Lower Bounds for Edit Distance and Product Metrics via Poincaré-Type Inequalities

Alexandr Andoni (Princeton University/CCI) T.S. Jayram (IBM Almaden) Mihai Pătrașcu (AT&T Labs)

January 17, 2010

Alexandr Andoni (Princeton)

Lower Bounds for Edit Distance...

January 17, 2010

1 / 13

Edit Distance

Definition

- Given two strings x and y
- ED(x, y) is the minimum number of insertions/deletions/substitutions to transform x into y.

Examp	le		1
ED(banana	,	
	ananas) = 2	

э

Edit Distance

Definition

- Given two strings x and y
- ED(x, y) is the minimum number of insertions/deletions/substitutions to transform x into y.

・ 同 ト ・ ヨ ト ・ ヨ ト

- 31

Edit Distance

Definition

- Given two strings x and y
- ED(x, y) is the minimum number of insertions/deletions/substitutions to transform x into y.

Applications to

- Bioinformatics,
- Text processing...

Alexandr Andoni (Princeton)

Lower Bounds for Edit Distance...

A B F A B F January 17, 2010

2 / 13

3

• Compute edit distance ED(x, y) between strings of length d • Exactly: in $O(d^2/\log^2 d)$ time [Masek-Paterson'80]

- 20

• Compute edit distance ED(x, y) between strings of length d

- Exactly: in $O(d^2/\log^2 d)$ time [Masek–Paterson'80]
- Faster? maybe up to some approximation...

3

・ 伊 ト ・ ヨ ト

• Compute edit distance ED(x, y) between strings of length d

- Exactly: in $O(d^2/\log^2 d)$ time [Masek–Paterson'80]
- Faster? maybe up to some approximation...
- $(\log d)^{O(1)}$ approximation in $d^{1+\varepsilon}$ time [A-Krauthgamer-Onak'??]

• Compute edit distance ED(x, y) between strings of length d

- Exactly: in $O(d^2/\log^2 d)$ time [Masek-Paterson'80]
- Faster? maybe up to some approximation...
- $(\log d)^{O(1)}$ approximation in $d^{1+\varepsilon}$ time [A-Krauthgamer-Onak'??]
- Nearest Neighbor Search: preprocess a set of n strings, so that later, given a query string, one can report its nearest neighbor
 - no exact efficient algorithms known
 - $2^{\tilde{O}(\sqrt{\log d})}$ approximation known for efficient NNS algorithms [Ostrovsky–Rabani'05]

Communication Complexity

③ The communication problem:

- Alice has x, and Bob has y
- they want to estimate ED(x, y).
- How much information (in bits) needs to be communicated?

Communication Complexity

③ The communication problem:

- Alice has x, and Bob has y
- they want to estimate ED(x, y).
- How much information (in bits) needs to be communicated?

Why?

• E.g., Alice and Bob have different versions of the same document

③ The communication problem:

- Alice has x, and Bob has y
- they want to estimate ED(x, y).
- How much information (in bits) needs to be communicated?

Why?

- E.g., Alice and Bob have different versions of the same document
- Important primitive for other tasks on edit distance: implies good solutions for other problems as well.
 In fact, best bounds for (vanilla) computating edit distance and NNS problems are obtained via the communication problem!

4 / 13

Our Lower Bound

Alice and Bob have to compute the function

$$f_{\rm ED}(x, y) = \begin{cases} 1, & \text{if } ED(x, y) \le R \quad (\text{close}) \\ 0, & \text{if } ED(x, y) > \alpha R \quad (\text{far}) \end{cases}$$

for given fixed threshold R and approximation $\alpha > 1$.

イロト イポト イヨト イヨト

- 2

5 / 13

Our Lower Bound

Alice and Bob have to compute the function

$$f_{\rm ED}(x, y) = \begin{cases} 1, & \text{if } {\rm ED}(x, y) \le R \quad (\text{close}) \\ 0, & \text{if } {\rm ED}(x, y) > \alpha R \quad (\text{far}) \end{cases}$$

for given fixed threshold R and approximation $\alpha > 1$.

