
On Dynamic Range Reporting in One Dimension

(Extended Abstract)
∗

Christian Worm Mortensen
†

IT U. Copenhagen

cworm@itu.dk

Rasmus Pagh
IT U. Copenhagen

pagh@itu.dk

Mihai Pǎtraşcu
MIT

mip@mit.edu

ABSTRACT
We consider the problem of maintaining a dynamic set of
integers and answering queries of the form: report a point
(equivalently, all points) in a given interval. Range search-
ing is a natural and fundamental variant of integer search,
and can be solved using predecessor search. However, for a
RAM with w-bit words, we show how to perform updates
in O(lgw) time and answer queries in O(lg lgw) time. The
update time is identical to the van Emde Boas structure,
but the query time is exponentially faster. Existing lower
bounds show that achieving our query time for predecessor
search requires doubly-exponentially slower updates. We
present some arguments supporting the conjecture that our
solution is optimal.
Our solution is based on a new and interesting recursion

idea which is “more extreme” that the van Emde Boas re-
cursion. Whereas van Emde Boas uses a simple recursion
(repeated halving) on each path in a trie, we use a non-
trivial, van Emde Boas-like recursion on every such path.
Despite this, our algorithm is quite clean when seen from
the right angle. To achieve linear space for our data struc-
ture, we solve a problem which is of independent interest.
We develop the first scheme for dynamic perfect hashing
requiring sublinear space. This gives a dynamic Bloomier
filter (a storage scheme for sparse vectors) which uses low
space. We strengthen previous lower bounds to show that
these results are optimal.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: sort-
ing and searching; E.2 [Data Storage Representations]:
hash-table representations

∗A version of this paper containing all proofs is available as
arXiv:cs.DS/0502032.
†Part of this work was done while the author was visiting
the Max-Planck-Institut für Informatik, Saarbrücken, as a
Marie Curie doctoral fellow.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’05, May 22-24, 2005, Baltimore, Maryland, USA.
Copyright 2005 ACM 1-58113-960-8/05/0005 ...$5.00.

General Terms
Algorithms, Performance, Theory

Keywords
range reporting, integer search, perfect hashing, Bloomier
filters

1. INTRODUCTION
Our problem is to maintain a set S under insertions and

deletions of values, and a range reporting query. The query
findany(a, b) should return an arbitrary value in S∩[a, b], or
report that S ∩ [a, b] = ∅. This is a form of existential range
query. In fact, since we only consider update times above the
predecessor bound, updates can maintain a linked list of the
values in S in increasing order. Given a value x ∈ S ∩ [a, b],
one can traverse this list in both directions starting from
x and list all values in the interval [a, b] in constant time
per value. Thus, the findany query is equivalent to one-
dimensional range reporting.
The model in which we study this problem is the word

RAM. We assume the elements of S are integers that fit in
a word, and let w be the number of bits in a word (thus,
the “universe size” is u = 2w). We let n = |S|. Our data
structure uses Las Vegas randomization (through hashing),
and the bounds stated will hold with high probability in n.
Range reporting is a very natural problem, and its higher-

dimensional versions have been studied for decades. In one
dimension, the problem is easily solved using predecessor
search. The predecessor problem has also been studied in-
tensively, and the known bounds are now tight in almost all
cases [2]. Another well-studied problem related to ours is
the lookup problem (usually solved by hashing), which asks
to find a key in a set of values. Our problem is more general
than the lookup problem, and less general than the prede-
cessor problem. While these two problems are often dubbed
“the integer search problems”, we feel range reporting is an
equally natural and fundamental incarnation of this idea,
and deserves similar attention.
The first to ask whether or not range reporting is as hard

as finding predecessors were Miltersen et al in STOC’95 [9].
For the static case, they gave a data structure with space
O(nw) and constant query time, which cannot be achieved

for the predecessor problem with nO(1) space. An even more
surprising result from STOC’01 is due to Alstrup, Brodal
and Rauhe [1], who gave an optimal solution for the static
case, achieving linear space and constant query time. In the

dynamic case, however, no solution better than the prede-
cessor problem was known. For this problem, the fastest
known solution in terms of w is the classic van Emde Boas
structure [13], which achieves O(lgw) time per operation.
For the range reporting problem, we show how to per-

form updates in O(lgw) time, while supporting queries in
O(lg lgw) time. The space usage is optimal, i.e. O(n) words.
The update time is identical to the one given by the van
Emde Boas structure, but the query time is exponentially
faster. In contrast, Beame and Fich [2, Theorem 3.7] show
that achieving any query time that is o(lgw/ lg lgw) for the

predecessor problem requires update time Ω(2w1−ε

), which
is doubly-exponentially slower than our update time. We
also give an interesting tradeoff between update and query
times; see theorem 4 below.
Our solution incorporates some basic ideas from the previ-

ous solutions to static range reporting in one dimension [9,
1]. However, it brings two important technical contribu-
tions. First, we develop a new and interesting recursion idea
which is more advanced than van Emde Boas recursion (but,
nonetheless, not technically involved). We describe this idea
by first considering a simpler problem, the bit-probe com-
plexity of the greater-than function. Then, the solution for
dynamic range reporting is obtained by using the recursion
for this simpler problem, on every path of a binary trie of
depth w. This should be contrasted to the van Emde Boas
structure, which uses a very simple recursion idea (repeated
halving) on every root-to-leaf path of the trie. The van
Emde Boas recursion is fundamental in the modern world of
data structures, and has found many unrelated applications
(e.g. exponential trees, integer sorting, cache-oblivious lay-
outs, interpolation search trees). It will be interesting to see
if our recursion scheme has a similar impact.
The second important contribution of this paper is needed

