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Applications of Hashing

Hash tables:
chaining

•
x→ • → a → t

•
• → v
•
• → f → s → r
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Mihai Pǎtraşcu, Mikkel Thorup Tabulation-Based Hashing



Applications of Hashing

Hash tables:
chaining
linear probing
cuckoo hashing

a •
• s
• z
y f

x→ w •
• r
• b
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Applications of Hashing

Hash tables:
chaining
linear probing
cuckoo hashing

Sketching and streaming:
moment estimation: F2(x̄) =

∑
i x

2
i

sketch A and B to later find |A∩B||A∪B|
etc, etc.
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Minwise independence

Hash each set through h, keen the minimum

|A ∩B|
|A ∪B|

= Pr
h

[minh(A) = minh(B)]

repeat with k different h;
keep smallest k items with one h

The guarantee we need on h: “minwise independence”

(∀)S, x : Pr[x < minh(S)] = 1
|S|+1

Not feasible... Approximate:

(∀)S, x : Pr[x < minh(S)] = 1±ε
|S|+1

Approximation = ε + f
(
# repetitions

)
NB: for weighted A,B the generalization is priority sampling
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Carter & Wegman (1977)

A family H = {h : [u]→ [b]} is k-independent iff:
(∀)x ∈ u, h(x) is uniform in [b];
(∀)x1, . . . , xk ∈ [u], h(x1), . . . , h(xk) are independent.

Prototypical example: degree k polynomial
u prime;
choose a0, a1, . . . , ak−1 randomly in [u];
h(x) =

(
a0 + a1x + · · ·+ ak−1x

k−1
)

mod b.
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How much independence?

Chaining 2

Linear probing ≤ 5 [Pagh2, Ružić’07] ≥ 5 [PT’10]

Cuckoo hashing O(lg n) ≥ 6 [Cohen, Kane’05]

F2 estimation 4 [Thorup, Zhang’04]

ε-minwise indep. O(lg 1
ε ) [Indyk’99] Ω(lg 1

ε ) [PT’10]

Chaining: time = #{x | h(x) = h(query)}
E[time] = n · Pr[h(x) = h(query)] = n · 1

b = O(1)

Cuckoo hashing:
components in random graphs have size O(lg n)

Minwise independence:
k-level inclusion/exclusion estimates probabilities to ±2−k.
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Linear probing
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Implementing k-independence

Goals:
constant time for ω(1) independence
practical solution?

Lower bound [Siegel’90s]:
With space u1/q, query time ≥ min{k, q}.

Tabulation hashing:
q basic characters: x 7→ (x1, . . . , xq)

d derived characters: yi = fi(x1, . . . , xq)

store q + d random tables Ti

[
u1/q

]
h(x) = T1[q1]⊕ · · · ⊕ Tq[xq]⊕ Tq+1[y1]⊕ · · ·
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Tabulation-Based Hashing

Independence # characters
[Carter, Wegman’77] 3 q (?)

[Siegel’90s] nΩ(1) qO(q)

[Dietzf., Woelfel’03] k k · q
[Thorup, Zhang’04] k (k − 1)(q − 1)

[Thorup, Zhang’10] 5 2q − 1

recent ω(1) O(q2)

(?) simple tabulation (no derived characters)
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Peeling (q = 2, k = 3)

(x1, x2) 7→ T1[x1]⊕ T2[x2]

Let’s prove independence of {a, b, c}.

a1 a2 Peeling:
b1 b2 If ai is unique (ai 6= bi, ci)
c1 c2 =⇒ h(a) independent of h(b), h(c)

Any set of ≤ 3 keys is peelable, thus independent.
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Peeling (q = 2, k = 4)

(x1, x2) 7→ T1[x1]⊕ T2[x2]⊕ T3[x1 + x2]

Let’s prove {a, b, c, d} are independent.

if we can peel, reduce to 3-independence.
the only non-peelable configuration:

x s x + s

x t x + t

y s y + s

y t y + t

Only possible equalities: x + s = y + t or x + t = y + s.
Both cannot hold, so we have peeling in derived character.
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5-independence [PT’10]

Theorem: Any 4-independent tabulation is 5-independent!
Among any 5 keys, one is independent in the basic characters.

any unique character⇒ peel
otherwise, any dimension looks like: three “0”, two “1”
two columns have Hamming distance = 4
a 7→ 0 1 . . .
b 7→ 0 1 . . .
c 7→ 1 0 . . .
d 7→ 1 0 . . .
e 7→ 1 1 . . .

all columns at Hamming distance = 2
a 7→ 0 0 0 . . .
b 7→ 0 1 1 . . .
c 7→ 1 0 1 . . .
d 7→ 1 1 0 . . .
e 7→ 1 1 1 . . .

