Tabulation-Based Hashing

Mihai Pătrașcu Mikkel Thorup

April 23, 2010
Applications of Hashing

Hash tables:
- chaining

\[x \rightarrow \bullet \rightarrow a \rightarrow t \]
\[\rightarrow \bullet \rightarrow v \]
\[\rightarrow \bullet \rightarrow f \rightarrow s \rightarrow r \]
Applications of Hashing

Hash tables:
- chaining
- linear probing

\[
\begin{array}{ccccccc}
\bullet & m & \bullet & c & a & f & t & \bullet & x & y \\
\uparrow & \uparrow & \uparrow & \uparrow & \uparrow & t \\
\end{array}
\]
Applications of Hashing

Hash tables:
- chaining
- linear probing
- cuckoo hashing

\[x \rightarrow a \]
\[b \]
\[s \]
\[z \]
\[f \]
\[r \]
\[b \]
Applications of Hashing

Hash tables:
- chaining
- linear probing
- cuckoo hashing
Applications of Hashing

Hash tables:
- chaining
- linear probing
- cuckoo hashing
Applications of Hashing

Hash tables:
- chaining
- linear probing
- cuckoo hashing

\[x \rightarrow \]

\[\begin{array}{c}
\text{a} \\
\bullet \\
\text{y} \\
\text{w} \\
\bullet \\
\bullet \\
\end{array} \quad \begin{array}{c}
\bullet \\
\text{s} \\
\text{z} \\
\text{f} \\
\bullet \\
\text{r} \\
\text{b} \\
\end{array} \]
Applications of Hashing

Hash tables:
- chaining
- linear probing
- cuckoo hashing

\[x \rightarrow \begin{array}{c}
\text{a} \\
\bullet \\
\bullet \\
\bullet \\
\text{y} \\
\text{w} \\
\bullet \\
\bullet \\
\end{array} \quad \begin{array}{c}
\bullet \\
\text{s} \\
\text{z} \\
\text{f} \\
\bullet \\
\text{r} \\
\text{b} \\
\end{array} \]
Applications of Hashing

Hash tables:
- chaining
- linear probing
- cuckoo hashing

Sketching and streaming:
- moment estimation: \(F_2(\bar{x}) = \sum_i x_i^2 \)
Applications of Hashing

Hash tables:
- chaining
- linear probing
- cuckoo hashing

Sketching and streaming:
- moment estimation: \(F_2(\overline{x}) = \sum_i x_i^2 \)
- sketch \(A \) and \(B \) to later find \(\frac{|A \cap B|}{|A \cup B|} \)
Applications of Hashing

Hash tables:
- chaining
- linear probing
- cuckoo hashing

Sketching and streaming:
- moment estimation: $F_2(\bar{x}) = \sum_i x_i^2$
- sketch A and B to later find $\frac{|A \cap B|}{|A \cup B|}$
- etc, etc.
Minwise independence

Hash each set through \(h \), keen the minimum

\[
\frac{|A \cap B|}{|A \cup B|} = \Pr_h[\min h(A) = \min h(B)]
\]

- repeat with \(k \) different \(h \);
- keep smallest \(k \) items with one \(h \)
Minwise independence

Hash each set through h, keen the minimum

$$\frac{|A \cap B|}{|A \cup B|} = \Pr_{h}[\min h(A) = \min h(B)]$$

- repeat with k different h;
- keep smallest k items with one h

The guarantee we need on h: “minwise independence”

$$(\forall) S, x : \Pr[x < \min h(S)] = \frac{1}{|S|+1}$$
Minwise independence

Hash each set through h, keep the minimum

$$\frac{|A \cap B|}{|A \cup B|} = \Pr_h[\min h(A) = \min h(B)]$$

- repeat with k different h;
- keep smallest k items with one h

The guarantee we need on h: “minwise independence”

$$(\forall) S, x : \ Pr[x < \min h(S)] = \frac{1}{|S|+1}$$

Not feasible... Approximate:

