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Range Reporting in 1D

Maintain a set S, |S| = n, under:

INSERT(x): S ← S ∪ {x}
DELETE(x): S ← S \ {x}
REPORT(a, b): return S ∩ [a, b]
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Range Reporting in 1D

Maintain a set S, |S| = n, under:

INSERT(x): S ← S ∪ {x}
DELETE(x): S ← S \ {x}
REPORT(a, b): return S ∩ [a, b]

Alternative query

FINDANY(a, b): return any y ∈ S ∩ [a, b], or EMPTY

Updates maintain S in sorted order.
Then, just scan left or right starting with y .

Model: Word RAM, w-bit words
S ⊂ {0, . . . , 2w − 1}
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Search Problems

Exact Search
MEMBER(x) : is x ∈ S?
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Search Problems

Predecessor Search
PRED(x) : return max{y ∈ S | y ≤ x}
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MEMBER(x) : is x ∈ S?
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Search Problems

Range Reporting in 2D
EMPTY([a, b] × [c, d ]) : is S ∩ ([a, b] × [c, d ]) = ∅?

⇓ “colored predecessor problem”

Predecessor Search
PRED(x) : return max{y ∈ S | y ≤ x}

⇓ PRED(b)

Range Reporting in 1D
FINDANY(a, b) : return any y ∈ S ∩ [a, b]

⇓ FINDANY(x , x)

Exact Search
MEMBER(x) : is x ∈ S?
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Hardness of Range Reporting

Predecessor search:

Ω( lg w
lg lg w ) per query, even statically

O(lg w) per query/update: van Emde Boas recursion.
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Hardness of Range Reporting

Predecessor search:

Ω( lg w
lg lg w ) per query, even statically

O(lg w) per query/update: van Emde Boas recursion.

Static range reporting MAGIC:

O(1) query [MNSW – STOC’95]

. . . and O(n) space [ABR – STOC’01]
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Hardness of Range Reporting

Predecessor search:

Ω( lg w
lg lg w ) per query, even statically

O(lg w) per query/update: van Emde Boas recursion.

Static range reporting MAGIC:

O(1) query [MNSW – STOC’95]

. . . and O(n) space [ABR – STOC’01]

Dynamize these solutions ⇒ tradeoff:

O(wε) per update, O(1) per query
�

O(lg w) per update, O(lg w) per query

Not so magical: converges to van Emde Boas.
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Dynamic MAGIC

We achieve:

O(lg w) updates

O(lg lg w) queries

O(n) space
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We achieve:
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need predecessor query if S is maintained sorted
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Dynamic MAGIC

We achieve:

O(lg w) updates
need predecessor query if S is maintained sorted

O(lg lg w) queries
exponential improvement over van Emde Boas
in terms of universe size u, this is O(lg lg lg u)

O(n) space
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Dynamic MAGIC

We achieve:

O(lg w) updates
need predecessor query if S is maintained sorted

O(lg lg w) queries
exponential improvement over van Emde Boas
in terms of universe size u, this is O(lg lg lg u)

O(n) space

MAGICAL ingredients:

eye of a newt

bat wing

new, subtle recursion idea
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Dynamic MAGIC

We achieve:

O(lg w) updates
need predecessor query if S is maintained sorted

O(lg lg w) queries
exponential improvement over van Emde Boas
in terms of universe size u, this is O(lg lg lg u)

O(n) space

MAGICAL ingredients:

eye of a newt

bat wing

new, subtle recursion idea

dynamic perfect hashing in sublinear space
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Van Emde Boas Recursion

y x

Binary search for longest common prefix of x and PRED(x).
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Van Emde Boas Recursion

xy x y xy

Binary search for longest common prefix of x and PRED(x).

Interpret integers at different levels of detail.
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xy x y xy

Binary search for longest common prefix of x and PRED(x).

Interpret integers at different levels of detail.

van Emde Boas examines levels of detail sequentially
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Van Emde Boas Recursion

xy x y xy

Binary search for longest common prefix of x and PRED(x).

Interpret integers at different levels of detail.

van Emde Boas examines levels of detail sequentially

we do a binary search on the levels of detail
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What are we searching for?

Interpret S as paths in trie of height w
⇒ n − 1 branching nodes

Mortensen, Pagh, Pǎtraşcu On Dynamic Range Reporting in One Dimension



What are we searching for?