to achieve linear space for our data structure. We develop
a scheme for dynamic perfect hashing, which requires sub-
linear space. While the static version of the problem is un-
derstood, our result is the first sublinear-space solution in
the dynamic case. In addition, we prove that our solution
is optimal, closing the problem. An important application
of perfect hashing is storing a sparse vector in small space,
if we are only interested in querying non-null positions (the
Bloomier filter problem). The stringent space requirements
that our data structure can meet are also important in data-
stream algorithms and database systems. We mention one
application below, but believe others exist as well.
This extended abstract contains: a statement of our re-

sults (in the remainder of the introduction); our upper bound
(Section 2) and lower bound (Section 3) for dynamic perfect
hashing; and our main result for dynamic range reporting,
introduced by the homologous result for the greater-than
problem (Section 4).

1.1 Perfect Hashing
Perfect hashing is a fundamental variant of the dictionary

problem. The problem is to maintain a set S of keys from
the universe {1, . . . , u}, along with a perfect hash function to
a small range (i.e. a function defined on the whole universe,
which is one-to-one when restricted to S), and be able to
evaluate the function efficiently. Ideally, the range is of size
O(n) and evaluation takes constant time. An important
application of perfect hashing is Bloomier filters, which we
discuss below.

In the static case, a perfect hash function can be repre-
sented with only Θ(lgn+ lg lg u) bits of space. Here we are
concerned with the dynamic case, where elements can be
inserted and deleted from S. An element needs to maintain
the same hash value while it is in S. However, if an element
is deleted and subsequently reinserted, its hash value may
change.

Theorem 1. We can maintain a perfect hash function
from a set S ⊂ {1, . . . , u} with |S| ≤ n to a range of size n+

o(n), under nO(1) insertions and deletions, using O(n lg lg u)
bits of space w.h.p., plus a constant number of machine
words. The function can be evaluated in worst-case constant
time, and updates take constant time w.h.p.

This is the first dynamic perfect hash function that uses
less space than needed to store S (lg

`
u
n

´
bits). Our lower

bound for Bloomier filters (see below) implies that our space
bound is essentially optimal regardless of the query and up-
date time. Obtaining sublinear space for the dynamic prob-
lem is more surprising than for the static problem. In the
static case, a small hash function can be constructed based
on S, and then S is discarded. However, a dynamic data
structures must assign unique identifiers to all elements in
S without ever knowing the current set S.
Such stringent space requirements are typical of data-

stream computation, where one needs to support a stream
of updates and queries, but does not have space to hold the
entire state of the data structure. Interestingly, our solu-
tion can achieve this goal without introducing errors (we
use only Las Vegas randomization). We mention an inde-
pendent application of our data structure. In a database
we can maintain an index of a relation under insertions and
deletions of tuples, using internal memory per tuple which
is logarithmic in the length of the key for the tuple. If tuples
have fixed length, they can be placed directly in the hash
table, and need only be moved if the capacity of the hash
table is exceeded.

1.2 Bloomier Filters
The Bloom filter is a classic data structure for testing

membership in a set. If a constant rate of false-positives is
allowed, the space in bits can be made essentially linear in
the size of the set. Optimal bounds for this problem are
obtained in [10].
Bloomier filters are an extension to Bloom filters for the

dictionary problem. As an application of perfect hashing,
the problem has been folklore, but this catchy name was
only introduced in [3]. The problem is to represent a vector
V [1 . . u] with elements from {0, . . . , 2r −1} which is nonzero
in only n places (assume n � u, so the vector is sparse).
Thus, we have a sparse set as before, but with values as-
sociated to the elements. The information theoretic lower
bound for representing such a vector is Ω(nr + lg

`
u
n

´
) =

Ω(n(r + lg u
n
)) bits. However, in various applications, we

only want correct answers when V [x] = 0. This can be the
case either when we only intend to query nonzero positions,
or when we have a way of verifying the correctness of an
answer, and we can thus detect zero elements (this is the
case in our range reporting structure).
Bloomier filters can be implemented using a perfect hash

function, plus O(nr) bits of space. In the static case, this
gives a space of O(nr + lg lg u) bits, which is optimal [3].
We are interested in the dynamic case, where the values of

V can change arbitrarily at any point. Our perfect hashing
construction implies a bound of O(n(r+lg lg u)). Previously,
no nontrivial upper bound was known. To detect whether
V [x] = 0 with probability of correctness at least 1 − ε, one
can use a Bloom filter on top, which requires space Θ(n lg 1

ε
)

even in the dynamic case [10]. Note that even for ε = 1,
randomization is essential, since any deterministic solution
must use Ω(lg

`
u
n

´
) bits of space, i.e. it must essentially store

the set of nonzero entries in the vector.
Our space bound is essentially optimal. It was previously

shown in [3] that Ω(n(r + min(lg lg u
n3 , lgn))) bits of space

are needed, regardless of the query and update times. We
improve this lower bound to the following:

Theorem 2. Maintaining a dynamic Bloomier filter for
r ≥ 2 requires Ω(n(r + lg lg u

n
)) bits of space in expectation,

regardless of the query and update time.

Observe that our lower bound is an improvement both for
small universes (below n3+ε), and for large universes (where
the previous space bound was capped to Ω(n lgn)).

1.3 Tradeoffs and the Greater-Than Problem
All tradeoffs, as well as the lower bounds for the greater-

than problem, appear in the full version of this paper. In
this extended abstract we concentrate on tu = O(lgw) and
tq = O(lg lgw) for the sake of space and clarity. However,
a discussion of the tradeoffs affords some interesting insight
into the scheme of things.
We begin with a discussion of the greater-than problem.

