Tabulation-Based Hashing

Mihai Pǎtraşcu Mikkel Thorup
at\&t

April 23, 2010

Applications of Hashing

Hash tables:

- chaining

$$
\begin{aligned}
& x \rightarrow \begin{array}{|c|}
\hline \bullet \\
\hline
\end{array} \rightarrow \boxed{t} \\
& \rightarrow \boxed{s} \rightarrow \square \\
& \hline
\end{aligned}
$$

Applications of Hashing

Hash tables:

- chaining
- linear probing

Applications of Hashing

Hash tables:

- chaining
- linear probing
- cuckoo hashing

\bullet
s
z
f
\bullet
r
b

Applications of Hashing

Hash tables:

- chaining
- linear probing
- cuckoo hashing

Applications of Hashing

Hash tables:

- chaining
- linear probing
- cuckoo hashing

Applications of Hashing

Hash tables:

- chaining
- linear probing
- cuckoo hashing

Applications of Hashing

Hash tables:

- chaining
- linear probing
- cuckoo hashing

Applications of Hashing

Hash tables:

- chaining
- linear probing
- cuckoo hashing

Sketching and streaming:

- moment estimation: $F_{2}(\bar{x})=\sum_{i} x_{i}^{2}$

Applications of Hashing

Hash tables:

- chaining
- linear probing
- cuckoo hashing

Sketching and streaming:

- moment estimation: $F_{2}(\bar{x})=\sum_{i} x_{i}^{2}$
- sketch A and B to later find $\frac{|A \cap B|}{|A \cup B|}$

Applications of Hashing

Hash tables:

- chaining
- linear probing
- cuckoo hashing

Sketching and streaming:

- moment estimation: $F_{2}(\bar{x})=\sum_{i} x_{i}^{2}$
- sketch A and B to later find $\frac{|A \cap B|}{|A \cup B|}$
- etc, etc.

Minwise independence

Hash each set through h, keen the minimum

$$
\frac{|A \cap B|}{|A \cup B|}=\underset{h}{\operatorname{Pr}}[\min h(A)=\min h(B)]
$$

- repeat with k different h;
- keep smallest k items with one h

Minwise independence

Hash each set through h, keen the minimum

$$
\frac{|A \cap B|}{|A \cup B|}=\operatorname{Pr}_{h}[\min h(A)=\min h(B)]
$$

- repeat with k different h;
- keep smallest k items with one h

The guarantee we need on h : "minwise independence"

$$
(\forall) S, x: \quad \operatorname{Pr}[x<\min h(S)]=\frac{1}{|S|+1}
$$

Minwise independence

Hash each set through h, keen the minimum

$$
\frac{|A \cap B|}{|A \cup B|}=\operatorname{Pr}_{h}[\min h(A)=\min h(B)]
$$

- repeat with k different h;
- keep smallest k items with one h

The guarantee we need on h : "minwise independence"

$$
(\forall) S, x: \quad \operatorname{Pr}[x<\min h(S)]=\frac{1}{|S|+1}
$$

Not feasible... Approximate:

$$
(\forall) S, x: \quad \operatorname{Pr}[x<\min h(S)]=\frac{1 \pm \varepsilon}{|S|+1}
$$

Approximation $=\varepsilon+f$ (\# repetitions)

Minwise independence

Hash each set through h, keen the minimum

$$
\frac{|A \cap B|}{|A \cup B|}=\operatorname{Pr}_{h}[\min h(A)=\min h(B)]
$$

- repeat with k different h;
- keep smallest k items with one h

The guarantee we need on h : "minwise independence"

$$
(\forall) S, x: \quad \operatorname{Pr}[x<\min h(S)]=\frac{1}{|S|+1}
$$

Not feasible... Approximate:

$$
(\forall) S, x: \quad \operatorname{Pr}[x<\min h(S)]=\frac{1 \pm \varepsilon}{|S|+1}
$$

Approximation $=\varepsilon+f(\#$ repetitions)
NB: for weighted A, B the generalization is priority sampling

Carter \& Wegman (1977)

A family $\mathcal{H}=\{h:[u] \rightarrow[b]\}$ is k-independent iff:

- $(\forall) x \in u, h(x)$ is uniform in $[b]$;
- $(\forall) x_{1}, \ldots, x_{k} \in[u], h\left(x_{1}\right), \ldots, h\left(x_{k}\right)$ are independent.

