Lower Bounds for Asymmetric Communication Channels and Distributed Source Coding

Micah Adler1 Erik D. Demaine2 Nicholas J. A. Harvey2 Mihai Pătraşcu2

1University of Massachusetts, Amherst
2MIT

SODA 2006
Data Transmission

Client \rightarrow Server

Send $s \in \{0, 1\}^n$

$s \leftarrow D$, $H(D) < n$

Client sends $\sim H(D)$ bits

k clients \rightarrow 1 server

Send $s_1, \ldots, s_k \in \{0, 1\}^n$

$(s_1, \ldots, s_k) \leftarrow D$ (correlated!), $H(D) < nk$

Clients send $\sim H(D)$ bits in total
Data Transmission

Client → Server

Send \(s \in \{0, 1\}^n \)

\(s \leftarrow D, \ H(D) < n \)

Client sends \(\sim H(D) \) bits

k clients → 1 server

Send \(s_1, \ldots, s_k \in \{0, 1\}^n \)

\((s_1, \ldots, s_k) \leftarrow D \) (correlated!), \(H(D) < nk \)

Clients send \(\sim H(D) \) bits in total
What can be done?

<table>
<thead>
<tr>
<th></th>
<th>1 client</th>
<th>k clients</th>
</tr>
</thead>
<tbody>
<tr>
<td>D fixed</td>
<td>[Huffman] client sends $\lceil H(D) \rceil$</td>
<td>[Slepian-Wolf] clients send $\lceil H(D) \rceil$</td>
</tr>
<tr>
<td>D known by server</td>
<td>[Adler-Maggs] clients send $O(H(D))$ server sends $O(n)$ expected $O(1)$ rounds $Pr[t \text{ rounds}] \geq 2^{-O(t \log t)}$</td>
<td>clients send $O(H(D))$ server sends $O(kn)$ $\Omega(\frac{\log k}{\log \log k})$ needed</td>
</tr>
</tbody>
</table>

Cost of client not knowing D:

- 1 communication by server – optimal
- 2 rounds – quasioptimal

Adler, Demaine, Harvey, Pătrașcu
Distributed Source Coding
What can be done?

<table>
<thead>
<tr>
<th></th>
<th>1 client</th>
<th>k clients</th>
</tr>
</thead>
<tbody>
<tr>
<td>D fixed</td>
<td>[Huffman] $H(D)$</td>
<td>[Slepian-Wolf] $H(D)$</td>
</tr>
<tr>
<td></td>
<td>client sends $\lceil H(D) \rceil$</td>
<td>clients send $\lceil H(D) \rceil$</td>
</tr>
<tr>
<td>D known by server</td>
<td>[Adler-Maggs] $O(H(D))$ $O(n)$ $O(1)$ rounds</td>
<td>clients send $O(H(D))$ $O(kn)$ $\Omega(\frac{\lg k}{\lg \lg k})$ needed</td>
</tr>
<tr>
<td></td>
<td>server sends $O(n)$ expected $O(1)$ rounds Pr[t rounds] $\geq 2^{-O(t \lg t)}$</td>
<td></td>
</tr>
</tbody>
</table>

Cost of client not knowing D:

- 1 communication by server – optimal
- 2 rounds – quasioptimal

Adler, Demaine, Harvey, Pătrașcu

Distributed Source Coding
What can be done?

<table>
<thead>
<tr>
<th></th>
<th>1 client</th>
<th>(k) clients</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D) fixed</td>
<td>[Huffman] (k) clients send (\lceil H(D) \rceil)</td>
<td>[Slepian-Wolf] (k) clients send (\lceil H(D) \rceil)</td>
</tr>
<tr>
<td>(D) known by server</td>
<td>[Adler-Maggs] (k) clients send (O(H(D))) (k) (H(D)) (O(n))</td>
<td>(k) (H(D)) (O(\Omega(kn))) (\Omega(\frac{\log k}{\log \log k})) needed</td>
</tr>
</tbody>
</table>

Cost of client not knowing \(D \):

- \(\Omega(\frac{\log k}{\log \log k}) \) needed
What can be done?

