problem: VERIFY-SUM

FOCS’98 Alstrup, Husfeldt and Rauhe: alternative histories
Problem: marked ancestor, range queries

SODA’04 M.P. and Demaine: time-tree technique
Lower Bound: Ω(lg n) Problem: SUM

STOC’04 M.P. and Demaine: nondeterminism
Problem: VERIFY-SUM, dynamic connectivity

ICALP’05 M.P. and Corina Pǎtraşcu: epoch-based proof

Mihai P ǎtraşcu Dynamic Lower Bounds

Chapter I: The Chronogram Technique

Then great Xρoνoς fashioned from divine Aιθηρ a bright white egg.
Orphic Rhapsodies 66

Mihai P ǎtraşcu Dynamic Lower Bounds

Updates and epochs

run n updates, then one random query
argue this query must be slow, if all updates are fast

divide updates into exponentially growing epochs
e.g. epoch i has (99tu)i updates

next slides: (∀)i , the query needs to read a cell written in
epoch i with Ω(1) probability

lower bound: tq = Ω(lgtu n)⇒
tq lg tu = Ω(lg n)⇒ max{tu, tq} = Ω(lg n

lg lg n).

Mihai P ǎtraşcu Dynamic Lower Bounds

Updates and epochs

run n updates, then one random query
argue this query must be slow, if all updates are fast

divide updates into exponentially growing epochs
e.g. epoch i has (99tu)i updates

next slides: (∀)i , the query needs to read a cell written in
epoch i with Ω(1) probability

lower bound: tq = Ω(lgtu n)⇒
tq lg tu = Ω(lg n)⇒ max{tu, tq} = Ω(lg n

lg lg n).

Mihai P ǎtraşcu Dynamic Lower Bounds

Updates and epochs

run n updates, then one random query
argue this query must be slow, if all updates are fast

divide updates into exponentially growing epochs
e.g. epoch i has (99tu)i updates

next slides: (∀)i , the query needs to read a cell written in
epoch i with Ω(1) probability

lower bound: tq = Ω(lgtu n)⇒
tq lg tu = Ω(lg n)⇒ max{tu, tq} = Ω(lg n

lg lg n).

Mihai P ǎtraşcu Dynamic Lower Bounds

Updates and epochs

run n updates, then one random query
argue this query must be slow, if all updates are fast

divide updates into exponentially growing epochs
e.g. epoch i has (99tu)i updates

next slides: (∀)i , the query needs to read a cell written in
epoch i with Ω(1) probability

lower bound: tq = Ω(lgtu n)⇒
tq lg tu = Ω(lg n)⇒ max{tu, tq} = Ω(lg n

lg lg n).

Mihai P ǎtraşcu Dynamic Lower Bounds

The hard instance

A[1] A[n]

UPDATE(k , u) modify A[k]← u.
u is uniformly random
k ’s in each epoch are uniformly spread

SUM(k) return
∑k

i=1 A[i].
k is uniformly random

“A query cares about a random prefix sum in every epoch.”

Mihai P ǎtraşcu Dynamic Lower Bounds

The hard instance

A[1] A[n]

UPDATE(k , u) modify A[k]← u.
u is uniformly random
k ’s in each epoch are uniformly spread

SUM(k) return
∑k

i=1 A[i].
k is uniformly random

“A query cares about a random prefix sum in every epoch.”

Mihai P ǎtraşcu Dynamic Lower Bounds

The hard instance

A[1] A[n]

UPDATE(k , u) modify A[k]← u.
u is uniformly random
k ’s in each epoch are uniformly spread

SUM(k) return
∑k

i=1 A[i].
k is uniformly random

“A query cares about a random prefix sum in every epoch.”

Mihai P ǎtraşcu Dynamic Lower Bounds

The hard instance

A[1] A[n]

UPDATE(k , u) modify A[k]← u.
u is uniformly random
k ’s in each epoch are uniformly spread

SUM(k) return
∑k

i=1 A[i].
k is uniformly random

“A query cares about a random prefix sum in every epoch.”

Mihai P ǎtraşcu Dynamic Lower Bounds

One cell per epoch. . .