Theorem

For some fixed threshold R, and for every approximation $\alpha < O(\log d \ / \ \log \log d)$, the communication complexity of $f_{\rm ED}$ is at least

$$\Omega\left(\frac{\log d \ / \ \log\log d}{\alpha}\right)$$

Alexandr Andoni (Princeton) Lower Bounds for Edit Distance... January 17, 2010

Our Lower Bound

Alice and Bob have to compute the function

$$f_{\rm ED}(x, y) = \begin{cases} 1, & \text{if } {\rm ED}(x, y) \le R \quad (\text{close}) \\ 0, & \text{if } {\rm ED}(x, y) > \alpha R \quad (\text{far}) \end{cases}$$

for given fixed threshold R and approximation $\alpha > 1$.

Theorem

For some fixed threshold R, and for every approximation $\alpha < O(\log d \ / \ \log \log d)$, the communication complexity of $f_{\rm ED}$ is at least

$$\Omega\left(\frac{\log d / \log \log d}{\alpha}\right)$$

- For approximation $\alpha = O(1)$, previously $\Omega(\log \log d)$ [A-Krauthgamer'07] We obtain *exponentially*-higher bound
- Lower bound works even when x, y are non-repetitive (Ulam metric)
- For Ulam metric, *close to upper bound*: $O(\log^6 d)$ communication for $\alpha = O(1)$ [A-Indyk-Krauthgamer'09]

Direct Sum Theorem

- Lower bound follows from general "direct sum" statement
- works for any metric M

Definition

Let $k \in \mathbb{N}$. The *max-product* of M is a new metric $\ell_{\infty}^{k}(M)$ where the distance between $x, y \in M^{k}$ is

$$\mathsf{dist}_{\infty,M}(x,y) = \max_{i=1...k} \mathsf{dist}_M(x_i,y_i).$$

Direct Sum Theorem

- Lower bound follows from general "direct sum" statement
- works for any metric M

Definition

Let $k \in \mathbb{N}$. The *max-product* of M is a new metric $\ell_{\infty}^{k}(M)$ where the distance between $x, y \in M^{k}$ is

$$\operatorname{dist}_{\infty,M}(x,y) = \max_{i=1...k} \operatorname{dist}_M(x_i, y_i).$$

Theorem (Direct Sum)

Fix approximation $\alpha > 1$, and $k \in \mathbb{N}$. If the complexity of communication problem for M is $\Omega(1)$ (an absolute constant), then the complexity of the max-product $\ell_{\infty}^{k}(M)$ is at least $\Omega(k)$.

- 31

イロト イポト イヨト イヨト

Theorem (Direct Sum)

Fix approximation $\alpha > 1$, and $k \in \mathbb{N}$. If the complexity of communication problem for M is $\Omega(1)$ (an absolute constant), then the complexity of the max-product $\ell_{\infty}^{k}(M)$ is at least $\Omega(k)$.

Theorem (Direct Sum)

Fix approximation $\alpha > 1$, and $k \in \mathbb{N}$. If the complexity of communication problem for M is $\Omega(1)$ (an absolute constant), then the complexity of the max-product $\ell_{\infty}^{k}(M)$ is at least $\Omega(k)$.

• For edit distance, jump-start with:

Theorem ([A–Krauthgamer'07])

For edit distance (when M = ED), the complexity of the communication problem is $\Omega(1)$ for approximation $\alpha_1 = \Theta(\frac{\log d}{\log \log d})$.

Theorem (Direct Sum)

Fix approximation $\alpha > 1$, and $k \in \mathbb{N}$. If the complexity of communication problem for M is $\Omega(1)$ (an absolute constant), then the complexity of the max-product $\ell_{\infty}^{k}(M)$ is at least $\Omega(k)$.