Consider an infinite memory of bits, initialized to zero. Our
problem has two stages. In the update stage, the algo-
rithm is given a number a ∈ {1, . . . , n}. After seeing a,
the algorithm is allowed to flip O(tu) bits in the mem-
ory. In the query stage, the algorithm is given a num-
ber b ∈ {1, . . . , n}. Now the algorithm may inspect O(tq)
bits, and must decide whether or not b > a. The problem
was previously studied by Fredman [6], who showed that
max(tu, tq) = Ω(lg n/ lg lg n). It is quite tempting to be-
lieve that one cannot improve past the trivial upper bound
tu = tq = O(lg n), since, in some sense, this is the complex-
ity of “writing down” a. However, as we show in this paper,
Fredman’s bound is optimal, in the sense that it is a point
on our tradeoff curve. We give upper and lower bounds that
completely characterize the possible asymptotic tradeoffs:

Theorem 3. The bit-probe complexity of the greater-than
function satisfies the tight tradeoffs:

tq ≥ lg lg n, tu ≤ lg n : tu = Θ(lgtq
n)

tq ≤ lg lg n, tu ≥ lg n : 2tq = Θ(lgtu
n)

As mentioned already, we use the same recursion idea for
dynamic range reporting, except that we apply this recur-
sion to every root-to-leaf path of a binary trie of depth w.
Quite remarkably, the paths structures can be made to over-
lap in-as-much as the paths overlap, so only one update suf-
fices for all paths going through a node.
An alternative explanation of our idea is rendered by Fig-

ure 1. As in the van Emde Boas structure, we represent the
input set and the query points as root-to-leaf paths in a trie.
We consider a series of “views” of this trie, at different levels
of detail. Usually, the next level of detail halves the keys in

the current level. The van Emde Boas structure examines
each level of detail consecutively, halving w in each step. On
the other hand, our query algorithm does a binary search on
these representations of the trie, examining just a logarith-
mic number of them. The recursion on the levels of detail is
equivalent to a van Emde Boas recursion on each path, as
used by our solution for the greater-than problem. Due to
these close relations between the greater-than problem and
a natural approach to solve range reporting, we view the
lower bounds for the greater-than function as giving an in-
dication that our range reporting data structure is likewise
optimal. In any case, the lower bounds show that quite dif-
ferent ideas would be necessary to improve our solution for
range reporting.
Let tpred be the time needed by one update and one query

in the dynamic predecessor problem. The following theorem
summarizes our results for dynamic range reporting:

Theorem 4. There is a data structure for the dynamic
range reporting problem, which uses O(n) space and supports
updates in time O(tu), and queries in time O(tq), for all
tu, tq satisfying:

tq ≥ lg lgw, lgw

lg lgw
≤ tu ≤ lgw : tu = O(lgtq

w) + tpred

tq ≤ lg lgw, tu ≥ lgw : 2tq = O(lgtu
w)

Notice that the most appealing point of the tradeoff is
the cross-over of the two curves: tu = O(lgw) and tq =
O(lg lgw) – and indeed, this has been the focus of our dis-
cussion. Another interesting point is at constant query time.
In this case, our data structure needs O(wε) update time.
Thus, our data structure can be used as an optimal static
data structure, which is constructed in time O(nwε), im-
proving on the construction time of O(n

√
w) given by Al-

strup et al [1].
The first branch of our tradeoff is not interesting with

tpred = Θ(lgw), as given by the van Emde Boas structure.
It may be possible to achieve tpred = O(lg w

lg lg w
), matching

the optimal bound for the static case. If this is true, the
tpred term can be ignored. Even without such a result, the
first branch of the tradeoff is still interesting, because we

can use tpred = O(
q

lg n
lg lg n

), which is in many cases o(lgw).

We can also achieve bounds in terms of n, rather than w,
by the classic trick of using our structure for small w and a
fusion tree structure [7] for large w. In particular, we can
achieve tq = O(lg lg n) and tu = O(

lg n
lg lg n

). Compared with

the Θ(
q

lg n
lg lg n

) bound for the predecessor problem, which

holds even with tu = nO(1), our data structure improves
the query time exponentially by sacrificing the update time
quadratically.

2. THE PERFECT-HASHING STRUCTURE
We denote by S be the set of values that we need to hash

at present time. Our data structure has the following parts:

• A hash function ρ : {1, . . . , u} → {0, 1}v , where v =
O(lg n), from a family of universal hash functions with
small representations (for example, the one from [4]).

• A hash function φ : {0, 1}v → {1, . . . , r}, where r =
�n/ lg2 n�, taken from Siegel’s class of highly indepen-
dent hash functions [12].

a x b a x b a x b

Figure 1: A trie and its representation on several levels of detail.

• An array of hash functions h1, . . . , hr : {0, 1}v → {0, 1}s,
where s = �(6+2c) lg lg u�, chosen independently from
a family of universal hash functions; c is a constant
specified below.

• A high performance dictionary [5] for a subset S′ of the
keys in S. The dictionary should have a capacity of
O(�n/ lg u�) keys (but might expand further). Along
with the dictionary we store a linked list of length
O(�n/ lg u�), specifying certain vacant positions in the
hash table.