<table>
<thead>
<tr>
<th></th>
<th>1 client</th>
<th>k clients</th>
</tr>
</thead>
<tbody>
<tr>
<td>D fixed</td>
<td>[Huffman] client sends $\lceil H(D) \rceil$</td>
<td>[Slepian-Wolf] clients send $\lceil H(D) \rceil$</td>
</tr>
<tr>
<td>D known by server</td>
<td>[Adler-Maggs] clients send $O(H(D))$</td>
<td>clients send $O(H(D))$</td>
</tr>
<tr>
<td></td>
<td>server sends $O(n)$</td>
<td>server sends $O(kn)$</td>
</tr>
<tr>
<td></td>
<td>expected $O(1)$ rounds</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Pr[t \text{ rounds}] \geq 2^{-O(t \lg t)}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\Omega(\frac{\lg k}{\lg \lg k})$ needed</td>
<td></td>
</tr>
</tbody>
</table>

Cost of client not knowing D:

- 1 communication by server – optimal
- 2 rounds – quasioptimal

Adler, Demaine, Harvey, Pătraşcu

Distributed Source Coding
What can be done?

<table>
<thead>
<tr>
<th></th>
<th>1 client</th>
<th>k clients</th>
</tr>
</thead>
<tbody>
<tr>
<td>D fixed</td>
<td>[Huffman] client sends $\lceil H(D) \rceil$</td>
<td>[Slepian-Wolf] clients send $\lceil H(D) \rceil$</td>
</tr>
<tr>
<td>D known by server</td>
<td>[Adler-Maggs] clients send $O(H(D))$ server sends $O(n)$ expected $O(1)$ rounds [Pr[t \text{ rounds}] \geq 2^{-O(t \log t)}]</td>
<td>clients send $O(H(D))$ server sends $O(kn)$ [Ω(\frac{\log k}{\log \log k}) \text{ needed}]</td>
</tr>
</tbody>
</table>

Cost of client not knowing D:

- 1 communication by server – optimal
- 2 rounds – quasioptimal

Adler, Demaine, Harvey, Pătrașcu
Distributed Source Coding
What can be done?

<table>
<thead>
<tr>
<th></th>
<th>1 client</th>
<th>k clients</th>
</tr>
</thead>
<tbody>
<tr>
<td>D fixed</td>
<td>[Huffman] [H(D)]</td>
<td>[Slepian-Wolf] [H(D)]</td>
</tr>
<tr>
<td></td>
<td>client sends [H(D)]</td>
<td>clients sends [H(D)]</td>
</tr>
<tr>
<td>D known by server</td>
<td>[Adler-Maggs] [O(H(D))]</td>
<td>[Adler-Maggs] [O(H(D))]</td>
</tr>
<tr>
<td></td>
<td>clients send [O(H(D))] server sends [O(n)] expected [O(1)] rounds</td>
<td>clients send [O(H(D))] server sends [O(kn)] [\Omega(\frac{\log k}{\log \log k})] needed</td>
</tr>
</tbody>
</table>

Cost of client not knowing D:
What can be done?

<table>
<thead>
<tr>
<th></th>
<th>1 client</th>
<th>k clients</th>
</tr>
</thead>
<tbody>
<tr>
<td>D fixed</td>
<td>[Huffman] [H(D)]</td>
<td>[Slepian-Wolf] [H(D)]</td>
</tr>
<tr>
<td></td>
<td>client sends $\lceil H(D) \rceil$</td>
<td>clients send $\lceil H(D) \rceil$</td>
</tr>
<tr>
<td>D known by server</td>
<td>[Adler-Maggs] [Adler-Maggs] clients send $O(H(D))$</td>
<td>[Adler-Maggs] [Adler-Maggs] clients send $O(H(D))$</td>
</tr>
<tr>
<td></td>
<td>server sends $O(n)$ expected $O(1)$ rounds</td>
<td>server sends $O(kn)$ exp. $O(k)$ rounds</td>
</tr>
<tr>
<td>Pr[t rounds] $\geq 2^{-O(t\log t)}$</td>
<td>$\Omega(\frac{\log k}{\log \log k})$ needed</td>
<td>$\Omega(\frac{\log k}{\log \log k})$ needed</td>
</tr>
</tbody>
</table>

Cost of client not knowing D:

- 1 communication by server – optimal
- 2 rounds – quasioptimal [NEW]

Adler, Demaine, Harvey, Pătrașcu

Distributed Source Coding
What can be done?

