Tabulation-Based Hashing

Mihai Pătraşcu Mikkel Thorup

April 23, 2010

Mihai Pătraşcu, Mikkel Thorup Tabulation-Based Hashing

ヘロン 人間 とくほど くほとう

∃ 𝒫𝔅

Applications of Hashing

Hash tables:

chaining

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Applications of Hashing

Hash tables:

- chaining
- linear probing

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

- chaining
- linear probing
- cuckoo hashing

ヘロン 人間 とくほど くほとう

E 990

- chaining
- linear probing
- cuckoo hashing

ヘロン 人間 とくほど くほとう

- chaining
- linear probing
- cuckoo hashing

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- chaining
- linear probing
- cuckoo hashing

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- chaining
- linear probing
- cuckoo hashing

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

- chaining
- linear probing
- cuckoo hashing

Sketching and streaming:

• moment estimation: $F_2(\bar{x}) = \sum_i x_i^2$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- chaining
- linear probing
- cuckoo hashing

Sketching and streaming:

- moment estimation: $F_2(\bar{x}) = \sum_i x_i^2$
- sketch A and B to later find $\frac{|A \cap B|}{|A \cup B|}$

(雪) (ヨ) (ヨ)

- chaining
- linear probing
- cuckoo hashing

Sketching and streaming:

- moment estimation: $F_2(\bar{x}) = \sum_i x_i^2$
- sketch A and B to later find $\frac{|A \cap B|}{|A \cup B|}$
- etc, etc.

(雪) (ヨ) (ヨ)

Hash each set through *h*, keen the minimum

$$\frac{|A \cap B|}{|A \cup B|} = \Pr_h[\min h(A) = \min h(B)]$$

- repeat with k different h;
- keep smallest k items with one h

・ 同 ト ・ ヨ ト ・ ヨ ト …

Hash each set through h, keen the minimum

$$\frac{|A \cap B|}{|A \cup B|} = \Pr_h[\min h(A) = \min h(B)]$$

- repeat with k different h;
- keep smallest k items with one h

The guarantee we need on h: "minwise independence"

$$(\forall)S, x: \qquad \Pr[x < \min h(S)] = \frac{1}{|S|+1}$$

< 回 > < 回 > < 回 > .

Hash each set through h, keen the minimum

$$\frac{|A \cap B|}{|A \cup B|} = \Pr_h[\min h(A) = \min h(B)]$$

- repeat with k different h;
- keep smallest k items with one h

The guarantee we need on h: "minwise independence"

$$(\forall)S, x: \qquad \Pr[x < \min h(S)] = \frac{1}{|S|+1}$$

Not feasible... Approximate:

$$(\forall)S, x: \qquad \Pr[x < \min h(S)] = \frac{1 \pm \varepsilon}{|S| + 1}$$

Approximation = $\varepsilon + f(\# \text{ repetitions})$

< 回 > < 回 > < 回 > … 回

Hash each set through h, keen the minimum

$$\frac{|A \cap B|}{|A \cup B|} = \Pr_h[\min h(A) = \min h(B)]$$

- repeat with k different h;
- keep smallest k items with one h

The guarantee we need on h: "minwise independence"

$$(\forall)S, x: \qquad \Pr[x < \min h(S)] = \frac{1}{|S|+1}$$

Not feasible... Approximate:

$$(\forall)S, x: \qquad \Pr[x < \min h(S)] = \frac{1 \pm \varepsilon}{|S| + 1}$$

Approximation = $\varepsilon + f$ (# repetitions) NB: for weighted A, B the generalization is priority sampling

Carter & Wegman (1977)

- A family $\mathcal{H} = \{h : [u] \rightarrow [b]\}$ is *k*-independent iff:
 - $(\forall)x \in u, h(x)$ is uniform in [b];
 - $(\forall)x_1, \ldots, x_k \in [u], h(x_1), \ldots, h(x_k)$ are independent.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Carter & Wegman (1977)

A family $\mathcal{H} = \{h : [u] \rightarrow [b]\}$ is *k*-independent iff:

- $(\forall)x \in u, h(x)$ is uniform in [b];
- $(\forall)x_1, \ldots, x_k \in [u], h(x_1), \ldots, h(x_k)$ are independent.