Look at some epoch i :

cells from the past (epoch > i) can’t contain information
about updates in epoch i

total # of cells written in the future (epoch < i):

tu ·
(
(99tu)i−1 + (99tu)i−2 + . . .

)
< tu · 2(99tu)i−1

there are (99tu)i random prefix sums in epoch i
⇒ “usually”, “most” prefix sums are not fixed by future cells

a random query cares about a random prefix sum;
if that’s not fixed, need to a cell from epoch i

Mihai P ǎtraşcu Dynamic Lower Bounds

One cell per epoch. . .

Look at some epoch i :

cells from the past (epoch > i) can’t contain information
about updates in epoch i

total # of cells written in the future (epoch < i):

tu ·
(
(99tu)i−1 + (99tu)i−2 + . . .

)
< tu · 2(99tu)i−1

there are (99tu)i random prefix sums in epoch i
⇒ “usually”, “most” prefix sums are not fixed by future cells

a random query cares about a random prefix sum;
if that’s not fixed, need to a cell from epoch i

Mihai P ǎtraşcu Dynamic Lower Bounds

One cell per epoch. . .

Look at some epoch i :

cells from the past (epoch > i) can’t contain information
about updates in epoch i

total # of cells written in the future (epoch < i):

tu ·
(
(99tu)i−1 + (99tu)i−2 + . . .

)
< tu · 2(99tu)i−1

there are (99tu)i random prefix sums in epoch i
⇒ “usually”, “most” prefix sums are not fixed by future cells

a random query cares about a random prefix sum;
if that’s not fixed, need to a cell from epoch i

Mihai P ǎtraşcu Dynamic Lower Bounds

One cell per epoch. . .

Look at some epoch i :

cells from the past (epoch > i) can’t contain information
about updates in epoch i

total # of cells written in the future (epoch < i):

tu ·
(
(99tu)i−1 + (99tu)i−2 + . . .

)
< tu · 2(99tu)i−1

there are (99tu)i random prefix sums in epoch i
⇒ “usually”, “most” prefix sums are not fixed by future cells

a random query cares about a random prefix sum;
if that’s not fixed, need to a cell from epoch i

Mihai P ǎtraşcu Dynamic Lower Bounds

One cell per epoch. . .

Look at some epoch i :

cells from the past (epoch > i) can’t contain information
about updates in epoch i

total # of cells written in the future (epoch < i):

tu ·
(
(99tu)i−1 + (99tu)i−2 + . . .

)
< tu · 2(99tu)i−1

there are (99tu)i random prefix sums in epoch i
⇒ “usually”, “most” prefix sums are not fixed by future cells

a random query cares about a random prefix sum;
if that’s not fixed, need to a cell from epoch i

Mihai P ǎtraşcu Dynamic Lower Bounds

Shadows of the past

Trouble: the algorithm probes cell X

say the cell was last written before epoch i

then it was not written in epoch i

that’s information about epoch i

Setup for Epoch Analysis

static problem on M elements

o(M) help bits – cells from future epochs

cell probe either returns a value, or “unavailable”

goal: lower bound for available cell probes

Observation for lower bound of 1:

If a query makes only “unavailable” probes on two
problem instances, it has the same answer on both.

Mihai P ǎtraşcu Dynamic Lower Bounds

Shadows of the past

Trouble: the algorithm probes cell X

say the cell was last written before epoch i

then it was not written in epoch i

that’s information about epoch i

Setup for Epoch Analysis

static problem on M elements

o(M) help bits – cells from future epochs

cell probe either returns a value, or “unavailable”

goal: lower bound for available cell probes

Observation for lower bound of 1:

If a query makes only “unavailable” probes on two
problem instances, it has the same answer on both.

Mihai P ǎtraşcu Dynamic Lower Bounds

Shadows of the past

Trouble: the algorithm probes cell X

say the cell was last written before epoch i

then it was not written in epoch i

that’s information about epoch i

Setup for Epoch Analysis

static problem on M elements

o(M) help bits – cells from future epochs

cell probe either returns a value, or “unavailable”

goal: lower bound for available cell probes

Observation for lower bound of 1:

If a query makes only “unavailable” probes on two
problem instances, it has the same answer on both.