<table>
<thead>
<tr>
<th></th>
<th>1 client</th>
<th>k clients</th>
</tr>
</thead>
<tbody>
<tr>
<td>D fixed</td>
<td>[Huffman] client sends $\lceil H(D) \rceil$</td>
<td>[Slepian-Wolf] clients send $\lceil H(D) \rceil$</td>
</tr>
</tbody>
</table>
| D known by server | [Adler-Maggs] clients send $O(H(D))$
server sends $O(n)$
expected $O(1)$ rounds | [Adler] clients send $O(H(D))$
server sends $O(kn)$
exp. $O(\lg k)$ rounds |
| Cost of client not knowing D: | 1 communication by server – optimal | ![Image](image.png) |
| | 2 rounds – quasioptimal [NEW] | ![Image](image.png) |

Pr[t rounds] $\geq 2^{-O(t \lg t)}$
$\Omega(\frac{\lg k}{\lg \lg k})$ needed
What can be done?

<table>
<thead>
<tr>
<th></th>
<th>1 client</th>
<th>k clients</th>
</tr>
</thead>
<tbody>
<tr>
<td>D fixed</td>
<td>[Huffman] client sends $\lceil H(D) \rceil$</td>
<td>[Slepian-Wolf] clients send $\lceil H(D) \rceil$</td>
</tr>
<tr>
<td>D known by server</td>
<td>[Adler-Maggs] clients send $O(H(D))$ server sends $O(n)$ expected $O(1)$ rounds</td>
<td>[Adler] clients send $O(H(D))$ server sends $O(kn)$ exp. $O(\lg k)$ rounds</td>
</tr>
</tbody>
</table>

Cost of client not knowing D:

1. communication by server – optimal
2. rounds – quasioptimal [NEW]
What can be done?

<table>
<thead>
<tr>
<th></th>
<th>1 client</th>
<th>k clients</th>
</tr>
</thead>
<tbody>
<tr>
<td>D fixed</td>
<td>[Huffman] client sends $\lceil H(D) \rceil$</td>
<td>[Slepian-Wolf] clients send $\lceil H(D) \rceil$</td>
</tr>
<tr>
<td>D known by server</td>
<td>[Adler-Maggs] clients send $O(H(D))$ server sends $O(n)$ expected $O(1)$ rounds</td>
<td>[Adler] clients send $O(H(D))$ server sends $O(kn)$ exp. $O(\lg k)$ rounds $\Omega(\frac{\lg k}{\lg \lg k})$ needed</td>
</tr>
</tbody>
</table>

Cost of client not knowing D:

1. communication by server – optimal
2. rounds – quasioptimal [NEW]
What can be done?

<table>
<thead>
<tr>
<th></th>
<th>1 client</th>
<th>(k) clients</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D) fixed</td>
<td>[Huffman] client sends ([H(D)])</td>
<td>[Slepian-Wolf] clients send ([H(D)])</td>
</tr>
<tr>
<td>(D) known by server</td>
<td>[Adler-Maggs] clients send (O(H(D))) server sends (O(n)) expected (O(1)) rounds</td>
<td>[Adler] clients send (O(H(D))) server sends (O(kn)) exp. (O(\lg k)) rounds</td>
</tr>
<tr>
<td></td>
<td>(\Pr[t\text{ rounds}] \geq 2^{-O(t \lg t)})</td>
<td>(\Omega(\frac{\lg k}{\lg \lg k})) needed</td>
</tr>
</tbody>
</table>

Cost of client not knowing \(D\):

1. communication by server – optimal
2. rounds – quasioptimal [NEW]
What can be done?

