On Dynamic Range Reporting
in One Dimension

Christian Mortensen1 Rasmus Pagh1 Mihai Pătrașcu2

1IT U. Copenhagen
2MIT

\textbf{STOC} – May 22, 2005
Maintain a set S, $|S| = n$, under:

- **INSERT**(x): $S \leftarrow S \cup \{x\}$
- **DELETE**(x): $S \leftarrow S \setminus \{x\}$
- **REPORT**(a, b): return $S \cap [a, b]$
Maintain a set S, $|S| = n$, under:

INSERT(x): $S \leftarrow S \cup \{x\}$

DELETE(x): $S \leftarrow S \setminus \{x\}$

REPORT(a, b): return $S \cap [a, b]$

Model: Word RAM, w-bit words

$S \subset \{0, \ldots, 2^w - 1\}$
Maintain a set S, $|S| = n$, under:

INSERT(x): $S \leftarrow S \cup \{x\}$

DELETE(x): $S \leftarrow S \setminus \{x\}$

REPORT(a, b): return $S \cap [a, b]$

Alternative query

FINDANY(a, b): return any $y \in S \cap [a, b]$, or **EMPTY**

Updates maintain S in sorted order. Then, just scan left or right starting with y.

Model: Word RAM, w-bit words

$S \subset \{0, \ldots, 2^w - 1\}$
Search Problems

Exact Search

MEMBER(x) : is $x \in S$?
Predecessor Search
\[\text{PRED}(x) : \text{return } \max\{y \in S \mid y \leq x\} \]

Exact Search
\[\text{MEMBER}(x) : \text{is } x \in S? \]
Predecessor Search
\[\text{PRED}(x) : \text{return } \max\{y \in S \mid y \leq x\} \]
\[\Downarrow \quad \text{PRED}(b) \]

Range Reporting in 1D
\[\text{FINDANY}(a, b) : \text{return any } y \in S \cap [a, b] \]
\[\Downarrow \quad \text{FINDANY}(x, x) \]

Exact Search
\[\text{MEMBER}(x) : \text{is } x \in S? \]
Search Problems

Range Reporting in 2D

\[\text{EMPTY}([a, b] \times [c, d]) : \text{is } S \cap ([a, b] \times [c, d]) = \emptyset? \]

\[\Downarrow \text{“colored predecessor problem”} \]

Predecessor Search

\[\text{PRED}(x) : \text{return } \max\{y \in S \mid y \leq x\} \]

\[\Downarrow \text{PRED}(b) \]

Range Reporting in 1D

\[\text{FINDANY}(a, b) : \text{return any } y \in S \cap [a, b] \]

\[\Downarrow \text{FINDANY}(x, x) \]

Exact Search

\[\text{MEMBER}(x) : \text{is } x \in S? \]
Predecessor search:

\[\Omega\left(\frac{\lg w}{\lg \lg w}\right) \] per query, even statically

\[O(\lg w) \] per query/update: van Emde Boas recursion.
Predecessor search:

\[\Omega\left(\frac{\lg w}{\lg \lg w}\right) \] per query, even statically

\[O(\lg w) \] per query/update: van Emde Boas recursion.

Static range reporting \textit{MAGIC}:

- \(O(1) \) query \quad [MNSW – STOC’95]
- \(\ldots \) and \(O(n) \) space \quad [ABR – STOC’01]
Predecessor search:

\[\Omega\left(\frac{\lg w}{\lg \lg w}\right) \] per query, even statically

\[O(\lg w) \] per query/update: van Emde Boas recursion.

Static range reporting \textit{MAGIC}:

- \(O(1) \) query \([\text{MNSW – STOC’95}]\)
- \(\ldots \text{and } O(n) \) space \([\text{ABR – STOC’01}]\)

Dynamize these solutions \(\Rightarrow \) tradeoff:

- \(O(w^\varepsilon) \) per update, \(O(1) \) per query

\[\uparrow \]

- \(O(\lg w) \) per update, \(O(\lg w) \) per query

Not so magical: converges to van Emde Boas.
We achieve:

- $O(\lg w)$ updates
- $O(\lg \lg w)$ queries
- $O(n)$ space
Dynamic MAGIC

We achieve:

- $O(\lg w)$ updates need predecessor query if S is maintained sorted
- $O(\lg \lg w)$ queries
- $O(n)$ space
We achieve:

- $O(\lg w)$ updates
 need predecessor query if S is maintained sorted
- $O(\lg \lg w)$ queries
 exponential improvement over van Emde Boas
 in terms of universe size u, this is $O(\lg \lg \lg u)$
- $O(n)$ space
We achieve:

- $O(\lg w)$ updates need predecessor query if S is maintained sorted
- $O(\lg \lg w)$ queries
 - exponential improvement over van Emde Boas in terms of universe size u, this is $O(\lg \lg \lg u)$
- $O(n)$ space

MAGICAL ingredients:
Dynamic MAGIC

We achieve:

- $O(\lg w)$ updates
 need predecessor query if S is maintained sorted
- $O(\lg \lg w)$ queries
 exponential improvement over van Emde Boas
 in terms of universe size u, this is $O(\lg \lg \lg u)$
- $O(n)$ space

MAGICAL ingredients:
- eye of a newt
We achieve:

- $O(\lg w)$ updates
 need predecessor query if S is maintained sorted
- $O(\lg\lg w)$ queries
 exponential improvement over van Emde Boas
 in terms of universe size u, this is $O(\lg\lg\lg u)$
- $O(n)$ space

MAGICAL ingredients:

- eye of a newt
- bat wing
Dynamic \textit{MAGIC}

We achieve:

- $O(\lg w)$ updates
 - need predecessor query if S is maintained sorted
- $O(\lg \lg w)$ queries
 - exponential improvement over van Emde Boas
 - in terms of universe size u, this is $O(\lg \lg \lg u)$
- $O(n)$ space

\textit{MAGICAL} ingredients:

- eye of a newt
- bat wing
- new, subtle recursion idea
We achieve:

- $O(\lg w)$ updates
 need predecessor query if S is maintained sorted
- $O(\lg \lg w)$ queries
 exponential improvement over van Emde Boas
 in terms of universe size u, this is $O(\lg \lg \lg u)$
- $O(n)$ space

MAGICAL ingredients:

- eye of a newt
- bat wing
- new, subtle recursion idea
- dynamic perfect hashing in sublinear space
Binary search for longest common prefix of x and $\text{PRED}(x)$.
Binary search for longest common prefix of x and $\text{PRED}(x)$.
Van Emde Boas Recursion

Binary search for longest common prefix of x and $\text{PRED}(x)$.
Van Emde Boas Recursion

Binary search for longest common prefix of x and $\text{PRED}(x)$.

Interpret integers at different levels of detail.
Binary search for longest common prefix of x and $\text{PRED}(x)$.

Interpret integers at different levels of detail.

- van Emde Boas examines levels of detail sequentially
Van Emde Boas Recursion

Binary search for longest common prefix of x and $\text{PRED}(x)$.

Interpret integers at different levels of detail.

- van Emde Boas examines levels of detail sequentially
- we do a binary search on the levels of detail
What are we searching for?

Interpret S as paths in trie of height w
$\Rightarrow n - 1$ branching nodes
What are we searching for?

Interpret S as paths in trie of height w

$\Rightarrow n - 1$ branching nodes

4 interesting values per branching node
What are we searching for?

Interpret S as paths in trie of height w
\[\Rightarrow n - 1 \text{ branching nodes} \]
4 interesting values per branching node

FINDANY(a, b)

- compute $LCA(a, b)$
- find lowest branching ancestor of the LCA
- check if any extreme point is in $[a, b]$
Trouble: finding the lowest branching ancestor of arbitrary v is as hard as predecessor search
Lowest branching ancestor?

Trouble: finding the lowest branching ancestor of arbitrary v is as hard as predecessor search

But we don’t always need to find it
Trouble: finding the lowest branching ancestor of arbitrary v is as hard as predecessor search

But we don’t always need to find it

Assume v is on an active path:
- if true, find ancestor faster
- if false, fail
Lowest branching ancestor?