Mihai P ǎtraşcu Dynamic Lower Bounds

Shadows of the past

Trouble: the algorithm probes cell X

say the cell was last written before epoch i

then it was not written in epoch i

that’s information about epoch i

Setup for Epoch Analysis

static problem on M elements

o(M) help bits – cells from future epochs

cell probe either returns a value, or “unavailable”

goal: lower bound for available cell probes

Observation for lower bound of 1:

If a query makes only “unavailable” probes on two
problem instances, it has the same answer on both.

Mihai P ǎtraşcu Dynamic Lower Bounds

Shadows of the past

Trouble: the algorithm probes cell X

say the cell was last written before epoch i

then it was not written in epoch i

that’s information about epoch i

Setup for Epoch Analysis

static problem on M elements

o(M) help bits – cells from future epochs

cell probe either returns a value, or “unavailable”

goal: lower bound for available cell probes

Observation for lower bound of 1:

If a query makes only “unavailable” probes on two
problem instances, it has the same answer on both.

Mihai P ǎtraşcu Dynamic Lower Bounds

Shadows of the past

Trouble: the algorithm probes cell X

say the cell was last written before epoch i

then it was not written in epoch i

that’s information about epoch i

Setup for Epoch Analysis

static problem on M elements

o(M) help bits – cells from future epochs

cell probe either returns a value, or “unavailable”

goal: lower bound for available cell probes

Observation for lower bound of 1:

If a query makes only “unavailable” probes on two
problem instances, it has the same answer on both.

Mihai P ǎtraşcu Dynamic Lower Bounds

Deeper thoughts

Queries
lower bound holds for nondeterministic query algorithms
nondeterministically, VERIFY-SUM equivalent to SUM

Updates
we just bounded the number of cell writes
the update algorithm can have perfect information

(“hard to maintain dynamic proofs”)
FIX: later in this talk

Hardness
every epoch must influence query with Ω(1) probability
FIX: alternative histories

Mihai P ǎtraşcu Dynamic Lower Bounds

Deeper thoughts

Queries
lower bound holds for nondeterministic query algorithms
nondeterministically, VERIFY-SUM equivalent to SUM

Updates
we just bounded the number of cell writes
the update algorithm can have perfect information

(“hard to maintain dynamic proofs”)
FIX: later in this talk

Hardness
every epoch must influence query with Ω(1) probability
FIX: alternative histories

Mihai P ǎtraşcu Dynamic Lower Bounds

Deeper thoughts

Queries
lower bound holds for nondeterministic query algorithms
nondeterministically, VERIFY-SUM equivalent to SUM

Updates
we just bounded the number of cell writes
the update algorithm can have perfect information

(“hard to maintain dynamic proofs”)
FIX: later in this talk

Hardness
every epoch must influence query with Ω(1) probability
FIX: alternative histories

Mihai P ǎtraşcu Dynamic Lower Bounds

Chapter II: The Time Tree

Ask veit ek standa.
Heitir Yggdrasill.

(Völuspá)

Mihai P ǎtraşcu Dynamic Lower Bounds

Constructing the time tree

Each operation chosen randomly from:

UPDATE(randomk , randomu)

SUM(randomk)

op op op op op op op op

Mihai P ǎtraşcu Dynamic Lower Bounds

Constructing the time tree

Build a balanced tree with operations in the leaves
(considered in chronological order)

op op op op op op op op

Mihai P ǎtraşcu Dynamic Lower Bounds

Constructing the time tree

A cell probe is characterized by:

time of last write to the cell

time when cell is read

op op op op op opop op

write read

Mihai P ǎtraşcu Dynamic Lower Bounds

Constructing the time tree

Cell probe is “associated” with LCA
Prove lower bounds for probes associated with each node
Then sum up

not double counting any cell probe

summing works for average case lower bounds

op op op op op opop op

write read

LCA

Mihai P ǎtraşcu Dynamic Lower Bounds

Constructing the time tree

Cell probe is “associated” with LCA
Prove lower bounds for probes associated with each node
Then sum up

not double counting any cell probe

summing works for average case lower bounds

op op op op op opop op

write read

LCA

Mihai P ǎtraşcu Dynamic Lower Bounds

Constructing the time tree

Cell probe is “associated” with LCA
Prove lower bounds for probes associated with each node
Then sum up