• An array of dictionaries D1, . . . ,Dr, where Di is a dic-
tionary that holds hi(ρ(k)) for each key k ∈ S\S′ with
φ(ρ(k)) = i. A unique value in {0, . . . , j − 1}, where
j = (1 + o(1)) lg2 n, is associated with each key in Di.
A bit vector of j bits and an additional string of lg n
bits is used to keep track of which associated values
are in use. We will return to the exact choice of j and
the implementation of the dictionaries.

The main idea is that all dictionaries in the construc-
tion assign to each of their keys a unique value within a
subinterval of [1 . .m]. Each of the dictionaries D1, . . . ,Dr

is responsible for an interval of size j, and the high per-
formance dictionary is responsible for an interval of size
O(n/ lg u) = o(n). If the number of items in the high per-
formance dictionary exceeds O(n/ lg u), which happens with
polynomially small probability, we can revert to a brute-
force solution which holds a dictionary with explicit perfect
hash codes.
The hash function ρ is used to reduce the key length to v.

The constant in v = O(lg n) can be chosen such that with
high probability, over a polynomially bounded sequence of
updates, ρ will never map two elements of S to the same
value (the conflicts, if they occur, end up in S′ and are
handled by the high performance dictionary).
When inserting a new value k, the new key is included in

S′ if either:

• There are j keys in Di, where i = φ(ρ(k)), or

• There exists a key k′ ∈ S where φ(ρ(k)) = φ(ρ(k′)) = i
and hi(ρ(k)) = hi(ρ(k

′)).

Otherwise k is associated with the key hi(ρ(k)) in Di.
Deletion of a key k is done in S′ if k ∈ S′, and otherwise the
associated key in the appropriate Di is deleted.
To evaluate the perfect hash function on a key k we first

see whether k is in the high performance dictionary. If so, we
return the value associated with k. Otherwise we compute
i = φ(ρ(k)) and look up the value ∆ associated with the key
hi(ρ(k)) in Di. Then we return (i− 1)j +∆, i.e. position ∆
within the i-th interval.
Since D1, . . . , Dr store keys and associated values each of

O(lg lg u) bits, they can be efficiently implemented as con-

stant depth search trees of degree wΩ(1), where each internal
node resides in a single machine word. This yields constant
time for dictionary insertions and lookups, with an optimal
space usage of O(lg2 n lg lg u) bits for each dictionary. We do
not go into details of the implementation as they are stan-
dard; refer to [8] for explanation of the required word-level
parallelism techniques.
What remains to describe is how the dictionaries keep

track of vacant positions in the hash table in constant time
per insertion and deletion. The high performance dictio-
nary simply keeps a linked list of all vacant positions in its
interval. Each of D1, . . . ,Dr maintain a bit vector indicat-
ing vacant positions, and additional O(lg n) summary bits,
each taking the or of an interval of size O(lg n). This can
be maintained in constant time per operation, employing
standard techniques.
The preprocessing time is o(n) – essentially to build tables

needed for the word-level parallelism. The major part of the
data structure is initialized lazily.

2.1 Analysis
Since evaluation of all involved hash functions and lookup

in the dictionaries takes constant time, evaluation of the
perfect hash function is done in constant time. As we will
see below, the high performance dictionary is empty with
high probability unless n/ lg u >

√
n. This means that it

always uses constant time per update with high probability
in n. All other operations done for update are easily seen to
require constant time w.h.p.
We now consider the space usage of our scheme. The

function ρ can be represented in O(w) bits. Siegel’s highly
independent hash function uses o(n) bits of space. The

hash functions h1, . . . , hr use O(lg n+ lg lg u) bits each, and
o(n lg lg u) bits in total. The main space bottleneck is the
space for D1, . . . ,Dr, which sums to O(n lg lg u).
Finally, we show that the space used by the high perfor-

mance dictionary is O(n) bits w.h.p. This is done by show-
ing that each of the following hold with high probability
throughout a polynomial sequence of operations:

1. The function ρ is one-to-one on S.

2. There is no i such that Si = {k ∈ S | φ(ρ(k)) = i} has
more than j elements.

3. The set S′ has O(�n/ lg u�) elements.

That 1. holds with high probability is well known. To
show 2. we use the fact that, with high probability, Siegel’s
hash function is independent on every set of nΩ(1) keys. We
may thus employ Chernoff bounds for random variables with
limited independence to bound the probability that any i has
|Si| > j, conditioned on the fact that 1. holds. Specifically,
we can use [11, Theorem 5.I.b] to argue that for any l, the

probability that |Si| > j for j = �lg2 n+ lg5/3 n� is n−ω(1),
which is negligible. On the assumption that 1. and 2. hold,
we finally consider 3. We note that every key k′ ∈ S′ is
involved in an hi-collision in Si for i = φ(ρ(k′)), i.e. there
exists k′′ ∈ Si \ {k′} where hi(k

′) = hi(k
′′). By univer-

sality, for any i the expected number of hi-collisions in Si

is O(lg4 n/(lg u)6+2c) = O((lg u)−(2+2c)). Thus the prob-

ability of one or more collisions is O((lg u)−(2+2c)). For
lg u ≥ √

n this means that there are no keys in S′ with
high probability. Specifically, c may be chosen as the sum
of the constants in the exponents of the length of the oper-
ation sequence and the desired high probability bound. For
the case lg u <

√
n we note that the expected number of

elements in S′ is certainly O(n/ lg u). To see than this also
holds with high probability, note that the event that one or
more keys from Si end up in S

′ is independent among the i’s.
Thus we can use Chernoff bounds to get that the deviation
from the expectation is small with high probability.