• For edit distance, jump-start with:

Theorem ([A–Krauthgamer'07])

For edit distance (when M = ED), the complexity of the communication problem is $\Omega(1)$ for approximation $\alpha_1 = \Theta(\frac{\log d}{\log \log d})$.

• Then, apply the direct sum theorem for $k \approx \alpha_1/100$ to obtain the lower bound for ℓ_{∞}^k (ED) for approximation α_1 .

(人間) トイヨト イヨト 三日

Theorem (Direct Sum)

Fix approximation $\alpha > 1$, and $k \in \mathbb{N}$. If the complexity of communication problem for M is $\Omega(1)$ (an absolute constant), then the complexity of the max-product $\ell_{\infty}^{k}(M)$ is at least $\Omega(k)$.

• For edit distance, jump-start with:

Theorem ([A–Krauthgamer'07])

For edit distance (when M = ED), the complexity of the communication problem is $\Omega(1)$ for approximation $\alpha_1 = \Theta(\frac{\log d}{\log \log d})$.

- Then, apply the direct sum theorem for $k \approx \alpha_1/100$ to obtain the lower bound for ℓ_{∞}^k (ED) for approximation α_1 .
- $\ell_{\infty}^{k}(\text{ED}) \approx \text{ED}$ up to approximation k. Namely, we can map tuples of strings in $\ell_{\infty}^{k}(\text{ED})$ to strings under edit distance (e.g., by concatenating the k strings, with some padding in between).

Alexandr Andoni (Princeton) Lower Bounds for Edit Distance... January 17, 2010 7 / 13

Proof of Direct Sum Theorem

Three steps:

3

Three steps:

• Show that $\Omega(1)$ communication lower bound for f_M is equivalent to a certain Poincaré-type inequality on the metric M

э

Three steps:

- Show that $\Omega(1)$ communication lower bound for f_M is equivalent to a certain Poincaré-type inequality on the metric M
- The Poincaré-type inequality implies a lower bound on information complexity of a communication protocol

Three steps:

- Show that $\Omega(1)$ communication lower bound for f_M is equivalent to a certain Poincaré-type inequality on the metric M
- The Poincaré-type inequality implies a lower bound on information complexity of a communication protocol
- Use a direct sum theorem for the AND function of [Chakrabarti-Shi-Wirth-Yao'01, Bar-Yossef-Jayram-Kumar-Sivakumar'03]

1. Poincaré Inequalities and Protocols of Constant Communication

Fix approximation α , threshold R.

Definition (Poincaré Inequality)

- distribution η_1 on close instances $(dist_M(x, y) \le R)$
- distribution η_0 on far instances $(dist_M(x, y) > \alpha R)$
- parameters $\lambda > 0, \beta \ge 0$

A Poincaré inequality holds for M if for all $\rho: M \to \ell_2$:

$$\mathbb{E}_{(x,y) \sim \eta_1} \| \rho(x) - \rho(y) \|^2 \ge \lambda \cdot \mathbb{E}_{(x,y) \sim \eta_0} \| \rho(x) - \rho(y) \|^2 - \beta$$

1. Poincaré Inequalities and Protocols of Constant Communication

Fix approximation α , threshold R.

Definition (Poincaré Inequality)

- distribution η_1 on close instances $(dist_M(x, y) \le R)$
- distribution η_0 on far instances $(dist_M(x, y) > \alpha R)$
- parameters $\lambda > 0, \beta \ge 0$

A Poincaré inequality holds for M if for all $\rho: M \rightarrow \ell_2$:

$$\mathbb{E}_{(x,y) \sim \eta_1} \| \rho(x) - \rho(y) \|^2 \ge \lambda \cdot \mathbb{E}_{(x,y) \sim \eta_0} \| \rho(x) - \rho(y) \|^2 - \beta$$

Lemma

Suppose the communication problem for *M* has $\omega(1)$ communication. Then a Poincaré inequality holds for $\lambda = 1$ and $\beta = o(1)$.