not double counting any cell probe

summing works for average case lower bounds

op op op op op opop op

write read

LCA

Mihai P ǎtraşcu Dynamic Lower Bounds

Constructing the time tree

Cell probe is “associated” with LCA
Prove lower bounds for probes associated with each node
Then sum up

not double counting any cell probe

summing works for average case lower bounds

op op op op op opop op

write read

LCA

Mihai P ǎtraşcu Dynamic Lower Bounds

Lower bounds for the information transfer

How much information do queries in the right subtree need to
learn about the updates in the left subtree?

simple analysis of a static problem

Almost true: all this information comes from cells written in left
subtree, read in right subtree

Give an encoding from which we can simulate the data
structure in the right subtree, not knowing the left subtree.
This must include all information learned.

past future
?

Mihai P ǎtraşcu Dynamic Lower Bounds

Lower bounds for the information transfer

How much information do queries in the right subtree need to
learn about the updates in the left subtree?

simple analysis of a static problem

Almost true: all this information comes from cells written in left
subtree, read in right subtree

Give an encoding from which we can simulate the data
structure in the right subtree, not knowing the left subtree.
This must include all information learned.

past future

?

Mihai P ǎtraşcu Dynamic Lower Bounds

Lower bounds for the information transfer

How much information do queries in the right subtree need to
learn about the updates in the left subtree?

simple analysis of a static problem

Almost true: all this information comes from cells written in left
subtree, read in right subtree

Give an encoding from which we can simulate the data
structure in the right subtree, not knowing the left subtree.
This must include all information learned.

past future

?

Mihai P ǎtraşcu Dynamic Lower Bounds

The Return of the Shadows

W R

W = cells written in left subtree

R = cells read in right subtree
by one accepting thread per query

Encoding contains:

complete information for W ∩ R

separator for W \ R and R \W (Bloomier filter)

This suffices for correct simulation!
A cell probe can come from:

W ∩ R ⇒ have complete information

R’s side of separator⇒ not in W ⇒ value from the past

W ’s side of separator⇒ kill simulation of this thread

Mihai P ǎtraşcu Dynamic Lower Bounds

The Return of the Shadows

W R

W = cells written in left subtree

R = cells read in right subtree
by one accepting thread per query

Encoding contains:

complete information for W ∩ R

separator for W \ R and R \W (Bloomier filter)

This suffices for correct simulation!
A cell probe can come from:

W ∩ R ⇒ have complete information

R’s side of separator⇒ not in W ⇒ value from the past

W ’s side of separator⇒ kill simulation of this thread

Mihai P ǎtraşcu Dynamic Lower Bounds

The Return of the Shadows

W R

W = cells written in left subtree

R = cells read in right subtree
by one accepting thread per query

Encoding contains:

complete information for W ∩ R

separator for W \ R and R \W (Bloomier filter)

This suffices for correct simulation!
A cell probe can come from:

W ∩ R ⇒ have complete information

R’s side of separator⇒ not in W ⇒ value from the past

W ’s side of separator⇒ kill simulation of this thread

Mihai P ǎtraşcu Dynamic Lower Bounds

The Return of the Shadows

W R

W = cells written in left subtree

R = cells read in right subtree
by one accepting thread per query

Encoding contains:

complete information for W ∩ R

separator for W \ R and R \W (Bloomier filter)

This suffices for correct simulation!
A cell probe can come from:

W ∩ R ⇒ have complete information

R’s side of separator⇒ not in W ⇒ value from the past

W ’s side of separator⇒ kill simulation of this thread

Mihai P ǎtraşcu Dynamic Lower Bounds

The Return of the Shadows

W R

W = cells written in left subtree

R = cells read in right subtree
by one accepting thread per query

Encoding contains:

complete information for W ∩ R

separator for W \ R and R \W (Bloomier filter)

This suffices for correct simulation!
A cell probe can come from:

W ∩ R ⇒ have complete information

R’s side of separator⇒ not in W ⇒ value from the past

W ’s side of separator⇒ kill simulation of this thread

Mihai P ǎtraşcu Dynamic Lower Bounds

The Return of the Shadows

W R

W = cells written in left subtree

R = cells read in right subtree
by one accepting thread per query

Encoding contains:

complete information for W ∩ R

separator for W \ R and R \W (Bloomier filter)