$$(\forall) S, x : \ Pr[x < \min h(S)] = \frac{1+\epsilon}{|S|+1}$$

Approximation $= \epsilon + f(\# \text{ repetitions})$
Minwise independence

Hash each set through h, keen the minimum

$$\frac{|A \cap B|}{|A \cup B|} = \Pr[h(\min h(A)) = \min h(B)]$$

- repeat with k different h;
- keep smallest k items with one h

The guarantee we need on h: “minwise independence”

$$(\forall)S, x : \quad \Pr[x < \min h(S)] = \frac{1}{|S|+1}$$

Not feasible... Approximate:

$$(\forall)S, x : \quad \Pr[x < \min h(S)] = \frac{1{\pm}\varepsilon}{|S|+1}$$

Approximation $= \varepsilon + f(\# \text{repetitions})$

NB: for weighted A, B the generalization is priority sampling
A family $\mathcal{H} = \{h : [u] \to [b]\}$ is k-independent iff:

- $(\forall) x \in u, \ h(x) \text{ is uniform in } [b]$;
- $(\forall) x_1, \ldots, x_k \in [u], \ h(x_1), \ldots, h(x_k) \text{ are independent.}$
A family $\mathcal{H} = \{h : [u] \to [b]\}$ is k-independent iff:

1. $(\forall) x \in u, \ h(x) \text{ is uniform in } [b]$;
2. $(\forall) x_1, \ldots, x_k \in [u], \ h(x_1), \ldots, h(x_k) \text{ are independent.}$

Prototypical example: degree k polynomial

- u prime;
- choose $a_0, a_1, \ldots, a_{k-1}$ randomly in $[u]$;
- $h(x) = (a_0 + a_1 x + \cdots + a_{k-1} x^{k-1}) \mod b$.
How much independence?

<table>
<thead>
<tr>
<th>Method</th>
<th>Independence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaining</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Linear probing</td>
<td>≤ 5</td>
<td>[Pagh, Ružić'07]</td>
</tr>
<tr>
<td></td>
<td>≥ 5</td>
<td>[PT'10]</td>
</tr>
<tr>
<td>Cuckoo hashing</td>
<td>$O(\lg n)$</td>
<td>≥ 6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[Cohen, Kane'05]</td>
</tr>
<tr>
<td>F_2 estimation</td>
<td>4</td>
<td>[Thorup, Zhang'04]</td>
</tr>
<tr>
<td>ε-minwise indep.</td>
<td>$O(\lg \frac{1}{\varepsilon})$</td>
<td>[Indyk'99]</td>
</tr>
<tr>
<td></td>
<td>$\Omega(\lg \frac{1}{\varepsilon})$</td>
<td>[PT'10]</td>
</tr>
</tbody>
</table>
How much independence?

<table>
<thead>
<tr>
<th>Method</th>
<th>Independence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaining</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Linear probing</td>
<td>≤ 5</td>
<td>≥ 5 [Pagh2, Ružić'07]</td>
</tr>
<tr>
<td>Cuckoo hashing</td>
<td>$O(\lg n)$</td>
<td>≥ 6 [Cohen, Kane'05]</td>
</tr>
<tr>
<td>F_2^2 estimation</td>
<td>4</td>
<td>[Thorup, Zhang'04]</td>
</tr>
<tr>
<td>ϵ-minwise indep.</td>
<td>$O(\lg \frac{1}{\epsilon})$</td>
<td>$\Omega(\lg \frac{1}{\epsilon})$ [PT'10]</td>
</tr>
</tbody>
</table>

Chaining: $\text{time} = \#\{x \mid h(x) = h(\text{query})\}$

$E[\text{time}] = n \cdot Pr[h(x) = h(\text{query})] = n \cdot \frac{1}{b} = O(1)$
How much independence?