3. SPACE LOWER BOUND
We now prove that dynamic Bloomier filters require Ω(n(r+

lg lg u
n
)) bits of space, regardless of the query and update

times. This implies an Ω(n lg lg u
n
) bound for dynamic per-

fect hashing. First observe that when r ≥ lg lg u
n
, the lower

bound is trivial. Otherwise, we may assume r = 2.
Following [3], we consider a two-set distinction problem.

The central parameter of this problem (and the target of
our lower bound) is the space S, which is easily seen to be
bounded by the space for a dynamic Bloomier filter with
r = 2. The problem has the following stages:

1. a random string R is drawn, which will be available to
the data structure throughout its operation. This is
equivalent to drawing a deterministic algorithm from a
given distribution, and is more general than assuming
each stage has its own random coins (we are giving the
data structure free storage for its random bits).

2. the data structure is given A ⊂ {1, . . . , u}, |A| ≤ n.
It must produce a representation fR(A), such that
(∀)A,ER[|fR(A)|] ≤ S, where | · | denotes the space
in bits required by the representation.

3. the data structure is given B ⊂ {1, . . . , u}, such that
|B| ≤ n,A∩B = ∅. Based on the old state fR(A), the
data structure must produce a new state gR(B, fR(A))
with ER[|gR(B, fR(A))|] ≤ S, (∀)A,B.

4. the data structure is given x ∈ {1, . . . , u} and its pre-
vious states fR(A) and gR(B, fR(A)). Now it must
answer as follows with no error allowed: if x ∈ A, it
must answer “A”; if x ∈ B, it must answer “B”; if
x /∈ A ∪B, it can answer arbitrarily.

Let hR(x, f0, g0) be the answer computed by the data
structure, when the previous states are f0 and g0. Since
a solution to the distinction problem is not allowed to make
an error, we can assume w.l.o.g. that the computation of
hR(x, f0, g0) is implemented as follows. If there exist appro-
priate A,B, with x ∈ A and fR(A) = f0, gR(B, f0) = g0,
then hR(x, f0, g0) must be “A”. Similarly, if there exists a
plausible scenario with x ∈ B, the answer must be “B”.
Otherwise, the answer can be arbitrary.
Assume that the inputs A × B are drawn from a given

distribution. We argue that if the expected sizes of f and g
are allowed to be at most 2S, the data structure need not
be randomized. This uses a bicriteria minimax principle.

We have ER,A,B

h
|f |
S
+ |g|

S

i
≤ 2. Then, there exists a fixed

string R0 such that EA,B

h
|f |
S
+ |g|

S

i
≤ 2. Since |f |, |g| ≥ 0,

this implies EA,B[|f |] ≤ 2S, EA,B[|g|] ≤ 2S. Thus, the
data structure can use the deterministic sequence R0 as its
random bits. Below, we drop the subscript from fR0 , gR0 .

3.1 Lower Bound for Two-Set Distinction
Assume u = ω(n), since a lower bound of Ω(n) is triv-

ial for universe u ≥ 2n. Break the universe into n equal
parts U1, . . . , Un; w.l.o.g. assume n divides u, so |Ui| = n

u
.

The hard input distribution chooses A uniformly at random
from U1 × · · · × Un. We write A = {a1, . . . , an}, where ai

is a random variable drawn from Ui. Then, B
′ is chosen

uniformly at random from the same product space; again
B′ = {b1, . . . , bn}, bi ← Ui. We let B = B′ \ A. Note that
E[|B|] = n · Pr[A1 = B1] = (1− n

u
) · n = (1− o(1)) · n.

Let Ap
i be the plausible values of ai after we see f(A);

that is, Ap
i contains all a ∈ Ui for which there exists a valid

A′ with a ∈ A′ and f(A′) = f(A). Intuitively speaking, if
f(A) has expected size S, it contains on average S/n bits
of information about each ai. Since the range of ai is

u
n
,

we would expect that the average |Ap
i | is quite large, around

u
n
/2S/n. This intuition is formalized in the following lemma:

Lemma 5. With probability at least a half over a uniform

choice of A and i, we have |Ap
i | ≥ u/n

2O(S/n) .

Proof. The Kolmogorov complexity of A is n lg u
n
−O(1);

no encoding for A can have an expected size less than this
quantity. We propose an encoding for A consisting of two
parts: first, we include f(A); second, for each i we include
the index of ai in |Ap

i |, using �lg |Ap
i |� bits. This is easily

decodable. We first generate all possible A′ with f(A′) =
f(A), and thus obtain the sets Ap

i . Then, we extract from
each plausible set the element with the given index. The
expected size of the encoding is 2S+

P
iEA[lg |Ap

i |]+O(n),
which must be at least n lg u

n
− O(1). This implies lg u

n
−

Ei,A[lg |Ap
i |] ≤ 2S

n
+ O(1). By Markov’s inequality, with

probability at least a half over i and A, lg u
n
− lg |Ap

i | ≤
4S
n
+O(1), so lg |Ap

i | ≥ lg u
n
−O(S

n
).