This suffices for correct simulation!
A cell probe can come from:

W ∩ R ⇒ have complete information

R’s side of separator⇒ not in W ⇒ value from the past

W ’s side of separator⇒ kill simulation of this thread

Mihai P ǎtraşcu Dynamic Lower Bounds

The Return of the Shadows

W R

W = cells written in left subtree

R = cells read in right subtree
by one accepting thread per query

Encoding contains:

complete information for W ∩ R

separator for W \ R and R \W (Bloomier filter)

This suffices for correct simulation!
A cell probe can come from:

W ∩ R ⇒ have complete information

R’s side of separator⇒ not in W ⇒ value from the past

W ’s side of separator⇒ kill simulation of this thread

Mihai P ǎtraşcu Dynamic Lower Bounds

Chapter III: Back to Epochs

Strategy: an epoch-based proof,

. . . but identify the real

Mihai P ǎtraşcu Dynamic Lower Bounds

Chapter III: Back to Epochs

Strategy: an epoch-based proof,

. . . but identify the real

Speaking of mythology. . .

Mihai P ǎtraşcu Dynamic Lower Bounds

What’s wrong with the time tree?

Not combinatorial enough.

Intuitively, many problems are hard but do not hide a large
encoding problem.

Concrete examples:

the bit-probe model

the separator (Bloomier filter) is too large to analyze the full
tradeoff for VERIFY-SUM

Mihai P ǎtraşcu Dynamic Lower Bounds

What’s wrong with the time tree?

Not combinatorial enough.

Intuitively, many problems are hard but do not hide a large
encoding problem.

Concrete examples:

the bit-probe model

the separator (Bloomier filter) is too large to analyze the full
tradeoff for VERIFY-SUM

Mihai P ǎtraşcu Dynamic Lower Bounds

What is the time tree trying to tell us?

Information learned by future epochs about epoch i
≤ cells written in future epochs

At most tu cell writes per future update.

But also
≤ cells ever read from epoch i

On average O(tu
#epochs) cell reads per future update.

Still in old “help bits” framework.
Just reuse old analysis with better bound.

epoch i has (99 tu
tq

)i updates

tq = Ω(lg n/ lg tu
tq

)⇒ max{tu, tq} = Ω(lg n).

Mihai P ǎtraşcu Dynamic Lower Bounds

What is the time tree trying to tell us?

Information learned by future epochs about epoch i
≤ cells written in future epochs

At most tu cell writes per future update.

But also
≤ cells ever read from epoch i

On average O(tu
#epochs) cell reads per future update.

Still in old “help bits” framework.
Just reuse old analysis with better bound.

epoch i has (99 tu
tq

)i updates

tq = Ω(lg n/ lg tu
tq

)⇒ max{tu, tq} = Ω(lg n).

Mihai P ǎtraşcu Dynamic Lower Bounds

What is the time tree trying to tell us?

Information learned by future epochs about epoch i
≤ cells written in future epochs

At most tu cell writes per future update.

But also
≤ cells ever read from epoch i

On average O(tu
#epochs) cell reads per future update.

Still in old “help bits” framework.
Just reuse old analysis with better bound.

epoch i has (99 tu
tq

)i updates

tq = Ω(lg n/ lg tu
tq

)⇒ max{tu, tq} = Ω(lg n).

Mihai P ǎtraşcu Dynamic Lower Bounds

What is the time tree trying to tell us?

Information learned by future epochs about epoch i
≤ cells written in future epochs

At most tu cell writes per future update.

But also
≤ cells ever read from epoch i

On average O(tu
#epochs) cell reads per future update.

Still in old “help bits” framework.
Just reuse old analysis with better bound.

epoch i has (99 tu
tq

)i updates

tq = Ω(lg n/ lg tu
tq

)⇒ max{tu, tq} = Ω(lg n).

Mihai P ǎtraşcu Dynamic Lower Bounds

What is the time tree trying to tell us?

