Planning for Fast Connectivity Updates

Mihai Patrascu Mikkel Thorup

WI[..until June 2008] g//at&t

Jobs, anyone?

Connectivity in Changing Graphs

 insert(edge) } .
time t
e delete(edge) u

e connected(u,v) =areuandvinthe same component?

E time t
qﬁ well understood: t, =®(|g n/lglé”nJ]

Amortized:[randomized t,=O(lgn (Iglgn)3) [T’05]
deterministic t,=0(lgn) [HLT’98]

generation gap

Worst case: deterministic t,=0(Vn) [F'83]

What's wrong with amortized?

starting with
empty graph
e mathematician:

“Nothing, but deamortization is a big challenge.
It's hard therefore it's interesting.”

e CStheorist:

“May spend O(n) per update! Bad for practicel
And practice is always our main motivation.”

e CS practitioner:

"Does spend O(n) /update at worst possible times...
But I don't really care anyway.”

Emergency Planning

Preprocess graph during good times
... when emergency comes, understand what happened quickly

If one edge goes down, what happens to:

e connectivity: graph bridges

e reachability: [King-Sagert STOC’99]

e shortest path: [Hershberger-Suri FOCS’01, Roditty-Zwick ICALP’05]

e APSP: [Chowdhury-Ramachandran’02, Demetrescu-Thorup SODA’02]

=> Nice way to understand graph structure (algorithmically)

Planning for Connectivity

. Preprocessing: graph with m edges
time poly(m) space O(m)

. Batched updates: d edge deletions, insertions

“understand connectivity” in time O(d lg°m Iglg m)
=> # connected components
=> size of each connected component
=> oracle ~~~

. Oracle query: root(v) =ID of connected component
time O(lglg m) per query
N—

[optimal, actually]

ldea 1: Don’t worry, be happy

Any respectable graph is an ex@r...

let P=edge expansion

* preprocessing: |[_I'mfeeling lucky l

* batched deletions: O(d/®) time
e oracle query: O(1)

Exploring Expanders

Grow components around deleted edges: j:
e jsolated: no adjacent edges
=> found connected component

e active: #tdeleted edges > @ #original edges
=> keep growing component

e passive: otherwise

not enough deleted edges to destroy expansion
=> eventually, all passive comps will unite into one giant comp
=> no need to explore further

Can only explore O(d/®) edges before everything becomes passive.

ldea 2: Worry later, be happy

Remove cuts sparser than @ for “later"”
=> partition into expanders

“Later"? [Henzinger-King STOC’95]
actually O(d vigm /@)
e setd=1/(2Igm) using O(vVIgm) approx for sparsest cut

=> update time O(d/®) still ok

o for every cut, charge ® to each edge on smaller side
=> # edges cut ¢ $ charged

» each edge charged at most Igm times
=>total $ < ® lgm ¢ m/2

Hierarchical Decomposition

 Level 1: original graph
promote sparse cuts to level 2

e Level 2: at most m/2 edges
contract level-1 expanders
promote sparse cuts to level 3

 Level 3: at most m/4 edges

..upto<lgm levels

Handling Deletions

In each expander, run expander algorithm.
If an expander is split:
let k = #edges on smaller side
=> at least &k edges deleted in expander
=> can afford to inspect edges on smaller side @ next level

N

>Pk

Trouble with Hierarchies in Paradise

Cascading!

e delete 1 edge at level 1
e separates 2 edges at level 2
e separates 4 edges at level 3

But don’t try this at home...

ldea 3: Cut to the Bone

Trouble: cuts that don’t look too sparse on level i
but are very sparse viewed from level i’ » i
Fix: consider sparsity of cuts that violate levels

Let E; = edges on level > |

| _ B (S %S)|
Before: 4 =min |[EN(Sx8)|

| _ i [Eg(S)|
Now: 4, =min |E.n(SxS)|

Thus, we never contract components on higher levels
Levels = reweighting of the graph

Nota Bene

Profile:
e was L a sparse cut on lev 1,2
wot on level 2, 4, 5

Level promotions not monotone butagainon level e
This changes nothing

... but makes ever step of the reasoning a bit trickier

Updating the Analysis of Updates

At level i: Vertices = components united by
remaining edges on levels < |

original edges on level i
Edges =
deleted edges between components |

- expander!

Unfortunately...

* constructing the hierarchy takes poly(m) time
® need O(m) construction for fully dynamic

e [Spielman-Teng STOC’05]
construct the original hierarchy in O(m)
local approximation to weighted sparsest cut?

 need better random walks for volume in weighted graphs?

Oracle Queries

Level-i component
= comp induced by edges on levels < |

Hierarchy tree
= parent relations between components \b

Isolated component => break parent pointer

Query = find lowest broken pointer
Binary search on level

=> O(lglg m) time per query

The Endl

Anarchists question hierarchies

	Planning for Fast Connectivity Updates
	 Connectivity in Changing Graphs
	What’s wrong with amortized?
	Emergency Planning
	Planning for Connectivity
	Idea 1: Don’t worry, be happy
	Exploring Expanders
	Idea 2: Worry later, be happy
	Hierarchical Decomposition
	Handling Deletions
	Trouble with Hierarchies in Paradise
	Idea 3: Cut to the Bone
	Nota Bene
	Updating the Analysis of Updates
	Unfortunately…
	Oracle Queries
	The End