Carter \& Wegman (1977)

A family $\mathcal{H}=\{h:[u] \rightarrow[b]\}$ is k-independent iff:

- $(\forall) x \in u, h(x)$ is uniform in $[b]$;
- $(\forall) x_{1}, \ldots, x_{k} \in[u], h\left(x_{1}\right), \ldots, h\left(x_{k}\right)$ are independent.

Prototypical example: degree k polynomial

- u prime;
- choose $a_{0}, a_{1}, \ldots, a_{k-1}$ randomly in $[u]$;
- $h(x)=\left(a_{0}+a_{1} x+\cdots+a_{k-1} x^{k-1}\right) \bmod b$.

How much independence?

Chaining	2		>5	[PT'10]
Linear probing	≤ 5	[Pagh ${ }^{2}$, Ruzuicior]		
Cuckoo hashing	$O(\lg n)$		≥ 6	[Cohen, Kane'05]
F_{2} estimation	4 [Thorup, Zhang'04]			
ε-minwise indep.	$O\left(\lg \frac{1}{\varepsilon}\right)$	[Indyk'99]	$\Omega\left(\lg \frac{1}{\varepsilon}\right)$	[PT'10]

How much independence?

Chaining	2		$\geq 5 \quad\left[\mathrm{PT}^{\prime} 10\right]$	
Linear probing	≤ 5	[Pagh ${ }^{2}$, Ruzüciot]		
Cuckoo hashing	$O(\lg n)$		≥ 6 [Cohen, Kane'05]	
F_{2} estimation	4 [Thorup, Zhang'04]			
ε-minwise indep.	$O\left(\lg \frac{1}{\varepsilon}\right)$	[Indyk'9]]	$\Omega\left(\lg \frac{1}{\varepsilon}\right)$	[PT'10]

Chaining: \quad time $=\#\{x \mid h(x)=h$ (query) $\}$

$$
\mathbf{E}[\text { time }]=n \cdot \operatorname{Pr}[h(x)=h(\text { query })]=n \cdot \frac{1}{b}=O(1)
$$

How much independence?

Chaining	2		≥ 5	[PT'10]
Linear probing	≤ 5	[Pagh ${ }^{2}$, Ruzüciot]		
Cuckoo hashing	$O(\lg n)$		≥ 6 [Cohen, Kane'05]	
F_{2} estimation	4 [Thorup, Zhang'04]			
ε-minwise indep.	$O\left(\lg \frac{1}{\varepsilon}\right)$	[Indyk'99]	$\Omega\left(\lg \frac{1}{\varepsilon}\right)$	[PT'10]

Chaining: \quad time $=\#\{x \mid h(x)=h$ (query) $\}$

$$
\mathbf{E}[\text { time }]=n \cdot \operatorname{Pr}[h(x)=h(\text { query })]=n \cdot \frac{1}{b}=O(1)
$$

Cuckoo hashing:
components in random graphs have size $O(\lg n)$

How much independence?

Chaining	2		≥ 5	[PT'10]
Linear probing	≤ 5	[Pagh ${ }^{2}$, Ruzüciot]		
Cuckoo hashing	$O(\lg n)$		≥ 6 [Cohen, Kane'05]	
F_{2} estimation	4 [Thorup, Zhang'04]			
ε-minwise indep.	$O\left(\lg \frac{1}{\varepsilon}\right)$	[Indyk'99]	$\Omega\left(\lg \frac{1}{\varepsilon}\right)$	[PT'10]

Chaining: \quad time $=\#\{x \mid h(x)=h$ (query) $\}$

$$
\mathbf{E}[\text { time }]=n \cdot \operatorname{Pr}[h(x)=h(\text { query })]=n \cdot \frac{1}{b}=O(1)
$$

Cuckoo hashing:
components in random graphs have size $O(\lg n)$
Minwise independence:
k-level inclusion/exclusion estimates probabilities to $\pm 2^{-k}$.