Note: the converse is also true [A-Krauthgamer'07]

Alexandr Andoni (Princeton)

Lower Bounds for Edit Distance...

2. Information Complexity

• Information complexity of a function f is the minimal mutual information between the inputs (x, y) and the protocol Π (over the choice of protocols Π that correctly compute f):

 $IC(f) = \min_{\Pi} I(x, y; \Pi)$

Convenient to consider $I(x, y; \Pi | D)$ for some event D such that x and y are independently distributed when conditioned on D.

Remember, we use the partial function

$$f = f_M(x, y) = \begin{cases} 1, & \text{if } \operatorname{dist}_M(x, y) \le R \\ 0, & \text{if } \operatorname{dist}_M(x, y) > \alpha R \end{cases}$$

2. Information Complexity

• Information complexity of a function f is the minimal mutual information between the inputs (x, y) and the protocol Π (over the choice of protocols Π that correctly compute f):

$$IC(f) = \min_{\Pi} I(x, y; \Pi)$$

Convenient to consider $I(x, y; \Pi | D)$ for some event D such that x and y are independently distributed when conditioned on D.

Remember, we use the partial function

$$f = f_M(x, y) = \begin{cases} 1, & \text{if } \operatorname{dist}_M(x, y) \le R \\ 0, & \text{if } \operatorname{dist}_M(x, y) > \alpha R \end{cases}$$

Lemma

Fix some metric M, approximation α , and threshold R. If M satisfies a Poincaré inequality with $\lambda = \Omega(1)$ and $\beta = o(1)$, then $IC(f_M) \ge \Omega(1)$.

Alexandr Andoni (Princeton)

Lower Bounds for Edit Distance...

3. Direct Sum for AND Function

- Let g be the function of communication problem for $\ell_{\infty}^{k}(M)$
- Note that g is defined on M^k and

$$g(x, y) = \begin{cases} 1, & \text{if } \max_{i=1\dots k} \operatorname{dist}_M(x_i, y_i) \le R \\ 0, & \text{if } \max_{i=1\dots k} \operatorname{dist}_M(x_i, y_i) > \alpha R \end{cases} = \bigwedge_{i=1\dots k} f_M(x_i, y_i)$$

3. 3

・ 同・ ・ ヨ・

3. Direct Sum for AND Function

- Let g be the function of communication problem for $\ell_{\infty}^{k}(M)$
- Note that g is defined on M^k and

$$g(x, y) = \begin{cases} 1, & \text{if } \max_{i=1\dots k} \ \text{dist}_M(x_i, y_i) \le R\\ 0, & \text{if } \max_{i=1\dots k} \ \text{dist}_M(x_i, y_i) > \alpha R \end{cases} = \bigwedge_{i=1\dots k} f_M(x_i, y_i)$$

• For the AND function, we can use the following direct-sum theorem for communication complexity:

Theorem ([Chakrabarti–Shi–Wirth–Yao'01, Bar-Yossef–Jayram–Kumar–Sivakumar'03])

Let f, g be any partial functions such that $g(x, y) = \bigwedge_{i=1...k} f(x_i, y_i)$. Then the communication complexity of g is at least $k \cdot IC(f)$.