<table>
<thead>
<tr>
<th></th>
<th>1 client</th>
<th>k clients</th>
</tr>
</thead>
<tbody>
<tr>
<td>D fixed</td>
<td>[Huffman] client sends $\lceil H(D) \rceil$</td>
<td>[Slepian-Wolf] clients send $\lceil H(D) \rceil$</td>
</tr>
<tr>
<td>D known by server</td>
<td>[Adler-Maggs] clients send $O(H(D))$ server sends $O(n)$ expected $O(1)$ rounds $\Pr[t \text{ rounds}] \geq 2^{-O(t \lg t)}$</td>
<td>[Adler] clients send $O(H(D))$ server sends $O(kn)$ exp. $O(\lg k)$ rounds $\Omega(\frac{\lg k}{\lg \lg k})$ needed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cost of client not knowing D:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Communication by server – optimal</td>
</tr>
<tr>
<td>2 Rounds – quasioptimal [NEW]</td>
</tr>
</tbody>
</table>
The class of hard distributions D
Intuition for hardness

Let $h = \text{height of one layer}$
Let $p = \text{Pr[vestigial child]}$

$\implies H(D) = ph + (1 - p)ph + (1 - p)^2 ph + \ldots$

$H(D)$ is small
\implies one client message cannot talk about many layers \textit{for many samples}

Random choice of vestigial child (left / right)
\implies don’t know which samples need many layers
Intuition for hardness

Let $h =$ height of one layer
Let $p =$ Pr[vestigial child]

$$\implies H(D) = ph + (1 - p)ph + (1 - p)^2 ph + \ldots$$

$H(D)$ is small

$$\implies$$ one client message cannot talk about many layers for many samples

Random choice of vestigial child (left / right)

$$\implies$$ don’t know which samples need many layers
Intuition for hardness

Let $h =$ height of one layer
Let $p =$ Pr[vestigial child]

$$\implies H(D) = ph + (1 - p)ph + (1 - p)^2 ph + \ldots$$

$H(D)$ is small

$$\implies$$ one client message cannot talk about many layers for many samples

Random choice of vestigial child (left / right)

$$\implies$$ don’t know which samples need many layers
Communication Complexity Tools

Message switching

Alice sends a message of $\leq a$ bits
⇒ eliminate, increasing Bob’s message by a factor of 2^a

Round elimination lemma

Alice gets x_1, \ldots, x_k
Bob gets $y, i \in [k]$
\[\{ \text{they compute } f(x_i, y) \} \]

Alice sends a message of $a \ll k$ bits
⇒ message irrelevant for average i; eliminate
Communication Complexity Tools

Message switching

Alice sends a message of $\leq a$ bits

\Rightarrow eliminate, increasing Bob’s message by a factor of 2^a

Round elimination lemma

\[
\begin{align*}
\text{Alice gets } x_1, \ldots, x_k \\
\text{Bob gets } y, \ i \in [k] \\
\end{align*}
\]

\rightarrow they compute $f(x_i, y)$

Alice sends a message of $a \ll k$ bits

\Rightarrow message irrelevant for average i; eliminate
Communication Complexity Tools

Message switching

Alice sends a message of $\leq a$ bits
\Rightarrow eliminate, increasing Bob’s message by a factor of 2^a

Round elimination lemma

Alice gets x_1, \ldots, x_k
Bob gets y, $i \in [k]$
$\left\{ \right\} \rightarrow$ they compute $f(x_i, y)$

Alice sends a message of $a \ll k$ bits
\Rightarrow message irrelevant for average i; eliminate
Formal strategy

1. switch client’s message
 NB: need hard upper bound on message size (Markov)

2. round elimination of server’s message
 subproblems: what is below each T leaf
 prefix of client’s sample chooses subproblem

3. repeat, in the smaller probability space where the sample
 is not vestigial at this level