Trouble: finding the lowest branching ancestor of arbitrary v is as hard as predecessor search

But we don’t always need to find it

Assume v is on an active path:
- if true, find ancestor faster
- if false, fail

Happens only when $S \cap [a, b] = \emptyset$

\Rightarrow witness verification catches the error
Binary search on levels of detail

Binary search for level L such that:

Level $L - 1$: branching

Level L: no branching
Binary search on levels of detail

Binary search for level L such that:

$$O(\lg \lg w)$$

Level $L - 1$: branching

Level L: no branching
Binary search on levels of detail

Binary search for level \(L \) such that:

\[O(\lg \lg w) \]

Then, \(w \) holds pointer to lowest branching ancestor.

Nice, but can we update?
Binary search on levels of detail

Binary search for level L such that:

$O(\lg \lg w)$

Level $L - 1$: branching

Level L: no branching

Then, w holds pointer to lowest branching ancestor.

Nice, but can we update?

- at level L, must have branching immediately above
Binary search on levels of detail

Binary search for level L such that:

$$O(\lg \lg w)$$

Then, w holds pointer to lowest branching ancestor.

Nice, but can we update?

- at level L, must have branching immediately above
- so ancestor in same “triangle” as w on level L
Binary search on levels of detail

Binary search for level L such that:

$$O(\lg \lg w)$$

Then, w holds pointer to lowest branching ancestor. Nice, but can we update?

- at level L, must have branching immediately above
- so ancestor in same “triangle” as w on level L
- for each branching node, ≤ 2 pointers to it at every level

Mortensen, Pagh, Pătrașcu On Dynamic Range Reporting in One Dimension
Binary search on levels of detail

Binary search for level L such that:

$$O(\lg \lg w)$$

Then, w holds pointer to lowest branching ancestor.

Nice, but can we update?

$$O(\lg w)$$

- at level L, must have branching immediately above
- so ancestor in same “triangle” as w on level L
- for each branching node, ≤ 2 pointers to it at every level
Achieving $O(n)$ space

Space: $O(\lg w)$ pointers to $O(n)$ branching nodes
But can encode as level pointers: $O(\lg w)$ bits each
$\Rightarrow O(n \lg^2 w)$ bits of “real information” = $o(n)$ words.
Achieving $O(n)$ space

Space: $O(\lg w)$ pointers to $O(n)$ branching nodes
But can encode as level pointers: $O(\lg w)$ bits each
⇒ $O(n \lg^2 w)$ bits of “real information” = $o(n)$ words.

Bloomier filters:
- store vector $A[1..U]$ of r-bit values
- only $N \ll U$ nonzero positions
Achieving $O(n)$ space

Space: $O(\lg w)$ pointers to $O(n)$ branching nodes
But can encode as level pointers: $O(\lg w)$ bits each
⇒ $O(n \lg^2 w)$ bits of “real information” = $o(n)$ words.

Bloomier filters:
- store vector $A[1..U]$ of r-bit values
- only $N \ll U$ nonzero positions

$N = O(n \lg w), \quad U = O(2^w), \quad r = O(\lg w)$
Achieving $O(n)$ space

Space: $O(\lg w)$ pointers to $O(n)$ branching nodes
But can encode as level pointers: $O(\lg w)$ bits each
$\Rightarrow O(n \lg^2 w)$ bits of “real information” $= o(n)$ words.

Bloomier filters:
- store vector $A[1..U]$ of r-bit values
- only $N \ll U$ nonzero positions

$$N = O(n \lg w), \; U = O(2^w), \; r = O(\lg w)$$

Space lower bound: $\sim N(r + \lg U)$ bits $\sim N$ words.
Achieving $O(n)$ space

Space: $O(\lg w)$ pointers to $O(n)$ branching nodes
But can encode as level pointers: $O(\lg w)$ bits each
$\Rightarrow O(n \lg^2 w)$ bits of “real information” = $o(n)$ words.

Bloomier filters:
- store vector $A[1..U]$ of r-bit values
- only $N \ll U$ nonzero positions

$$N = O(n \lg w), \quad U = O(2^w), \quad r = O(\lg w)$$

Space lower bound: $\sim N(r + \lg U)$ bits $\sim N$ words.

Allow one-sided error:
- if $A[i] \neq 0$, answer must be correct
- if $A[i] = 0$, answer can be wrong
First sublinear-space solution to dynamic Bloomier filters: \(O(n(r + \lg \lg u)) \) bits

Via first sublinear-space solution to dynamic perfect hashing

We prove matching lower bounds improves [CKRT – SODA’04]
Story Time
Story Time

THE END