Prototypical example: degree k polynomial

- *u* prime;
- choose $a_0, a_1, \ldots, a_{k-1}$ randomly in [u];
- $h(x) = (a_0 + a_1x + \dots + a_{k-1}x^{k-1}) \mod b.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Chaining	2	
Linear probing	≤ 5 [Pagh 2 , Ružić'07]	≥ 5 [PT'10]
Cuckoo hashing	$O(\lg n)$	≥ 6 [Cohen, Kane'05]
F_2 estimation	4 [Thorup, Zhang'04]	
ε -minwise indep.	$O(\lg rac{1}{arepsilon})$ [Indyk'99]	$\Omega(\lg rac{1}{arepsilon})$ [PT'10]

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Chaining	2	
Linear probing	≤ 5 [Pagh 2 , Ružić'07]	≥ 5 [PT'10]
Cuckoo hashing	$O(\lg n)$	≥ 6 [Cohen, Kane'05]
F_2 estimation	4 [Thorup, Zhang'04]	
ε -minwise indep.	$O(\lg rac{1}{arepsilon})$ [Indyk'99]	$\Omega(\lg rac{1}{arepsilon})$ [PT'10]

Chaining: time = $\#\{x \mid h(x) = h(query)\}\$ $\mathbf{E}[time] = n \cdot \Pr[h(x) = h(query)] = n \cdot \frac{1}{b} = O(1)$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Chaining	2	
Linear probing	≤ 5 [Pagh 2 , Ružić'07]	≥ 5 [PT'10]
Cuckoo hashing	$O(\lg n)$	≥ 6 [Cohen, Kane'05]
F_2 estimation	4 [Thorup, Zhang'04]	
ε -minwise indep.	$O(\lg rac{1}{arepsilon})$ [Indyk'99]	$\Omega(\lg rac{1}{arepsilon})$ [PT'10]

Chaining: time =
$$\#\{x \mid h(x) = h(\text{query})\}\$$

 $\mathbf{E}[\text{time}] = n \cdot \Pr[h(x) = h(\text{query})] = n \cdot \frac{1}{b} = O(1)$

Cuckoo hashing:

components in random graphs have size $O(\lg n)$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Chaining	2	
Linear probing	≤ 5 [Pagh 2 , Ružić'07]	≥ 5 [PT'10]
Cuckoo hashing	$O(\lg n)$	≥ 6 [Cohen, Kane'05]
F_2 estimation	4 [Thorup, Zhang'04]	
ε -minwise indep.	$O(\lg rac{1}{arepsilon})$ [Indyk'99]	$\Omega(\lg rac{1}{arepsilon})$ [PT'10]

Chaining: time =
$$\#\{x \mid h(x) = h(\text{query})\}\$$

 $\mathbf{E}[\text{time}] = n \cdot \Pr[h(x) = h(\text{query})] = n \cdot \frac{1}{b} = O(1)$

Cuckoo hashing:

components in random graphs have size $O(\lg n)$

Minwise independence:

k-level inclusion/exclusion estimates probabilities to $\pm 2^{-k}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Mihai Pătraşcu, Mikkel Thorup Tabulation-Based Hashing

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

Implementing *k*-independence

Goals:

- constant time for $\omega(1)$ independence
- o practical solution?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Implementing k-independence

Goals:

- constant time for $\omega(1)$ independence
- o practical solution?

Lower bound [Siegel'90s]: With space $u^{1/q}$, query time $\geq \min\{k, q\}$.

(雪) (ヨ) (ヨ)

Implementing k-independence

Goals:

- constant time for $\omega(1)$ independence
- o practical solution?

Lower bound [Siegel'90s]: With space $u^{1/q}$, query time $\geq \min\{k, q\}$.