We now make a crucial observation which justifies our
interest in Ap

i . Assume that bi ∈ Ap
i . In this case, the

data structure must be able to determine bi from f(A) and
g(B, f(A)). Indeed, suppose we compute h(x, f, g) for all
x ∈ Ap

i . If that data structure does not answer “B” when
x = bi, it is obviously incorrect. On the other hand, if it
answers “B” for both x = bi and some other x

′ ∈ Ap
i , it also

makes an error. Since x′ is plausible, there exist A′ with
x′ ∈ A′ such that f(A′) = f(A). Then, we can run the data
structure with A′ as the first set and B as the second set.
Since f(A′) = f(A), the data structure will behave exactly
the same, and will incorrectly answer “B” for x′.
To draw our conclusion, we consider another encoding ar-

gument, this time in connection to the set B′. The Kol-
mogorov complexity of B′ is n lg u

n
−O(1). Consider a ran-

domized encoding, depending on a set A drawn at random.
First, we encode an n-bit vector specifying which indices i
have ai = bi. It remains to encode B

′ \ A = B. We encode
another n-bit vector, specifying for which positions i we have
bi ∈ Ap

i . For each bi /∈ Ap
i , we simply encode Bi using �lg u

n
�

bits. Finally, we include in the encoding g(B, f(A)). As ex-
plained already, this is enough to recover all bi which are in
Ap

i . Note that we do not need to encode f(A), since this
depends only on the random coins choosing the encoding
and decoding algorithms.
The expected size of this encoding will be O(n+ S) + n ·

PrA,B′,i[bi /∈ Ap
i]·lg u

n
. We know that with probability a half

over A and i, we have |Ap
i | ≥ u/n

2O(S/n) . Thus, PrA,B′,i[bi ∈
Ap

i] ≥ 1
2
· 2−O(S/n). Thus, the expected size of the encoding

is at most O(n + S) + (1 − 2−O(S/n)) · n lg u
n
. Note that

by the minimax principle, randomness in the encoding is
unessential and we can always fix A guaranteeing the same
encoding size, in expectation over B. We now get the bound:

O(n+ S) + (1− 2−O(S/n)) · n lg u
n

≥ n lg u
n
−O(1)

⇒ O

„
S

n

«
≥ 2−O(S/n) lg

u

n
−O(1)

⇒ 2O(S/n)O(S/n) ≥ lg u
n

⇒ S

n
= Ω

“
lg lg

u

n

”

4. DYNAMIC RANGE REPORTING

4.1 Warm-up: the Greater-Than Function
We start with a simple upper bound of tu = O(lg n), tq =

O(lg lg n) for the greater-than problem. This gives a simpler
context for understanding the recursion used on every path
of the trie in the range reporting structure.
Our upper bound uses a trie structure. We consider a bal-

anced tree with branching factor 2, and with n leaves. Every
possible value of the update parameter a is represented by a
root-to-leaf path. In the update stage, we mark this root-to-
leaf path, taking time O(lg n). In the query stage, we want
to find the point where b’s path in the trie would diverge
from a’s path. This uses binary search on the lg n levels, as
follows. To test if the paths diverge on a level, we examine
the node on that level on b’s path. If the node is marked, the
paths diverge below; otherwise they diverge above. Once we
have found the divergence point, we know that the larger of
a and b is the one following the right child of the lowest
common ancestor.

4.2 Description of the Data Structure
Let S be the current set of values stored by the data struc-

ture. Without loss of generality, assume w is a power of two.
For an arbitrary t ∈ [0, lgw], we define the trie of order t,
denoted Tt, to be the trie of depth w/2

t and alphabet of 2t

bits, which represents all numbers in S. We call T0 the pri-
mary trie (this is the classic binary trie with elements from
S). Observe that we can assign distinct names of O(w) bits
to all nodes in all tries. We call active paths the paths in
the tries which correspond to elements of S. A node v from
Tt corresponds to a subtree of depth 2

t in the primary trie;
we denote the root of this subtree by r0(v). A node from
Tt corresponds to a 2-level subtree in Tt−1; we call such a
subtree a natural subtree. Alternatively, a 2-level subtree of
any trie is natural iff its root is at an even depth.
A root-to-leaf path in the primary trie is seen as the leaves

of the tree used for the greater-than problem. The paths
from the primary trie are broken into chunks of length 2t in
the trie of order t. So Tt is similar to the t-th level (counted
bottom-up) of the greater-than tree. Indeed, every node on
the t-th level of that tree held information about a subtree
with 2t leaves; here one edge in Tt summarizes a segment of
length 2t bits. Also, a natural subtree corresponds to two
siblings in the greater-than structure. On the next level, the
two siblings are contracted into a node; in the trie of higher
order, a natural subtree is also contracted into a node. It
will be very useful for the reader to hold these parallels in
mind, and realize that the data structure from this section
is implementing the old recursion idea on every path.
The root-to-leaf paths corresponding to the values in S

determine at most n − 1 branching nodes in any trie. By
convention, we always consider roots to be branching nodes.
For every branching node from T0, we consider the extreme
points of the interval spanned by the node’s subtree. By
doubling the universe size, we can assume these are never
elements of S (alternatively, such extreme points are formal
rationals like x + 1

2
). We define S to be the union of S

and the two special values for each branching node in the
primary trie; observe that |S| = O(n). We are interested in
holding S for navigation purposes: it gives a way to find in
constant time the maximum and minimum element from S
that fits under a branching node (because these two values
should be the elements from S closest to the special values
for the branching node).

Our data structure has the following components:

1. a linked list with all elements of S in increasing order,
and a predecessor structure for S.

2. a linked list with all elements of S in increasing order,
accompanied by a navigation structure which enables
us to find in constant time the largest value from S
smaller than a given value from S \ S. We also hold a
predecessor structure for S.

3. every branching node from the primary trie holds point-
ers to its lowest branching ancestor, and the two branch-
ing descendants (the highest branching nodes from the
left and right subtrees; we consider leaves associated
with elements from S as branching descendants). We
also hold pointers to the two extreme values associated
with the node in the list in item 2. Finally, we hold a
hash table with these branching nodes.

4. for each t, and every node v in Tt, which is either a
branching node or a child of a branching node on an
active path, we hold the depth of the lowest branching
ancestor of r0(v), using a Bloomier filter.