Linear probing

Implementing k-independence

Goals:

- constant time for $\omega(1)$ independence
- practical solution?

Implementing k-independence

Goals:

- constant time for $\omega(1)$ independence
- practical solution?

Lower bound [Siegel'90s]:
With space $u^{1 / q}$, query time $\geq \min \{k, q\}$.

Implementing k-independence

Goals:

- constant time for $\omega(1)$ independence
- practical solution?

Lower bound [Siegel'90s]:
With space $u^{1 / q}$, query time $\geq \min \{k, q\}$.
Tabulation hashing:

- q basic characters: $x \mapsto\left(x_{1}, \ldots, x_{q}\right)$
- d derived characters: $y_{i}=f_{i}\left(x_{1}, \ldots, x_{q}\right)$
- store $q+d$ random tables $T_{i}\left[u^{1 / q}\right]$
- $h(x)=T_{1}\left[q_{1}\right] \oplus \cdots \oplus T_{q}\left[x_{q}\right] \oplus T_{q+1}\left[y_{1}\right] \oplus \cdots$

Tabulation-Based Hashing

	Independence	\# characters
[Carter, Wegman'77]	3	$q(\star)$
[Siegel'90s]	$n^{\Omega(1)}$	$q^{O(q)}$
[Dietzf., Woelfer'03]	k	$k \cdot q$
[Thorup, Zhang'04]	k	$(k-1)(q-1)$
$[$ Thorup, Zhang'10]	5	$2 q-1$
recent	$\omega(1)$	$O\left(q^{2}\right)$

(\star) simple tabulation (no derived characters)

Peeling $\quad(q=2, k=3)$

$$
\begin{aligned}
& \left(x_{1}, x_{2}\right) \mapsto T_{1}\left[x_{1}\right] \oplus T_{2}\left[x_{2}\right] \\
& \text { Let's prove independence of }\{a, b, c\} .
\end{aligned}
$$

Peeling $\quad(q=2, k=3)$

$$
\left(x_{1}, x_{2}\right) \mapsto T_{1}\left[x_{1}\right] \oplus T_{2}\left[x_{2}\right]
$$

Let's prove independence of $\{a, b, c\}$.

a_{1}	a_{2}
b_{1}	b_{2}
c_{1}	c_{2}

Peeling:
If a_{i} is unique $\left(a_{i} \neq b_{i}, c_{i}\right)$
$\Longrightarrow h(a)$ independent of $h(b), h(c)$

Peeling $\quad(q=2, k=3)$

$\left(x_{1}, x_{2}\right) \mapsto T_{1}\left[x_{1}\right] \oplus T_{2}\left[x_{2}\right]$
Let's prove independence of $\{a, b, c\}$.

a_{1}	a_{2}
b_{1}	b_{2}
c_{1}	c_{2}

> Peeling:
> If a_{i} is unique $\left(a_{i} \neq b_{i}, c_{i}\right)$
> $\Longrightarrow h(a)$ independent of $h(b), h(c)$

Any set of ≤ 3 keys is peelable, thus independent.

Peeling $\quad(q=2, k=4)$

$\left(x_{1}, x_{2}\right) \mapsto T_{1}\left[x_{1}\right] \oplus T_{2}\left[x_{2}\right] \oplus T_{3}\left[x_{1}+x_{2}\right]$
Let's prove $\{a, b, c, d\}$ are independent.

- if we can peel, reduce to 3-independence.
- the only non-peelable configuration:

Peeling $\quad(q=2, k=4)$

$$
\left(x_{1}, x_{2}\right) \mapsto T_{1}\left[x_{1}\right] \oplus T_{2}\left[x_{2}\right] \oplus T_{3}\left[x_{1}+x_{2}\right]
$$

Let's prove $\{a, b, c, d\}$ are independent.