NB: h(a) = h(b)⊕ h(c)⊕ h(d)
If e independent of b, c, d, also independent of f(b, c, d).
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Mihai Pǎtraşcu, Mikkel Thorup Tabulation-Based Hashing



5-independence [PT’10]

Theorem: Any 4-independent tabulation is 5-independent!
Among any 5 keys, one is independent in the basic characters.

any unique character⇒ peel
otherwise, any dimension looks like: three “0”, two “1”
two columns have Hamming distance = 4
a 7→ 0 1 . . .
b 7→ 0 1 . . .
c 7→ 1 0 . . .
d 7→ 1 0 . . .
e 7→ 1 1 . . .

all columns at Hamming distance = 2
a 7→ 0 0 0 . . .
b 7→ 0 1 1 . . .
c 7→ 1 0 1 . . .
d 7→ 1 1 0 . . .
e 7→ 1 1 1 . . .

NB: h(a) = h(b)⊕ h(c)⊕ h(d)
If e independent of b, c, d, also independent of f(b, c, d).
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Putting it together

Algorithm Indep. Scheme Indep. Characters
chaining 2 simple tabulation 3 q

F2 estimation 4 [Thorup, Zhang’04] 4 2q − 1
linear probing 5 “4→ 5” 5 2q − 1
ε-minwise Θ(lg 1

ε
) [Thorup, Zhang’04] k (k − 1)(q − 1)

cuckoo hashing O(lgn)? [Siegel’90s] nΩ(1) qO(q)

What exactly are we doing here?
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The Power of Simple Tabulation

Algorithm Indep. Scheme Indep. Characters
chaining 2 simple tabulation 3 q

F2 estimation 4 simple tabulation 3 q
linear probing 5 simple tabulation 3 q
ε-minwise Θ(lg 1

ε
) simple tabulation 3 q

cuckoo hashing O(lgn)? maybe...

Simple tabulation:
preserves 4th moment bound⇒ F2 estimation
1-in-5 indep.⇒ linear probing in expected O(1) time
minwise independence with ε = ε(n) = o(1).
Chernoff concentration⇒ O(lg n) query time w.h.p.
preserve moments in linear probing, chaining:
Fp w/ simple tabulation = Fp w/ truly random + o(1)
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Simple tabulation as a PRG

Pseudorandom numbers ≈ h(0), h(1), h(1), . . .

f(0) f(1) . . . f(S − 1)

g(0) h(0) h(1) . . . h(S − 1)

g(1) h(S) h(S + 1) . . . h(2S − 1)

g(2) h(2S) h(2S + 1) . . . h(3S − 1)

. . .

Use S = O(lg n) truly random numbers.
Compute lg n independent g(·), but rarely.

PRG has:
concentration (load balancing, . . . )
minwise independence (treaps, . . . )
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Simple tabulation as a PRG

Pseudorandom numbers ≈ h(0), h(1), h(1), . . .

f(0) f(1) . . . f(S − 1)

g(0) h(0) h(1) . . . h(S − 1)

g(1) h(S) h(S + 1) . . . h(2S − 1)

g(2) h(2S) h(2S + 1) . . . h(3S − 1)

. . .

Use S = O(lg n) truly random numbers.
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PRG has:
concentration (load balancing, . . . )
minwise independence (treaps, . . . )
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Wait, there’s more!

What more can we ask for?

minwise independence with ε = ε(n) = o(1)
−→ minwise independence with ε = ε(u) = o(1)

Experiments: {0, 1}q is counterexample?

linear probing/chaining O(1) exp. time, O(lg n) w.h.p.
−→ for k ≥ lg n, any k operations work in O(k) time w.h.p.

We only get k = nε for any ε > 0.
Counterexample for no(1).

Simple++:
h1 : [u]→ [b], h2 : [u]→ [u1/q]. Just simple tabulation. . .
h(x) = h1(x)⊕ T [h2(x)].

All previous properties, plus:
minwise independence with ε(u) = o(1).
linear probing/chaining with buffer k = O(lg n).
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T HE END
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