Interpret S as paths in trie of height w
⇒ n − 1 branching nodes

4 interesting values per branching node
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What are we searching for?

ba

Interpret S as paths in trie of height w
⇒ n − 1 branching nodes

4 interesting values per branching node

FINDANY(a, b)

compute LCA(a, b)

find lowest branching ancestor of the LCA

check if any extreme point is in [a, b]
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Lowest branching ancestor?

Trouble: finding the lowest branching ancestor of arbitrary v is
as hard as predecessor search
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Lowest branching ancestor?

Trouble: finding the lowest branching ancestor of arbitrary v is
as hard as predecessor search

But we don’t always need to find it
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Lowest branching ancestor?

Trouble: finding the lowest branching ancestor of arbitrary v is
as hard as predecessor search

But we don’t always need to find it

Assume v is on an active path:

if true, find ancestor faster

if false, fail
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Lowest branching ancestor?

Trouble: finding the lowest branching ancestor of arbitrary v is
as hard as predecessor search

But we don’t always need to find it

Assume v is on an active path:

if true, find ancestor faster

if false, fail

Happens only when S ∩ [a, b] = ∅
⇒ witness verification catches the error
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Binary search on levels of detail

Binary search for level L such that:

vv

Level L − 1: branching Level L: no branching
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Binary search on levels of detail

Binary search for level L such that: O(lg lg w)

vv

Level L − 1: branching Level L: no branching
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Binary search on levels of detail

Binary search for level L such that: O(lg lg w)

v

w

v

Level L − 1: branching Level L: no branching

Then, w holds pointer to lowest branching ancestor.
Nice, but can we update?
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Binary search for level L such that: O(lg lg w)

v

w

v

Level L − 1: branching Level L: no branching

Then, w holds pointer to lowest branching ancestor.
Nice, but can we update?

at level L, must have branching immediately above

so ancestor in same “triangle” as w on level L
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Binary search on levels of detail

Binary search for level L such that: O(lg lg w)

v

w

v

Level L − 1: branching Level L: no branching

Then, w holds pointer to lowest branching ancestor.
Nice, but can we update?

at level L, must have branching immediately above

so ancestor in same “triangle” as w on level L

for each branching node, ≤ 2 pointers to it at every level
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Binary search on levels of detail

Binary search for level L such that: O(lg lg w)

v

w

v

Level L − 1: branching Level L: no branching

Then, w holds pointer to lowest branching ancestor.
Nice, but can we update? O(lg w)

at level L, must have branching immediately above

so ancestor in same “triangle” as w on level L

for each branching node, ≤ 2 pointers to it at every level
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Achieving O(n) space

Space: O(lg w) pointers to O(n) branching nodes
But can encode as level pointers: O(lg w) bits each
⇒ O(n lg2 w) bits of “real information” = o(n) words.
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Achieving O(n) space

Space: O(lg w) pointers to O(n) branching nodes
But can encode as level pointers: O(lg w) bits each
⇒ O(n lg2 w) bits of “real information” = o(n) words.

Bloomier filters:

store vector A[1 . . U] of r -bit values

only N � U nonzero positions
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⇒ O(n lg2 w) bits of “real information” = o(n) words.

Bloomier filters:

store vector A[1 . . U] of r -bit values

only N � U nonzero positions

N = O(n lg w), U = O(2w), r = O(lg w)
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Achieving O(n) space

Space: O(lg w) pointers to O(n) branching nodes
But can encode as level pointers: O(lg w) bits each
⇒ O(n lg2 w) bits of “real information” = o(n) words.

Bloomier filters:

store vector A[1 . . U] of r -bit values

only N � U nonzero positions

N = O(n lg w), U = O(2w), r = O(lg w)

Space lower bound: ∼ N(r + lg U) bits ∼ N words.
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Achieving O(n) space

Space: O(lg w) pointers to O(n) branching nodes
But can encode as level pointers: O(lg w) bits each
⇒ O(n lg2 w) bits of “real information” = o(n) words.

Bloomier filters:

store vector A[1 . . U] of r -bit values

only N � U nonzero positions

N = O(n lg w), U = O(2w), r = O(lg w)

Space lower bound: ∼ N(r + lg U) bits ∼ N words.

Allow one-sided error:

if A[i ] �= 0, answer must be correct

if A[i ] = 0, answer can be wrong
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Low-Space Structures

First sublinear-space solution to dynamic Bloomier filters:
O(n(r + lg lg u)) bits

Via first sublinear-space solution to dynamic perfect hashing

We prove matching lower bounds
improves [CKRT – SODA’04]
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Almost done. . .

Story Time
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Almost done. . .

Story Time

T HE END
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