- if we can peel, reduce to 3-independence.
- the only non-peelable configuration:

x	s	$x+s$
x	t	$x+t$
y	s	$y+s$
y	t	$y+t$

Peeling $\quad(q=2, k=4)$

$$
\left(x_{1}, x_{2}\right) \mapsto T_{1}\left[x_{1}\right] \oplus T_{2}\left[x_{2}\right] \oplus T_{3}\left[x_{1}+x_{2}\right]
$$

Let's prove $\{a, b, c, d\}$ are independent.

- if we can peel, reduce to 3-independence.
- the only non-peelable configuration:

x	s	$x+s$
x	t	$x+t$
y	s	$y+s$
y	t	$y+t$

Only possible equalities: $x+s=y+t$ or $x+t=y+s$. Both cannot hold, so we have peeling in derived character.

5-independence [PT'10]

Theorem: Any 4-independent tabulation is 5 -independent! Among any 5 keys, one is independent in the basic characters.

5-independence [PT'10]

Theorem: Any 4-independent tabulation is 5-independent! Among any 5 keys, one is independent in the basic characters.

- any unique character \Rightarrow peel

5-independence [PT'10]

Theorem: Any 4-independent tabulation is 5 -independent! Among any 5 keys, one is independent in the basic characters.

- any unique character \Rightarrow peel
- otherwise, any dimension looks like: three "0", two "1"

5-independence [PT'10]

Theorem: Any 4-independent tabulation is 5-independent! Among any 5 keys, one is independent in the basic characters.

- any unique character \Rightarrow peel
- otherwise, any dimension looks like: three " 0 ", two " 1 "
- two columns have Hamming distance $=4$

$a \mapsto$	0	1	...
$b \mapsto$	0	1	..
$c \mapsto$	1	0	\ldots
$d \mapsto$	1	0	..
$e \mapsto$	1	1	\ldots

5-independence [PT'10]

Theorem: Any 4-independent tabulation is 5 -independent! Among any 5 keys, one is independent in the basic characters.

- any unique character \Rightarrow peel
- otherwise, any dimension looks like: three "0", two "1"
- two columns have Hamming distance $=4$

$a \mapsto$	0	1	...
$b \mapsto$	0	1	\ldots
$c \mapsto$	1	0	\ldots
$d \mapsto$	1	0	\ldots
$e \mapsto$	1	1	\ldots

- all columns at Hamming distance $=2$

$a \mapsto$				
	0	0	0	\cdots
$b \mapsto$	0	1	1	\cdots
$c \mapsto$	1	0	1	\cdots
$d \mapsto$	1	1	0	\cdots
$e \mapsto$	1	1	1	\cdots
NB:	$h(a)$	$=h(b) \oplus h(c) \oplus h(d)$		

If e independent of b, c, d, also independent of $f(b, c, d)$.

Putting it together

Algorithm	Indep.
chaining	2
F_{2} estimation	4
linear probing	5
ε-minwise	$\Theta\left(\lg \frac{1}{\varepsilon}\right)$
cuckoo hashing	$O(\lg n) ?$

Scheme	Indep.	Characters
simple tabulation	3	q
[Thorup, Zhang'04]	4	$2 q-1$
"4 \rightarrow ""	5	$2 q-1$
[Thorup, Zhang'04]	k	$(k-1)(q-1)$
[Siegel'90s]	$n^{\Omega(1)}$	$q^{O(q)}$

Putting it together

Algorithm	Indep.
chaining	2
F_{2} estimation	4
linear probing	5
ε-minwise	$\Theta\left(\lg \frac{1}{\varepsilon}\right)$
cuckoo hashing	$O(\lg n) ?$

Scheme	Indep.	Characters
simple tabulation	3	q
[Thorup, Zhang'04]	4	$2 q-1$
" $4 \rightarrow 5^{"}$	5	$2 q-1$
[Thorup, Znang'04]	k	$(k-1)(q-1)$
[Siegel'90s]	$n^{\Omega(1)}$	$q^{\circ(q)}$

What exactly are we doing here?

The Power of Simple Tabulation

Algorithm	Indep.
chaining	2
F_{2} estimation	4
linear probing	5
ε-minwise	$\Theta\left(\lg \frac{1}{\varepsilon}\right)$
cuckoo hashing	$O(\lg n) ?$

Scheme	Indep.	Characters
simple tabulation	3	q
maybe...		