Information learned by future epochs about epoch i
≤ cells written in future epochs

At most tu cell writes per future update.

But also
≤ cells ever read from epoch i

On average O(tu
#epochs) cell reads per future update.

Still in old “help bits” framework.
Just reuse old analysis with better bound.

epoch i has (99 tu
tq

)i updates

tq = Ω(lg n/ lg tu
tq

)⇒ max{tu, tq} = Ω(lg n).

Mihai P ǎtraşcu Dynamic Lower Bounds

What is the time tree trying to tell us?

Information learned by future epochs about epoch i
≤ cells written in future epochs

At most tu cell writes per future update.

But also
≤ cells ever read from epoch i

On average O(tu
#epochs) cell reads per future update.

Still in old “help bits” framework.
Just reuse old analysis with better bound.

epoch i has (99 tu
tq

)i updates

tq = Ω(lg n/ lg tu
tq

)⇒ max{tu, tq} = Ω(lg n).

Mihai P ǎtraşcu Dynamic Lower Bounds

What is the time tree trying to tell us?

Information learned by future epochs about epoch i
≤ cells written in future epochs

At most tu cell writes per future update.

But also
≤ cells ever read from epoch i

On average O(tu
#epochs) cell reads per future update.

Still in old “help bits” framework.
Just reuse old analysis with better bound.

epoch i has (99 tu
tq

)i updates

tq = Ω(lg n/ lg tu
tq

)⇒ max{tu, tq} = Ω(lg n).

Mihai P ǎtraşcu Dynamic Lower Bounds

Handwaving about the reads/epoch bound

Randomize epoch construction:

query happens at a random time

build epochs from there

Classify cell probes by the span between read an write times.

The randomized epoch construction finds few cells of the right
span, in expectation.

Mihai P ǎtraşcu Dynamic Lower Bounds

Handwaving about the reads/epoch bound

Randomize epoch construction:

query happens at a random time

build epochs from there

Classify cell probes by the span between read an write times.

The randomized epoch construction finds few cells of the right
span, in expectation.

Mihai P ǎtraşcu Dynamic Lower Bounds

Handwaving about the reads/epoch bound

Randomize epoch construction:

query happens at a random time

build epochs from there

Classify cell probes by the span between read an write times.

The randomized epoch construction finds few cells of the right
span, in expectation.

Mihai P ǎtraşcu Dynamic Lower Bounds

Handwaving about the reads/epoch bound

Randomize epoch construction:

query happens at a random time

build epochs from there

w r

Classify cell probes by the span between read an write times.

The randomized epoch construction finds few cells of the right
span, in expectation.

Mihai P ǎtraşcu Dynamic Lower Bounds

Handwaving about the reads/epoch bound

Randomize epoch construction:

query happens at a random time

build epochs from there

w r

Classify cell probes by the span between read an write times.

The randomized epoch construction finds few cells of the right
span, in expectation.

Mihai P ǎtraşcu Dynamic Lower Bounds

What lays ahead. . .

[Σιβυλλα ∆ελφις] was born before Tρωικων,
and she wrote oracles in verse.

(Σoυδα)

Mihai P ǎtraşcu Dynamic Lower Bounds

Chapters to be written

need to access ω(1) cells per epoch
Essentially, we need a static lower bound for each epoch:

SELECT ⇒ predecessor search in each epoch
range queries⇒ static range query in each epoch

Objection: static lower bounds are hard.
can dynamize range structures⇒ unavoidable
recent progress by M.P. and Thorup

below the logarithmic barrier: dynamic search problems
range reporting in 1D, deterministic dictionaries
easy statically, nondet. and conondet.

bounds of nΩ(1) (e.g. directed graph problems)
epochs are useless
idea: conjecture on communication games with help bits

Mihai P ǎtraşcu Dynamic Lower Bounds

Chapters to be written

need to access ω(1) cells per epoch
Essentially, we need a static lower bound for each epoch:

SELECT ⇒ predecessor search in each epoch
range queries⇒ static range query in each epoch

Objection: static lower bounds are hard.
can dynamize range structures⇒ unavoidable
recent progress by M.P. and Thorup

below the logarithmic barrier: dynamic search problems
range reporting in 1D, deterministic dictionaries
easy statically, nondet. and conondet.