We begin by showing that this data structure takes linear
space. Items 1-3 handle O(n) elements, and have constant
overhead per element. We show below that the navigation
structure from 2. can be implemented in linear space. The
predecessor structure should also use linear space; for van
Emde Boas, this can be achieved through hashing [14].
In item 4., there are O(n) branching nodes per trie. In

addition, there are O(n) children of branching nodes which
are on active paths. Thus, we consider O(n lgw) nodes
in total, and hold O(lgw) bits of information for each (a
depth). Using our solution for the Bloomier filter, this takes
O(n(lgw)2+w) bits, which is o(n) words. Note that storing
the depth of the branching ancestor is just a trick to reduce
space. Once we have a node in T0 and we know the depth
of its branching ancestor, we can calculate the ancestor in
O(1) time (just ignore the bits below the depth of the ances-
tor). So in essence these are “compressed pointers” to the
ancestors.
We now sketch the navigation structure from item 2. Ob-

serve that the longest run in the list of elements from S \ S
can have length at most 2w. Indeed, the leftmost and right-
most extreme values for the branching nodes form a paren-
thesis structure; the maximum depth is w, corresponding to
the maximum depth in the trie. Between an open and a
closed parenthesis, there must be at least one element from
S, so the longest uninterrupted sequence of parenthesis can
be w closed parenthesis and w open parenthesis.
The implementation of the navigation structure uses clas-

sic ideas. We bucket Θ(
√
w) consecutive elements from the

list, and then we bucket Θ(
√
w) buckets. Each bucket holds

a summary word, with a bit for each element indicating
whether it is in S or not; second-order buckets hold bits
saying whether first order buckets contain at least one ele-
ment from S or not. There is also an array with pointers
to the elements or first order buckets. By shifting, we can
always insert another summary bit in constant time when
something is added. However, we cannot insert something in
the array in constant time; to fix that, we insert elements in
the array on the next available position, and hold the correct
permutation packed in a word (using O(

√
w lgw) bits). To

find an element from S, we need to walk O(1) buckets. The
time is O(1) per traversed bucket, since we can use the clas-
sic constant-time subroutine for finding the most significant
bit [7].
We also describe a useful subroutine, test-branching(v),

which tests whether a node v from some Tt is a branching
node. To do that, we query the structure in item 4. to find
the lowest branching ancestor of r0(v). This value is defined
if v is a branching node, but the Bloomier filter may return
an arbitrary result otherwise. We look up the purported
ancestor in the structure of item 3. If the node is not a
branching node, the value in the Bloom filter for v was bo-
gus, so v is not a branching node. Otherwise, we inspect the
two branching descendants of this node. If v is a branching
node, one of these two descendants must be mapped to v in
the trie of order t, which can be tested easily.

4.3 Implementation of Updates
This extended abstract only discusses insertions; deletions

follow parallel steps uneventfully. We first insert the new el-
ement in S and S using the predecessor structures. Inserting
a new element creates exactly one branching node v in the
primary trie. This node can be determined by examining the
predecessor and successor in S. Indeed, the lowest common
ancestor in the primary trie can be determined by taking an
xor of the two values, finding the most significant bit, and
them masking everything below that bit from the original
values [1].
We calculate the extreme values for the new branching

node v, and insert them in S using the predecessor structure.
Finding the branching ancestor of v is equivalent to finding
the enclosing parentheses for the pair of parentheses which
was just inserted. But S has a special structure: a pair of
parentheses always encloses two subexpressions, which are
either values from S, or a parenthesized expression (i.e., the
branching nodes from T0 form a binary tree structure). So
one of the enclosing parentheses is either immediately to the
left, or immediately to the right of the new pair. We can
traverse a link from there to find the branching ancestor.
Once we have this ancestor, it is easy to update the local
structure of the branching nodes from item 3. Until now,
the time is dominated by the predecessor structure.
It remains to update the structure in item 4. For each

t > 0, we can either create a new branching node in Tt, or the
branching node existed already (this is possible for t > 0 be-
cause nodes have many children). We first test whether the
branching node existed or not (using the test-branching

subroutine). If we need to introduce a branching node, we
simply add a new new entry in the Bloomier filter with the
depth of the branching ancestor of v. It remains to con-
sider active children of branching nodes, for which we must
store the depth of v. If we have just introduced a branching
node, it has exactly two active children (if there exist more
than two children on active paths, the node was a branch-
ing node before). These children are determined by look-
ing at the branching descendants of v; these give the two
active paths going into v. Both descendants are mapped
to active children of the new branching node from Tt. If
the branching node already existed, we must add one ac-
tive child, which is simply the child that the path to the
newly inserted value follows. Thus, to update item 4., we
spend constant time per Tt. In total, the running time of an
update is Tpred +O(lgw) = O(lgw).