The Power of Simple Tabulation

Algorithm	Indep.
chaining	2
F_{2} estimation	4
linear probing	5
ε-minwise	$\Theta\left(\lg \frac{1}{\varepsilon}\right)$
cuckoo hashing	$O(\lg n) ?$

Scheme	Indep.	Characters
simple tabulation	3	q
maybe...		

Simple tabulation:

The Power of Simple Tabulation

Algorithm	Indep.
chaining	2
F_{2} estimation	4
linear probing	5
ε-minwise	$\Theta\left(\lg \frac{1}{\varepsilon}\right)$
cuckoo hashing	$O(\lg n) ?$

Scheme	Indep.	Characters
simple tabulation	3	q
maybe...		

Simple tabulation:

The Power of Simple Tabulation

Algorithm	Indep.
chaining	2
F_{2} estimation	4
linear probing	5
ε-minwise	$\Theta\left(\lg \frac{1}{\varepsilon}\right)$
cuckoo hashing	$O(\lg n) ?$

Scheme	Indep.	Characters
simple tabulation	3	q
maybe...		

Simple tabulation:

- preserves $4^{\text {th }}$ moment bound $\Rightarrow F_{2}$ estimation

The Power of Simple Tabulation

Algorithm	Indep.
chaining	2
F_{2} estimation	4
linear probing	5
ε-minwise	$\Theta\left(\lg \frac{1}{\varepsilon}\right)$
cuckoo hashing	$O(\lg n) ?$

Scheme	Indep.	Characters
simple tabulation	3	q
maybe...		

Simple tabulation:

- preserves $4^{\text {th }}$ moment bound $\Rightarrow F_{2}$ estimation
- 1-in-5 indep. \Rightarrow linear probing in expected $O(1)$ time

The Power of Simple Tabulation

Algorithm	Indep.
chaining	2
F_{2} estimation	4
linear probing	5
ε-minwise	$\Theta\left(\lg \frac{1}{\varepsilon}\right)$
cuckoo hashing	$O(\lg n) ?$

Scheme	Indep.	Characters
simple tabulation	3	q
maybe...		

Simple tabulation:

- preserves $4^{\text {th }}$ moment bound $\Rightarrow F_{2}$ estimation
- 1-in-5 indep. \Rightarrow linear probing in expected $O(1)$ time
- minwise independence with $\varepsilon=\varepsilon(n)=o(1)$.

The Power of Simple Tabulation

Algorithm	Indep.
chaining	2
F_{2} estimation	4
linear probing	5
ε-minwise	$\Theta\left(\lg \frac{1}{\varepsilon}\right)$
cuckoo hashing	$O(\lg n) ?$

Scheme	Indep.	Characters
simple tabulation	3	q
maybe...		

Simple tabulation:

- preserves $4^{\text {th }}$ moment bound $\Rightarrow F_{2}$ estimation
- 1-in-5 indep. \Rightarrow linear probing in expected $O(1)$ time
- minwise independence with $\varepsilon=\varepsilon(n)=o(1)$.
- Chernoff concentration $\Rightarrow O(\lg n)$ query time w.h.p.

The Power of Simple Tabulation

Algorithm	Indep.
chaining	2
F_{2} estimation	4
linear probing	5
ε-minwise	$\Theta\left(\lg \frac{1}{\varepsilon}\right)$
cuckoo hashing	$O(\lg n) ?$

Scheme	Indep.	Characters
simple tabulation	3	q
maybe...		