Tabulation hashing:

- q basic characters: $x \mapsto (x_1, \ldots, x_q)$
- *d* derived characters: $y_i = f_i(x_1, \ldots, x_q)$
- store q + d random tables $T_i[u^{1/q}]$
- $h(x) = T_1[q_1] \oplus \cdots \oplus T_q[x_q] \oplus T_{q+1}[y_1] \oplus \cdots$

Tabulation-Based Hashing

	Independence	# characters
[Carter, Wegman'77]	3	$q~(\star)$
[Siegel'90s]	$n^{\Omega(1)}$	$q^{O(q)}$
[Dietzf., Woelfel'03]	k	$k \cdot q$
[Thorup, Zhang'04]	k	(k-1)(q-1)
[Thorup, Zhang'10]	5	2q - 1
recent	$\omega(1)$	$O(q^2)$

 (\star) simple tabulation (no derived characters)

・ロト ・四ト ・ヨト ・ヨト ・

Peeling (q=2, k=3)

 $(x_1, x_2) \mapsto T_1[x_1] \oplus T_2[x_2]$

Let's prove independence of $\{a, b, c\}$.

Mihai Pătraşcu, Mikkel Thorup Tabulation-Based Hashing

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Peeling (q=2, k=3)

 $(x_1, x_2) \mapsto T_1[x_1] \oplus T_2[x_2]$

Let's prove independence of $\{a, b, c\}$.

a_1	a_2
b_1	b_2
c_1	c_2

Peeling:

- If a_i is unique $(a_i \neq b_i, c_i)$
- $\implies h(a)$ independent of h(b), h(c)

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Peeling (q=2, k=3)

 $(x_1, x_2) \mapsto T_1[x_1] \oplus T_2[x_2]$

Let's prove independence of $\{a, b, c\}$.

a_1	a_2
b_1	b_2
c_1	c_2

Peeling: If a_i is unique $(a_i \neq b_i, c_i)$ $\implies h(a)$ independent of h(b), h(c)

Any set of ≤ 3 keys is peelable, thus independent.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Peeling (q=2, k=4)

 $(x_1, x_2) \mapsto T_1[x_1] \oplus T_2[x_2] \oplus T_3[x_1 + x_2]$

Let's prove $\{a, b, c, d\}$ are independent.

- if we can peel, reduce to 3-independence.
- the only non-peelable configuration:

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ■ ∽ Q ()~

Peeling (q=2, k=4)

 $(x_1, x_2) \mapsto T_1[x_1] \oplus T_2[x_2] \oplus T_3[x_1 + x_2]$

Let's prove $\{a, b, c, d\}$ are independent.

- if we can peel, reduce to 3-independence.
- the only non-peelable configuration:

x	s	x + s
x	t	x+t
y	s	y+s
y	t	y+t

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ■ ∽ Q ()~

Peeling (q=2, k=4)

 $(x_1, x_2) \mapsto T_1[x_1] \oplus T_2[x_2] \oplus T_3[x_1 + x_2]$

Let's prove $\{a, b, c, d\}$ are independent.

- if we can peel, reduce to 3-independence.
- the only non-peelable configuration:

x	s	x + s
x	t	x+t
y	s	y+s
y	t	y+t

Only possible equalities: x + s = y + t or x + t = y + s. Both cannot hold, so we have peeling in derived character.

▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Theorem: Any 4-independent tabulation is 5-independent! Among any 5 keys, one is independent in the basic characters.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem: Any 4-independent tabulation is 5-independent! Among any 5 keys, one is independent in the basic characters.

• any unique character \Rightarrow peel

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

Theorem: Any 4-independent tabulation is 5-independent! Among any 5 keys, one is independent in the basic characters.

- any unique character \Rightarrow peel
- otherwise, any dimension looks like: three "0", two "1"

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……

Theorem: Any 4-independent tabulation is 5-independent! Among any 5 keys, one is independent in the basic characters.

- any unique character \Rightarrow peel
- otherwise, any dimension looks like: three "0", two "1"
- two columns have Hamming distance = 4

Theorem: Any 4-independent tabulation is 5-independent! Among any 5 keys, one is independent in the basic characters.

- any unique character \Rightarrow peel
- otherwise, any dimension looks like: three "0", two "1"
- two columns have Hamming distance = 4

• all columns at Hamming distance = 2

NB:
$$h(a) = h(b) \oplus h(c) \oplus h(d)$$

If e independent of b, c, d, also independent of f(b, c, d).

ヘロン 人間 とくほ とくほ とう

Putting it together

Algorithm	Indep.
chaining	2
F_2 estimation	4
linear probing	5
ε -minwise	$\Theta(\lg \frac{1}{\varepsilon})$
cuckoo hashing	$O(\lg n)$?