4.4 Implementation of Queries
Remember that a query receives an interval [a, b] and must

return a value in S∩ [a, b], if one exists. We begin by finding
the node v which is the lowest common ancestor of a and b
in the primary trie; this takes constant time [1]. Note that
v spans an interval which includes [a, b]. The easiest case
is when v is a branching node; this can be recognized by
a lookup in the hash table from item 3. If so, we find the
two branching descendants of v; call the left one vL and the
right one vR. Then, if S ∩ [a, b] = ∅, either the rightmost
value from S that fits under vL or the leftmost value from
S that in fits under vR must be in the interval [a, b]. This
is so because [a, b] straddles the middle point of the interval
spanned by v. The two values mentioned above are the two
values from S closest (on both sides) to this middle point,
so if [a, b] is non-empty, it must contain one of these two. To

find these two values, we follow a pointer from vL to its left
extreme point in S. Then, we use the navigation structure
from item 2., and find the predecessor from S of this value
in constant time. The rightmost value under vR is the next
element from S. Altogether, the case when v is a branching
node takes constant time.
Now we must handle the case when v is not a branching

node. If S ∩ [a, b] = ∅, it must be the case that v is on
an active path. Below we describe how to find the lowest
branching ancestor of v, assuming that v is on an active
path. If this assumption is violated, the value returned can
be arbitrary. Once we have the branching ancestor of v,
we find the branching descendant w which is in v’s subtree.
Now it is easy to see, by the same reasoning as above, that if
[a, b]∩S = ∅ either the leftmost or the rightmost value from
S which is under w must be in [a, b]. These two values are
found in constant time using the navigation structure from
item 2., as described above. So if [a, b] ∩ S = ∅, we can find
an element inside [a, b]. If none of these two elements were
in [a, b] it must be the case that [a, b] was empty, because
the algorithm works correctly when [a, b] ∩ S = ∅.
It remains to show how to find v’s branching ancestor,

assuming v is on an active path, but is not a branching
node. If for some t > 0, v is mapped to a branching node
in Tt, it will also be mapped to a branching node in tries of
higher order. We are interested in the smallest t for which
this happens. We find this t by binary search, taking time
O(lg lgw). For some proposed t, we check whether the node
to which v is mapped in Tt is a branching node (using the
test-branching subroutine). If it is, we continue searching
below; otherwise, we continue above.
Suppose we found the smallest t for which v is mapped to a

branching node. In Tt−1, v is mapped to some z which is not
a branching node. Finding the lowest branching ancestor
of v is identical to finding the lowest branching ancestor
of r0(z) in the primary trie (since z is a not a branching
node, there is no branching node in the primary trie in the
subtree corresponding to z). Since in Tt z gets mapped to
a branching node, its natural subtree in Tt−1 must contain
at least one branching node. We have two cases: either z is
the root or a leaf of the natural subtree (remember that a
natural subtree has two levels). These can be distinguished
based on the parity of z’s depth. If z is a leaf, the root must
be a branching node (because there is at least another active
leaf). But then z is an active child of a branching node,
so item 4. tells us the branching ancestor of r0(z). Now
consider the case when z is the root of the natural subtree.
Then z is above any branching node in its natural subtree,
so to find the branching ancestor of r0(z) we can find the
branching ancestor of the node from Tt to which the natural
subtree is mapped. But this is a branching node, so the
structure in item 4. gives the desired branching ancestor.
To summarize, the only super-constant cost is the binary
search for t, which takes O(lg lgw) time.

Acknowledgement. The authors would like to thank Gerth
Brodal for discussions in the early stages of this work, in
particular on how the results could be extended to dynamic
range counting.

5. REFERENCES
[1] S. Alstrup, G. Brodal, and T. Rauhe. Optimal static

range reporting in one dimension. In Proc. 33rd ACM
Symposium on Theory of Computing (STOC), pages
476–482, 2001.

[2] P. Beame and F. E. Fich. Optimal bounds for the
predecessor problem and related problems. Journal of
Computer and System Sciences, 65(1):38–72, 2002. See
also STOC’99.

[3] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The
Bloomier filter: an efficient data structure for static
support lookup tables. In Proc. 15th ACM/SIAM
Symposium on Discrete Algorithms (SODA), pages
30–39, 2004.

[4] M. Dietzfelbinger. Universal hashing and k-wise
independent random variables via integer arithmetic
without primes. In Proc. 13th Symposium on
Theoretical Aspects of Computer Science (STACS),
pages 569–580, 1996.

[5] M. Dietzfelbinger and F. M. auf der Heide. A new
universal class of hash functions and dynamic hashing
in real time. In Proc 17th International Colloquium on
Automata, Languages and Programming (ICALP),
pages 6–19, 1990.

[6] M. L. Fredman. The complexity of maintaining an
array and computing its partial sums. Journal of the
ACM, 29(1):250–260, 1982.

[7] M. L. Fredman and D. E. Willard. Surpassing the
information theoretic bound with fusion trees. Journal
of Computer and System Sciences, 47(3):424–436,
1993. See also STOC’90.

[8] T. Hagerup. Sorting and searching on the word RAM.
In Proc. 15th Symposium on Theoretical Aspects of
Computer Science (STACS), pages 366–398, 1998.

[9] P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson.
On data structures and asymmetric communication
complexity. Journal of Computer and System
Sciences, 57(1):37–49, 1998. See also STOC’95.

[10] A. Pagh, R. Pagh, and S. S. Rao. An optimal Bloom
filter replacement. In Proc. 16th ACM/SIAM
Symposium on Discrete Algorithms (SODA), 2005. To
appear.

[11] J. P. Schmidt, A. Siegel, and A. Srinivasan.
Chernoff-Hoeffding bounds for applications with
limited independence. SIAM Journal on Discrete
Mathematics, 8(2):223–250, 1995. See also SODA’93.

[12] A. Siegel. On universal classes of extremely random
constant-time hash functions. SIAM Journal on
Computing, 33(3):505–543, 2004.

[13] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design
and implementation of an efficient priority queue.
Mathematical Systems Theory, 10:99–127, 1977. See
also FOCS’75.

[14] D. E. Willard. Log-logarithmic worst-case range
queries are possible in space Θ(N). Information
Processing Letters, 17(2):81–84, 1983.