bounds of nΩ(1) (e.g. directed graph problems)
epochs are useless
idea: conjecture on communication games with help bits

Mihai P ǎtraşcu Dynamic Lower Bounds

Chapters to be written

need to access ω(1) cells per epoch
Essentially, we need a static lower bound for each epoch:

SELECT ⇒ predecessor search in each epoch
range queries⇒ static range query in each epoch

Objection: static lower bounds are hard.
can dynamize range structures⇒ unavoidable
recent progress by M.P. and Thorup

below the logarithmic barrier: dynamic search problems
range reporting in 1D, deterministic dictionaries
easy statically, nondet. and conondet.

bounds of nΩ(1) (e.g. directed graph problems)
epochs are useless
idea: conjecture on communication games with help bits

Mihai P ǎtraşcu Dynamic Lower Bounds

Chapters to be written

need to access ω(1) cells per epoch
Essentially, we need a static lower bound for each epoch:

SELECT ⇒ predecessor search in each epoch
range queries⇒ static range query in each epoch

Objection: static lower bounds are hard.
can dynamize range structures⇒ unavoidable
recent progress by M.P. and Thorup

below the logarithmic barrier: dynamic search problems
range reporting in 1D, deterministic dictionaries
easy statically, nondet. and conondet.

bounds of nΩ(1) (e.g. directed graph problems)
epochs are useless
idea: conjecture on communication games with help bits

Mihai P ǎtraşcu Dynamic Lower Bounds

Chapters to be written

need to access ω(1) cells per epoch
Essentially, we need a static lower bound for each epoch:

SELECT ⇒ predecessor search in each epoch
range queries⇒ static range query in each epoch

Objection: static lower bounds are hard.
can dynamize range structures⇒ unavoidable
recent progress by M.P. and Thorup

below the logarithmic barrier: dynamic search problems
range reporting in 1D, deterministic dictionaries
easy statically, nondet. and conondet.

bounds of nΩ(1) (e.g. directed graph problems)
epochs are useless
idea: conjecture on communication games with help bits

Mihai P ǎtraşcu Dynamic Lower Bounds

Chapters to be written

need to access ω(1) cells per epoch
Essentially, we need a static lower bound for each epoch:

SELECT ⇒ predecessor search in each epoch
range queries⇒ static range query in each epoch

Objection: static lower bounds are hard.
can dynamize range structures⇒ unavoidable
recent progress by M.P. and Thorup

below the logarithmic barrier: dynamic search problems
range reporting in 1D, deterministic dictionaries
easy statically, nondet. and conondet.

bounds of nΩ(1) (e.g. directed graph problems)
epochs are useless
idea: conjecture on communication games with help bits

Mihai P ǎtraşcu Dynamic Lower Bounds

Chapters to be written

need to access ω(1) cells per epoch
Essentially, we need a static lower bound for each epoch:

SELECT ⇒ predecessor search in each epoch
range queries⇒ static range query in each epoch

Objection: static lower bounds are hard.
can dynamize range structures⇒ unavoidable
recent progress by M.P. and Thorup

below the logarithmic barrier: dynamic search problems
range reporting in 1D, deterministic dictionaries
easy statically, nondet. and conondet.

bounds of nΩ(1) (e.g. directed graph problems)
epochs are useless
idea: conjecture on communication games with help bits

Mihai P ǎtraşcu Dynamic Lower Bounds

Chapters to be written

need to access ω(1) cells per epoch
Essentially, we need a static lower bound for each epoch:

SELECT ⇒ predecessor search in each epoch
range queries⇒ static range query in each epoch

Objection: static lower bounds are hard.
can dynamize range structures⇒ unavoidable
recent progress by M.P. and Thorup

below the logarithmic barrier: dynamic search problems
range reporting in 1D, deterministic dictionaries
easy statically, nondet. and conondet.

bounds of nΩ(1) (e.g. directed graph problems)
epochs are useless
idea: conjecture on communication games with help bits

Mihai P ǎtraşcu Dynamic Lower Bounds

The story ends here (for now. . .)

T HE END

Sleep tight.

Mihai P ǎtraşcu Dynamic Lower Bounds