Scheme	Indep.	Characters
simple tabulation	3	q
[Thorup, Zhang'04]	4	2q - 1
" $4 \rightarrow 5$ "	5	2q - 1
[Thorup, Zhang'04]	k	(k-1)(q-1)
[Siegel'90s]	$n^{\Omega(1)}$	$q^{O(q)}$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@

Putting it together

Algorithm	Indep.
chaining	2
F_2 estimation	4
linear probing	5
ε -minwise	$\Theta(\lg \frac{1}{\varepsilon})$
cuckoo hashing	$O(\lg n)$?

Scheme	Indep.	Characters
simple tabulation	3	q
[Thorup, Zhang'04]	4	2q - 1
" $4 \rightarrow 5$ "	5	2q - 1
[Thorup, Zhang'04]	k	(k-1)(q-1)
[Siegel'90s]	$n^{\Omega(1)}$	$q^{O(q)}$

(雪) (ヨ) (ヨ)

ъ

What exactly are we doing here?

Mihai Pătraşcu, Mikkel Thorup Tabulation-Based Hashing

Algorithm	Indep.
chaining	2
F_2 estimation	4
linear probing	5
ε -minwise	$\Theta(\lg \frac{1}{\varepsilon})$
cuckoo hashing	$O(\lg n)$?

Scheme	Indep.	Characters
simple tabulation	3	q
maybe		

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

Algorithm	Indep.
chaining	2
F_2 estimation	4
linear probing	5
ε -minwise	$\Theta(\lg \frac{1}{\varepsilon})$
cuckoo hashing	$O(\lg n)$?

Scheme	Indep.	Characters
simple tabulation	3	q
maybe		

・ロン ・四 と ・ ヨ と ・ ヨ と …

æ

Algorithm	Indep.
chaining	2
F_2 estimation	4
linear probing	5
ε -minwise	$\Theta(\lg \frac{1}{\varepsilon})$
cuckoo hashing	$O(\lg n)$?

Scheme	Indep.	Characters
simple tabulation	3	q
maybe		

・ロン ・四 と ・ ヨ と ・ ヨ と …

æ

Algorithm	Indep.
chaining	2
F_2 estimation	4
linear probing	5
ε -minwise	$\Theta(\lg \frac{1}{\varepsilon})$
cuckoo hashing	$O(\lg n)$?

Scheme	Indep.	Characters
simple tabulation	3	q
maybe		

Simple tabulation:

• preserves 4^{th} moment bound \Rightarrow F_2 estimation

Algorithm	Indep.
chaining	2
F_2 estimation	4
linear probing	5
ε -minwise	$\Theta(\lg \frac{1}{\varepsilon})$
cuckoo hashing	$O(\lg n)$?

Scheme	Indep.	Characters
simple tabulation	3	q
maybe		

< 回 > < 回 > < 回 > … 回

- preserves 4^{th} moment bound \Rightarrow F_2 estimation
- 1-in-5 indep. \Rightarrow linear probing in expected O(1) time

Algorithm	Indep.
chaining	2
F_2 estimation	4
linear probing	5
ε -minwise	$\Theta(\lg \frac{1}{\varepsilon})$
cuckoo hashing	$O(\lg n)$?

Scheme	Indep.	Characters
simple tabulation	3	q
maybe		

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

- preserves 4^{th} moment bound \Rightarrow F_2 estimation
- 1-in-5 indep. \Rightarrow linear probing in expected O(1) time
- minwise independence with $\varepsilon = \varepsilon(n) = o(1)$.

Algorithm	Indep.
chaining	2
F_2 estimation	4
linear probing	5
ε -minwise	$\Theta(\lg \frac{1}{\varepsilon})$
cuckoo hashing	$O(\lg n)$?

Scheme	Indep.	Characters
simple tabulation	3	q
maybe		

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ○ ○ ○ ○

- preserves 4^{th} moment bound \Rightarrow F_2 estimation
- 1-in-5 indep. \Rightarrow linear probing in expected O(1) time
- minwise independence with $\varepsilon = \varepsilon(n) = o(1)$.
- Chernoff concentration $\Rightarrow O(\lg n)$ query time w.h.p.