Contradiction
Eliminated i rounds by introducing “small” error
With no rounds, cannot solve better than random guessing
Sample is at level $> i \Rightarrow$ nontrivial problem
Formal strategy

1. switch client’s message
 NB: need hard upper bound on message size (Markov)

2. round elimination of server’s message
 subproblems: what is below each T leaf
 prefix of client’s sample chooses subproblem

3. repeat, in the smaller probability space where the sample
 is not vestigial at this level

Contradiction

Eliminated i rounds by introducing “small” error
With no rounds, cannot solve better than random guessing
Sample is at level $> i \Rightarrow$ nontrivial problem
Formal strategy

1. switch client’s message
 NB: need hard upper bound on message size (Markov)

2. round elimination of server’s message
 subproblems: what is below each T leaf
 prefix of client’s sample chooses subproblem

3. repeat, in the smaller probability space where the sample
 is not vestigial at this level

Contradiction

Eliminated i rounds by introducing “small” error
With no rounds, cannot solve better than random guessing
Sample is at level $> i \Rightarrow$ nontrivial problem
Formal strategy

1. switch client’s message
 NB: need hard upper bound on message size (Markov)

2. round elimination of server’s message
 subproblems: what is below each T leaf
 prefix of client’s sample chooses subproblem

3. repeat, in the smaller probability space where the sample
 is not vestigial at this level

Contradiction

Eliminated i rounds by introducing “small” error
With no rounds, cannot solve better than random guessing
Sample is at level $> i \Rightarrow$ nontrivial problem
Trouble in paradise

- many complications and subtleties
- innovative communication complexity analysis

Example

Obtaining a hard bound for the client’s messages:

- \(\Pr[\text{sample is from level } \geq i] = (1 - p)^i \)
- error introduced must be small in this space
- hard bound (by Markov) must be huge: \(H(D)/(1 - p)^i \)
many complications and subtleties
innovative communication complexity analysis

Example

Obtaining a hard bound for the client’s messages:

- \(\Pr[\text{sample is from level } \geq i] = (1 - p)^i \)
- error introduced must be small in this space
- hard bound (by Markov) must be huge \(\sim H(D)/(1 - p)^i \)
Trouble in paradise

- many complications and subtleties
- innovative communication complexity analysis

Example

Obtaining a hard bound for the client’s messages:

- \[\Pr[\text{sample is from level } \geq i] = (1 - p)^i \]
- error introduced must be small in this space
- hard bound (by Markov) must be huge \(\sim H(D)/(1 - p)^i \)
Trouble in paradise

- many complications and subtleties
- innovative communication complexity analysis

Example

Obtaining a hard bound for the client’s messages:

- \(\Pr[\text{sample is from level } \geq i] = (1 - p)^i \)
- error introduced must be small \textit{in this space}
- hard bound (by Markov) must be huge \(\sim H(D)/(1 - p)^i \)
many complications and subtleties
innovative communication complexity analysis

Example

Obtaining a hard bound for the client’s messages:
- \(\Pr [\text{sample is from level } \geq i] = (1 - p)^i \)
- error introduced must be small in this space
- hard bound (by Markov) must be huge \(\sim H(D)/(1 - p)^i \)
Technical insight: Unilateral error

Regular error

Unilateral error

Application

- Markov on client’s message introduces unilateral error
- Conditioning the sample being from level $\geq i$ does not change the marginal distribution on the client’s input

\Rightarrow much better Markov bound
Technical insight: Unilateral error

Application

- Markov on client’s message introduces unilateral error
- Conditioning the sample being from level $\geq i$ does not change the marginal distribution on the client’s input

\Rightarrow much better Markov bound
Technical insight: Unilateral error

Application

- Markov on client’s message introduces unilateral error
- conditioning the sample being from level $\geq i$ does not change the marginal distribution on the client’s input

\implies much better Markov bound
Technical insight: Unilateral error

Application

Markov on client’s message introduces unilateral error
conditioning the sample being from level $\geq i$ does not change the marginal distribution on the client’s input

\Rightarrow much better Markov bound
Thank you

THE END