<table>
<thead>
<tr>
<th>Method</th>
<th>Independence Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaining</td>
<td>2</td>
</tr>
<tr>
<td>Linear probing</td>
<td>(\leq 5) [Pagh(^2), Ružič’07] (\geq 5) [PT’10]</td>
</tr>
<tr>
<td>Cuckoo hashing</td>
<td>(O(\lg n)) (\geq 6) [Cohen, Kane’05]</td>
</tr>
<tr>
<td>(F_2) estimation</td>
<td>4 [Thorup, Zhang’04]</td>
</tr>
<tr>
<td>(\varepsilon)-minwise indep.</td>
<td>(O(\lg \frac{1}{\varepsilon})) [Indyk’99] (\Omega(\lg \frac{1}{\varepsilon})) [PT’10]</td>
</tr>
</tbody>
</table>

Chaining:

\[
\text{time} = \# \{ x \mid h(x) = h(\text{query}) \} \\
\mathbb{E}[\text{time}] = n \cdot \Pr[h(x) = h(\text{query})] = n \cdot \frac{1}{b} = O(1)
\]

Cuckoo hashing:

components in random graphs have size \(O(\lg n) \)
How much independence?

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chaining</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear probing</td>
<td>≤ 5</td>
<td>[Pagh², Ružić’07]</td>
<td>≥ 5</td>
</tr>
<tr>
<td>Cuckoo hashing</td>
<td>$O(\lg n)$</td>
<td>≥ 6</td>
<td>[Cohen, Kane’05]</td>
</tr>
<tr>
<td>F_2 estimation</td>
<td>4</td>
<td>[Thorup, Zhang’04]</td>
<td></td>
</tr>
<tr>
<td>ε-minwise indep.</td>
<td>$O(\lg \frac{1}{\varepsilon})$ [Indyk’99]</td>
<td>$\Omega(\lg \frac{1}{\varepsilon})$ [PT’10]</td>
<td></td>
</tr>
</tbody>
</table>

Chaining:

\[
\text{time} = \#\{x \mid h(x) = h(\text{query})\}
\]

\[
\mathbb{E}[\text{time}] = n \cdot \Pr[h(x) = h(\text{query})] = n \cdot \frac{1}{b} = O(1)
\]

Cuckoo hashing:

components in random graphs have size $O(\lg n)$

Minwise independence:

k-level inclusion/exclusion estimates probabilities to $\pm 2^{-k}$.
Linear probing
Implementing \(k \)-independence

Goals:
- constant time for \(\omega(1) \) independence
- practical solution?

Lower bound [Siegel'90s]:
With space \(u \), query time \(\geq \min \{ k, q \} \).

Tabulation hashing:
- \(q \) basic characters: \(x \mapsto (x_1, \ldots, x_q) \)
- \(d \) derived characters: \(y_i = f_i(x_1, \ldots, x_q) \)
- store \(q + d \) random tables \(T_i[u/q] \)

 \[h(x) = T_1[q_1] \oplus \cdots \oplus T_q[x_q] \oplus T_{q+1}[y_1] \oplus \cdots \]
Implementing k-independence

Goals:

- constant time for $\omega(1)$ independence
- practical solution?

Lower bound [Siegel’90s]:

With space $u^{1/q}$, query time $\geq \min\{k, q\}$.

Tabulation hashing:

- basic characters: $x \mapsto (x_1, \ldots, x_q)$
- derived characters: $y_i = f_i(x_1, \ldots, x_q)$
- store $q+d$ random tables $T_i[u^{1/q}]$
- $h(x) = T_1[q] \oplus \cdots \oplus T_q[x_q] \oplus T_{q+1}[y_1] \oplus \cdots$
Implementing k-independence

Goals:
- constant time for $\omega(1)$ independence
- practical solution?

Lower bound [Siegel’90s]:
With space $u^{1/q}$, query time $\geq \min\{k, q\}$.

Tabulation hashing:
- q basic characters: $x \mapsto (x_1, \ldots, x_q)$
- d derived characters: $y_i = f_i(x_1, \ldots, x_q)$
- store $q + d$ random tables $T_i[u^{1/q}]$
- $h(x) = T_1[q_1] \oplus \cdots \oplus T_q[x_q] \oplus T_{q+1}[y_1] \oplus \cdots$
Tabulation-Based Hashing

<table>
<thead>
<tr>
<th></th>
<th>Independence</th>
<th># characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carter, Wegman’77</td>
<td>3</td>
<td>(q) (⋆)</td>
</tr>
<tr>
<td>Siegel’90s</td>
<td>(n^{\Omega(1)})</td>
<td>(q^{O(q)})</td>
</tr>
<tr>
<td>Dietzfel, Woelfel’03</td>
<td>(k)</td>
<td>(k \cdot q)</td>
</tr>
<tr>
<td>Thorup, Zhang’04</td>
<td>(k)</td>
<td>((k - 1)(q - 1))</td>
</tr>
<tr>
<td>Thorup, Zhang’10</td>
<td>5</td>
<td>(2q - 1)</td>
</tr>
<tr>
<td>recent</td>
<td>(\omega(1))</td>
<td>(O(q^2))</td>
</tr>
</tbody>
</table>

(⋆) simple tabulation (no derived characters)
Peeling \((q = 2, k = 3)\)

\((x_1, x_2) \mapsto T_1[x_1] \oplus T_2[x_2]\)

Let’s prove independence of \(\{a, b, c\}\).
Peeling \((q = 2, k = 3)\)

\[(x_1, x_2) \mapsto T_1[x_1] \oplus T_2[x_2]\]

Let’s prove independence of \(\{a, b, c\}\).

<table>
<thead>
<tr>
<th>(a_1)</th>
<th>(a_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b_1)</td>
<td>(b_2)</td>
</tr>
<tr>
<td>(c_1)</td>
<td>(c_2)</td>
</tr>
</tbody>
</table>

Peeling:
If \(a_i\) is unique \((a_i \neq b_i, c_i)\)
\[\implies h(a) \text{ independent of } h(b), h(c)\]
Peeling \((q = 2, k = 3)\)

\((x_1, x_2) \mapsto T_1[x_1] \oplus T_2[x_2]\)

Let’s prove independence of \(\{a, b, c\}\).

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>(a_2)</td>
</tr>
<tr>
<td>(b_1)</td>
<td>(b_2)</td>
</tr>
<tr>
<td>(c_1)</td>
<td>(c_2)</td>
</tr>
</tbody>
</table>

Peeling:
If \(a_i\) is unique \((a_i \neq b_i, c_i)\)

\(\implies h(a)\) independent of \(h(b), h(c)\)

Any set of \(\leq 3\) keys is peelable, thus independent.
Peeling \((q = 2, k = 4)\)

\((x_1, x_2) \mapsto T_1[x_1] \oplus T_2[x_2] \oplus T_3[x_1 + x_2]\)

Let’s prove \(\{a, b, c, d\}\) are independent.

- if we can peel, reduce to 3-independence.
- the only non-peelable configuration:
Peeling \((q = 2, k = 4) \)

\[(x_1, x_2) \mapsto T_1[x_1] \oplus T_2[x_2] \oplus T_3[x_1 + x_2] \]

Let’s prove \(\{a, b, c, d\} \) are independent.

- if we can peel, reduce to 3-independence.
- the only non-peelable configuration:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(s)</td>
<td>(x + s)</td>
</tr>
<tr>
<td>(x)</td>
<td>(t)</td>
<td>(x + t)</td>
</tr>
<tr>
<td>(y)</td>
<td>(s)</td>
<td>(y + s)</td>
</tr>
<tr>
<td>(y)</td>
<td>(t)</td>
<td>(y + t)</td>
</tr>
</tbody>
</table>
Peeling \((q = 2, k = 4)\)

\[(x_1, x_2) \mapsto T_1[x_1] \oplus T_2[x_2] \oplus T_3[x_1 + x_2]\]

Let’s prove \(\{a, b, c, d\}\) are independent.
- if we can peel, reduce to 3-independence.
- the only non-peelable configuration:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(s)</td>
<td>(x + s)</td>
</tr>
<tr>
<td>(x)</td>
<td>(t)</td>
<td>(x + t)</td>
</tr>
<tr>
<td>(y)</td>
<td>(s)</td>
<td>(y + s)</td>
</tr>
<tr>
<td>(y)</td>
<td>(t)</td>
<td>(y + t)</td>
</tr>
</tbody>
</table>

Only possible equalities: \(x + s = y + t\) or \(x + t = y + s\).
Both cannot hold, so we have peeling in derived character.
Theorem: Any 4-independent tabulation is 5-independent! Among any 5 keys, one is independent in the basic characters.
5-independence [PT’10]

Theorem: Any 4-independent tabulation is 5-independent!
Among any 5 keys, one is independent in the basic characters.
- any unique character \Rightarrow peel
Theorem: Any 4-independent tabulation is 5-independent! Among any 5 keys, one is independent in the basic characters.

- any unique character \Rightarrow peel
- otherwise, any dimension looks like: three “0”, two “1”
Theorem: Any 4-independent tabulation is 5-independent!
Among any 5 keys, one is independent in the basic characters.

- any unique character \Rightarrow peel
- otherwise, any dimension looks like: three “0”, two “1”
- two columns have Hamming distance = 4

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>0</td>
<td>...</td>
</tr>
<tr>
<td>e</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
</tbody>
</table>
Theorem: Any 4-independent tabulation is 5-independent! Among any 5 keys, one is independent in the basic characters.

- any unique character ⇒ peel
- otherwise, any dimension looks like: three “0”, two “1”
- two columns have Hamming distance = 4

\[
\begin{array}{c|c|c|c|c|c}
\hline
a & 0 & 1 & ... \\
\hline
b & 0 & 1 & ... \\
\hline
c & 1 & 0 & ... \\
\hline
d & 1 & 0 & ... \\
\hline
e & 1 & 1 & ... \\
\hline
\end{array}
\]

- all columns at Hamming distance = 2

\[
\begin{array}{c|c|c|c|c|c}
\hline
a & 0 & 0 & 0 & ... \\
\hline
b & 0 & 1 & 1 & ... \\
\hline
c & 1 & 0 & 1 & ... \\
\hline
d & 1 & 1 & 0 & ... \\
\hline
e & 1 & 1 & 1 & ... \\
\hline
\end{array}
\]

NB: \(h(a) = h(b) \oplus h(c) \oplus h(d) \)

If \(e \) independent of \(b, c, d \), also independent of \(f(b, c, d) \).
Putting it together

Algorithm

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Indep.</th>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>chaining</td>
<td>2</td>
<td>q</td>
</tr>
<tr>
<td>F_2 estimation</td>
<td>4</td>
<td>$2q - 1$</td>
</tr>
<tr>
<td>linear probing</td>
<td>5</td>
<td>$2q - 1$</td>
</tr>
<tr>
<td>ε-minwise</td>
<td>$\Theta(\lg \frac{1}{\varepsilon})$</td>
<td>$(k - 1)(q - 1)$</td>
</tr>
<tr>
<td>cuckoo hashing</td>
<td>$O(\lg n)$</td>
<td>$q^O(q)$</td>
</tr>
</tbody>
</table>

Scheme

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Indep.</th>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>[Thorup, Zhang’04]</td>
<td>4</td>
<td>$2q - 1$</td>
</tr>
<tr>
<td>“4 \rightarrow 5”</td>
<td>5</td>
<td>$2q - 1$</td>
</tr>
<tr>
<td>[Thorup, Zhang’04]</td>
<td>k</td>
<td>$(k - 1)(q - 1)$</td>
</tr>
<tr>
<td>[Siegel’90s]</td>
<td>$n^{\Omega(1)}$</td>
<td>$q^{O(q)}$</td>
</tr>
</tbody>
</table>
Putting it together

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Indep.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chaining</td>
<td>2</td>
</tr>
<tr>
<td>F_2 estimation</td>
<td>4</td>
</tr>
<tr>
<td>linear probing</td>
<td>5</td>
</tr>
<tr>
<td>ε-minwise</td>
<td>$\Theta(\lg \frac{1}{\varepsilon})$</td>
</tr>
<tr>
<td>cuckoo hashing</td>
<td>$O(\lg n)$?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Indep.</th>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>[Thorup, Zhang’04]</td>
<td>4</td>
<td>$2q - 1$</td>
</tr>
<tr>
<td>“4 \rightarrow 5”</td>
<td>5</td>
<td>$2q - 1$</td>
</tr>
<tr>
<td>[Thorup, Zhang’04]</td>
<td>k</td>
<td>$(k - 1)(q - 1)$</td>
</tr>
<tr>
<td>[Siegel’90s]</td>
<td>$n^{\Omega(1)}$</td>
<td>$q^{O(q)}$</td>
</tr>
</tbody>
</table>

What exactly are we doing here?
The Power of Simple Tabulation

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Indep.</th>
<th>Scheme</th>
<th>Indep.</th>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>chaining</td>
<td>2</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>F_2 estimation</td>
<td>4</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>linear probing</td>
<td>5</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>ε-minwise</td>
<td>$\Theta(\lg \frac{1}{\varepsilon})$</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>cuckoo hashing</td>
<td>$O(\lg n)$?</td>
<td>maybe...</td>
<td>3</td>
<td>q</td>
</tr>
</tbody>
</table>
The Power of Simple Tabulation

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Indep.</th>
<th>Scheme</th>
<th>Indep.</th>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>chaining</td>
<td>2</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>F_2 estimation</td>
<td>4</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>linear probing</td>
<td>5</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>ε-minwise</td>
<td>$\Theta(\lg \frac{1}{\varepsilon})$</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>cuckoo hashing</td>
<td>$O(\lg n)$?</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
</tbody>
</table>

Simple tabulation:

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>
| preserves 4th moment bound \Rightarrow F_2 estimation 1-in-5 indep. \Rightarrow linear probing in expected $O(1)$ time
| ε-minwise independence with $\varepsilon = \varepsilon(n) = o(1)$.
| Chernoff concentration $\Rightarrow O(lg n)$ query time w.h.p.
| preserve moments in linear probing, chaining: F_p w/ simple tabulation $= F_p$ w/ truly random $+ o(1)$

Mihai Pătrașcu, Mikkel Thorup

Tabulation-Based Hashing
The Power of Simple Tabulation

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Indep.</th>
<th>Scheme</th>
<th>Indep.</th>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>chaining</td>
<td>2</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>F_2 estimation</td>
<td>4</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>linear probing</td>
<td>5</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>ε-minwise</td>
<td>$\Theta(\lg \frac{1}{\varepsilon})$</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>cuckoo hashing</td>
<td>$O(\lg n)$?</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
</tbody>
</table>

Simple tabulation:

- Preserves 4th moment bound
- $\Rightarrow F_2$ estimation
- 1-in-5 independence \Rightarrow linear probing in expected $O(1)$ time
- Minwise independence with $\varepsilon = \varepsilon(n) = o(1)$.
- Chernoff concentration $\Rightarrow O(\lg n)$ query time w.h.p.
- Preserves moments in linear probing, chaining: F_p w/ simple tabulation = F_p w/ truly random + $o(1)$
The Power of Simple Tabulation

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Indep.</th>
<th>Scheme</th>
<th>Indep.</th>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>chaining</td>
<td>2</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>F_2 estimation</td>
<td>4</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>linear probing</td>
<td>5</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>ε-minwise</td>
<td>$\Theta(\lg \frac{1}{\varepsilon})$</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>cuckoo hashing</td>
<td>$O(\lg n)$?</td>
<td>maybe...</td>
<td>3</td>
<td>q</td>
</tr>
</tbody>
</table>

Simple tabulation:
- preserves 4th moment bound $\Rightarrow F_2$ estimation
The Power of Simple Tabulation

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Indep.</th>
<th>Scheme</th>
<th>Indep.</th>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>chaining</td>
<td>2</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>F_2 estimation</td>
<td>4</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>linear probing</td>
<td>5</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>ε-minwise</td>
<td>$\Theta(1g \frac{1}{\varepsilon})$</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>cuckoo hashing</td>
<td>$O(1g n)$?</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
</tbody>
</table>