Alexandr Andoni (Princeton)

✓ △ → < ≥ → < ≥ →</p>
January 17, 2010

Direct Sum Theorem: Proof Wrap-up

Communication problem for M requires $\omega(1)$ bits of communication

Image: A matrix and a matrix

3. 3

Direct Sum Theorem: Proof Wrap-up

Communication problem for M requires $\omega(1)$ bits of communication \implies Poincaré inequality for M: there exist η_0, η_1 , s.t. for any $\rho: M \rightarrow \ell_2$

$$\mathbb{E}_{(x,y) \sim \eta_1} \| \rho(x) - \rho(y) \|^2 \ge \mathbb{E}_{(x,y) \sim \eta_0} \| \rho(x) - \rho(y) \|^2 - o(1)$$

Direct Sum Theorem: Proof Wrap-up

Communication problem for M requires $\omega(1)$ bits of communication \implies Poincaré inequality for M: there exist η_0, η_1 , s.t. for any $\rho: M \rightarrow \ell_2$

$$\mathbb{E}_{(x,y) \sim \eta_1} \| \rho(x) - \rho(y) \|^2 \ge \mathbb{E}_{(x,y) \sim \eta_0} \| \rho(x) - \rho(y) \|^2 - o(1)$$

 \implies Information complexity lower bound for f_M of $\Omega(1)$:

 $IC(f_M) \geq \Omega(1)$

3 N 3

Communication problem for M requires $\omega(1)$ bits of communication \implies Poincaré inequality for M: there exist η_0, η_1 , s.t. for any $\rho: M \rightarrow \ell_2$

$$\mathbb{E}_{(x,y) \sim \eta_1} \| \rho(x) - \rho(y) \|^2 \ge \mathbb{E}_{(x,y) \sim \eta_0} \| \rho(x) - \rho(y) \|^2 - o(1)$$

Information complexity lower bound for f_M of $\Omega(1)$: \implies

 $IC(f_M) \ge \Omega(1)$

 \implies Communication complexity lower bound $\bigwedge_{i=1}^{k} f_M$ is $\Omega(k)$; equivalent to communication problem on $\ell_{\infty}^k(M)$.

Alexandr Andoni (Princeton)

Lower Bounds for Edit Distance...

(ロ) (同) (三) (三) (同) (の へ や January 17, 2010

- Lower bound of $\Omega(\frac{\log d / \log \log d}{\alpha})$ for communication complexity of estimating edit distance up to approximation α
- Close to the upper bound of O(log⁶ d) in the case of Ulam distance (non-repetitive strings)
- Lower bound based on a geometric feature of the metric (a Poincaré-type inequality), usually used for proving non-embeddability into normed spaces

- Lower bound of $\Omega(\frac{\log d / \log \log d}{\alpha})$ for communication complexity of estimating edit distance up to approximation α
- Close to the upper bound of $O(\log^6 d)$ in the case of Ulam distance (non-repetitive strings)
- Lower bound based on a geometric feature of the metric (a Poincaré-type inequality), usually used for proving non-embeddability into normed spaces

Open question: upper bounds on communication complexity?

(미) (過) (종) (종) (종)

- Lower bound of $\Omega(\frac{\log d / \log \log d}{\alpha})$ for communication complexity of estimating edit distance up to approximation α
- Close to the upper bound of $O(\log^6 d)$ in the case of Ulam distance (non-repetitive strings)
- Lower bound based on a geometric feature of the metric (a Poincaré-type inequality), usually used for proving non-embeddability into normed spaces

Open question: upper bounds on communication complexity?

• $2^{\tilde{O}(\sqrt{\log d})}$ approximation with O(1) bits [Ostrovsky-Rabani'05]

- Lower bound of $\Omega(\frac{\log d / \log \log d}{\alpha})$ for communication complexity of estimating edit distance up to approximation α
- Close to the upper bound of $O(\log^6 d)$ in the case of Ulam distance (non-repetitive strings)
- Lower bound based on a geometric feature of the metric (a Poincaré-type inequality), usually used for proving non-embeddability into normed spaces

Open question: upper bounds on communication complexity?

- $2^{\tilde{O}(\sqrt{\log d})}$ approximation with O(1) bits [Ostrovsky-Rabani'05]
- Partial progress: $(\log d)^{O(1)}$ approximation with d^{ε} bits when $R = \tilde{\Theta}(d)$ [A–Krauthgamer–Onak]