Simple tabulation:

- preserves $4^{\text {th }}$ moment bound $\Rightarrow F_{2}$ estimation
- 1-in-5 indep. \Rightarrow linear probing in expected $O(1)$ time
- minwise independence with $\varepsilon=\varepsilon(n)=o(1)$.
- Chernoff concentration $\Rightarrow O(\lg n)$ query time w.h.p.
- preserve moments in linear probing, chaining: $F_{p} \mathrm{w} /$ simple tabulation $=F_{p} \mathrm{w} /$ truly random $+o(1)$

Simple tabulation as a PRG

Pseudorandom numbers $\approx h(0), h(1), h(1), \ldots$

	$f(0)$	$f(1)$	\cdots	$f(S-1)$
$g(0)$	$h(0)$	$h(1)$	\cdots	$h(S-1)$
$g(1)$	$h(S)$	$h(S+1)$	\cdots	$h(2 S-1)$
$g(2)$	$h(2 S)$	$h(2 S+1)$	\cdots	$h(3 S-1)$
\ldots				

Simple tabulation as a PRG

Pseudorandom numbers $\approx h(0), h(1), h(1), \ldots$

	$f(0)$	$f(1)$	\cdots	$f(S-1)$
$g(0)$	$h(0)$	$h(1)$	\cdots	$h(S-1)$
$g(1)$	$h(S)$	$h(S+1)$	\cdots	$h(2 S-1)$
$g(2)$	$h(2 S)$	$h(2 S+1)$	\cdots	$h(3 S-1)$
\ldots				

Use $S=O(\lg n)$ truly random numbers.
Compute $\lg n$ independent $g(\cdot)$, but rarely.
PRG has:

- concentration (load balancing, ...)
- minwise independence (treaps, ...)

Wait, there's more!

What more can we ask for?

Wait, there's more!

What more can we ask for?

- minwise independence with $\varepsilon=\varepsilon(n)=o(1)$
\longrightarrow minwise independence with $\varepsilon=\varepsilon(u)=o(1)$

Wait, there's more!

What more can we ask for?

- minwise independence with $\varepsilon=\varepsilon(n)=o(1)$
\longrightarrow minwise independence with $\varepsilon=\varepsilon(u)=o(1)$
- linear probing/chaining $O(1)$ exp. time, $O(\lg n)$ w.h.p.
\longrightarrow for $k \geq \lg n$, any k operations work in $O(k)$ time w.h.p.

Wait, there's more!

What more can we ask for?

- minwise independence with $\varepsilon=\varepsilon(n)=o(1)$
\longrightarrow minwise independence with $\varepsilon=\varepsilon(u)=o(1)$
Experiments: $\{0,1\}^{q}$ is counterexample?
- linear probing/chaining $O(1)$ exp. time, $O(\lg n)$ w.h.p.
\longrightarrow for $k \geq \lg n$, any k operations work in $O(k)$ time w.h.p.

Wait, there's more!

What more can we ask for?

- minwise independence with $\varepsilon=\varepsilon(n)=o(1)$
\longrightarrow minwise independence with $\varepsilon=\varepsilon(u)=o(1)$
Experiments: $\{0,1\}^{q}$ is counterexample?
- linear probing/chaining $O(1)$ exp. time, $O(\lg n)$ w.h.p.
\longrightarrow for $k \geq \lg n$, any k operations work in $O(k)$ time w.h.p.
We only get $k=n^{\varepsilon}$ for any $\varepsilon>0$.
Counterexample for $n^{o(1)}$.

Wait, there's more!

What more can we ask for?

- minwise independence with $\varepsilon=\varepsilon(n)=o(1)$
\longrightarrow minwise independence with $\varepsilon=\varepsilon(u)=o(1)$
Experiments: $\{0,1\}^{q}$ is counterexample?
- linear probing/chaining $O(1)$ exp. time, $O(\lg n)$ w.h.p.
\longrightarrow for $k \geq \lg n$, any k operations work in $O(k)$ time w.h.p.
We only get $k=n^{\varepsilon}$ for any $\varepsilon>0$.
Counterexample for $n^{o(1)}$.
Simple++:
- $h_{1}:[u] \rightarrow[b], h_{2}:[u] \rightarrow\left[u^{1 / q}\right]$. Just simple tabulation...
- $h(x)=h_{1}(x) \oplus T\left[h_{2}(x)\right]$.

All previous properties, plus:

- minwise independence with $\varepsilon(u)=o(1)$.
- linear probing/chaining with buffer $k=O(\lg n)$.

$\mathcal{T H E} \mathcal{E N D}$