Algorithm	Indep.
chaining	2
F_2 estimation	4
linear probing	5
ε -minwise	$\Theta(\lg \frac{1}{\varepsilon})$
cuckoo hashing	$O(\lg n)$?

Scheme	Indep.	Characters
simple tabulation	3	q
maybe		

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

- preserves 4^{th} moment bound \Rightarrow F_2 estimation
- 1-in-5 indep. \Rightarrow linear probing in expected O(1) time
- minwise independence with $\varepsilon = \varepsilon(n) = o(1)$.
- Chernoff concentration $\Rightarrow O(\lg n)$ query time w.h.p.
- preserve moments in linear probing, chaining: F_p w/ simple tabulation = F_p w/ truly random + o(1)

Simple tabulation as a PRG

Pseudorandom numbers $\approx h(0), h(1), h(1), \ldots$

	f(0)	f(1)	 f(S-1)
g(0)	h(0)	h(1)	 h(S - 1)
g(1)	h(S)	h(S + 1)	 h(2S - 1)
g(2)	h(2S)	h(2S + 1)	 h(3S - 1)

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Simple tabulation as a PRG

Pseudorandom numbers $\approx h(0), h(1), h(1), \dots$

	f(0)	f(1)	 f(S-1)
g(0)	h(0)	h(1)	 h(S - 1)
g(1)	h(S)	h(S + 1)	 h(2S - 1)
g(2)	h(2S)	h(2S + 1)	 h(3S - 1)

Use $S = O(\lg n)$ truly random numbers. Compute $\lg n$ independent $g(\cdot)$, but rarely.

PRG has:

- concentration (load balancing, ...)
- minwise independence (treaps, ...)

What more can we ask for?

Mihai Pătraşcu, Mikkel Thorup Tabulation-Based Hashing

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

What more can we ask for?

• minwise independence with $\varepsilon = \varepsilon(n) = o(1)$

 \longrightarrow minwise independence with $\varepsilon = \varepsilon(u) = o(1)$

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

What more can we ask for?

- minwise independence with $\varepsilon = \varepsilon(n) = o(1)$
 - \longrightarrow minwise independence with $\varepsilon = \varepsilon(u) = o(1)$
- linear probing/chaining O(1) exp. time, O(lg n) w.h.p.
 → for k ≥ lg n, any k operations work in O(k) time w.h.p.

What more can we ask for?

- minwise independence with $\varepsilon = \varepsilon(n) = o(1)$
 - \longrightarrow minwise independence with $\varepsilon = \varepsilon(u) = o(1)$

Experiments: $\{0,1\}^q$ is counterexample?

- linear probing/chaining O(1) exp. time, $O(\lg n)$ w.h.p.
 - \longrightarrow for $k \ge \lg n$, any k operations work in O(k) time w.h.p.

What more can we ask for?

- minwise independence with ε = ε(n) = o(1)
 → minwise independence with ε = ε(u) = o(1)
 Experiments: {0,1}^q is counterexample?
- linear probing/chaining O(1) exp. time, O(lg n) w.h.p.
 → for k ≥ lg n, any k operations work in O(k) time w.h.p.
 We only get k = n^ε for any ε > 0.
 Counterexample for n^{o(1)}.

What more can we ask for?

- minwise independence with ε = ε(n) = o(1)
 → minwise independence with ε = ε(u) = o(1)
 Experiments: {0,1}^q is counterexample?
- linear probing/chaining O(1) exp. time, O(lg n) w.h.p.
 → for k ≥ lg n, any k operations work in O(k) time w.h.p.
 We only get k = n^ε for any ε > 0.
 Counterexample for n^{o(1)}.

Simple++:

- $h_1: [u] \to [b], h_2: [u] \to [u^{1/q}]$. Just simple tabulation...
- $h(x) = h_1(x) \oplus T[h_2(x)].$

All previous properties, plus:

- minwise independence with $\varepsilon(u) = o(1)$.
- linear probing/chaining with buffer $k = O(\lg n)$.

Mihai Pătraşcu, Mikkel Thorup Tabulation-Based Hashing

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで