Lower Bounds for Asymmetric Communication Channels and Distributed Source Coding

Micah Adler¹ Erik D. Demaine² Nicholas J. A. Harvey² Mihai Pătrascu²

A B A A B A

3

¹University of Massachusetts, Amherst

²MIT

SODA 2006

Adler, Demaine, Harvey, Påtrascu **Distributed Source Coding**

Data Transmission

Send $s \in \{0, 1\}^n$ $s \leftarrow D, H(D) < n$ Client sends $\sim H(D)$ bits

k clients \longrightarrow 1 server

Send $s_1, \ldots, s_k \in \{0, 1\}^n$ $(s_1, \ldots, s_k) \leftarrow D$ (correlated!), H(D) < nkClients send $\sim H(D)$ bits in total

(本語)と (本語)と (本語)と

Data Transmission

Client ----> Server

Send $s \in \{0, 1\}^n$ $s \leftarrow D, H(D) < n$ Client sends $\sim H(D)$ bits

k clients \longrightarrow 1 server

Send $s_1, \ldots, s_k \in \{0, 1\}^n$ $(s_1, \ldots, s_k) \leftarrow D$ (correlated!), H(D) < nkClients send $\sim H(D)$ bits in total

3

	1 client	k clients
D fixed	[Huffman] client sends [<i>H</i> (<i>D</i>)]	[Slepian-Wolf] clients send $\lceil H(D) \rceil$
D known by server	[Adler-Maggs] clients send $O(H(D))$ server sends $O(n)$ expected $O(1)$ rounds $Pr[t rounds] \ge 2^{-O(t g t)}$	clients send $O(H(D))$ server sends $O(kn)$ $\Omega(\frac{\log k}{\log \log k})$ needed

Cost of client not knowing D:

0

(日) (四) (三) (三) (三)

	1 client	k clients
D fixed	[Huffman] client sends [<i>H</i> (<i>D</i>)]	[Slepian-Wolf] clients send $\lceil H(D) \rceil$
D known by server	[Adler-Maggs] clients send $O(H(D))$ server sends $O(n)$ expected $O(1)$ rounds $Pr[t rounds] \ge 2^{-O(t/g_1)}$	clients send $O(H(D))$ server sends $O(kn)$ $\Omega(\frac{\log k}{\log\log k})$ needed

Cost of client not knowing D:

0

(日) (四) (三) (三) (三)

	1 client	k clients
D fixed	[Huffman] client sends [<i>H</i> (<i>D</i>)]	[Slepian-Wolf] clients send $\lceil H(D) \rceil$
D known by server	[Adler-Maggs] clients send $O(H(D))$ server sends $O(n)$ expected $O(1)$ rounds $Pr[t rounds] > 2^{-O(t \log t)}$	clients send $O(H(D))$ server sends $O(kn)$ $\Omega(\frac{\log k}{\log \log k})$ needed

Cost of client not knowing D:

0

(日) (四) (三) (三) (三)

	1 client	k clients
D fixed	[Huffman] client sends [<i>H</i> (<i>D</i>)]	[Slepian-Wolf] clients send $\lceil H(D) \rceil$
<i>D</i> known by server	[Adler-Maggs] clients send $O(H(D))$ server sends $O(n)$ expected $O(1)$ rounds $Pr[t rounds] \ge 2^{-O(t g t)}$	clients send $O(H(D))$ server sends $O(kn)$ $\Omega(\frac{\log k}{\log k})$ needed

Cost of client not knowing D:

0

(日) (四) (三) (三) (三)

	1 client	k clients
D fixed	[Huffman] client sends [<i>H</i> (<i>D</i>)]	[Slepian-Wolf] clients send $\lceil H(D) \rceil$
<i>D</i> known by server	[Adler-Maggs] clients send $O(H(D))$ server sends $O(n)$ expected $O(1)$ rounds	clients send $O(H(D))$ server sends $O(kn)$ $\Omega(\frac{\log k}{\log k})$ needed

Cost of client not knowing D:

0

(日) (四) (三) (三) (三)

	1 client	k clients
D fixed	[Huffman] client sends [<i>H</i> (<i>D</i>)]	[Slepian-Wolf] clients send $\lceil H(D) \rceil$
<i>D</i> known by server	[Adler-Maggs] clients send $O(H(D))$ server sends $O(n)$ expected $O(1)$ rounds	[Adler-Maggs] clients send O(H(D)) server sends O(kn)

Cost of client not knowing D:

0

(日) (四) (三) (三)

	1 client	k clients
D fixed	[Huffman] client sends [<i>H</i> (<i>D</i>)]	[Slepian-Wolf] clients send $\lceil H(D) \rceil$
<i>D</i> known by server	[Adler-Maggs] clients send $O(H(D))$ server sends $O(n)$ expected $O(1)$ rounds	[Adler-Maggs] clients send $O(H(D))$ server sends $O(kn)$ exp. $O(k)$ rounds

Cost of client not knowing D:

- Communication by server optimal.
- O rounds quasioptimal [NEW]

★御▶ ★注▶ ★注≯

	1 client	k clients
D fixed	[Huffman] client sends [<i>H</i> (<i>D</i>)]	[Slepian-Wolf] clients send $\lceil H(D) \rceil$
<i>D</i> known by server	[Adler-Maggs] clients send $O(H(D))$ server sends $O(n)$ expected $O(1)$ rounds	[Adler] clients send $O(H(D))$ server sends $O(kn)$ exp. $O(\lg k)$ rounds

Cost of client not knowing D:

- communication by server optimal.
- rounds quasioptimal [NEW]

(ロ) (四) (三) (三)

	1 client	k clients
D fixed	[Huffman] client sends [<i>H</i> (<i>D</i>)]	[Slepian-Wolf] clients send $\lceil H(D) \rceil$
<i>D</i> known by server	[Adler-Maggs] clients send $O(H(D))$ server sends $O(n)$ expected $O(1)$ rounds $Pr[rrounds] \ge 2^{-O(1)}$	[Adler] clients send $O(H(D))$ server sends $O(kn)$ exp. $O(\lg k)$ rounds $\Omega(\lg k)$ needed

Cost of client not knowing D:

- communication by server optimal
- Irounds quasioptimal [NEW]

→ 注→ < 注→</p>

< 17 ×

э

	1 client	k clients
D fixed	[Huffman] client sends [<i>H</i> (<i>D</i>)]	[Slepian-Wolf] clients send $\lceil H(D) \rceil$
<i>D</i> known by server	[Adler-Maggs] clients send $O(H(D))$ server sends $O(n)$ expected $O(1)$ rounds $Pr[t rounds] \ge 2^{-O(t \log t)}$	[Adler] clients send $O(H(D))$ server sends $O(kn)$ exp. $O(\lg k)$ rounds $\Omega(\frac{\lg k}{\lg \lg k})$ needed

Cost of client not knowing D:

- communication by server optimal
- I rounds quasioptimal [NEW]

< 17 ×

э

	1 client	k clients
D fixed	[Huffman] client sends [<i>H</i> (<i>D</i>)]	[Slepian-Wolf] clients send $\lceil H(D) \rceil$
<i>D</i> known by server	[Adler-Maggs] clients send $O(H(D))$ server sends $O(n)$ expected $O(1)$ rounds $Pr[t \text{ rounds}] \ge 2^{-O(t \lg t)}$	[Adler] clients send $O(H(D))$ server sends $O(kn)$ exp. $O(\lg k)$ rounds $\Omega(\frac{\lg k}{\lg \lg k})$ needed

Cost of client not knowing D:

- communication by server optimal
- In rounds quasioptimal [NEW]

< 17 ×

	1 client	k clients
D fixed	[Huffman] client sends [<i>H</i> (<i>D</i>)]	[Slepian-Wolf] clients send $\lceil H(D) \rceil$
<i>D</i> known by server	[Adler-Maggs] clients send $O(H(D))$ server sends $O(n)$ expected $O(1)$ rounds $Pr[t \text{ rounds}] \ge 2^{-O(t \lg t)}$	[Adler] clients send $O(H(D))$ server sends $O(kn)$ exp. $O(\lg k)$ rounds $\Omega(\frac{\lg k}{\lg \lg k})$ needed

Cost of client not knowing D:

- communication by server optimal
- In rounds quasioptimal [NEW]

< 17 ×

The class of hard distributions D

Adler, Demaine, Harvey, Pătraşcu Distributed Source Coding

Intuition for hardness

Let h = height of one layer Let p = Pr[vestigial child] $\implies H(D) = ph + (1 - p)ph + (1 - p)^2ph + ...$

H(D) is small

⇒ one client message cannot talk about many layers for many samples

Random choice of vestigial child (left / right) → don't know which samples need many layers

Intuition for hardness

Let h = height of one layer Let p = Pr[vestigial child] $\implies H(D) = ph + (1 - p)ph + (1 - p)^2ph + ...$

H(D) is small

 \implies one client message cannot talk about many layers for many samples

Random choice of vestigial child (left / right) → don't know which samples need many layers

(3)

Intuition for hardness

Let h = height of one layer Let p = Pr[vestigial child] $\implies H(D) = ph + (1 - p)ph + (1 - p)^2ph + ...$

H(D) is small

⇒ one client message cannot talk about many layers for many samples

Random choice of vestigial child (left / right)

 \implies don't know which samples need many layers

A B A A B A

Communication Complexity Tools

Message switching

Alice sends a message of $\leq a$ bits \Rightarrow eliminate, increasing Bob's message by a factor of 2^a

Round elimination lemma

Alice gets
$$x_1, \ldots, x_k$$

Bob gets $y, i \in [k]$ \rightarrow they compute $f(x_i, y)$

Alice sends a message of $a \ll k$ bits \Rightarrow message irrelevant for average *i*; eliminate

(3)

Communication Complexity Tools

Message switching

Alice sends a message of $\leq a$ bits \Rightarrow eliminate, increasing Bob's message by a factor of 2^a

Round elimination lemma

Alice gets
$$x_1, \ldots, x_k$$

Bob gets $y, i \in [k]$ \rightarrow they compute $f(x_i, y)$

Alice sends a message of $a \ll k$ bits \Rightarrow message irrelevant for average *i*; eliminate

(3)

Communication Complexity Tools

Message switching

Alice sends a message of $\leq a$ bits \Rightarrow eliminate, increasing Bob's message by a factor of 2^a

Round elimination lemma

Alice gets
$$x_1, \ldots, x_k$$

Bob gets $y, i \in [k]$ $\Big\}$ \longrightarrow they compute $f(x_i, y)$

Alice sends a message of $a \ll k$ bits \Rightarrow message irrelevant for average *i*; eliminate

< 17 ×

(문화) (문화

- switch client's message
 NB: need hard upper bound on message size (Markov)
- 2 round elimination of server's message subproblems: what is below each T leaf prefix of client's sample chooses subproblem
- repeat, in the smaller probability space where the sample is not vestigial at this level

Contradiction

Eliminated *i* rounds by introducing "small" error With no rounds, cannot solve better than random guessing Sample is at level $> i \Rightarrow$ nontrivial problem

(日) (日) (日)

- switch client's message
 NB: need hard upper bound on message size (Markov)
- round elimination of server's message subproblems: what is below each T leaf prefix of client's sample chooses subproblem
- repeat, in the smaller probability space where the sample is not vestigial at this level

Contradiction

Eliminated *i* rounds by introducing "small" error With no rounds, cannot solve better than random guessing Sample is at level $> i \Rightarrow$ nontrivial problem

- 何 ト - 4 三 ト - 4 三

- switch client's message
 NB: need hard upper bound on message size (Markov)
- round elimination of server's message subproblems: what is below each T leaf prefix of client's sample chooses subproblem
- repeat, in the smaller probability space where the sample is not vestigial at this level

Contradiction

Eliminated *i* rounds by introducing "small" error With no rounds, cannot solve better than random guessing Sample is at level $> i \Rightarrow$ nontrivial problem

・ 同・ ・ ヨ・ ・ ヨ

- switch client's message
 NB: need hard upper bound on message size (Markov)
- round elimination of server's message subproblems: what is below each T leaf prefix of client's sample chooses subproblem
- repeat, in the smaller probability space where the sample is not vestigial at this level

Contradiction

Eliminated *i* rounds by introducing "small" error With no rounds, cannot solve better than random guessing Sample is at level $> i \Rightarrow$ nontrivial problem

A ∰ ▶ < ∃ ▶ </p>

- many complications and subtleties
- innovative communication complexity analysis

Example

Obtaining a hard bound for the client's messages:

- $\Pr[\text{sample is from level } \geq i] = (1 p)^i$
- error introduced must be small in this space.
- hard bound (by Markov) must be huge ~ H(D)/(1 p)

▲□▶ ▲ 三▶ ▲ 三▶

- many complications and subtleties
- innovative communication complexity analysis

Example

Obtaining a hard bound for the client's messages:

- $\Pr[\text{sample is from level } \geq i] = (1 p)^{i}$
- error introduced must be small in this space
- hard bound (by Markov) must be huge $\sim H(D)/(1-p)^i$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- many complications and subtleties
- innovative communication complexity analysis

Example

Obtaining a hard bound for the client's messages:

- Pr[sample is from level $\geq i$] = $(1 p)^i$
- error introduced must be small in this space
- hard bound (by Markov) must be huge $\sim H(D)/(1-p)^i$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- many complications and subtleties
- innovative communication complexity analysis

Example

Obtaining a hard bound for the client's messages:

- Pr[sample is from level $\geq i$] = $(1 p)^i$
- error introduced must be small in this space
- hard bound (by Markov) must be huge $\sim H(D)/(1ho)^i$

A B A A B A

- many complications and subtleties
- innovative communication complexity analysis

Example

Obtaining a hard bound for the client's messages:

- Pr[sample is from level $\geq i$] = $(1 p)^i$
- error introduced must be small in this space
- hard bound (by Markov) must be huge $\sim H(D)/(1-p)^i$

< E > < E >

Regular error

Unilateral error

・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

- Markov on client's message introduces unilateral error
- conditioning the sample being from level ≥ i does not change the marginal distribution on the client's input
- ightarrow much better Markov bound

Regular error

Unilateral error

・ロト ・四ト ・ヨト ・ヨト

э

- Markov on client's message introduces unilateral error
- conditioning the sample being from level
 i does not change the marginal distribution on the client's input
- ⇒ much better Markov bound

Regular error

Unilateral error

・ロト ・四ト ・ヨト ・ヨト

э

- Markov on client's message introduces unilateral error
- conditioning the sample being from level ≥ *i* does not change the marginal distribution on the client's input
- ⇒ much better Markov bound

Regular error

Unilateral error

< 17 ×

Image: A mathematical states and a mathem

- Markov on client's message introduces unilateral error
- conditioning the sample being from level > i does not change the marginal distribution on the client's input
- ⇒ much better Markov bound

$\mathcal{THE} \ \mathcal{END}$

★御▶ ★注▶ ★注≯