Simple tabulation:
- preserves 4th moment bound $\Rightarrow F_2$ estimation
- 1-in-5 indep. \Rightarrow linear probing in expected $O(1)$ time
The Power of Simple Tabulation

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Indep.</th>
</tr>
</thead>
<tbody>
<tr>
<td>chaining</td>
<td>2</td>
</tr>
<tr>
<td>F_2 estimation</td>
<td>4</td>
</tr>
<tr>
<td>linear probing</td>
<td>5</td>
</tr>
<tr>
<td>ε-minwise</td>
<td>$\Theta(\lg \frac{1}{\varepsilon})$</td>
</tr>
<tr>
<td>cuckoo hashing</td>
<td>$O(\lg n)$?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scheme</th>
<th>Indep.</th>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>maybe...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simple tabulation:
- preserves 4^{th} moment bound $\Rightarrow F_2$ estimation
- 1-in-5 indep. \Rightarrow linear probing in expected $O(1)$ time
- minwise independence with $\varepsilon = \varepsilon(n) = o(1)$.

Mihai Pătraşcu, Mikkel Thorup
Tabulation-Based Hashing
The Power of Simple Tabulation

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Indep.</th>
<th>Scheme</th>
<th>Indep.</th>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>chaining</td>
<td>2</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>F_2 estimation</td>
<td>4</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>linear probing</td>
<td>5</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>ε-minwise</td>
<td>$\Theta(\lg \frac{1}{\varepsilon})$</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>cuckoo hashing</td>
<td>$O(\lg n)$?</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>maybe...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simple tabulation:

- preserves 4th moment bound $\Rightarrow F_2$ estimation
- 1-in-5 indep. \Rightarrow linear probing in expected $O(1)$ time
- minwise independence with $\varepsilon = \varepsilon(n) = o(1)$.
- Chernoff concentration $\Rightarrow O(\lg n)$ query time w.h.p.
The Power of Simple Tabulation

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Indep.</th>
<th>Scheme</th>
<th>Indep.</th>
<th>Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>chaining</td>
<td>2</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>F_2 estimation</td>
<td>4</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>linear probing</td>
<td>5</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>ε-minwise</td>
<td>$\Theta(1g \frac{1}{\varepsilon})$</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td>cuckoo hashing</td>
<td>$O(1g n)$?</td>
<td>simple tabulation</td>
<td>3</td>
<td>q</td>
</tr>
<tr>
<td></td>
<td></td>
<td>maybe...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simple tabulation:
- preserves 4\(^{th}\) moment bound $\Rightarrow F_2$ estimation
- 1-in-5 indep. \Rightarrow linear probing in expected $O(1)$ time
- minwise independence with $\varepsilon = \varepsilon(n) = o(1)$.
- Chernoff concentration $\Rightarrow O(1g n)$ query time w.h.p.
- preserve moments in linear probing, chaining: F_p w/ simple tabulation $= F_p$ w/ truly random $+ o(1)$
Simple tabulation as a PRG

Pseudorandom numbers \(\approx h(0), h(1), h(1), \ldots \)

<table>
<thead>
<tr>
<th>(g(0))</th>
<th>(f(0))</th>
<th>(h(0))</th>
<th>(h(1))</th>
<th>(\ldots)</th>
<th>(h(S - 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g(1))</td>
<td>(f(1))</td>
<td>(h(S))</td>
<td>(h(S + 1))</td>
<td>(\ldots)</td>
<td>(h(2S - 1))</td>
</tr>
<tr>
<td>(g(2))</td>
<td>(f(S - 1))</td>
<td>(h(2S))</td>
<td>(h(2S + 1))</td>
<td>(\ldots)</td>
<td>(h(3S - 1))</td>
</tr>
</tbody>
</table>

\(\ldots \)
Simple tabulation as a PRG

Pseudorandom numbers \(\approx h(0), h(1), h(1), \ldots \)

<table>
<thead>
<tr>
<th>(f(0))</th>
<th>(f(1))</th>
<th>\ldots</th>
<th>(f(S - 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g(0))</td>
<td>(h(0))</td>
<td>(h(1))</td>
<td>\ldots</td>
</tr>
<tr>
<td>(g(1))</td>
<td>(h(S))</td>
<td>(h(S + 1))</td>
<td>\ldots</td>
</tr>
<tr>
<td>(g(2))</td>
<td>(h(2S))</td>
<td>(h(2S + 1))</td>
<td>\ldots</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
</tbody>
</table>

Use \(S = O(\lg n) \) truly random numbers. Compute \(\lg n \) independent \(g(\cdot) \), but rarely.

PRG has:
- concentration (load balancing, \ldots)
- minwise independence (treaps, \ldots)
Wait, there’s more!

What more can we ask for?
What more can we ask for?

- minwise independence with $\varepsilon = \varepsilon(n) = o(1)$
 \[\rightarrow\] minwise independence with $\varepsilon = \varepsilon(u) = o(1)$
Wait, there’s more!

What more can we ask for?

- minwise independence with $\varepsilon = \varepsilon(n) = o(1)$
 \rightarrow minwise independence with $\varepsilon = \varepsilon(u) = o(1)$

- linear probing/chaining $O(1)$ exp. time, $O(\lg n)$ w.h.p.
 \rightarrow for $k \geq \lg n$, any k operations work in $O(k)$ time w.h.p.
Wait, there’s more!

What more can we ask for?

- minwise independence with $\varepsilon = \varepsilon(n) = o(1)$
 \rightarrow minwise independence with $\varepsilon = \varepsilon(u) = o(1)$

Experiments: $\{0, 1\}^q$ is counterexample?

- linear probing/chaining $O(1)$ exp. time, $O(\lg n)$ w.h.p.
 \rightarrow for $k \geq \lg n$, any k operations work in $O(k)$ time w.h.p.
Wait, there’s more!

What more can we ask for?

- minwise independence with \(\varepsilon = \varepsilon(n) = o(1) \)
 \(\rightarrow \) minwise independence with \(\varepsilon = \varepsilon(u) = o(1) \)
 Experiments: \(\{0, 1\}^q \) is counterexample?

- linear probing/chaining \(O(1) \) exp. time, \(O(\lg n) \) w.h.p.
 \(\rightarrow \) for \(k \geq \lg n \), any \(k \) operations work in \(O(k) \) time w.h.p.
 We only get \(k = n^\varepsilon \) for any \(\varepsilon > 0 \).
 Counterexample for \(n^{o(1)} \).

Simple++:

\[h_1: [u] \rightarrow [b], \quad h_2: [u] \rightarrow [u_{1/q}] \]

Just simple tabulation. . .

\[h(x) = h_1(x) \oplus T[h_2(x)] \]

All previous properties, plus:

- minwise independence with \(\varepsilon(u) = o(1) \)
- linear probing/chaining with buffer \(k = O(\lg n) \).
Wait, there’s more!

What more can we ask for?

- minwise independence with $\varepsilon = \varepsilon(n) = o(1)$
 \rightarrow minwise independence with $\varepsilon = \varepsilon(u) = o(1)$
Experiments: $\{0, 1\}^q$ is counterexample?

- linear probing/chaining $O(1)$ exp. time, $O(lg n)$ w.h.p.
 \rightarrow for $k \geq lg n$, any k operations work in $O(k)$ time w.h.p.
We only get $k = n^\varepsilon$ for any $\varepsilon > 0$.
Counterexample for $n^{o(1)}$.

Simple++:

- $h_1 : [u] \rightarrow [b]$, $h_2 : [u] \rightarrow [u^{1/q}]$. Just simple tabulation…
- $h(x) = h_1(x) \oplus T[h_2(x)]$.

All previous properties, plus:

- minwise independence with $\varepsilon(u) = o(1)$.
- linear probing/chaining with buffer $k = O(lg n)$.
THE END